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Abstract

Multi-modal techniques offer significant un-
tapped potential to unlock improved NLP tech-
nology for local languages. However, many
advances in language model pre-training are
focused on text, a fact that only increases sys-
tematic inequalities in the performance of NLP
tasks across the world’s languages. In this work,
we propose a multi-modal approach to train lan-
guage models using whatever text and/or audio
data might be available in a language. Initial
experiments using Swahili and Kinyarwanda
data suggest the viability of the approach for
downstream Named Entity Recognition (NER)
tasks, with models pre-trained on phone data
showing an improvement of up to 6% F1-score
above models that are trained from scratch. Pre-
processing and training code will be uploaded
to https://github.com/sil-ai/phone-it-in.

1 Introduction

Pre-trained language models are increasingly ap-
plied in ways that are agnostic to targeted down-
stream tasks (Brown et al., 2020). This usage has
led to a proliferation of large language models
trained on enormous amounts of data. For exam-
ple, the recent Megatron-Turing NLG 530B model
was trained on the Pile, which includes 800GB+ of
text (Gao et al., 2021), and other large language
models utilize large portions of the 200TB+ com-
mon crawl data.1 These large data sets include
impressive amounts of text, but all languages are
not represented equally (or at all) in that text. The
reality is that only a negligible fraction of the 7000+
currently spoken languages (Eberhard et al., 2021)
have sufficient text corpora to train state-of-the-
art language models. This data scarcity results in
systematic inequalities in the performance of NLP
tasks across the world’s languages (Blasi et al.,
2021).

1https://commoncrawl.org/

Local language communities that are working to
develop and preserve their languages are producing
diverse sets of data beyond pure text. The Bloom
Library project,2 for example, is being used by lo-
cal language communities to create and translate
"shell" or "template" books into many languages
(426 languages at the time this paper is being writ-
ten). However, Bloom allows users to do more
than just translate text. Users are also recording
audio tracks and sign language videos, which has
resulted in 1600+ oral translations. Other examples
showing the multi-modal nature of data in local lan-
guages include: (i) the creation of ChoCo: a mul-
timodal corpus of the Choctaw language (Brixey
and Artstein, 2021); (ii) SIL International’s 50+
year effort to document endangered Austronesian
languages via text, audio, and video (Quakenbush,
2007); (iii) the grassroots Masakhane effort cat-
alyzing the creation and use of diverse sets of
African language data (∀ et al., 2020); and (iv) work
with the Me’phaa language of western Mexico that
is producing digital recordings (video and audio)
along with vocabulary, grammar and texts (Marlett
and Weathers, 2018). These diverse data sources
are effectively unusable by traditional text-based
NLP techniques. In the light of data scarcity on
these languages, they offer significant untapped po-
tential to unlock improved NLP technology, if text
data can be leveraged along with audio, image and
video data. Furthermore, flexible multi-modal tech-
nology such as this will make it easier to include
diverse people and communities such as those de-
scribed above within the NLP technology develop-
ment process - audio-based technology reducing
the need for literacy, for example.

In this paper, we propose a multi-modal ap-
proach to train both language models and mod-
els for downstream NLP tasks using whatever text
and/or audio data might be available in a language
(or even in a related language). Our method uti-

2https://bloomlibrary.org/
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lizes recent advances in phone recognition and
text/grapheme-to-phone transliteration to convert
input audio and text into a common phonetic rep-
resentation (the IPA phone inventory). We then
pre-train character-based language models in this
phone-space. Finally, we fine-tune models for
downstream tasks by mapping text-based training
data into the phonetic representation. Thus, in ad-
dition to flexibility in pre-training, our method pro-
vides a way to reuse labeled text data for common
NLP tasks, like Named Entity Recognition or Sen-
timent Analysis, in the context of audio inputs.

