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Abstract

Selecting an appropriate pre-trained model
(PTM) for a specific downstream task typi-
cally requires significant efforts of fine-tuning.
To accelerate this process, researchers propose
feature-based model selection (FMS) methods,
which assess PTMs’ transferability to a specific
task in a fast way without fine-tuning. In this
work, we argue that current FMS methods are
vulnerable, as the assessment mainly relies on
the static features extracted from PTMs. How-
ever, such features are derived without training
PTMs on downstream tasks, and are not neces-
sarily reliable indicators for the PTM’s transfer-
ability. To validate our viewpoints, we design
two methods to evaluate the robustness of FMS:
(1) model disguise attack, which post-trains an
inferior PTM with a contrastive objective, and
(2) evaluation data selection, which selects a
subset of the data points for FMS evaluation
based on K-means clustering. Experimental
results prove that both methods can success-
fully make FMS mistakenly judge the transfer-
ability of PTMs. Moreover, we find that these
two methods can further be combined with the
backdoor attack to misguide the FMS to select
poisoned models. To the best of our knowledge,
this is the first work to demonstrate the defects
of current FMS algorithms and evaluate their
potential security risks. By identifying previ-
ously unseen risks of FMS, our study indicates
new directions for improving the robustness of
FMS.

1 Introduction

Pre-trained models (PTMs) have shown superior
performance on various tasks of natural language

∗Indicates equal contribution.
†Corresponding author.

processing (NLP) and computer vision (CV) (De-
vlin et al., 2019; Raffel et al., 2020; Li et al., 2019;
Zabir et al., 2018; Han et al., 2021). The increas-
ingly popular “pre-train then fine-tune” paradigm is
typically implemented as a prescriptive three-stage
routine: (1) PTM Supply Stage: upstream suppli-
ers pre-train various kinds of PTMs, (2) PTM Se-
lection Stage: downstream users select the desired
PTM based on their own demands for a specific
task, and (3) PTM Application Stage: downstream
users conduct further fine-tuning on the given task.

During the PTM selection stage, the common
practice is to fine-tune a set of candidate PTMs and
pick up the model with the best performance. Such
a fine-tuning process allows accurate assessment
of the transferability of PTMs on each downstream
task, but is computationally expensive (You et al.,
2021). To resolve this issue, researchers recently
propose feature-based model selection (FMS) meth-
ods to efficiently select a PTM for a specific down-
stream task (Bao et al., 2018; Deshpande et al.,
2021; You et al., 2021; Huang et al., 2021). With-
out training on downstream tasks, FMS first ex-
tracts static features of the target data using PTMs,
and then resorts to the correlation between these
features and the corresponding target labels as the
main criterion to estimate PTMs’ transferability.

Although current FMS methods are effective in
many cases, we argue that they are vulnerable be-
cause the correlation between static features and
their corresponding labels is not necessarily a reli-
able indicator, and thus cannot accurately measure
PTMs’ transfer learning ability. To validate our
viewpoints, we present two simple and effective
methods, (1) model disguise attack (MDA) and (2)
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Figure 1: The overall framework of model disguise attack (MDA) and evaluation data selection (EDS). After MDA,
the disguised poisoned model is mistakenly chosen by FMS. After EDS, the score for the poisoned model rated by
FMS is higher than that of the superior model on the selected subset Dsub

i .

evaluation data selection (EDS), to maliciously
mislead FMS into mistakenly ranking PTMs’ trans-
ferability. Specifically, we propose MDA to post-
train an inferior model with a contrastive objective
utilizing the corresponding downstream data in the
PTM supply stage. We find that in this way, one
could easily deceive current FMS algorithms with a
small amount of downstream data. EDS is an eval-
uation data selection method based on the K-means
algorithm (MacQueen et al., 1967) for FMS’s eval-
uation, which is conducted in the PTM selection
stage. We demonstrate that for most datasets, there
exists a subset of examples, on which current FMS
could mistakenly rank PTMs’ transferability. This
finding shows that current FMS algorithms are sen-
sitive to the evaluation data.

