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Abstract

The Out-of-Domain (OOD) intent classifica-
tion is a basic and challenging task for dia-
logue systems. Previous methods commonly re-
strict the region (in feature space) of In-domain
(IND) intent features to be compact or simply-
connected implicitly, which assumes no OOD
intents reside, to learn discriminative seman-
tic features. Then the distribution of the IND
intent features is often assumed to obey a hy-
pothetical distribution (Gaussian mostly) and
samples outside this distribution are regarded
as OOD samples. In this paper, we start from
the nature of OOD intent classification and ex-
plore its optimization objective. We further
propose a simple yet effective method, named
KNN-contrastive learning. Our approach uti-
lizes K-Nearest Neighbors (KNN) of IND in-
tents to learn discriminative semantic features
that are more conducive to OOD detection. No-
tably, the density-based novelty detection al-
gorithm is so well-grounded in the essence of
our method that it is reasonable to use it as
the OOD detection algorithm without making
any requirements for the feature distribution.
Extensive experiments on four public datasets
show that our approach can not only enhance
the OOD detection performance substantially
but also improve the IND intent classification
while requiring no restrictions on feature distri-
bution. Code is available.1

1 Introduction

People are getting accustomed to talking with or
sending some instructions to task-oriented dialog
system in natural language to assist them in fulfill-
ing work. As the environment facing the dialogue
systems becomes more open, there are more ut-
terances with unknown or Out-of-Domain (OOD)
intents that the dialog system does not know how to
handle. As shown in Figure 1, the chatbot encoun-
ters an unsupported intent (OOD intent) utterance

∗Corresponding author.
1https://github.com/zyh190507/KnnContrastiveForOOD.

Schedule me a table at Hilton Hotel 

OK, what is the specific time? 

Book a flight from London to Paris

I found the following flight 
information for you.

When will the COVID-19 pandemic 
end ?

Book_hotel

Book_flight

Open

Figure 1: An example about interactions between a
user (green) and a chatbot (grey). The chatbot correctly
understands the intents (In-domain intents) of the user
in the first two rounds. Thirdly, the chatbot encounters
Out-of-Domain intent and does not know how to do it.

in the third interaction. It is significant to distin-
guish these utterances for the dialogue system be-
cause identifying the intents of the user determines
whether subsequent actions can be carried out cor-
rectly.

To solve this problem, the existing methods
roughly can be summarized into two categories
according to whether extensive labeled OOD intent
samples are used during training. The first kind of
method (use OOD samples during training) is rep-
resented by (Zheng et al., 2020; Zhan et al., 2021;
Choi et al., 2021) which regards OOD intent classi-
fication as a (n+1)-class classification task that the
extra (n + 1)th class represents labeled OOD in-
tent. These methods may need additional large and
time-consuming labeled Out-of-Domain samples.
Moreover, manually constructed OOD samples en-
dowed with artificial inductive bias cannot cover
all open classes in the actual environment so this
kind of method have their limitations.

In this paper, we focus on another kind of
method which involves two stages, to learn dis-
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(a) Origin

In-domain intent
Out-of-domain intent

(b) Minimize intra-class variance (c) Minimize IND-KNN variance (Ours)

Inter OOD

Intra OOD

Figure 2: (a) The original distribution of IND and OOD distribution. (b) Minimize the intra-class variance may
increase the risk that OOD intents surrounded by a covex hull composed composed of IND samples locally are
identified (red shadow) as IND. (c) Utilizes k-nearest neighbors of IND to contrastive learning.

criminative semantic features and OOD detection.
How to learn semantic features benefit for OOD
detection? Minimizing intra-class variance and
maximizing inter-class variance, whose motivation
are to facilitate detection by widening margin be-
tween IND and OOD intents, have always been
regarded as the essence of solving this problem
(Lin and Xu, 2019; Zeng et al., 2021a). Then, Shu
et al. (2017); Zhang et al. (2021); Xu et al. (2020);
Zeng et al. (2021a) impose (or implicitly) Gaus-
sian distribution into the distribution of the learned
intent features to OOD detection.

In general previous methods implicitly assume
the region of semantic features as compact or
simply-connected region in feature space, which
means OOD intents only exist between different
IND classes and not within IND distribution so
that tight IND semantic features can be helpful for
OOD detection. However, as shown in Figure 2
(a), the actual location of OOD intents in semantic
space is not limited, they can appear between IND
classes or within IND distribution. We name those
OOD intents that are distributed between different
IND classes as inter OOD intents, and those within
IND distribution or can be surrounded by a convex
hull composed of local IND intent samples as intra
OOD intents. As shown in Figure 2 (b), for inter
OOD intents, minimizing intra-class variance and
maximizing inter-class variance can reduce the risk
of being identified IND while this risk may be in-
creased for intra OOD intents due to being closer
to IND intents.

At the same time, we conduct Gaussian Hypoth-
esis Testing on the IND semantic features distribu-

tion in the CLINC-FULL train set, which is learned
by (Zeng et al., 2021a). we find only 57% IND
classes conform to Gaussian distribution, which
illustrates the Gaussian assumption for OOD detec-
tion in the previous methods may not be reasonable,
see Appendix A.1 for results on other datasets and
details.

