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Abstract
We introduce a data-driven approach to gener-
ating derivation trees from meaning represen-
tation graphs with probabilistic synchronous
hyperedge replacement grammar (PSHRG).
SHRG has been used to produce meaning rep-
resentation graphs from texts and syntax trees,
but little is known about its viability on the
reverse. In particular, we experiment on Depen-
dency Minimal Recursion Semantics (DMRS)
and adapt PSHRG as a formalism that approx-
imates the semantic composition of DMRS
graphs and simultaneously recovers the deriva-
tions that license the DMRS graphs. Consistent
results are obtained as evaluated on a collec-
tion of annotated corpora. This work reveals
the ability of PSHRG in formalizing a syntax–
semantics interface, modelling compositional
graph-to-tree translations, and channelling ex-
plainability to surface realization.

1 Introduction

General graph-based meaning representations
(MRs) that model sentence-level semantics aim
to provide interpretable intermediate representa-
tions that are application- and domain-independent
(Koller et al., 2019). Recently, graph gram-
mars and algebras that formalize semantic con-
structions were introduced to MR processing (for
example: (Koller, 2015; Drewes and Jonsson,
2017; Groschwitz et al., 2017; Chen et al., 2018;
Groschwitz et al., 2018; Lindemann et al., 2019;
Donatelli et al., 2019; Chen and Sun, 2020)). These
formal grammars bridge between linguistic assump-
tions and data-driven parsing, and offer the bene-
fit of cross-framework adaptability. For instance,
the Apply–Modify algebra was adopted in pars-
ing across 5 MR frameworks (Oepen et al., 2019)
(Lindemann et al., 2019; Donatelli et al., 2019).
Another formalism that was adopted in generating
semantic graphs from syntax trees is synchronous
hyperedge replacement grammar (SHRG) (Peng
et al., 2015; Chen et al., 2018; Chen and Sun, 2020).

The use of SHRG in recovering syntax trees from
MRs has however received scant research coverage.
Empirical results of PSHRG’s application are lim-
ited to Jones et al. (2012)’s work in semantic-based
machine translation.

An immediate application of MR-to-tree pars-
ing is surface realization. Previous data-driven ap-
proaches to it include rule-based (Flanigan et al.,
2016; Song et al., 2017; Horvat, 2017; Ye et al.,
2018) and neural methods (Song et al., 2018; Da-
monte and Cohen, 2019; Hajdik et al., 2019). All
these methods do not generate syntactic analyses.
In contrast, the Answer Constraint Engine (ACE;
Carroll et al., 1999; Carroll and Oepen, 2005; Vell-
dal and Oepen, 2006), an HPSG grammar-based
parser, generates both derivations and sentences
from Minimal Recursion Semantics (MRS; Copes-
take et al., 2005). If we can induce an SHRG from
data, MRs can be translated into derivation trees
without relying on a hand-engineered grammar, and
natural language texts can be obtained by realizing
the terminals. Combining the strengths of rule-
based systems and the data-driven paradigm, such
an approach gives both linguistically-informed real-
ization processes and explainable results, removes
syntactic ambiguities that would otherwise exist
in flattened surface strings, and provides potential
usage for downstream tasks such as chunking.

Among the different MR frameworks, we inves-
tigate Dependency Minimal Recursion Semantics
(DMRS; Copestake, 2009). DMRS are directed
graphs derived losslessly from MRS, whereas an
MRS structure with respect to a reading of an En-
glish sentence is composed along with a derivation
tree using the English Resource Grammar (ERG;
Flickinger, 2000, 2011), a broad-coverage hand-
engineered HPSG grammar of English. DMRS en-
codes logical formulae with underspecified scopes
(for an introduction, see: Copestake, 2009). Fig. 1
shows an example of an ERG analysis.

Copestake et al. (2001) gave a compositional se-
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Figure 1: A DMRS (left), an HPSG derivation (right)
that licenses the DMRS by an ERG analysis of the sen-
tence Some boys want to go, and a scope-resolved rep-
resentation of the DMRS with variables (bottom). Each
DMRS node is aligned to the surface string as indi-
cated by the colours. In the derivation, each preterminal
is a lexical item, e.g., _go_v1, and each nonterminal
above is labelled by a lexical or syntactic rule, e.g., hd-
cmp_u_c denotes the head–complement construction. In
a DMRS, each node is either a predicate corresponding
to a lexeme (e.g., _boy_n_1) or a nonlexical predicate
(e.g., loc_nonsp) (see Fig. 4). For ease of exposition,
node attributes (e.g., number and tense) are not shown.
The primary edge labels (e.g., ARG1) denote argument
relationship, the secondary edge labels (e.g., /NEQ and
/H) encode constraints on scopal relationships, and TOP
specifies the top scopal non-quantifier node. Based on
the scopal information in the DMRS, the bottom scope
is the only scope possible.

mantic algebra on the constructions of MRS, where
the introduced constraints allow the semantics of
complex sentences to be derived from simple com-
position rules. The compositionality exhibited in
the MRS (for a discussion, see: Bender et al., 2015)
is not obvious in some other MRs, e.g., Abstract
Meaning Representation (AMR; Banarescu et al.,
2013) (Bender et al., 2015), and we suggest that
HRG be particularly suitable to simulate the DMRS
algebra if equipped with adequate adaptations.

In this paper, we shed light on the applicability
of a succinct grammar formalism in approximating
the semantic compositions of a graph-based MR.
Essentially, we capture the syntax–semantics inter-
face of the ERG by inducing a PSHRG from an
annotated treebank to provide generative models
for both DMRS graphs and derivation trees. With
the induced PSHRG, derivation trees that license
the DMRS graphs can be reconstructed through
graph parsing. We describe the procedures and
the relevant adaptations involved, from PSHRG
induction, parsing to generating derivation trees.
Finally, we present the empirical results on deriva-
tion trees and surface strings reconstruction from
DMRS graphs under different configurations.
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Figure 2: Derivation of an HRG for the hypergraph of
DMRS in Fig. 1 using five productions H5 to H1 in
order. A labelled rectangle represents a labelled hy-
peredge, where a hollow one represents a nonterminal.
The numbered rounded rectangles attached to each hy-
peredge denote the ordered collection of nodes the hy-
peredge connects to, each of which corresponds to a
DMRS node. A labelled arrow is a terminal hyperedge
that connects to exactly two nodes and that corresponds
to a DMRS edge. In an HRG production 𝐴→ 𝑅, each
external node of 𝑅 is mapped to a node of the same
colour in 𝐴. H5 rewrites the start symbol to a hyper-
edge that connects to one node. Note that all nodes of
H4 are non-external nodes of the hypergraph fragment.

2 Probabilistic Synchronous Hyperedge
Replacement Grammar

Hyperedge replacement grammar (HRG) is a
context-free rewriting formalism for generating
graphs (Drewes et al., 1997). A synchronous HRG
(SHRG) defines mappings between languages of
graphs, which in our context are an HRG and a
context-free grammar (CFG) for strings. We give
the definitions in this section.

Hypergraph and Hypergraph Fragments. A
hypergraph is specified by a tuple 𝐻 = ⟨𝑉, 𝐸, 𝑙⟩,
where 𝑉 is a finite set of nodes, 𝐸 ⊆ 𝑉+ is a finite
set of hyperedges, each of which connects one or
more distinct nodes, 𝑙 : 𝐸 → 𝐿 assigns a label
from the finite set 𝐿 to each hyperedge. A hyper-
graph fragment is a tuple 𝑅 = ⟨𝑉, 𝐸, 𝑙, 𝑋⟩, where
⟨𝑉, 𝐸, 𝑙⟩ is a hypergraph and 𝑋 ∈ 𝑉+ is an ordered
list of distinct nodes called the external nodes.