We demonstrate our phonetic approach by train-
ing Named Entity Recognition (NER) models for
Swahili [swh]3 using various combinations of
Swahili text data, Swahili audio data, Kinyarwanda
[kin] text data, and Kinyarwanda audio data. These
two languages both originate from from the same
language family, Bantu, and are spoken by mil-
lions of people in Eastern Africa, often within the
same country, resulting in some overlap in loan
words, etc. 4 However, they are both considered
low-resource languages. Kinyarwanda in partic-
ular, though spoken by approximately 13-22 mil-
lion people5, has very little text data available in
that language, with fewer than 3,000 articles on
the Kinyarwanda-language Wikipedia, and Swahili
comparatively ahead but still poorly resourced at
approximately 68,000 articles, far less than many
European languages.6, though some datasets have
been created such as KINNEWS (Niyongabo et al.,
2020). On the other hand, Kinyarwanda is uniquely
placed as a language to leverage speech-based tech-
nologies, due to well-organized efforts7 to collect
voice data for that language. It is in fact one of
the largest subsets available on the Common Voice
Dataset (Ardila et al., 2019), with 1,183 hours of
voice clips collected and validated. Choosing these
two languages allowed us to test the use of the
technique on legitimately low-resourced languages
that could benefit from improved NLP technology,
and which as part of the same family of languages

3Language codes formatted according to ISO 639-3 stan-
dard: https://iso639-3.sil.org/

4see for example (Kayigema and Mutasa, 2021), which
describes English loan words entering Kinyarwanda "very
often via Kiswahili"

5Sources vary: Ethnologue cites "Total
users in all countries: 13,133,980", but there
are 22 million according to WorldData.info
(https://www.worlddata.info/languages/kinyarwanda.php).

6https://meta.wikimedia.org/wiki/List_of_Wikipedias
7https://foundation.mozilla.org/en/blog/how-rwanda-

making-voice-tech-more-open/

might be similar enough in vocabulary, grammar,
sound systems and so on, to benefit from cross-
lingual training.

We find that simple NER models, which just
look for the presence or absence of entities, can
be trained on small amounts of data (around 2000
samples) in the phonetic representation. Models
trained for complicated NER tasks in the phonetic
representation, which look for entities and their
locations within a sequence, are improved (by up
to 6+% in F1 score) through pre-training a phonetic
language model using a combination of text and
audio data. We see this improvement when fine-
tuning either a Swahili or Kinyarwanda language
model for downstream Swahili tasks, which implies
that one could make use of text and audio data in
related languages to boost phonetic language model
performance. The utility of the method in data
scarce scenarios and importance of pre-training
depends on the complexity of the downstream task.

2 Related Work

There have been a series of attempts to utilize pho-
netic representations of language to improve or
extend automatic speech recognition (ASR) mod-
els. Some of these jointly model text and audio
data using sequences of phonemes combined with
sequences of text characters. Sundararaman et al.
(2021), for example, uses a joint transformer archi-
tecture that encodes sequences of phonemes and
sequences of text simultaneously. However, this
joint model is utilized to learn representations that
are more robust to transcription errors. The archi-
tecture still requires text inputs (from ASR tran-
scriptions) and generates outputs in both text and
phoneme representations. In contrast, our approach
allows for text input, audio input, or text plus audio
input to language models.

Similarly, in (Chaudhary et al., 2018) and
(Bharadwaj et al., 2016) investigate the potential of
phoneme-based or phoneme aware representations
and models, showing gains in performance, lan-
guage transfer, and flexibility across written scripts.
These works conduct training on text-based data
only, using Epitran to convert to phonemes.

Baevski et al. (2021) transforms unlabeled text
(i.e., not aligned with corresponding audio files)
into phonemes in a scheme to train speech recogni-
tion models without any labeled data. This scheme
involves a generator model trained jointly with a
discriminator model. The generator model converts
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audio, segmented into phonetic units into predicted
phonemes, and the discriminator model attempts
to discriminate between these predicted phonemes
and the phonemes transliterated from unlabeled
text. Although both text and audio are utilized in
this work, they are not input to the same model
and the primary output of the training scheme is a
model that creates good phonetic speech represen-
tations from input audio.