To solve these problems, we explicitly define the
optimization objective of OOD intents classifica-
tion using open space risk (Scheirer et al., 2012).
Compared with the previous methods only consid-
ering inter OOD intents, we propose a simple yet
effective method to consider both intra and inter
OOD intents. We utilize k-nearest neighbors of
IND intent sample as positive samples as shown in
Figure 2 (c), and obtain more negative samples with
the help of queue in MoCo (He et al., 2020) to learn
discriminative semantic features. We further ana-
lyze why our method can better reduce open space
risk. Intuitively, our method leaves more margin
around OOD intents, which can ensure we employ
the basic density-based method for OOD detection
without any assumptions about the distribution.

We summarize our contributions as follows.
Firstly, following open space risk, we explicit the
optimization objective of OOD intent classification
to provide a paradigm for solving OOD intent clas-
sification. Secondly, we analyze the limitation of
existing methods and propose a novel method to
better reduce both empirical risk and open space
risk. Thirdly, extensive experiments conducted
on four challenging datasets show our approach
achieves consistent improvements without restric-
tions on feature distribution.
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2 Related Work

2.1 Out-of-domain Detection
Schölkopf et al. (2001); Tax and Duin (2004) re-
gard Out-of-Domain detection as One-class clas-
sification problem so that to find a hyperplane or
hypersphere by kernels in high-dimensional space
to distinguish OOD, Scheirer et al. (2012) firstly
proposes the definition of open space risk and for-
malize open set recognition as a constrained op-
timization problem. Then to obtain better seman-
tic representation, deep neural network has been
brought into this field in recent years. Bendale
and Boult (2016) propose OpenMax model, using
the scores from the penultimate layer of deep net-
work, to distinguish OOD. MSP (Hendrycks and
Gimpel, 2017) presents a baseline based on maxi-
mum softmax probabilities to exhibit the ability of
the network to distinguish between OOD and IND.
To enlarge the difference between IND and OOD,
Liang et al. (2018) add temperature scaling based
on MSP and adds perturbations to the inputs.

The above methods mainly focus on computer vi-
sion and assume (or implicitly) the feature region is
compact (simply-connected region), many research
works are carried out in natural language process-
ing. DOC (Shu et al., 2017) builds a multi-class
classifier and selects a threshold to reject. Further,
they reduces the open space risk for rejection by
tightening the decision boundaries of sigmoid func-
tions with Gaussian fitting. LMCL (Lin and Xu,
2019) learns discriminative deep features with mar-
gin loss. Yan et al. (2020); Wan et al. (2018) model
embeddings with a Gaussian mixture distribution
to facilitate downstream outlier detection. Xu et al.
(2020); Zeng et al. (2021b); Podolskiy et al. (2021)
assume the IND semantic feature distribution as
Gaussian discriminant analysis (GDA) and iden-
tify Out-of-domain samples by Mahalanobis dis-
tances. (Fei and Liu, 2016) reduce open space risk
by decision boundaries and ABD (Zhang et al.,
2021) propose to learn adaptive circular decision
boundaries. Very recently, Zeng et al. (2021a) pro-
pose a supervised contrastive learning objective
to maximize inter-class variance and to minimize
intra-class variance. These methods also restrict
the feature distribution in the feature learning stage
or downstream detection stage and fail to solve
Out-of-domain classification completely.

2.2 Contrastive Learning
Contrastive learning, which can be traced back to
(Hadsell et al., 2006), is widely used in unsuper-
vised or self-supervised learning (He et al., 2020;
Wang and Isola, 2020; Khosla et al., 2020). With
similarity by dot product, Gutmann and Hyvärinen
(2010) propose InfoNCE loss to measure the simi-
larities of sample pairs in semantic space. To obtain
more number of negative samples for contrastive
learning, He et al. (2020) introduce Momentum
Contrastive (MoCo) that builds a large and consis-
tent dictionary facilitating contrastive unsupervised
learning. With the prevalence of pre-trained models
(PTMs) (Qiu et al., 2020; Lin et al., 2021) in dif-
ferent fields, Dwibedi et al. (2021); Li et al. (2021)
combine PTMs with contrastive learning paradigm,
which adopts neighbors and uses MoCo or Memory
Banks to obtain enough negative samples.