HRG. An HRG is a tuple 𝐺 = ⟨𝑁,𝑇, 𝑃, 𝑆⟩,
where 𝑁 and 𝑇 are disjoint finite sets of nonter-
minal and terminal symbols respectively, 𝑃 is a
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finite set of productions of the form 𝐴→ 𝑅, where
𝐴 ∈ 𝑁 and 𝑅 is a hypergraph fragment where hy-
peredge labels are over 𝑁∪𝑇 , and 𝑆 ∈ 𝑁 is the start
symbol. In a step of rewriting a hyperedge 𝑒 by a
production 𝐴 → 𝑅, 𝑒 is replaced with a copy of
𝑅 by identifying each of the nodes connected by 𝑒

with a distinct external node of 𝑅, whose mapping
is specified in the production. Fig. 2 illustrates the
HRG rewriting process.

Synchronous HRG. An SHRG is a tuple 𝐺 =

⟨𝑁,𝑇, 𝑇 ′, 𝑃, 𝑆⟩, where 𝑁 is a finite set of nonter-
minal symbols in both the CFG and the HRG, 𝑇
and 𝑇 ′ are finite sets of terminal symbols in HRG
and CFG respectively, 𝑆 ∈ 𝑁 is the start symbol,
and 𝑃 is a finite set of productions of the form
𝐴 → ⟨𝑅, 𝑅′,∼⟩, where 𝑅 is a hypergraph frag-
ment with hyperedge labels over 𝑁 ∪ 𝑇 , 𝑅′ is a
symbol sequence over 𝑁 ∪ 𝑇 ′, and ∼ is a bijection
between the nonterminal hyperedges of the same
labels in 𝑅 and 𝑅′. When applying a production
𝐴 → ⟨𝑅, 𝑅′,∼⟩, 𝐴 → 𝑅 rewrites the graph as
described in the HRG and the synchronous opera-
tion on the CFG counterpart is a string rewrite by
𝐴→ 𝑅′ (see Fig. 3).

Probabilistic SHRG. A probabilistic SHRG is
obtained by assigning a constant probability to each
production in the SHRG, where probabilities of
the productions that rewrite the same nonterminal
add up to one. In this work, the probability of
𝐴→ ⟨𝑅, 𝑅′,∼⟩ is simply modelled as the fraction
of times it appears among all 𝐴→ ∗ in the training
data. The probability of a derivation is the prod-
uct of the probabilities of the context-free SHRG
productions applied.

3 PSHRG Induction and Parsing

In this section, we describe how a PSHRG is in-
duced from training data and how a derivation tree
is reconstructed from a DMRS of the test data with
the induced grammar. We also describe two meth-
ods for modelling the semantics of lexical items.

DMRS as Hypergraph. We first establish the
connections between DMRS and HRG. A DMRS
graph is modelled as a hypergraph 𝐻 with terminal
hyperedges. In 𝐻, each terminal hyperedge corre-
sponds to a DMRS node or edge: the former can
connect to an arbitrary number of nodes in 𝐻, and
the latter connects to only two nodes in 𝐻.
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Figure 3: Illustration of the derivation, induction and
parsing processes of an SHRG for the analysis in Fig. 1.
At the top is the normalized derivation (see §4.1). Each
SHRG production comprises one HRG and one CFG
rule. During SHRG derivation, nonterminal hyperedges
are rewritten by H5 to H1 and strings by C5 to C1
sequentially. During SHRG induction, synchronous
rules P1 to P5 are extracted in order. During SHRG
parsing, H1 to H5 are recognized in order, and C1 to
C5 are applied synchronously. P3 extracts (recovers)
the subtree connected by dotted lines that contains the
semantically empty word to during induction (parsing).

3.1 PSHRG Induction

We describe how to induce a PSHRG from pairs of
aligned trees and graphs. The PSHRG induction
procedure generally follows Chen et al. (2018)’s
SHRG extraction algorithm, which operates based
on the surface string alignment information be-
tween DMRS graphs and their derivation trees (for
expositions, see: Chen et al., 2018). Fig. 3 illus-
trates the grammar induction process. For each
nonterminal in the tree, i.e., a node labelled by an
ERG syntactic construction (a label of the form *_c,
e.g., hd-cmp_u_c), a production 𝐴 → ⟨𝑅, 𝑅′,∼⟩
is extracted, where 𝐴, 𝑅 and 𝑅′ are the ERG syn-
tactic construction, connected DMRS hypergraph
fragment and daughter ERG rule(s) respectively.
For a binary ERG construction, if any of its daugh-
ters is a semantically empty terminal (e.g., for the
lower hd-cmp_u_c in Fig. 3), no productions are
extracted (discussed in §3.3.3). The DMRS hyper-
graph fragment specified by 𝑅 is then rewritten to a
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nonterminal hyperedge labelled by 𝐴. We perform
the same rule extraction procedure for each training
instance to induce an SHRG from the training data,
thus a PSHRG when we consider the frequency
information.

3.2 PSHRG Parsing
To recover the derivation tree of a DMRS, we
can translate the semantic compositions to the
corresponding syntactic operations by parsing the
DMRS with the induced PSHRG (see Fig. 3). We
aim at recognizing the best derivation according to
a PSHRG model, which requires exact graph pars-
ing. Chiang et al. (2013); Groschwitz et al. (2015);
Ye and Sun (2020) studied HRG parsing and pro-
posed various techniques on improving the effi-
ciency, but no evaluation on accuracy is performed
on the parsed results with respect to a gold-standard
grammar. Although efficient algorithms are de-
veloped for HRG parsing, existing parsers do not
provide convenient adaptations to the extensions
introduced in this work. Rather than efficiency,
our work focuses on the correctness of derivations
as measured against the original derivations that
license each DMRS. Therefore, we implement a
parser that returns the best PSHRG derivation of
DMRS via bottom–up passive chart parsing (for
details of the parsing algorithms, see Appendix A).

3.3 PSHRG Adaptations
We introduce two adaptations to align PSHRG with
the semantics introduced by the ERG lexical items.

3.3.1 Semantics of Lexical Items
Complex semantics. While most lexical items
introduce just one DMRS predicate each, some
introduce more complex semantics. As an exam-
ple, Fig. 4 shows that somebody provides both the
_some_q quantifier and the person predicate. There-
fore, the R.H.S. hypergraph fragment of an SHRG
production is not confined to a hypergraph frag-
ment with one or two terminal hyperedges, but
one with more than two terminal hyperedges that
corresponds to a connected DMRS subgraph.

Empty semantics. There are semantically empty
lexical items that do not contribute predicates to
the DMRS, e.g., auxiliary verbs and particles. This
poses another challenge for derivation reconstruc-
tion because the syntactic properties of these lexical
items are highly language-dependent, yet they are
not captured by general semantic representations
as they are not semantically functional.

(('_late_p', ('time_n$ARG1/EQ'), ('loc_nonsp$-ARG2/NEQ')),
 ('loc_nonsp', ('time_n$ARG2/NEQ'), ('_late_p$-ARG1/EQ')),
 ('time_n', ('_late_p$-ARG1/EQ', 'loc_nonsp$-ARG2/NEQ'), ())
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Figure 4: Canonization of two small subgraphs. The top
left tree is the original derivation, where the terminals
are aligned to DMRS nodes as indicated by the colour.
The top right tree is the normalized derivation, where
two preterminals are replaced by their DMRS subgraphs,
each represented by its canonical form at the bottom.

3.3.2 Canonization of Small Subgraphs
To recognize complex semantics, we borrow the
idea of the graph canonization method described by
Horvat (2017) that isomorphic DMRS subgraphs
can be identified by comparing if their canonical
representations are the same. Graph canonization
is achieved in two steps: first, each node in the
DMRS subgraph is given a canonical node repre-
sentation by encoding its 1- and 2-hop neighbours;
then the final canonical form is obtained by con-
catenating the sorted node representations based on
a canonical ordering. Most subgraphs introduced
contain fewer than seven DMRS nodes, for which
the canonization method is sound (Horvat, 2017).
Fig. 4 exemplifies the idea.

During grammar induction, the canonical forms
of all small subgraphs that correspond to ERG lexi-
cal items are extracted from the training data. Then,
given a DMRS from the test data, we first identify
its subgraphs that are isomorphic to any of the
extracted ones before parsing. This is achieved
by first enumerating all small subgraphs from the
DMRS, then computing the canonical form for
each of them, and finally comparing the canonical
forms with those of the subgraphs extracted. The
process can be sped up by computing the canonical
form of a subgraph only if its collection of DMRS
predicates is present in the set of those extracted
from the training data.