Outside of speech recognition focused
work, Shen et al. (2020) (and other researchers
cited therein) attempt to "fuse" audio and text at the
word level for emotion recognition. They introduce
another architecture that internally represents both
audio and text. However, the so-called WISE
framework relies on speech recognition to generate
the text corresponding to audio frames in real-time.
The current work explicitly avoids reliance
on speech recognition. The 2021 Multimodal
Sentiment Analysis (MuSe) challenge continues
this vein of research integrating audio, video, text,
and physiology data in an emotion recognition
task (Stappen et al., 2021). Contributions to
this challenge, such as Vlasenko et al. (2021),
introduce a variety of ways to "fuse" audio and text
inputs. However, these contributions are squarely
focused on emotion/sentiment analysis and do not
propose methods for flexible, phonetic language
models.

Lakhotia et al. (2021) introduced functionality
for "textless" NLP. They explored the possibility of
creating a dialogue system from only audio inputs
(i.e., without text). As part of this system, language
models are directly trained on audio units without
any text. This advances the state-of-the-art with
regard to self-supervised speech methods, but it
does not provide the flexibility in audio and/or text
language modeling introduced here.

3 Methodology

Our approach is inspired by the fact that many lan-
guages are primarily oral, with writing systems
that represent spoken sounds. We convert both
text and audio into single common representation
of sounds, or "phones," represented using the In-
ternational Phonetic Alphabet, or IPA. Then, we
perform both language model pre-training and the
training of models for downstream tasks in this
phonetic representation. Well-tested architectures,
such as BERT-style transformer models (Vaswani
et al., 2017), are thus flexibly extended to either

speech or audio data.
Regarding the conversion process of text and

audio data, we leverage recent advances to translit-
erate this data into corresponding sounds repre-
sented by IPA phonetic symbols. This translitera-
tion is possible for speech/audio data using tools
such as the Allosaurus universal phone recognizer,
which can be applied without additional training
to any language (Li et al., 2020), though it can
benefit from fine-tuning(Siminyu et al., 2021). To
convert text data to phonemes we can use tools
such as the Epitran grapheme-to-phoneme con-
verter (Mortensen et al., 2018), which is specifi-
cally designed to provide precise phonetic translit-
erations in low-resource scenarios.

Fig. 1 shows how downstream models for certain
NLP tasks, like Named Entity Recognition (NER),
are performed in the phonetic representation. La-
beled data sets for NLP tasks need to be mapped
or encoded into the phonetic representation to train
downstream models. However, once this mapping
is accomplished, models trained in the phonetic
representation can perform tasks with audio input
that are typically restricted to processing text input.

3.1 Phonetic Language Modeling

One complication arising from direct speech-to-
phone transcription is the loss of word boundaries
in the transcription. This is expected, as natural
speech does not put any pauses between the words
in an utterance. This does, however, result in mix-
ing text data sets containing clear word boundaries
with speech data sets containing no clear word
boundaries.

Borrowing from techniques used on languages
that do not indicate word boundaries by the use
of whitespace, we address the problem by remov-
ing all whitespace from our data sets after phone
transliteration. We train character-based language
models over the resulting data. Character-based
models such as CharFormer (Tay et al., 2021) or
ByT5 (Xue et al., 2021) have shown promise in
recent years for language modeling, even if this
approach is known to have some trade offs related
to shorter context windows.

3.2 Potential Information Losses

The transliteration of text and audio data into pho-
netic representations presents several other chal-
lenges related to potential loss of information or
injection of noise:
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Figure 1: Our approach: input from either modality can be converted by phone recognition, e.g. Epitran for text,
Allosaurus for speech. Then we test on several downstream tasks which we designate NER1, NER2, NER3.

1. Loss of suprasegmental information: In some
languages, meaning may be encoded through
tones, or pitch changes across sounds (aka
across segments, or "suprasegmental"). Partic-
ularly for tonal languages such as Mandarin
Chinese [cmn], this loss can represent a signif-
icant informational loss particularly for homo-
phones with different tones, as seen in (Am-
rhein and Sennrich, 2020). While IPA sym-
bols can represent these intricacies, it adds
complexity

2. Phone/phoneme differences: As noted in (Li
et al., 2020), speech sounds which are phys-
ically different (different phones), may be
perceived as the same (one phoneme) by
speakers of one language, but these same
sounds could perhaps be distinguished by
speakers of another language. For exam-
ple, the French words words bouche, and
bûche contain phones (/u/ vs. /y/) which
may sound "the same" to English speak-
ers, but are semantically different to French
speakers. In other words, in English, both
phones map to the same phoneme perceptu-
ally. As the Allosaurus phone recognizer rec-
ognizes the actual phones/sounds, not their
perceived phonemes, it would transcribe these
two phones to different representations even
for English speech. This can be mitigated to
an extent by customizing the output of Al-
losaurus on a per-language basis, see Sec. 4.3.