3 Proposed Method

3.1 Objective of OOD Intent Classification
Open space risk We define open space O and open
space risk as follow (Scheirer et al., 2012; Bendale
and Boult, 2015). Using IND training samples,
open space can be defined as 2:

O = S −
⋃
x∈X

σ(x), (1)

where σ is a local (and small) semantic space
spanned by IND training sample x, X is the set
of all IND training samples and S including both
open space O and remaining space. Consider a
measurable recognizer (or discriminator) f that
f(x) = 1(> 0) for the IND intents, otherwise
f(x) = 0(<= 0), probabilistic open space risk
RO can be formed in terms of Lebesgue measure:

RO(f) =

∫
O f(x, θ)dx∫
S f(x, θ)dx

. (2)

Objective of OOD Intent Classification To iden-
tify OOD intents, we need to learn intent repre-
sentations at first, which also ensures the classifi-
cation quality of IND in addition to adapting to
downstream detection. Therefore we introduce an
additional optimization objective as also suggested
in (Scheirer et al., 2012; Bendale and Boult, 2015),

2We also define a specific open space risk for limited OOD
samples. See the Appendix A.6 for details and more discus-
sion.
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named empirical risk Rε(f). The objective can be
defined as:

argmin
f(x,θ)∈H

{(1− λ) · Rε(f) + λ · RO(f)}, (3)

where λ is a hyper-parameter to balance empirical
and open space risk and H is the function space.

3.2 Minimize Empirical Risk
To optimize above objective. We first utilize
the BERT (Devlin et al., 2019) to extract in-
tent representation. Given the i-th in-domain
utterance, we get its contextual embeddings
[[CLS], T1, T2, ..., TN ]. As suggested in (Zhang
et al., 2021), we operate mean-pooling on these
contextual token embeddings to obtain sentence
semantic representation Zi:

Zi = Mean-Pooling([[CLS], T1, ...TN ]), (4)

where Zi ∈ RH , N is the sequence length and H is
the hidden dimension.

We optimize the empirical risk with simple soft-
max cross-entropy loss Lce:

Lce = − 1

N

N∑
i=1

log
exp(ϕyi(zi))∑

j∈[K] exp(ϕj(zi))
, (5)

where ϕ(·) denotes linear classifier and ϕj(zi) de-
notes the score of the j-th class.

3.3 KNN-Contrastive Learning
It is worth noting that due to the lack of OOD in-
tent samples, we can not directly optimize the open
space risk. Previous methods indirectly reduce
the open space risk by pulling together IND sam-
ples belonging to the same class and pushing apart
samples from different classes. However, such ap-
proaches may increase the risk of identifying intra
OOD intents as IND based on the above analysis.
Intuitively, to reduce the risk that identifying in-
tra OOD intents as IND, we do not need to pull
together all IND intent samples belonging to the
same class and just pull together k-nearest neigh-
bors while pushing apart them from different class
intent samples as shown in Figure 2 (c). In order to
achieve this goal, we get the KNN-contrastive loss
Lknn−cl by rewriting the contrastive loss:

Lknn-cl =

N∑
i=1

1

|Xk|
∑

zj∈Xk

− log
exp(

zi·zj
τ )∑

zq∈I
exp(

zq ·zi
τ )

,

(6)

where Xk denotes the set of k-nearest neighbors of
sample zi, I ≡ A

⋃
{zj}, A is the set of samples

whose classes are different from that of zj . τ is the
temperature hyper-parameter. We further analyze
how KNN-contrastive loss is benefit to inter OOD
intents and intra OOD intents simultaneously, see
Appendix A.5 and Appendix A.6 for more detailed
and deeper analysis.

3.4 Momentum Contrast is All You Need
When conducting KNN-contrastive learning, we
need to solve two problems: a) large batch size, the
more samples we can select, the more likely we to
find k-nearest neighbors. Meanwhile, we also need
enough negatives to distinguish. b) The k-nearest
neighbors should keep consistent as they evolve
during training, otherwise, KNN-contrastive train
learning may be unstable. Interestingly, these prob-
lems mentioned above are also those Momentum
Contrast (MoCo) (He et al., 2020) wants to solve.
Following MoCo, we also maintain a queue con-
taining IND samples and update it with features of
the current batch while dequeuing the oldest fea-
tures. The queue decouples the size of samples
from the batch size, allowing us to obtain more
negative samples (benefit to reduce open space
risk). To maintain consistency, the features com-
ing from the previous several batches are encoded
by a slowly updating network (encoder), whose
parameters are momentum-based average of the
parameters from the query encoder (another net-
work), see (He et al., 2020) for details. Combing
softmax cross-entropy loss and KNN-contrastive
learning loss, the final finetune obejective to learn
discriminative features as:

Lobj = λ · Lknn-cl + (1− λ) · Lce, (7)

where λ is a hyper-parameter to balance empirical
and open space risk.

3.5 Local Outlier Factor
To be closer to the realistic scenario, we prefer the
detection algorithm downstream without assuming
a potential distribution of the IND intents. There-
fore, we adopt a simple and universal detection
algorithm LOF algorithm (Breunig et al., 2000)
and compute LOF score following (Lin and Xu,
2019), see Appendix A.3 for specific calculation
steps. Our model architecture is shown in Figure 3.
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Figure 3: The architecture of our proposed model.