3.3.3 Semantically Empty Lexical Items
We devise a semi-automatic method to extract (dur-
ing grammar induction) and recover (during pars-
ing) the syntax of common semantically empty
words. To this set of words with empty seman-
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tics, we define a collection of linguistic signals that
can serve as their cues, and match each signal to
the set of lexical items it can recover. For exam-
ple, the tense and aspects of verbs and predicative
adjectives are signals for auxiliary verbs.

During SHRG induction, the signals are first
identified from the DMRS node attributes and are
then generally passed up from the syntactic head
daughter. When extracting a binary construction, if
the unextracted subtree (described in §3.1) contains
a semantically empty lexical item that matches a
signal of any of the daughters, a hypergraph frag-
ment is extracted together with the subtree asso-
ciated with that signal. During parsing, the same
bottom–up signal passing procedures apply. If the
R.H.S. hypergraph fragment of a binary production
is recognized and any signal passed up matches
that of an extracted subtree, the HRG production is
applied and the CFG subtree is added on top of the
two daughters in the derivation tree (see Fig. 3).

4 Towards Practical Grammar
Approximation and Modelling

To approximate complex grammars or implicit re-
lations established between trees and graphs by
PSHRG, we introduce extensions for improving
on both the precision and generalizability of mod-
elling. The application of most of the proposed
techniques is not limited to the DMRS, but to gen-
eral MR parsing by PSHRG.

4.1 Annotations for Refining Compositions

Three techniques are introduced to impose restric-
tions to semantic compositions, allow probability
to be estimated on more fine-grained SHRG pro-
ductions, and prevent overgeneration.

Typed HRG. Chen and Sun (2020) introduced
typed HRG, where each node of a hypergraph (frag-
ment) and hyperedge is assigned a label chosen
from a finite set. In typed HRG, an R.H.S. hyper-
graph fragment is recognized only if the type of its
every node matches that of the corresponding node
in the input graph. In our case, we propose to type
a node by the major sense tag of the correspond-
ing DMRS predicate. For example, in Fig. 5, the
nodes on the R.H.S. correspond to _want_v_1 and
_go_v_1 respectively, so both are typed v.

Annotation and Normalization of Derivation.
An HPSG derivation tree merely records the recipe
of a derivation, where the non-atomic rule symbols

hd-optcmp_c 
^hd-cmp_u_c [VP]

hd-optcmp_c 
^hd-cmp_u_c [VP]_*_v_*→

ARG2/H
H3' 

→ _*_v_*  to_c_propC3' 

hd-cmp_u_c 
^sb-hd_mc_c [S]   2

  1

hd-cmp_u_c 
^sb-hd_mc_c [S]

v
  1   2  vv v

Figure 5: P3 in Fig. 3 with annotated syntactic construc-
tions, typed nodes and a delexicalized DMRS predicate.

only convey highly generalized linguistic princi-
ples. Each rule represents a unification of typed
feature structures. Inspired by Zhang and Krieger
(2011), we annotate each syntactic construction
with that of their immediate parent (order-2 verti-
cal markovization) and the syntactic category of
the phrase (see Fig. 5). This adds extra contextual
information to the constituents. We further normal-
ize the derivations by substituting chains of unary
lexical rules, affixation rules for punctuation marks,
and the preterminals by the canonical form of a
DMRS node or subgraph (see Fig. 4).

Framework-Specific Constraints. PSHRG Pars-
ing on DMRS without regard for the MRS semantic
algebra leads to inefficiency and overgeneration. In
particular, the features INDEX and LTOP in MRS
specify the semantic materials of a phrase that are
accessible during composition. In the ERG, their
values are determined by the type of composition.1

Hence, when parsing a DMRS, every composition
should ensure that subsequent compositions can
only happen to the two variables of the newly com-
posed item. This procedure resembles Carroll and
Oepen (2005)’s proposal on index accessibility fil-
tering. The checks can be easily incorporated into
SHRG parsing (for the details, see Appendix B).
Nevertheless, INDEX and LTOP are not the only fea-
tures that permit compositions in the ERG. There-
fore, the constraints introduced prevent overgener-
ation to a large extent but lead to undergeneration.
In this work, we examine the two most prominent
features, and how we should further integrate the
MRS algebra to HRG is an open question.

4.2 Underspecification for Generalization

Two underspecification methods are developed to
alleviate the rule sparsity and out-of-vocabulary
(OOV) problems, which are the main challenges
faced by general rule-based systems.

1The precise algebras of the two features in the ERG are
not discussed fully here. In brief, the INDEX and the LTOP
usually come from the syntactic head, but come from a scopal
modifier if the semantic composition is scopal. For exposi-
tions, see: Copestake et al. (2001); Copestake (2009).
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Extended HRG Productions. When recogniz-
ing an HRG production 𝐴 → 𝑅 on a hypergraph
𝐻, we suggest that the external nodes of 𝑅 be not
distinguished from the non-external nodes. Con-
sequently, the rewriting hyperedge 𝐴 connects to
a variable number of nodes, and such number de-
pends on 𝐻. To motivate such decision, consider
H1 of Fig. 3. The fact that the hyperedge _boy_n_1
connects to an external node is not significant to
the characterization of the sp-hd_n_c (the specifier–
head construction where the specifier is the seman-
tic head). This effectively creates more SHRG
productions that share the same probabilities if
their R.H.S. hypergraphs (minus external nodes)
are identical.

Delexicalization. The PSHRG models are es-
timated based on delexicalized productions: the
lexeme stems of verbs, adjectives, adverbs, and
nouns (whose DMRS predicates are in the form of
‘_*_v_*’, ‘_*_a_*’ and ‘_*_n_*’ respectively) are
underspecified (see Fig. 5). This is a significant dis-
tinction between our grammar and the ERG since
the ERG is highly lexicalized.2 Hence, delexical-
ization trades lexical preciseness for OOV coverage.
Furthermore, since an approximation grammar is
assumed to have no access to the lexical informa-
tion of the underlying grammar, the results of our
experiments would reflect the viability of PSHRG
as a general approach to grammar approximation.

5 Experiments

The main objective of the experiments is to assess
the performance of PSHRG models on simulating
DMRS compositions and producing approximat-
ing derivation trees. Specifically, we reconstruct
a derivation tree for each DMRS whose nontermi-
nals are aligned to DMRS subgraphs and labelled
by an ERG syntactic construction; the ERG 1214
contains more than 210 fine-grained syntactic con-
structions that reflect the distinguishing properties
of different syntactic constructions.

As a secondary evaluation, we analyze our per-
formance on the task of surface realization. The
purpose of this is twofold: first, assessing the qual-
ity of the surface strings produced from the recon-

2Each lexical entry in the ERG is assigned to exactly one
lexical type, which determines most of its syntactic and se-
mantic properties. For example, inform, advise and remind
share a lexical type because they all select a noun phrase and
a sentential complement. The detailed lexical types interact
with the highly generalized linguistic principles to produce
precise linguistic interpretations.

structed derivation trees gives additional perspec-
tives on the evaluation of our models; and secondly,
there are existing works on surface realization from
DMRS, so our models can be benchmarked against.

Finally, we evaluate the significance of the
two proposed adaptations, namely recovering
words with empty semantics and incorporating
framework-specific constraints to PSHRG parsing.
An instance of sample input and sample output are
provided in Appendix C.

5.1 Data

The main data set we experiment on is the Ninth
Growth of the Redwoods Treebank (Oepen et al.,
2002).3 It contains English sentences from a range
of domains including Wall Street Journal (WSJ)
and the Brown corpus, each paired with the analy-
ses of the 1214 version of the ERG. Each MRS is
converted into a DMRS using Pydelphin (Copes-
take et al., 2016).4 We discard the instances with
ambiguous analysis, disconnected DMRS, and un-
parsable MRS by Pydelphin.