3. Simple errors in phone recognition: As noted
in (Siminyu et al., 2021), even the best-trained
Allosaurus models, fine-tuned on language-
specific data, have a non-trivial Phone Error

Rate (PER).

An important question, therefore, is whether
these added sources of noise/information losses
are outweighed by the potential benefits in terms
of flexibility. Does working in a phonetic represen-
tation cause a prohibitive amount of information
loss? We constructed our experiments and data sets
in order to answer this question.

4 Experiments

In order to evaluate the quality of learned pho-
netic representations, we transliterate several text
and audio data sets in the Swahili [swh] language.
We pre-train phonetic language models on various
combinations of these data sets and evaluate down-
stream performance on NER tasks. See Fig. 2 for a
detailed overview of these various combinations.

We refer to these combinations as denoted by
downstream tasks (SNER for Swahili NER), and
pre-training language ((K for Kinyarwanda, S for
Swahili) as well as data modality (T for text, A for
audio). By way of example, the SNER+ST2 model
results from pre-training using 2 swh text datasets
(ST2) and fine-tuning on the swh NER (SNER)
task, whereas the SNER+SAT model results from
pre-training using swh audio and text data (SAT).

Kinyarwanda [kin] data is used in our experi-
ments as a language related to the target language
(swh) with existing text and audio resources that,
in some ways, surpasses those available in the tar-
get language. Thus, we pre-train some models
on kin data while fine-tuning for the downstream
NER task using swh data.

Three different formulations of the NER task,
from more simple (NER1) to more compli-
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Figure 2: Training scenarios: we pre-train on various combinations of phonemized datasets, evaluating on the
downstream NER task. SNER-ST denotes "Swahili Text (ST) pre-training, Swahili NER (SNER) fine-tuning",
SNER-SAT denotes Swahili NER with Swahili Audio and Text (SAT) pre-training, SNER-KA uses Kinyarwanda
Audio (KA), etc.

cated/granular (NER3), are used (see Fig. 2) to
help determine the applicability of our methods
to less challenging (NER1) to more challenging
(NER3) tasks. The NER1 task tries to determine
the presence or absence of certain kinds of entities
within an input. For our task we use PER, ORG,
DATE, and LOC entities. The NER2 task addition-
ally requires models to predict the correct numbers
of these entities within an input. Finally, the NER3
task requires models to determine entities at the
correct locations with an input sequence of phones.

For all of these tasks, we first convert text data
to phones using Epitran and audio data to phones
using Allosaurus. Then, we pre-train on various
combinations of data, before fine-tuning on NER.

4.1 Data Sources
For swh pre-training data we use: (i) the "Lan-
guage Modeling Data for Swahili" dataset (Shikali
and Refuoe, 2019) hosted on Hugging Face (which
we refer to as the "HF Swahili" data set); and (ii)
the ALFFA speech dataset (Gelas et al., 2012). For
ALFFA data we process both the audio files (using
Allosaurus) and the original "gold" text transcrip-
tions (using Epitran).

For Kinyarwanda pre-training data, we use
the Common Voice (CV) Kinyarwanda 6.1 sub-
set (Ardila et al., 2019). Again, we utilize both the
audio files and transcriptions. Due to the large size
of the CV 6.1 Kinyarwanda subset, we processed
only about 80% of the audio files.

For fine-tuning the downstream NER task, we
use the MasakhaNER data set (Adelani et al., 2021).
As with other text-based data sets, we transform
the NER sample with Epitran to map the samples
into the phonetic representation.

4.2 Entity to Phone Encoding

For the downstream NER tasks we map or encode
the NER annotations into the phonetic representa-
tion. We thus edited the labels (PER, ORG, DATE,
and LOC) to convert them from word-level labels to
phone-level labels as shown in Fig. 3. Unlike (Kuru
et al., 2016), we leave in the B- and I- prefixes.