4 Experiments

4.1 Datasets
In order to verify the effectiveness and generality
of our method, we conduct experiments on four
different and challenging real-world datasets. The
detailed statistics are shown in Appendix A.4.
CLINC-FULL (Larson et al., 2019) is a dataset
specially designed for OOD detection, which con-
sists of 150 classes from 10 domains. This dataset
includes 22500 IND utterances and 1200 OOD ut-
terances.
CLINC-SMALL (Larson et al., 2019) is the
CLINC-FULL variant, in which there are only 50
training utterances per each IND class. This dataset
includes 15000 IND utterances and 1200 OOD ut-
terances.
BANKING (Casanueva et al., 2020) is a dataset
about banking. The dataset, covering 77 classes,
consists of 9003, 1000 and 3080 utterances in train-
ing, validation and test sets respectively.
StackOverflow (Xu et al., 2015) is a dataset pub-
lished in Kaggle.com. This dataset has 20 classes
and consists of 12000, 2000 and 6000 in training,
validation and test sets respectively.

4.2 Baselines
We extensively compare our method with the
following OOD classification methods: MSP
(Hendrycks and Gimpel, 2017), DOC (Shu et al.,
2017), SEG (Yan et al., 2020), LMCL (Lin and Xu,
2019), Softmax (Zhan et al., 2021), OpenMax (Ben-
dale and Boult, 2016), ADB (Zhang et al., 2021),
SCL (Zeng et al., 2021a).

For a fair comparison, all methods use BERT as

the backbone network. We report the current best
results of various methods on the corresponding
datasets. Softmax/LMCL learns discriminative fea-
tures by softmax/large margin cosine loss and use
additional detector such as LOF or GDA for detect-
ing out-of-domain. ADB (Zhang et al., 2021)/SCL
(Zeng et al., 2021a) are also related to our method,
however, the original paper does not report results
in on some datasets. We supplement results by
running their released code.

4.3 Evaluation Metrics
For all datasets, we follow previous work (Zhang
et al., 2021; Zeng et al., 2021a; Zhan et al., 2021)
and group all OOD classes as one rejected class.
We calculate accuracy and F1-score in the same
way as (Zeng et al., 2021a). To better evaluate the
ability of our method to distinguish IND and OOD
intents, we calculate macro F1-score over IND
classes and OOD classes, represented by F1-IND
and F1-OOD respectively. To comprehensively
evaluate the performance of our model, we also
compare accuracy score (ACC-ALL) and macro
F1-score (F1-ALL) over all classes (IND and OOD
classes).

4.4 Experimental Setting
Due to no OOD classes in the BANKING and
StackOverflow, we follow the setting in (Zhang
et al., 2021; Zhan et al., 2021). After datasets are
split into train, validation, and test respectively, we
randomly sample 25%, 50%, and 75% of the intent
classes and discard the remaining classes in the
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training and validation sets 3. The disposed classes
are kept in the test set as OOD classes. CLINC-
FULL and CLINC-SMALL are constructed for
OOD detection especially and the datasets them-
selves provide OOD classes. We follow (Zeng
et al., 2021a,b) and take the OOD class provided
by datasets as the objective of detecting without di-
viding datasets additionally. As a reminder, we do
not use OOD classes during training in any cases.

To reduce the deviation, we use two basic dis-
tances, Euclidean and Cosine (more discussed in
Appendix A.2), to calculate the LOF score. For
each distance, we take different random seeds to
run 3 rounds, and we report the total average results.
We employ the BERT model (bert-uncased, with
12-layer transformer) implemented by Hugging-
face Transformers4 and adopt most of its suggested
hyperparameters for finetuning. We tried learning
rate in {1e-5, 5e-5}, and training batch size is set
16 or 32. Concerning contrastive learning, we tried
the size of the queue in {6500, 7500, 8000} and
the momentum update parameter m = 0.999. We
use the AdamW optimizer (Loshchilov and Hutter,
2019). We select the LOF threshold by calculating
the best macro F1-score and accuracy over IND
classes on the validation set. ALL experiments
were conducted in the Nvidia Ge-Force RTX-2080
Graphical Card with 11G graphical memory.

4.5 Main Results
The results in BANKING and StackOverflow are
presented in Table 1, where the best results are high-
lighted in bold. Compared with other baselines, our
method consistently improves in all settings. F1-
OOD represents the F1-score of OOD class, and
F1-IND is the macro F1-score of IND classes. Our
method achieves favorable performance simultane-
ously, which shows that our method improves the
capability of detecting OOD intents without sacri-
ficing the accuracy of IND classes classification.

The results in CLINC-FULL and CLINC-
SMALL datasets are presented in Table 2. Our
method is also better than all other kinds of meth-
ods. It is worth noting that F1-IND and F1-OOD
have improved compared with SCL significantly.
We suppose this is due to the use of Momentum
Contrast framework in our method, which obtains
more negative samples by maintaining a queue (the
capacity is much larger than batch size) so that fur-

3See more discusses in Appendix A.7.
4https://github.com/huggingface/transformers

ther pushes apart samples from different classes, as
shown in Section 5.1.

5 Analysis

(a) Cross-Entropy (b) SCL

(c) Ours (Top-k=5) (d) Ours (Top-k=15)

Figure 4: t-SNE visualization of deep learned features
of some intent samples in CLINC-FULL. Top-k means
we select the k-nearest neighbors of IND samples for
constrastive learning.