To assess the scalability of our models, we fur-
ther sampled sentences from the Gigaword v.5 cor-
pus (Parker et al., 2011) for model training, where
extra training instances are obtained by parsing sen-
tences with the ACE and choosing the best ERG
analysis for each sentence as ranked by the ACE.

After preprocessing, the total number of in-
stances in the training and test sets are 70,774 and
10,042 respectively under the standard Redwoods
data split. 70,774 extra training instances are cre-
ated from the Gigaword corpus.

5.2 Experimental Configurations

We removed the mostly uninformative syntactically
covert quantifiers (e.g., udef_q, proper_q) in all
DMRS graphs. The numbers of DMRS nodes re-
ported below are counted after the removal. Sub-
graph canonization (§3.3.2) was performed only on
the DMRS subgraphs of fewer than seven nodes.
The maximum length of the unary chains in the
generated derivation trees was set to be three. The
parser was implemented in PyPy3.6 and ran under
one Intel Xeon E5-2697 CPU on x86_64 Linux.
Our implementation is available online.5

3http://svn.delph-in.net/erg/tags/
1214/tsdb/gold

4https://github.com/delph-in/pydelphin
5https://github.com/aaronlolo326/

pshrgOnDMRS
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Derivation
Annotation Model

ParsEval-Graph
Coverage

P R F1

M1C
SHRG–PCFG 76.79 74.90 75.84 80.58%
PSHRG 81.86 79.85 80.84 80.58%
PSTHRG 83.81 81.23 82.50 74.31%

M2C
SHRG–PCFG 83.13 80.44 81.77 68.69%
PSHRG 84.52 81.60 83.03 68.69%
PSTHRG 87.04 83.66 85.32 61.50%

Table 1: Results on the accuracy of derivation recon-
struction under standard Redwoods data split.

5.3 Results

5.3.1 On Derivation Tree Reconstruction

If a DMRS is parsed correctly, the synchronously
reconstructed derivation should not deviate too
much from the original derivation. Nevertheless,
equivalence is a sufficient, but not necessary con-
dition for a parse to be correct since syntactic dif-
ferences do not necessarily contribute to semantic
differences.

We devise a modified version of the ParsEval
(Black et al., 1991) measure, ParsEval-Graph, to
assess the quality of the generated trees, as the con-
stituents of the trees are not aligned to a surface
string but on the input semantics. In ParsEval-
Graph, the alignment of a constituent refers to the
DMRS nodes covered instead of the characters
covered in the surface string. Following ParsEval,
ParsEval-Graph only accounts for binary rules, and
preterminals are disregarded. All ParsEval-Graph
scores are evaluated on the parsable instances of
the respective models on unannotated derivation
trees.

As introduced in §4.1, we experiment with the
typed variant of PSHRG, PSTHRG, and two con-
figurations of tree annotation, namely order-2 ver-
tical markovization with syntactic category anno-
tation (M2C), and only syntactic category anno-
tation (M1C). Since no existing works on data-
driven DMRS parsing or surface realization pro-
duce syntactic derivations, we develop a baseline
model SHRG–PCFG for benchmarking. SHRG–
PCFG parses a DMRS with the SHRG induced and
the probability of each parse is given by a PCFG
model where the probability of each CFG produc-
tion 𝐴 → 𝑅′ is modelled as the fraction of times
𝐴→ 𝑅′ appears among all 𝐴→ ∗ in the training
data. The ACE is not evaluated because it always
generates derivations faithful to the ERG.

As reported in Table 1, all PSHRG models attain
F1 scores of over 80 consistently across settings

Model Training Set
ParsEval-Graph

Coverage
P R F1

PSHRG (M1C) Redwoods 81.86 79.85 80.84 80.58%
Redwoods + Gigaword 81.60 79.66 80.62 85.11%

PSTHRG (M1C) Redwoods 83.81 81.23 82.50 74.31%
Redwoods + Gigaword 83.39 80.85 82.10 80.62%

Table 2: Results on derivation reconstruction on the
Redwoods test set with different training sets.

and outperform the baseline under the same annota-
tion configurations. More extensive annotation and
typing the grammar respectively improve the F1
score by about 2, at the expense of coverage reduc-
tion caused by rule sparsity when the Redwoods
training set does not provide adequate data for the
over-specific annotation. It is insightful to note
that the baseline under M2C performs at a level be-
tween the PSHRG model and PSTHRG model on
M1C, which conveys that the contextual informa-
tion of a nonterminal node could already provide
ample information on the semantic compositions.

To study models’ performance with respect to
the size of the training data, we add the Gigaword
instances on top of the Redwoods training set. This
doubles the amount of training data. As reported in
Table 2, the coverages of the two models increase
by 4.50% and 6.31% respectively with more data.
Nevertheless, the accuracy of derivations does not
improve further, as frequency-based context-free
probability models have low learning capacities.

Despite all DMRS being generated by the ERG,
the ACE does not parse every DMRS–parsing fails
when a DMRS predicate is OOV. In contrast, our
models parse more instances than the ACE when
given more training data, since they generalize to
OOV with delexicalization. Although delexicaliza-
tion removes much lexical information, we suggest
that SHRG-based parsing and the incorporation of
MRS-specific constraints can restrict compositions
outside of the ERG to a large extent.

5.3.2 On Surface Realization

To produce a surface string from a DMRS, we real-
ize the most frequently recorded surface form for
each preterminal from the reconstructed derivation
tree. We compare our work with the Neural MRS
(Hajdik et al., 2019) and the ACE. The Neural MRS
generates in an end-to-end manner without interme-
diate syntactic derivations. For more comparable
results, we evaluate the models under M1C anno-
tation configuration since they have similar parse
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Model
BLEU Generate

Syntactic
StructuresRedwoods WSJ Brown

Neural MRS 66.11 65.78 45.00 No
ACE (ERG) 62.21 - - Yes
PSHRG (M1C) 59.33 63.65 58.29 Yes
PSTHRG (M1C) 60.67 64.77 59.47 Yes

Table 3: Results on surface realization. Redwoods, WSJ
and Brown refer to the Redwoods standard splits, WSJ–
WSJ and WSJ–Brown splits respectively.

coverages to the ACE.
We evaluate the generation quality with BLEU

(Papineni et al., 2002) using SacreBLEU (Post,
2018)6. Following (Hajdik et al., 2019)’s eval-
uation on in- and out-of-domain performances,
we experiment on the different training–test data
splits, namely the WSJ–WSJ and WSJ–Brown
splits. WSJ contains 34,751 training instances and
1,442 test instances, and Brown contains 2,181 test
instances.7 All BLEU scores are evaluated on the
parsable instances of the respective models.

Table 3 shows that our models perform consis-
tently across data splits. Under the Redwoods stan-
dard data split, our models are worse than the neu-
ral model. With similar parse coverages to the ACE,
our performance is also close to the ACE. Under
the WSJ-Brown split, our PSHRG models outper-
form the Neural MRS.8 The PSHRG (M1C) parses
74.90% of the test set under the WSJ–WSJ split.
When the model is typed and when switching from
in- to out-of-domain, the models parse about 7%
less data respectively. The coverages of M1C mod-
els reported here are lower than those in Table 1
since the amount of training data is halved. There-
fore, we consider the relative decreases in coverage
from in- to out-of-domain of our respective mod-
els to be more insightful on models’ transferability
between domains than the absolute coverage.

Apart from the automatic evaluation, we also
value qualitative details and seek linguistically in-
teresting phenomena that result from a grammar-
based approach. To this end, we observe that our
models identify different realization possibilities
from the original sentence to the same semantics

6https://github.com/mjpost/sacreBLEU
7The numbers of training and test instances of Neural MRS

are slightly greater than ours after respective preprocessing.
8To provide context on assessing our model under a full-

coverage scenario, we try to provide a naive fallback for the
unparsable instances: For each of these instances, the partially
realized non-overlapping constituents are concatenated in or-
der of decreasing number of the DMRS nodes covered to form
the final sentence. With this quick fix, our PSHRG (M1C)
model attains a BLEU score of 51.08 on the WSJ–Brown split.