Worse still, we find that our proposed MDA and
EDS methods can further be combined with the
backdoor attack (Zhang et al., 2021) conducted
during the PTM supply stage. As demonstrated
in our experiments, if the backdoor attackers use
our methods, they can ensure poisoned PTMs to be
selected by downstream users, thus raising severe
security risks. The overall framework of MDA and
EDS is shown in Figure 1.

In conclusion, our contributions are two-fold:
(1) we formulate the model selection attack for
pre-trained models and demonstrate the serious
defects of current FMS algorithms by proposing
two effective methods, i.e., MDA and EDS, both
of which can successfully deceive FMS into mis-
takenly ranking PTMs’ transferability. We also
conduct in-depth analysis on MDA and show that
it influences the static features of all layers / to-
kens of PTMs and is thus hard to defend; (2) we
further show that our methods can be combined

with the backdoor attack and thus pose a greater
security threat to current “pre-train then fine-tune”
paradigm. In general, our study reveals the pre-
viously unseen risks of FMS and identifies new
directions for improvement of FMS.1

2 Related Work

Feature-based Model Selection. Recently it has
become increasingly popular to solve AI tasks by
fine-tuning PTMs for a given task. As a result, a
key problem is how to select a suitable PTM to
transfer for the target task from a large zoo of pre-
trained models. Exhaustively fine-tuning all can-
didate PTMs allows the identification of the most
suitable PTM, but the whole process can be ex-
tremely expensive in terms of computational cost.
Some recent works use static features extracted
from PTMs as the indicator to select PTMs without
training on the target task (Bao et al., 2018; Desh-
pande et al., 2021; Huang et al., 2021; You et al.,
2021). Deshpande et al. (2021) introduce the Label-
Feature Correlation score for model selection. Bao
et al. (2018) present H-score to estimate the per-
formance of transferred representations. You et al.
(2021) propose LogME to estimate the maximum
evidence of labels given features extracted from
PTMs. Huang et al. (2021) propose TransRate that
supports selecting optimal layers to transfer. Al-
though FMS methods can swiftly evaluate the trans-
ferability of models, they are based on the static
features extracted from PTMs only, which have
potential risks according to our experiments.

1The codes are publicly available at https://github.
com/thunlp/Model-Selection-Attack.
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Backdoor Attack. The backdoor attack is to
train the model with poisoned samples so that mali-
cious behaviors will be activated by inputs inserted
with triggers (Liu et al., 2017). The backdoor at-
tacks can generally be classified into two categories.
The first category attacks the PTMs before fine-
tuning on downstream tasks and does not need to
use the data of downstream tasks (Zhang et al.,
2021; Kurita et al., 2020; Ji et al., 2019). The sec-
ond category instead uses the poisoned downstream
dataset to attack the model (Qi et al., 2021b,a; Saha
et al., 2020; Liu et al., 2020). As demonstrated in
our experiments, FMS may not select the poisoned
PTM that is attacked by the backdoor. Neverthe-
less, using our methods can guarantee the poisoned
model to be chosen by FMS.

3 Methodology

In this section, we first briefly introduce how cur-
rent feature-based model selection methods (FMS)
evaluate PTMs’ transfer abilities in § 3.1. Then we
formulate the problem of model selection attack in
§ 3.2, and elaborate two algorithms, i.e. MDA and
EDS in § 3.3 and § 3.4, respectively.

3.1 Preliminaries for FMS

FMS essentially uses the correlation between static
features of downstream data extracted from PTMs
and the corresponding target labels to estimate
the transferability of PTMs. Assume FMS is ap-
plied on a PTM M for a specific downstream
task Ti, with the corresponding dataset Di =

{(xk, yk)}
|Di|
k=1. FMS calculates a score SDi

M , which
indicates the transferability ofM on Di. Specif-
ically, FMS first passes the target input Xi =

{xk}
|Di|
k=1 through the PTMM to derive their fea-

tures FDi
M = {fk}

|Di|
k=1. Then FMS calculates the

correlation between FDi
M and their corresponding

target labels Yi = {yk}
|Di|
k=1 to obtain a final score,

i.e., SDi
M = f(FDi

M ,Yi), where f is the metric func-
tion. A higher value of SDi

M indicates better trans-
ferability.