(a) SCL (b) Ours

Figure 5: The LOF score distrubtion in CLINC-FULL.
Left: SCL training. Right: Our proposed method train-
ing. The X-axis represents the LOF score, and the Y-
axis represents the number of samples falling into the
corresponding interval.

5.1 Feature Visualization
To compare our method with the previous methods
intuitively, we use t-SNE (Van der Maaten and Hin-
ton, 2008) to visualize deep features of some intent
samples sampled from CLINC-FULL learned by
BERT, SCL, and our method. Firstly, compared
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Methods
BANKING StackOverflow

ACC-ALL F1-ALL F1-OOD F1-IND ACC-ALL F1-ALL F1-OOD F1-IND

25%

MSP† 43.67 50.09 41.43 50.55 28.67 37.85 13.03 42.82
DOC† 56.99 58.03 61.42 57.85 42.74 47.73 41.25 49.02
OpenMax† 49.94 54.14 51.32 54.28 40.28 45.98 36.41 47.89
Softmax∗ 57.88 58.32 62.52 58.10 46.17 50.78 42.52 51.83
LMCL† 64.21 61.36 70.44 60.88 47.84 52.05 49.29 52.60
SEG∗ 51.11 55.68 53.22 55.81 47.00 52.83 46.17 54.16
ADB† 78.85 71.62 84.56 70.94 86.72 80.83 90.88 78.82
SCL+GDA‡ 83.87 67.94 89.44 66.81 82.29 70.92 88.99 67.44
SCL+LOF‡ 84.05 74.86 89.01 74.12 80.10 78.51 84.45 77.32

Ours 85.62 77.13 90.19 76.44 89.04 81.61 92.7 79.39

50%

MSP† 59.73 71.18 41.19 71.97 52.42 63.01 23.99 66.91
DOC† 64.81 73.12 55.14 73.59 52.53 62.84 25.44 66.58
OpenMax† 65.31 74.24 54.33 74.76 60.35 68.18 45.00 70.49
Softmax∗ 67.44 74.19 60.28 74.56 65.96 71.94 56.80 73.45
LMCL† 72.73 77.53 69.53 77.74 58.98 68.01 43.01 70.51
SEG∗ 68.44 76.48 60.42 76.90 68.50 74.18 60.89 75.51
ADB† 78.86 80.90 78.44 80.96 86.40 85.83 87.34 85.68
SCL+GDA‡ 79.38 79.84 79.97 79.83 82.31 79.54 84.42 79.04
SCL+LOF‡ 80.54 82.4 80.42 82.6 84.47 84.57 85.01 84.53

Ours 83.14 83.87 83.58 83.88 87.62 87.18 88.36 87.06

75%

MSP† 75.89 83.60 39.23 84.36 72.17 77.95 33.96 80.88
DOC† 76.77 83.34 50.60 83.91 68.91 75.06 16.76 78.95
OpenMax† 77.45 84.07 50.85 84.64 74.42 79.78 44.87 82.11
Softmax∗ 78.20 84.31 56.90 84.78 77.41 82.28 54.07 84.11
LMCL† 78.52 84.31 58.54 84.75 72.33 78.28 37.59 81.00
SEG∗ 78.87 85.66 54.43 86.20 80.83 84.78 62.30 86.28
ADB† 81.08 85.96 66.47 86.29 82.78 85.99 73.86 86.80
SCL+GDA‡ 79.86 85.14 64.49 85.5 80.88 84.79 68.83 85.86
SCL+LOF‡ 81.56 86.97 65.05 87.35 80.92 83.98 71.71 84.79

Ours 81.77 87.07 67.66 87.41 83.85 87.06 74.20 87.92

Table 1: Results of OOD classificaion with different IND classes rate (25%, 50% and 75%) on BANKING and
StackOverflow. The baseline with † are retrieved from (Zhang et al., 2021), results with ∗ are from (Zhan et al.,
2021) and ‡ means the results is not provided in the original paper (Zeng et al., 2021a), and we get the results by
running its released code.

Methods
CLINC-FULL CLINC-SMALL

ACC-ALL F1-ALL F1-IND F1-OOD ACC-ALL F1-ALL F1-IND F1-OOD

Softmax - - 88.98 66.17 - - 86.20 62.58
LMCL - - 89.12 66.80 - - 86.64 63.11
SCL+GDA - - 90.03 68.21 - - 88.30 65.01
SCL+LOF† 84.87 88.51 88.63 70.05 84.12 87.47 87.58 70.31

Ours 89.45 92.5 92.61 76.36 88.62 91.82 91.92 75.74

Table 2: Results of OOD classification on CLINC-FULL and CLINC-SMALL. † means the results is not provided
in the original paper and we get the results by running its released codes provided by (Zeng et al., 2021a). Other
baselines are from (Zeng et al., 2021a).