[Ref] Also of interest are the mountains around the Rosendal community in
Kvinnherad kommune.

[Sys] The mountains around the Rosendal community in Kvinnherad kom-
mune are also of interest.

[Ref] Here is a list of the source and target languages SYSTRAN works with.
[Sys] Here is a list of the source and target languages with which SYSTRAN

works.

[Ref] Earlier this year, bankers and other investors were willing to provide
financing because they assumed there would be major gains in both
profitability and sales, Mr. Rosenthal added.

[Sys] Earlier this year bankers and other investors were willing to provide
financing because they assumed that it would be major gains in prof-
itability and sales, added Mr. Rosenthal.

Table 4: Examples of syntactic variations demonstrated
in the generated texts. In the first example, the canonical
subject–verb order is recovered when the original text is
an inverted sentence. In the second example, inversion
is preserved and preposition fronting is adopted instead
of stranding as in the reference sentence (see Fig. 8
of Appendix C). The third example reflects multiple
linguistic variations, including the insertion of comple-
mentizer that, omission of semantically empty both and
quotative subject–verb inversion .

that conform to the ERG. Some syntactic variations
are reported and explained in Table 4.

Compared to neural approaches, PSHRG is a
shallow statistical model with a high inductive bias.
It encodes a syntax–semantics interface effectively
through tree- and graph- rewriting. Even though
our models are not engineered towards the task of
surface realization, and with limited morphological
analyses and no language modelling, our approach
is still competitive as evaluated quantitatively and
qualitatively. We suggest that PSHRG-based ap-
proaches and neural models be decent alternatives
to each other for general surface realization from
MR: neural models provide full-coverage and high-
quality generation when substantial training data
is available, whereas PSHRG-based solutions ex-
trapolate from limited data and in out-of-domain
scenarios, and produce interpretable derivations.

5.3.3 Ablation Studies
We conduct a few more experiments to test against
the significance of two proposed adaptations,
namely the solution to semantically empty words
(§3.3.3) and framework-specific constraints (§4.1).
We implement two models, PSTHRG-∅ (M1C) and
PSTHRG-λ (M1C), which parse DMRS without
regard for semantically empty lexical items and
MRS constraints respectively.

As reported in Table 5, The treatment of empty
semantics not only adds 15.51% more parsable in-
stances but also corrects some parses in the 58.80%
that require analyses of empty semantics, thus pro-
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Model
ParsEval-Graph

BLEU Coverage
P R F1

PSTHRG (M1C) 83.81 81.23 82.50 60.67 74.31%
PSTHRG-∅ (M1C) 84.68 81.09 82.85 54.07 58.80%

Table 5: Results of ablation of inserting words with
empty semantics under the Redwoods standard split.

ducing more accurate surface strings.
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Figure 6: Results of ablation of framework-specific
constraints on parsing time under the WSJ-WSJ split.

Model
ParsEval-Graph

BLEU
P R F1

PSTHRG (M1C) 86.16 82.66 84.37 64.77
PSTHRG-λ (M1C) 85.06 81.59 83.29 64.02

Table 6: Results of ablation of framework-specific con-
straints on derivation reconstruction and surface realiza-
tion qualities under the WSJ-WSJ split.

Fig. 6 shows the importance of MRS constraints
on parsing efficiency. We set a time limit of 300
seconds on parsing, and the parsing of 16.71% of
the WSJ test set exceeds the time limit. When the
DMRS contains 24 or more nodes, timeouts occur
on at least one DMRS graph of each size. Table 6
shows that when the constraints are enforced, all
parses are completed in much shorter times and the
derivations reconstructed are more accurate.

6 Discussion

The proposed frequency-based PSHRG models are
simple yet competitive data-driven baselines for
recovering derivations of DMRS. They can be fur-
ther combined with sophisticated machine learning
methods for a more accurate parse ranking. More
extensive features can also be included to enhance
grammar approximation. For instance, the feature-
paths of ERG signs are shown to be helpful for
PCFG approximation (Zhang and Krieger, 2011).
Language-specific knowledge about words with
empty semantics is also critical for syntactic pur-
poses. In terms of efficiency, Ye and Sun (2020)

showed that exact parsing can be very practical on
Elementary Dependency Structures (EDS; Oepen
and Lønning, 2006), a close equivalent to DMRS
that excludes scopal information. Different from
Ye and Sun (2020)’s implementation, we retain
more than 210 ERG syntactic constructions for pre-
cision and adopt delexicalization for generalization,
both of which increase the search space of parsing
and trade efficiency. We suggest that the described
PSHRG-based approach can be a potential alter-
native to the unification-based ACE generator for
surface realization from DMRS, whilst improving
parsing coverage, accuracy and efficiency without
sacrificing one another would be a critical problem
for future research. In this paper, we report our
findings with respect to the engineering decisions
we investigated based on the data at hand.

In principle, the application of the described
PSHRG-based approach is not limited to DMRS,
but also to generic graph-to-tree translations that
exhibit compositionality, if suitable data of aligned
trees and graphs is available. If explicit associa-
tions do not exist between the trees and graphs, the
induced grammar formalizes the underlying rela-
tions and patterns; otherwise, the induced grammar
provides an approximation to such relations, which
can be desirable for computation purposes.

7 Conclusion

Based on the experimental results, we can assess
the contributions of this work from three perspec-
tives: (1) PSHRG with framework-specific adap-
tions as a formalism that approximates the semantic
composition process of DMRS, (2) PSHRG graph
parsing with framework-independent extensions
as a general approach to modelling compositional
graph-to-tree translation, and (3) derivation recon-
struction with a PSHRG induced from data as a
solution to surface realization from MRs that pro-
vides explainability, syntactic disambiguation, and
syntactic variations. We hope that this work pro-
vides relevant and substantial empirical insights to
stimulate more research on approaching MR pro-
cessing with linguistically-motivated methods.
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Muszyńska. 2016. Resources for building applica-
tions with dependency Minimal Recursion Semantics.
In Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 1240–1247, Portorož, Slovenia. European Lan-
guage Resources Association (ELRA).

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A Sag. 2005. Minimal recursion semantics:
An introduction. Research on language and compu-
tation, 3(2):281–332.

Ann Copestake, Alex Lascarides, and Dan Flickinger.
2001. An algebra for semantic construction in
constraint-based grammars. In Proceedings of the
39th Annual Meeting of the Association for Computa-
tional Linguistics, pages 140–147, Toulouse, France.
Association for Computational Linguistics.

Marco Damonte and Shay B. Cohen. 2019. Structural
neural encoders for AMR-to-text generation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 3649–3658, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Lucia Donatelli, Meaghan Fowlie, Jonas Groschwitz,
Alexander Koller, Matthias Lindemann, Mario Mina,
and Pia Weißenhorn. 2019. Saarland at MRP 2019:
Compositional parsing across all graphbanks. In Pro-
ceedings of the Shared Task on Cross-Framework
Meaning Representation Parsing at the 2019 Confer-
ence on Natural Language Learning, pages 66–75,
Hong Kong. Association for Computational Linguis-
tics.

Frank Drewes and Anna Jonsson. 2017. Contextual hy-
peredge replacement grammars for Abstract Meaning
Representations. In Proceedings of the 13th Interna-
tional Workshop on Tree Adjoining Grammars and
Related Formalisms, pages 102–111, Umeå, Sweden.
Association for Computational Linguistics.

Frank Drewes, H-J Kreowski, and Annegret Habel.
1997. Hyperedge replacement graph grammars. In
Handbook Of Graph Grammars And Computing
By Graph Transformation: Volume 1: Foundations,
pages 95–162. World Scientific.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and Jaime
Carbonell. 2016. Generation from Abstract Meaning
Representation using tree transducers. In Proceed-
ings of the 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 731–
739, San Diego, California. Association for Compu-
tational Linguistics.

Dan Flickinger. 2000. On building a more effcient gram-
mar by exploiting types. Natural Language Engineer-
ing, 6(1):15–28.