3.2 Task Formulation

Although current FMS algorithms show promis-
ing results on efficiently judging the PTMs’ trans-
ferability, we argue that the correlation between
static features and target labels may not be a reli-
able transferability metric since it fails to consider
the PTMs’ learning dynamics during fine-tuning,

which is far more important than the initial feature
distribution. Thus current FMS algorithms can be
misleading. In other words, even if a PTM exhibits
poorer correlation before fine-tuning, it may still
perform better after fine-tuning. In the following
sections, we employ two approaches, MDA (§ 3.3)
and EDS (§ 3.4) to demonstrate our hypothesis.

Assume we have two PTMsMinf andMsup.
Minf has poorer transferability than Msup on
task Ti, which is correctly judged by an FMS al-
gorithm, i.e., SDi

Minf
< SDi

Msup
. Specifically, (1)

MDA aims to post-train the inferior PTMMinf to
deceive FMS so that during model selection, the
disguised PTMM∗inf , instead of the superior PTM
Msup, would be mistakenly chosen by FMS, i.e.,
SDi
M∗inf

> SDi
Msup

. In the meantime, the disguised
PTM M∗inf still performs worse than Msup af-
ter fine-tuning on the target dataset; (2) instead of
training the PTM, EDS aims to choose a subset of
examples Dsub

i from Di based on K-means cluster-
ing, so that the correlation between static features
and target labels forMinf on that subset is higher,

i.e., SD
sub
i
Minf

> SD
sub
i
Msup

.

3.3 Model Disguise Attack

Since current FMS algorithms rely on the corre-
lation between static features and the correspond-
ing labels, we propose to leverage supervised con-
trastive loss (SCL) (Sedghamiz et al., 2021) to train
Minf with target data to get a disguised M∗inf
before the model selection stage, aiming to alter
the initial feature distribution FDi

Minf
. SCL trains

the sentence representations belonging to the same
class to be close, and those belonging to different
classes to be distant from each other. In this way,
we can intentionally modify the initial feature distri-
bution of PTMs according to the label information,
thus the static features of a disguised inferior model
M∗inf will exhibit superiority overMsup.

Specifically, givenN annotated samples in an in-
put batch, i.e., {xk, yk}Nk=1, each sample xk is for-
ward propagated K times using different random
dropout masks, resulting in K ×N sentence repre-
sentations {x̃1, . . . , x̃K×N} in total. Let j be the
index of all the encoded sentence representations
in an input batch, where j ∈ I = {1, . . . ,K ×N}.
We optimize the following loss function:

L=
K×N∑
j=1

−1
|P (j) |

∑
p∈P(j)

log
ecos(x̃j ,x̃p)/τ∑

b∈B(j)
ecos(x̃j ,x̃b)/τ

,



where B(j) = I\{j} is the set of indices except
for j, P (j) = {p ∈ B (j) |yp = yj} is the set of in-
dices of all positives distinct from j and | · | stands
for cardinality (Khosla et al., 2020). τ is a tem-
perature scaling parameter. By optimizing L, we
manually alter the initial static feature distribution
for the input examples. However, the transferabil-
ity of the disguised PTMM∗inf is still inferior to
that of the superior modelMsup, as demonstrated
in our experiments.

3.4 Evaluation Data Selection

As FMS relies on downstream target datasets for
evaluation, we argue that FMS is susceptible to the
evaluation data and there exists a subset of evalua-
tion data points whose static features extracted by
Minf have a closer relation with their target labels.
Thus Minf will be rated with a higher score by
FMS on that special subset Dsub

i .
To select those data points “favored” byMinf ,

we first feed all target data points Di into the infe-
rior PTMMinf and obtain the extracted features
FDi
Minf

. Then we use the K-means algorithm (Mac-
Queen et al., 1967) to perform feature clustering
and calculate the cluster centroids of the features
FDi
Minf

, where the number of clusters is equal to
the number of target classes.