Our fork of the MasakhaNER data set, which im-
plements our phonetic representations of the labels,
is published on Github.8.

8https://github.com/cdleong/masakhane-ner
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Figure 3: Adaptation of word-level NER annotations to
character-level annotations.

4.3 Phone Inventory Considerations

As mentioned already, we use Allosaurus for phone
recognition with audio inputs. In order to ensure
consistency with Epitran, we took advantage of
Allosaurus’s inventory customization feature, giv-
ing it the phone inventories specified by the same
language in Epitran. The inventory used through-
out this work (for swh) is the swa-Latn inventory
from Epitran.9 When this inventory is supplied as
input, Allosaurus will only output symbols from
the inventory. We followed similar practice when
transliterating Kinyarwanda data.

We compare the output of Epitran and Al-
losaurus on the ALFFA dataset. Following
the practice of (Li et al., 2020), we used the
editdistance10 library to calculate the Phone
Error Rate (PER). Having no ground truth phone
annotations, we instead take Epitran’s outputs as
"ground truth" for comparison. The mean PER
between the outputs is 23.7%. This result is consis-
tent with Siminyu et al. (2021), which finds PERs
as high as 72.8% when testing on on the Bukusu
(bxk), Saamia (lsm) and East Tusom languages (an
endangered subdialect of the Tungkhulic language
family). However, by training the phone recog-
nizer on even minimal amounts of data in these
languages, PERs were improved significantly.

A spreadsheet with detailed results for 10k sam-
ples from ALFFA can be found online.11

4.4 Model Architecture and Training

All models use the SHIBA implementation of CA-
NINE (Tanner and Hagiwara, 2021). SHIBA was
designed for use on the Japanese [jpn] language,
which does not include spaces between its charac-
ters (similar to our phonetic representations without

9https://bit.ly/30f8YCI
10https://github.com/roy-ht/editdistance
11https://bit.ly/3F0is3t

word boundaries). We used the default hyperpa-
rameter settings for SHIBA pre-training and fine-
tuning, because we are primarily concerned with
the relative impact of various combinations of pre-
training data on the downstream NER tasks. We
use the Hugging Face transformers library (Wolf
et al., 2020) to train all models.

Because of the small size of the NER data
set used during fine-tuning, we enabled Hugging
Face’s early stopping callback for all downstream
training runs. We stopped these runs if they did not
improve training loss after 20 evaluations. Nonethe-
less, we found after a number of trials that the
models quickly overfit using this setting. We also
experimented with modifying this on several tri-
als to stop based on the evaluation loss instead,
but this change did not significantly influence the
evaluation results.

Following the example of Adelani et al. (2021),
we do not run downstream model trainings once,
but multiple times. We also pre-trained each pho-
netic language model multiple times with different
random seeds. We report averages of these multiple
trials in the following.

Scripts and code for our experiments will be
uploaded to Github.12

5 Results and Discussion

Table 1 presents the F1 scores for our training sce-
narios in the downstream NER1 and NER2 tasks.
The models that utilize pre-training on the kin
audio and text data give the best results. However,
pre-training does not appear to dramatically influ-
ence the level. F1 scores in the range of 74-85%
suggests the minimum viability of these phonetic
models for simple NLP tasks.

Table 2 presents the F1 scores for our various
training scenarios in the downstream NER3 task,
which should be the most challenging for our pho-
netic models. The influence of pre-training is more
noticeable for this task. Further, the models pre-
trained on the kin audio and text data have the
best performance. This is likely due to the fact that
the kin data is both large and higher quality (in
terms of sound quality) as compared to the ALFFA
Swahili data. This benefit of this data size and
quality appears to outweigh any degradation due to
the pre-training occurring in a different (although
related) language.