5434

https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W15-0128
https://www.aclweb.org/anthology/W15-0128
https://www.aclweb.org/anthology/H91-1060
https://www.aclweb.org/anthology/H91-1060
https://www.aclweb.org/anthology/H91-1060
https://users.sussex.ac.uk/~johnca/papers/ewnlg99.pdf
https://users.sussex.ac.uk/~johnca/papers/ewnlg99.pdf
https://doi.org/10.1007/11562214_15
https://doi.org/10.1007/11562214_15
https://doi.org/10.18653/v1/2020.acl-main.605
https://doi.org/10.18653/v1/2020.acl-main.605
https://doi.org/10.18653/v1/P18-1038
https://doi.org/10.18653/v1/P18-1038
https://www.aclweb.org/anthology/P13-1091
https://www.aclweb.org/anthology/P13-1091
https://www.aclweb.org/anthology/E09-1001
https://www.aclweb.org/anthology/E09-1001
https://www.aclweb.org/anthology/E09-1001
https://www.aclweb.org/anthology/L16-1197
https://www.aclweb.org/anthology/L16-1197
https://www.cl.cam.ac.uk/~aac10/papers/mrs.pdf
https://www.cl.cam.ac.uk/~aac10/papers/mrs.pdf
https://doi.org/10.3115/1073012.1073031
https://doi.org/10.3115/1073012.1073031
https://doi.org/10.18653/v1/N19-1366
https://doi.org/10.18653/v1/N19-1366
https://doi.org/10.18653/v1/K19-2006
https://doi.org/10.18653/v1/K19-2006
https://www.aclweb.org/anthology/W17-6211
https://www.aclweb.org/anthology/W17-6211
https://www.aclweb.org/anthology/W17-6211
https://doi.org/10.1142/9789812384720_0002
https://doi.org/10.18653/v1/N16-1087
https://doi.org/10.18653/v1/N16-1087
https://doi.org/10.1017/S1351324900002370
https://doi.org/10.1017/S1351324900002370


Dan Flickinger. 2011. Accuracy vs. robustness in gram-
mar engineering. Language from a cognitive perspec-
tive: Grammar, usage, and processing, 201:31–50.

Jonas Groschwitz, Meaghan Fowlie, Mark Johnson, and
Alexander Koller. 2017. A constrained graph algebra
for semantic parsing with AMRs. In IWCS 2017
- 12th International Conference on Computational
Semantics - Long papers.

Jonas Groschwitz, Alexander Koller, and Christoph Te-
ichmann. 2015. Graph parsing with s-graph gram-
mars. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1481–1490, Beijing, China. Association for
Computational Linguistics.

Jonas Groschwitz, Matthias Lindemann, Meaghan
Fowlie, Mark Johnson, and Alexander Koller. 2018.
AMR dependency parsing with a typed semantic al-
gebra. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1831–1841, Melbourne,
Australia. Association for Computational Linguistics.

Valerie Hajdik, Jan Buys, Michael Wayne Goodman,
and Emily M. Bender. 2019. Neural text generation
from rich semantic representations. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2259–2266, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Matic Horvat. 2017. Hierarchical statistical semantic
translation and realization. Technical Report UCAM-
CL-TR-913, University of Cambridge, Computer
Laboratory.

Bevan Jones, Jacob Andreas, Daniel Bauer, Karl Moritz
Hermann, and Kevin Knight. 2012. Semantics-
based machine translation with hyperedge replace-
ment grammars. In Proceedings of COLING 2012,
pages 1359–1376, Mumbai, India. The COLING
2012 Organizing Committee.

Alexander Koller. 2015. Semantic construction with
graph grammars. In Proceedings of the 11th Inter-
national Conference on Computational Semantics,
pages 228–238, London, UK. Association for Com-
putational Linguistics.

Alexander Koller, Stephan Oepen, and Weiwei Sun.
2019. Graph-based meaning representations: Design
and processing. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics: Tutorial Abstracts, pages 6–11, Florence,
Italy. Association for Computational Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexander
Koller. 2019. Compositional semantic parsing across
graphbanks. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,

pages 4576–4585, Florence, Italy. Association for
Computational Linguistics.

Stephan Oepen, Omri Abend, Jan Hajic, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdenka
Uresova. 2019. MRP 2019: Cross-framework mean-
ing representation parsing. In Proceedings of the
Shared Task on Cross-Framework Meaning Repre-
sentation Parsing at the 2019 Conference on Natural
Language Learning, pages 1–27, Hong Kong. Asso-
ciation for Computational Linguistics.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceedings
of the Fifth International Conference on Language
Resources and Evaluation (LREC’06), Genoa, Italy.
European Language Resources Association (ELRA).

Stephan Oepen, Kristina Toutanova, Stuart Shieber,
Christopher Manning, Dan Flickinger, and Thorsten
Brants. 2002. The LinGO redwoods treebank: Mo-
tivation and preliminary applications. In COLING
2002: The 17th International Conference on Compu-
tational Linguistics: Project Notes.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English gigaword. Linguistic
Data Consortium.

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A synchronous hyperedge replacement gram-
mar based approach for AMR parsing. In Proceed-
ings of the Nineteenth Conference on Computational
Natural Language Learning, pages 32–41, Beijing,
China. Association for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Linfeng Song, Xiaochang Peng, Yue Zhang, Zhiguo
Wang, and Daniel Gildea. 2017. AMR-to-text gener-
ation with synchronous node replacement grammar.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 7–13, Vancouver, Canada.
Association for Computational Linguistics.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for AMR-
to-text generation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1616–1626,
Melbourne, Australia. Association for Computational
Linguistics.

5435

https://www.aclweb.org/anthology/W17-6810
https://www.aclweb.org/anthology/W17-6810
https://doi.org/10.3115/v1/P15-1143
https://doi.org/10.3115/v1/P15-1143
https://doi.org/10.18653/v1/P18-1170
https://doi.org/10.18653/v1/P18-1170
https://doi.org/10.18653/v1/N19-1235
https://doi.org/10.18653/v1/N19-1235
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-913.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-913.pdf
https://www.aclweb.org/anthology/C12-1083
https://www.aclweb.org/anthology/C12-1083
https://www.aclweb.org/anthology/C12-1083
https://www.aclweb.org/anthology/W15-0127
https://www.aclweb.org/anthology/W15-0127
https://doi.org/10.18653/v1/P19-4002
https://doi.org/10.18653/v1/P19-4002
https://doi.org/10.18653/v1/P19-1450
https://doi.org/10.18653/v1/P19-1450
https://doi.org/10.18653/v1/K19-2001
https://doi.org/10.18653/v1/K19-2001
http://www.lrec-conf.org/proceedings/lrec2006/pdf/364_pdf.pdf
https://www.aclweb.org/anthology/C02-2025
https://www.aclweb.org/anthology/C02-2025
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/K15-1004
https://doi.org/10.18653/v1/K15-1004
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/P17-2002
https://doi.org/10.18653/v1/P17-2002
https://doi.org/10.18653/v1/P18-1150
https://doi.org/10.18653/v1/P18-1150


Erik Velldal and Stephan Oepen. 2006. Statistical rank-
ing in tactical generation. In Proceedings of the 2006
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 517–525, Sydney, Australia.
Association for Computational Linguistics.

Yajie Ye and Weiwei Sun. 2020. Exact yet efficient
graph parsing, bi-directional locality and the con-
structivist hypothesis. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 4100–4110, Online. Association
for Computational Linguistics.

Yajie Ye, Weiwei Sun, and Xiaojun Wan. 2018. Lan-
guage generation via DAG transduction. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1928–1937, Melbourne, Australia. Association
for Computational Linguistics.

Yi Zhang and Hans-Ulrich Krieger. 2011. Large-scale
corpus-driven PCFG approximation of an HPSG. In
Proceedings of the 12th International Conference
on Parsing Technologies, pages 198–208, Dublin,
Ireland. Association for Computational Linguistics.

A A Passive Chart Parser

Although it is not the intent of this work to sug-
gest a new HRG parsing algorithm, we provide
more information on the parser implemented so
that it provides more context for comprehending
the absolute parsing time in Fig. 6.