We select Dsub
i based on the distances of data

points’ features to their corresponding cluster cen-
troids. Specifically, we select the data points whose
features are closest to the corresponding cluster
centroids and filter the selected data points by only
keeping the data points whose features’ correspond-
ing cluster centroids are the same as their labels,
resulting in a subset Dsub

i . The extracted features
of data points with the same target label in Dsub

i

byMinf are closer to each other. Therefore, the
correlation between these selected data points’ fea-
tures and the corresponding labels is higher. And
FMS will rate a higher score for Minf on Dsub

i ,
which even surpasses the score forMsup on Dsub

i .

4 Experiments and Analysis

In this section, we first conduct experiments to
demonstrate the effectiveness of our proposed
model disguise attack and evaluation data selec-
tion in § 4.1 and § 4.2, respectively. Then we
combine both MDA and EDS with the backdoor
attack in § 4.3. In addition, we demonstrate that
our proposed methods can be widely applied to var-
ious kinds of PTMs and FMS algorithms in § 4.4.

Dataset SDi
Minf

SDi
Msup

PMsup SDi
M∗

inf
PM∗

inf

SST-2 -0.3489 -0.3186 94.50 1.0496 92.78
MRPC -0.5864 -0.5789 90.91 0.2970 90.81
MNLI -0.6035 -0.5700 87.88 0.4457 84.82
CoLA -0.5464 -0.5035 63.56 0.5463 57.38
QNLI -0.5858 -0.5706 92.60 0.8109 91.27
QQP -0.5181 -0.4584 88.60 0.8085 88.49
RTE -0.7093 -0.7111 79.06 -0.1259 71.48

Table 1: Comparisons of LogME scores and fine-tuned
performance of different models. PMsup and PM∗

inf

represent the performance of the fine-tunedMsup and
M∗inf , respectively. The metrics used for the reported
fine-tuned performance are shown in appendix E.

Finally, in § 4.5, we show that it is hard to defend
against both MDA and EDS.

4.1 Experiments on Model Disguise Attack
Experimental Setting. We choose LogME (You
et al., 2021) as the mainly evaluated FMS algo-
rithm, which is applicable to vast transfer learn-
ing settings. We choose BERTBASE (Devlin et al.,
2019) / RoBERTaBASE (Liu et al., 2019) as the
mainly evaluated inferior PTM (Minf ) / superior
PTM (Msup), respectively. Seven downstream
tasks from the GLUE benchmark (Wang et al.,
2019) are selected to evaluate PTM’s transferabil-
ity, following (You et al., 2021). We choose the
pooler output representation of the [CLS] token2

as the sentence representation.

Attack Performance of MDA. The transferabil-
ity scores estimated by LogME of theMinf and
Msup on the training dataset are shown in Table
1. It can be observed that under most situations,
LogME serves as a good measure of the trans-
ferability by rating Msup with a higher score (
SDi
Msup

> SDi
Minf

).
Assuming that we have access to all the labeled

examples Di in the training dataset, we conduct
MDA on a specific target downstream task for
Minf . We use Di to perform MDA on Minf

and test the LogME scores of the disguisedM∗inf .
Also, the fine-tuned performance of the down-
stream task (dev dataset) of the disguised inferior
modelM∗inf and the superior modelMsup are re-
ported. The results are shown in Table 1, from
which we can see that after MDA, the LogME
score of the disguised inferior model SDi

M∗
inf

is
significantly increased, from average −0.5569 to

2For RoBERTa, the BOS token is <s>.



0.5474, exceeding that of the superior model SDi
Msup

( SDi
M∗

inf
> SDi

Msup
). However, the downstream perfor-

mance ofMsup is higher than that of the disguised
inferior modelM∗inf (PMsup > PM∗

inf
). This sug-

gests that our MDA method can successfully de-
ceive LogME into selecting an inferior PTM, which
has poorer transferability performance. It also casts
doubts on the hypothesis of FMS that static features
could serve as a reliable indicator for transferability
measurement. The influences of MDA on the static
features are visualized in appendix D.