12https://github.com/sil-ai/phone-it-in
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Model F1 NER1 F1 NER2
SNER 0.829 0.753
SNER+ST1 0.827 0.770
SNER+ST2 0.824 0.747
SNER+SA 0.817 0.751
SNER+SAT 0.818 0.763
SNER+KT 0.823 0.771
SNER+KA 0.846 0.763

Table 1: Mean results for presence/absence of entity
types (NER1) and presence and count of entity types
(NER2). Average of at least three trials per experiment,
calculated with the scikit-learn library. (Pedregosa et al.,
2011)

Model F1 F1 (strict)
SNER 0.357 0.161
SNER+ST1 0.401 0.213
SNER+ST2 0.394 0.166
SNER+SA 0.363 0.163
SNER+SAT 0.405 0.203
SNER+KT 0.408 0.217
SNER+KA 0.397 0.197

Table 2: Prediction of entity types and precise loca-
tions (NER3). Average of at least three trials per experi-
ment, scores calculated with seqeval library. (Nakayama,
2018)

The importance (or relative impact) of pre-
training phonetic language models increases with
the complexity of the NER task. Fig. 4 shows
the maximum percentage improvement due to pre-
training for each of our NER tasks. This suggests
that simple NLP tasks with a small number of out-
put classes are much easier to port to phonetic rep-
resentations, even without pre-training, while more
complicated NLP tasks may require a more sig-
nificant amount of text and/or audio data for pre-
training. We expect this trend to carry through to
tasks like sentiment analysis, which could be for-
mulated as a simple classification task with NEG,
NEU, and POS sentiment labels or a more compli-
cated aspect based sentiment analysis task.

6 Conclusions and Further Work

The proposed method for multi-modal training us-
ing phonetic representations of data has minimum
viability for simple NER tasks. For more compli-
cated NER tasks, pre-training phonetic language
models boosts downstream model performance by
up to 6% in F1 scores. This pre-training can be

Figure 4: The max percentage improvement with fine-
tuning for each kind of NER task that was explored.
Presence/absence of entity types (NER1), presence and
count of entity types (NER2), and prediction of entity
types and precise locations (NER3).

performed in the target language or in a related
language using text and/or audio data. Thus, the
method provides flexibility in the data needed to
train language models, while also allowing for au-
dio and/or text inputs to models trained on down-
stream NLP tasks.

We anticipate exploring various extensions to
and validations of this method in the future. Specif-
ically, we would like to explore methods that might
mitigate performance degradation due to a lack
of word boundaries in our method. Subword to-
kenization techniques, such as Byte-Pair Encod-
ings (BPE) (Sennrich et al., 2016; Gage, 1994),
or character-based word segmentation techniques
might help in detecting and exploiting repeating
patterns within the phonetic representation. Fur-
thermore, the word embedding techniques used
by (Chaudhary et al., 2018) or (Bharadwaj et al.,
2016) have been shown to work well, and would
be worth investigating how the removal of space-
delimited word boundaries would affect this.

We would also like to validate our methods on
a variety of other data sets and tasks. We selected
the MasakhaNER dataset for evaluation because
we specifically wished to evaluate results on ac-
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tual low-resource languages supported by both Al-
losaurus and Epitran. While there are still, we
argue, detectable improvements in downstream re-
sults with our method, further work would benefit
from additional evaluations on other data sets or
tasks. In particular, the Swahili News Classifica-
tion corpus (David, 2020) corpus may provide a
useful evaluation.

We did not investigate going from audio to
phones, then phones to words/characters, judging
that information losses and errors would likely com-
pound in multiple stages of processing. Instead, we
focused on what could be achieved with the Al-
losaurus "universal phone transcriber" without any
language-specific finetuning. A truly universal tran-
scriber would increase flexibility when training for
truly low-resource scenarios.

Nevertheless, it has been shown by Siminyu et al.
(2021) that it is possible to improve phone recogni-
tion with even small amounts (approximately 100
sentences) of annotation. It may be possible to
improve phonetic language modeling results by
performing this fine-tuning in the target language.

Experiments involving other languages with, e.g.
languages that are not related would help to isolate
the role of relatedness, lexical overlap, or related
sound systems/phonology.

While we do not claim that conversion to phones
provides better performance generally, we believe
that our experiments show that the fundamental
idea of converting either text or audio data to the
common phone representation provides a viable
path to more flexible approach to certain down-
stream NLP tasks, worthy of further development.
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