A.1 Rewriting DMRS Hypergraph

As described in §3, a hypergraph can be instan-
tiated corresponding to a DMRS. During SHRG
parsing, the hypergraph undergoes graph-rewriting,
where its subgraphs are rewritten by nonterminal
hyperedges, and produces other hypergraphs.

For every hypergraph 𝐻, we categorize every
hyperedge into one of the two types, s-hyperedge
or c-hyperedge. An s-hyperedge is a terminal hy-
peredge that is identified and labelled by a DMRS
edge. It connects to exactly two nodes of 𝐻. A
c-hyperedge corresponds to a node or a connected
DMRS subgraph. A terminal c-hyperedge is la-
belled by a DMRS predicate. A nonterminal c-
hyperedge is labelled by the canonical form of a
DMRS subgraph (see §3.3.2) or an ERG syntactic
construction.

A.2 Representation of Chart Items

In our chart parser, a passive item is essentially a
c-hyperedge packed with additional information. It
is represented by 𝑀 = ⟨𝑌, 𝐴, Σ⟩, where 𝑌 is the set
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Figure 7: Example of an application of a binary rule
on two passive items 𝑀 (𝑖) and 𝑀 ( 𝑗) to compose the
item 𝑀 (𝑘) . With respect to 𝑀 (𝑖) and 𝑀 ( 𝑗) , the interior
s-hyperedges are represented by dotted arrows and the
exterior s-hyperedges by solid arrows. The bit vectors
on the top right corner of each c-hyperedge indicate sets
of DMRS nodes the passive item covers.

of DMRS nodes covered by the item, 𝐴 is the c-
hyperedge label and Σ is the set of s-hyperedges in-
cident to the item. In a passive item 𝑀 = ⟨𝑌, 𝐴, Σ⟩,
each of the s-hyperedges 𝜎 ∈ Σ is represented by
𝜎 = ⟨𝑠, 𝑡, 𝑘, 𝑑, 𝑥⟩, where 𝑠, 𝑡, 𝑘 represent the source
and target DMRS node, and the key of the edge.
These three variables together specify a unique
edge in a DMRS multigraph; 𝑑 is a boolean vari-
able indicating if the DMRS edge ⟨𝑠, 𝑡, 𝑘⟩ is an
outgoing edge from the c-hyperedge and 𝑥 ∈ Z+
specifies the order of the node of the c-hyperedge
this s-hyperedge connects to. Fig. 7 illustrates three
example passive items.

Algorithm 1 shows the high-level procedures of
a minimal PSHRG parsing algorithm for DMRS. It
only includes the application of unary and binary
rules without constructional content9 and semanti-
cally empty words. The synchronous CFG part is
also omitted for simplicity. It parses a DMRS 𝐷

given a PSHRG 𝐺 with production probabilities 𝜋
and returns the best parse. 𝑍 is the set of the small
subgraphs extracted from training data.

A.3 Bottom–Up Parsing

Line 3 of Algorithm 1. We first initialize the ad-
jacency information of each DMRS node. 𝛼 maps
a set of DMRS nodes to the set of their adjacent
nodes. A DMRS node set of size 𝑛 is represented
by an 𝑛-hot bit vector. 𝑁𝐷 returns the neighbour-

9Some ERG constructions introduce semantic content
(DMRS predicates) that interact with the daughter’s semantic
materials to the resulting MRS structure.
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Algorithm 1: A minimal PSHRG parsing
algorithm for DMRS.

1 Function PARSE(𝐺 = ⟨𝑁,𝑇, 𝑇 ′, 𝑃, 𝑆, 𝜋⟩, 𝐷, 𝑍)
2 𝐶new ← {};
3 for 𝑣 ∈ 𝑉 (𝐷) do 𝛼({𝑣}) ← 𝑁𝐷 (𝑣);
4 for 𝑌 ⊆ 𝑉 (𝐷) | |𝑌 | < 7 do
5 if |𝑌 | = 1 ∧ 𝜑𝐷 (𝑌 ) ∈ 𝑇 then
6 𝐴← 𝜑𝐷 (𝑌 );
7 Σ← {};
8 for ⟨𝑠, 𝑡, 𝑘⟩ ∈ 𝐸 (𝐷) | (𝑠 ∈ 𝑌 ⊕ 𝑡 ∈ 𝑌 )

do
9 𝜎 ← ⟨𝑠, 𝑡, 𝑘, ⟦𝑠 ∈ 𝑌⟧, 1⟩;

10 Σ← Σ ∪ 𝜎;
11 else if |𝑌 | > 1 ∧ 𝐷 [𝑌 ] ∈ 𝑍 then
12 𝐴, Σ← CANONIZE(𝐷 [𝑌 ]);
13 𝛼(𝑌 ) ← AND(𝑁𝐷 (𝑌 ), NOT(𝑌 ));
14 𝑀 ← ⟨𝑌, 𝐴, Σ⟩;
15 𝐶new ← 𝐶new ∪ 𝑀;
16 𝑝log (𝑀) ← 0;
17 𝐶𝑆 ← {};
18 𝑅𝐺 ← {𝑅 | 𝐴→ ⟨𝑅, 𝑅′,∼⟩ ∈ 𝑃};
19 𝑅′

𝐺
← {𝑅′ | 𝐴→ ⟨𝑅, 𝑅′,∼⟩ ∈ 𝑃};

20 while 𝐶new ≠ ∅ do
21 𝐶unary, 𝑝log ←

APPLYUNARY(𝑃, 𝜋, 𝐶new, 𝑝log);
22 𝐶new ← 𝐶new ∪ 𝐶unary;
23 𝐶𝑆 ← 𝐶𝑆∪ {⟨𝑌, 𝐴, Σ⟩ ∈ 𝐶all |

𝑌 = 𝑉 (𝐷) ∧ 𝐴 = 𝑆};
24 𝐶all ← 𝐶all ∪ 𝐶new;
25 𝐶binary, 𝑝log, 𝛼← APPLYBINARY(

𝑃, 𝜋, 𝐷, 𝐶new, 𝐶all, 𝑝log, 𝛼, 𝑅𝐺 , 𝑅′
𝐺
);

26 𝐶new ← 𝐶binary;
27 return arg max

𝑀∈𝐶𝑆

𝑝log (𝑀);

hood of a set of nodes in 𝐷.

Line 4 to 16 of Algorithm 1. In this section,
we instantiate passive items for the terminal c-
hyperedges which correspond to a DMRS node,
and for the nonterminal c-hyperedges which corre-
spond to a connected DMRS subgraph of fewer
than seven nodes. 𝑉 (𝐷) and 𝐸 (𝐷) denote the
sets of DMRS nodes and edges in 𝐷 respectively.
𝜑𝐷 (𝑌 ) returns the DMRS predicate of the unit set
𝑌 in 𝐷. For a recognized terminal, we compute
the incident s-hyperedges Σ of it. CANONIZE re-
turns 𝐴, the canonical form, and Σ, the incident
s-hyperedges of 𝐷 [𝑌 ], where 𝐷 [𝑌 ] is the node-
induced subgraph formed by the node set 𝑌 . The
node order of the s-hyperedges in Σ follows the
order of the corresponding node representation in
the canonical form. The procedures of obtaining
Σ here is similar to those described at line 7 to 10
and are omitted. Line 13 updates the adjacency
information of 𝑌 (for the detailed procedure, refer
to line 16 of Algorithm 2). Then, a passive item
𝑀 = ⟨𝑌, 𝐴, Σ⟩ is created and added to the chart.

𝑝log(𝑀) maps the passive item 𝑀 to the highest
possible log probability of 𝑀 at that instant.

Line 20 to 27 of Algorithm 1. Given the ex-
tracted SHRG productions 𝑃, new items are created
by applying unary rules to the passive items just cre-
ated (APPLYUNARY), then binary rules between
all the new passive items and their respective ad-
jacent passive items (APPLYBINARY). These two
steps are iterated repeatedly until no more passive
items are created. Line 22 records the successful
parses, i.e. the items that cover all DMRS nodes
and whose c-hyperedge label equals the start sym-
bol 𝑆 of 𝐺. Finally, the successful parse with the
highest log probability is returned.