with SCL Figure 4(b), our method further push
apart samples from different classes, especially
for the classes of whisper-mode(green) and can-
cel(blue). This shows our method can ensure the
classification quality of IND intents and better opti-
mize empirical risk. Can our method optimize open
space risk better? As shown in Figure 4(c) and Fig-

ure 4(d), we notice that the features of vaccines
class (brown) can be clustered into three clusters
(top-k=5) or two clusters (top-k=15), which means
leave more space for OOD intent samples as ex-
pected.
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5.2 Visualize the Ability to Detect OOD
To further verify the effectiveness of our method to
characterize the difference between IND and OOD
intents, we draw the LOF score distribution of sam-
ples in CLNIC-FULL test set. We show results in
Figure 5. Compared with SCL (left) Figure 5(b),
our LOF scores of OOD intent samples are spread
in a larger range, which indicates that there is a
larger margin around OOD intent samples accord-
ing to the definition of LOF and further shows our
method optimize the open space risk better. And
this larger margin makes it is easier for us to find
a baseline (brown dotted line) in Figure 5(b) (our
method) to separate IND and OOD samples, which
indicates they are distinguished better. The above
results also ensure that we can detect OOD intents
without making assumptions about the feature dis-
tribution.
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Figure 6: Effect of k. The X-axis represents the value
of k, and Y-axis represents F1-score for OOD samples.

5.3 Importance of K Nearest Neighbors
In Section 3.3, we propose a novel method, which
utilizes the k-nearest neighbors of IND intents
to learn discriminative features, to reduce open
space risk. To investigate the effect of k, we com-
pare the performance of the model in detecting
OOD intents with different k values (in a certain
range) during contrastive learning (fixing other
hyper-parameters). As shown in Figure 6, we have
observed that the performance (cosine-based) of
the model first increase and then decrease on four
datasets as the value increases. This phenomenon
is as expected. At the beginning of k growth, due

to the reduction of open space risk, the risk of inter
and intra OOD samples being identified as IND de-
creases (corresponding F1-OOD increases). Later,
due to the compression of IND semantic space,
more and more intra OOD samples are identified
as IND (corresponding F1-OOD decreases) and
finally tend to be stable. The phenomenon also
shows that our method can better reduce the open
space risk than the previous methods (which pull to-
gether all IND intents belonging to the same class).
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Figure 7: Effect of λ on four datasets. The X-axis
represents the λ value, and Y-axis represents F1-ALL
for all classes.

5.4 Trade-off Between Empirical And Open
Space Risk

While we want to minimize open space risk (help-
ful to detect OOD intents), we also need to balance
it against the empirical risk (ensure the classifica-
tion quality of IND classification) over the training
data. In the objective (in Eq.(7)) of OOD clas-
sification, we use the λ hyper-parameter to bal-
ance empirical and open space risk. To analyze
the effect of our introduced λ, we experiment our
method (cosine-based) with different λs in differ-
ent datasets. As shown in Figure 7, we find with
the increment of λ, the model gradually reaches
the best empirical-open trade-off, which means the
model can ensure the classification quality of IND
and OOD detection effectively. The only empirical
risk or open space risk can not make the model
achieve better results.
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6 Conclusion

In this paper, we explicit the optimization objective
of OOD intent classification. We analyze the lim-
itation of existing methods and propose a simple
yet effective method to learn discriminative seman-
tic features. Our approach pulls together k-nearest
neighbors of IND intents and pushes apart them
from different class samples to better reduce both
empirical risk and open space risk. Extensive ex-
periments conducted on four challenging datasets
show our approach achieves consistent improve-
ments without restrictions on feature distribution.

Acknowledgements

We thank Demin Song for helpful discussion about
experiment. We would also like to thank Hang Yan
and TianXiang Sun for helpful suggestion for this
paper. This work was supported by the National
Key Research and Development Program of China
(No. 2020AAA0108702) and National Natural Sci-
ence Foundation of China (No. 62022027).

Ethical Considerations

The datasets used in all experiments are derived
from previously published scientific papers, and
to our knowledge, there are no privacy or ethical
issues.

References
Abhijit Bendale and Terrance E. Boult. 2015. Towards

open world recognition. 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 1893–1902.

Abhijit Bendale and Terrance E Boult. 2016. Towards
open set deep networks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 1563–1572.

Markus M Breunig, Hans-Peter Kriegel, Raymond T
Ng, and Jörg Sander. 2000. Lof: identifying density-
based local outliers. In Proceedings of the 2000 ACM
SIGMOD international conference on Management
of data, pages 93–104.

Inigo Casanueva, Tadas Temčinas, Daniela Gerz,
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A Appendix

Dataset Classes Rate∗

CLINC-FULL 150 57%
CLINC-SMALL 150 36%
StackOverflow 20 21%

Table 3: Classes denote the total number of IND classes.
Rate∗ denotes the rate of IND classes obeying Gaus-
sian.

A.1 Gaussian Hypothesis Testing
We use NormalTest provided by Scipy5 to test
whether the trained distribution conforms to a nor-
mal distribution. The Multivariate Normal Testing
is not adopted mainly because samples with 256
dimensions can hardly fit the multivariate Gaussian
distribution. Moreover, the number of samples will
affect the p-value considerably. So we randomly
select 50 samples from each class and calculate the
p-value on individual dimensions separately. To
mitigate the influence of some too small values,
we retain the highest 128 value for statistics. By
convention, the distribution with a p-value less than
0.05 will reject the Normal Hypothesis. We calcu-
late the percentage of not rejected dimensions and
report the mean value of all classes. We conduct
Gaussian hypothesis testing on the IND semantic
features distribution, which are learned by (Zeng
et al., 2021a), in the train sets of CLINC-FULL,

5https://github.com/scipy/scipy

CLINC-SMALL, and StackOverflow. Results are
shown in Table 3.

BANKING(75%) StackOverflow(75%)
F1-OOD F1-ALL F1-OOD F1-ALL

Lof Cosine 67.36 86.87 78.12 88.06
Lof Euclidean 65.77 87.46 77.12 87.9

Table 4: Results of OOD classification on BANKING
and StackOverflow. Lof Cosine means to calculate Lof
based on Cosine and Lof Euclidean means to calculate
Lof based on Euclidean.

A.2 Effect of Distance on Calculation of LOF
We calculate LOF-score based on two distances:
Cosine and Euclidean. In this section, we want to
investigate the effect of LOF-score calculated by
different distances. On the two datasets, we use
these two distances to calculate LOF score (aver-
age results over 3 runs randomly) and get F1 for
out-of-domain and macro F1 for all classes. As
shown in Table 4, Firstly, from a single dataset,
there are some differences between the two meth-
ods (although the difference is not very large). We
guess this may be caused by the threshold. Because
we can’t use the information of OOD samples,
we can’t accurately obtain the threshold required
by each method. Secondly, comparing the perfor-
mance of the same method on different datasets,
we have not observed one method has more advan-
tages. Therefore, to comprehensively illustrate the
effectiveness of our method, in the experiment we
take different random seeds to test 3 times for each
distance, and we report the total average results. It
is worth noting that during our experiment, we find
that raising the threshold for LOF-score calculated
based on Euclidean (compared with Cosine) can
achieve better average results for CLINC-FULL
and CLINC-SMALL datasets.

A.3 Local Outlier Factor
To be closer to the realistic scenario, we prefer de-
tection in downstream without relying on assump-
tion of distribution. Therefore, we adopt a simple
and universal detection algorithm LOF algorithm
(Breunig et al., 2000). we compute LOF score
follow (Lin and Xu, 2019):

LOFk(z) =

∑
p∈Nk(z)

lrd(p)
lrd(z)

|Nk(z)|
, (8)

where Nk(z) denotes the set of k-nearest neighbors
of z. The LOF captures the degree to which z is
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Dataset Class #Training #Validation #Test Vocabulary Size Length (Avg)

CLINC-FULL 150 15100 3100 5500 8288 8.32
CLINC-SMALL 150 7600 3100 5500 7017 8.31
BANKING 77 9003 1000 3080 5028 11.91
StackOverflow 20 12000 2000 6000 17182 9.18

Table 5: Statistics of datasets. # denotes the total number of utterances

an outlier by computing the average of the ratio of
the local reachability density of z and the k-nearest
neighbors of z.

Local Reachability Density (lrd) computed as
following:

lrdk(p) = 1/

∑
O∈Nk(p)

reach-distk(p, o)

|Nk(p)|
, (9)

where lrdk(p) denotes the inverse of the average
reachability distance based on the k-nearest neigh-
bors of p. reach-distk(p, o) is defines as:

reach-distk(p, o) = max{k-dis(o), d(p, o)},
(10)

where d(p, o) is the distance between p and o, and
k-dis is the distance of o to its k-th nearest neighbor.
It is easy to see that the lower lrd of a sample is
than its neighbors, the more likely it is to be an
OOD sample.

A.4 Statistics of Datasets
The datailed statistics of CLINC-FULL, CLINC-
SMALL, BANKING and StackOverflow, which
are used in Section 4.1, are shown in Table 5.

A.5 Theoretical Analysis
In this section, we take a closer look at how our
proposed KNN-contrastive loss indirectly can re-
duce the risk that inter OOD and intra OOD intents
are identified as IND.

Lknn-cl =
N∑
i=1

1

|Xk|
∑

zj∈Xk

− log
exp(

zi·zj
τ )∑

zk∈I
exp( zk·ziτ )︸ ︷︷ ︸

R

.

(11)
For simplicity, we consider KNN-contrastive

loss with one sample q, denoted as R in Eq. (11):

R =
∑

zj∈Xk

−log
exp(

q·zj
τ )∑

zk∈I
exp( q·zkτ )

, (12)

where Xk, I have the same meanings as in Eq.(11),
representing the set of k-nearest neighbors of q,
I ≡ A

⋃
{zj}, A is the set of samples whose

classes are different from that of zj . We intro-
duce a term on both numerator and denominator,∑

zp∈I+ exp(
q·zp
τ ), I+ denotes set of all samples

whose classes are the same as q, so R can be rewrit-
ten as:

R =
∑

zj∈Xk

−log
exp(

q·zj
τ

)∑
zk∈I

exp( q·zk
τ

)

=
∑

zj∈Xk

−log
exp(

q·zj
τ

)∑
zp∈I+

exp(
q·zp
τ

)

∑
zp∈I+(i)

exp(
q·zp
τ

)∑
zk∈I

exp( zk·q
τ

))

=
∑

zj∈Xk

−log
exp(

q·zj
τ

)∑
zp∈I+

exp(
q·zp
τ

)︸ ︷︷ ︸
Rintra

O (f)

−log

∑
zp∈I+

exp(
q·zp
τ

)∑
zk∈I

exp( zk·q
τ

)︸ ︷︷ ︸
Rinter

O (f)

.