A.4 Grammar Intersection

The grammar intersection of an HRG is similar to
that of a CFG for strings in the CYK algorithm.
where neighbouring constituents are combined to
form new passive items. Algorithm 2 describes the
generation of new passive items via binary rules
(Line 24 of Algorithm 1).

For a set of passive items, we further define the
following: the common incident s-hyperedges are
called interior s-hyperedges; and the remaining s-
hyperedges are called exterior s-hyperedges, which
connect to other c-hyperedges in the subsequent
rewriting steps (for an illustration, see Fig. 7).

Line 3 of Algorithm 2. Grammar intersection is
performed only on the adjacent passive items (there
exists at least one s-hyperedge that connects them)
that cover disjoint sets of DMRS nodes. For effi-
ciency, all passive items are indexed by 𝑌 , so that
validating adjacency and disjointness of DMRS
subgraphs can be manipulated by quick bitwise
operations to return the pairs of items possible for
grammar intersection. All items covering 𝑌 are
further indexed by 𝐴 so that we only consider the
pairs of items whose labels exist in the set of the
CFG daughter sequences of productions, 𝑅′

𝐺
.

Line 4 to 7 of Algorithm 2. For each pair of
passive items in 𝐶∩, we try to generate possible
new passive items. Line 5 first computes the union
of set of DMRS nodes covered by the two items.
Then, the interior s-hyperedges of the new passive
item are computed at line 6. As the notion of exter-
nal nodes is dropped when we match an R.H.S.
hypergraph fragment 𝑅 (see §4.2), the recogni-
tion only requires the identification of the set of
c-hyperedges in 𝑅 plus the interior s-hyperedges.
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Algorithm 2: Generation of passive items with binary rules.
1 Function APPLYBINARY(𝑃, 𝜋, 𝐷, 𝐶new, 𝐶all, 𝑝log, 𝛼, 𝑅𝐺 , 𝑅′

𝐺
)

2 𝐶binary ← {};
3 𝐶∩ ← {⟨⟨𝑌 (𝑖) , 𝐴(𝑖) , Σ (𝑖) ⟩, ⟨𝑌 ( 𝑗) , 𝐴( 𝑗) , Σ ( 𝑗) ⟩⟩ ∈ 𝐶new × 𝐶all |

(AND(𝑌 (𝑖) , 𝑌 ( 𝑗) ) = 0 ∧ AND(𝛼(𝑌 (𝑖) , 𝑌 ( 𝑗) ) ≠ 0 ∧ (⟨𝐴(𝑖) , 𝐴( 𝑗) ⟩ ∈ 𝑅′
𝐺
∨ ⟨𝐴( 𝑗) , 𝐴(𝑖) ⟩ ∈ 𝑅′

𝐺
))};

4 for ⟨⟨𝑌 (𝑖) , 𝐴(𝑖) , Σ (𝑖) ⟩, ⟨𝑌 ( 𝑗) , 𝐴( 𝑗) , Σ ( 𝑗) ⟩⟩ ∈ 𝐶∩ do
5 𝑌 (𝑘) ← OR(𝑌 (𝑖) , 𝑌 ( 𝑗) );
6 𝐼 (𝑘) ← GETINTERIORS-HYPEREDGES(Σ (𝑖) , Σ ( 𝑗) );
7 𝐻 (𝑘) ← GETHYPERGRAPH(𝐴(𝑖) , 𝐴( 𝑗) , 𝐼 (𝑘) );
8 if 𝐻 (𝑘) ∈ 𝑅𝐺 then
9 Σ (𝑘) ← GETEXTERIORS-HYPEREDGES(Σ (𝑖) , Σ ( 𝑗) );

10 for 𝐴→ ⟨𝑅, 𝑅′,∼⟩ ∈ 𝑃 | (𝑅 = 𝐻 (𝑘) ∧ ISVALIDCOMPOSITION(𝐷, 𝐼 (𝑘) , Σ (𝑘) , 𝐴)) do
11 𝑀 (𝑘) ← ⟨𝑌 (𝑘) , 𝐴, Σ (𝑘) ⟩;
12 𝑝 ← 𝑝log (⟨𝑌 (𝑖) , 𝐴(𝑖) , Σ (𝑖) ⟩) + 𝑝log (⟨𝑌 ( 𝑗) , 𝐴( 𝑗) , Σ ( 𝑗) ⟩) + log(𝜋(𝐴→ ⟨𝐻 (𝑘) , 𝑅′,∼⟩));
13 if 𝑀 (𝑘) ∈ 𝐶binary ∪ 𝐶all then
14 𝑝log (𝑀 (𝑘) ) ← max(𝑝, 𝑝log (𝑀 (𝑘) ));
15 else
16 𝑝log (𝑀 (𝑘) ) ← 𝑝;
17 𝛼(𝑌 (𝑘) ) ← AND(OR(𝛼(𝑌 (𝑖) ), 𝛼(𝑌 ( 𝑗) )), NOT(𝑌 (𝑘) ));
18 𝐶binary ← 𝐶binary ∪ 𝑀 (𝑘) ;
19 return 𝐶binary, 𝑝log, 𝛼;

Thus, the hypergraph 𝐻 (𝑘) is obtained at line 7
simply by gluing the two c-hyperedges with the
interior s-hyperedges.

Line 8 to 18 of Algorithm 2. If the hypergraph
obtained at line 8 appeared on the R.H.S of any
production in 𝑃 (line 8), we proceed to compute
the exterior s-hyperedges of the new passive item
(line 9). Line 10 searches for the productions of
𝐺 whose (1) R.H.S. hypergraph is 𝐻 (𝑘) and (2)
rewriting syntactic construction 𝐴 licenses a valid
composition (see §4.1; for the detailed procedures,
see Appendix B). Line 11 to 13 factor local am-
biguities; if we wish to extend the algorithm to
obtain k-best derivations, we just keep the k-best
hypotheses instead of the 1-best. Line 16 updates
the adjacency information of 𝑌 (𝑘) through bitwise
operations. Finally, the newly generated passive
items, the updated log probabilities, and the adja-
cency map are returned.

B MRS-Specific Constraints in HRG
parsing

We describe how the MRS-specific constraints in-
troduced in §4.1 can be incorporated into HRG
parsing. In general, the accessibility check amounts
to validating the following conditions for each c-
hyperedge 𝑒 in the R.H.S. hypergraph fragment
when composing a new c-hyperedge 𝑎: (1) if 𝑒

is not the INDEX of 𝑎, it is not the INDEX of the
DMRS, and no s-hyperedges of type /EQ or /NEQ

outside 𝑎 are connected to 𝑒, and (2) if the scope
of 𝑒, 𝑙, is not the LTOP of 𝑎, 𝑙 is not the TOP of
the DMRS, and no s-hyperedges of type /H, /HEQ

or /EQ outside 𝑎 are connected to 𝑒. By scan-
ning the interior s-hyperedges once, we can decide
on the new LTOP, and by scanning the exterior s-
hyperedges once, we can verify the accessibility
of both variables. Our implementation excludes
the check of /NEQ edges due to undergeneration as
described in §4.1.

C Sample Input and Output

Fig. 8 shows an instance of sample input and out-
put compared against the original derivation. The
model used to produce the results is PSTHRG
(M1C) trained on the Redwoods training data.
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[Ref] Here is a list of the source and target languages SYSTRAN works with.

[Sys] Here is a list of the source and target languages with which SYSTRAN works.
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Figure 8: From top to bottom are a DMRS (with syntactically covert quantifiers removed), the original ERG
derivation (with punctuation rules removed) with the original sentence, and the reconstructed derivation with the
realized sentence. Note that the nodes of an input DMRS are not ordered. The preterminal of here corresponds to a
DMRS subgraph of three nodes. With preposition fronting, the semantically empty particle of, the auxiliary verb is
and the relative pronoun which are all recovered and inserted in correct positions.
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