(13)

In this way, the KNN-contrastive loss can be split
into two comparative learning losses. The first loss
Rintra

O (f) is to pull together k-nearest neighbors
of q and push apart q from other samples whose
classes are the same as q, which is viewed to reduce
the risk identifying intra OOD samples as IND. The
second loss Rinter

O (f) is to push together samples
whose classes are the same as q and pull apart
samples whose classes are different q, which is
viewed to reduce the risk identifying inter OOD
samples as IND.

A.6 Specific Open Space Risk
Intra-space risk and Inter-space risk When we
encounter a scene with limited OOD samples, we
can re-explore the nature of open space risk. Differ-
ent from (Scheirer et al., 2012; Bendale and Boult,
2015), we define open space as the space around
OOD samples:

O =
⋃
x∈ϕ

σ(x) =
⋃

x∈ϕin

σ(x)︸ ︷︷ ︸
Oin

+
⋃

x∈ϕ̄in

σ(x)

︸ ︷︷ ︸
Ōin

, (14)

where σ is a local and small semantic space
spanned by OOD samples, ϕ is the set of all OOD
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samples (or just included enough OOD samples),
ϕin is set of OOD samples within IND distribution
(surrounded by a convex hull composed of IND
samples locally), ϕ̄in is set of OOD samples be-
tween IND classes (ϕ̄in = ϕ − ϕin). Consider a
large space S including both open space O and re-
maining space, and a measurable recognizer(or dis-
criminator) f that f(x) = 1(> 0) for recognition
of the IND samples, otherwise f(x) = 0(<= 0).
Probabilistic (in terms of Lebesgue measure) open
space risk R can also be formalized as:

RO(f) =

∫
O f(x, θ)dx∫
S f(x, θ)dx

. (15)

Considering Eq.(14), we can naturally decompose
open space risk into two terms shown in Eq.(16),
called intra-space risk and inter-space risk respec-
tively.

RO(f) =

∫
Oin

f(x, θ)dx∫
S f(x, θ)dx︸ ︷︷ ︸
Rintra

O (f)

+

∫
Ōin

f(x, θ)dx∫
S f(x, θ)dx︸ ︷︷ ︸
Rinter

O (f)

.

(16)
By aligning Eq.(16) with Eq.(13), we can naturally
find out why KNN-contrastive loss can better re-
duce open space risk.

Methods
BANKING

ACC-A F1-A F1-O F1-I

25% ADB† 78.85 71.62 84.56 70.94
Ours 91.26 84.1 93.19 83.57

50% ADB† 78.86 80.90 78.44 80.96
Ours 82.51 82.64 82.96 82.62

75% ADB† 81.08 85.96 66.47 86.29
Ours 81.62 87.17 66.56 87.52

Table 6: Results of OOD classificaion with different
IND classes rate (25%, 50% and 75%) on BANKING.
The baseline with † are retrieved from (Zhang et al.,
2021).

A.7 Random Split Matters?
In the experiment, we noticed a small and inter-
esting problem. When conducting experiments on
BANKING and StackOverflow, there are two eval-
uation methods. The first is as described in the
experimental section Section 4.4. Another evalu-
ation method is that the dataset is fixed after the
known intents classes are randomly sampled from
the datasets, and the random test is carried out on

Methods
StackOverflow

ACC-A F1-A F1-O F1-I

25% ADB† 86.72 80.83 90.88 78.82
Ours 89.28 82.97 92.85 81.00

50% ADB† 86.40 85.83 87.34 85.68
Ours 87.87 87.28 88.79 87.15

75% ADB† 82.78 85.99 73.86 86.80
Ours 84.98 87.49 76.95 88.20

Table 7: Results of OOD classificaion with different
IND classes rate (25%, 50% and 75%) on StackOver-
flow. The baseline with † are retrieved from (Zhang
et al., 2021).

these fixed datasets. We also take different ran-
dom seeds to run 3 rounds and compare our results
with ADB. The results are presented in Table 6 and
Table 7. Our results are also better than ADB on
all datasets. More interestingly, the results even
can be better than our results in Section 4.4 on
some datasets (25% Banking). We speculate that
this may be because this evaluation method may
achieve a better split in some cases for learning fea-
ture representation. In addition to in the Nvidia Ge-
Force RTX-2080 Graphical Card with 11G graphi-
cal memory, we also conducted some experiments
in the Nvidia Ge-Force RTX-3090 Graphical Card
with 24G graphical memory.
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