Amount of Auxiliary Data. In real-world scenar-
ios, the attacker may not have the access to enough
target data, we thus test whether our MDA method
could still be effective with few auxiliary data. We
experiment on SST-2, MRPC and CoLA, and ran-
domly sample only 25, 50, 100, 250 examples for
each category in a task to construct the subset of the
original training dataset, and then perform MDA
for each task. Our sampled data used for MDA
only takes up a small amount of the original train-
ing dataset (e.g., less than 1% for SST-2). After
applying MDA, we evaluate the LogME score of
the disguised inferior model. The experimental re-
sults are shown in Figure 2, from which we can
see that for all tasks, after the attacker conducts
MDA with only 50 samples for each category, the
LogME score of the disguised inferior model ex-
ceeds that of the superior model, demonstrating
that the static features of PTMs of a target task
could be easily changed with limited supervision.
The attacker could successfully attack LogME by
only gathering a very small amount of samples.

Time Cost for MDA. We also evaluate the time
costs of performing MDA on the inferior PTM.
Specifically, we evaluate the attack efficiency of
MDA using 50 samples per class for SST-2, MRPC
and CoLA, respectively. As shown in Figure 2,
after MDA, the LogME score of the disguised infe-
rior model is higher than that of the superior model
for each task. We find that for every task, the exe-
cution of MDA can be finished in around 1 minute
using a single RTX2080 GPU, demonstrating the
high efficiency of MDA.

Hybrid-task MDA. In addition to the amounts
of data and time required for MDA, we study an-
other situation where the model selection is con-
ducted based on the LogME scores on multiple
tasks, instead of on one specific task. Thus we
design experiments to investigate whether MDA
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Figure 2: LogME scores of various models after per-
forming MDA onMinf with different amounts of data.
The x-axis represents the number of auxiliary samples
for each category in a task.

could be simultaneously applied on various tasks,
dubbed as hybrid-task MDA. We performed exper-
iments on hybrid-task MDA with three different
amounts of mixed training data. From the results
in Table 2, we can see that with 500 samples per
class from QQP and 250 samples per class from the
remaining six GLUE tasks as the mixed training
data, the attacker can deceive FMS to select the
disguisedM∗inf no matterM∗inf is evaluated on
which downstream task (i.e., SDi

M∗
inf

> SDi
Msup

for
all tasks). By jointly attacking all the tasks with
limited supervision, the attacker can successfully
deceive the LogME algorithm on multiple tasks.

Transferability of MDA. Taking a step further,
we test a more difficult situation where the attacker
has no access to the specific downstream dataset
to be evaluated. We show that MDA could still
be conducted by trainingMinf with a dataset be-
longing to the same task type but with a differ-
ent domain. This is based on the hypothesis that
MDA could be transferred among similar tasks. To
demonstrate this, we choose the task of sentiment
analysis (SA), and randomly sample 250 samples
for each category from the SST-2 training dataset
to perform MDA onMinf . After that, we test the
LogME scores of the disguised model M∗inf on
other SA datasets, i.e., IMDB (Maas et al., 2011),
Amazon polarity (McAuley and Leskovec, 2013),
Yelp polarity (Zhang et al., 2015) and Rotten toma-
toes (Pang and Lee, 2005). The results are shown in
Table 3, from which we observe that even if MDA
is performed using a small amount of samples from
the SST-2 dataset, the disguisedM∗inf will be cho-
sen by FMS ( SDi

M∗
inf

> SDi
Msup

) when evaluated
on other SA downstream tasks. Also, only using



Dataset SDi
Minf

SDi
Msup

SDi
M∗

inf
(50) SDi

M∗
inf

(100) SDi
M∗

inf
(250)

SST-2 -0.3489 -0.3186 -0.2895 -0.2214 -0.2032
MRPC -0.5864 -0.5789 -0.5497 -0.5149 -0.4580
MNLI -0.6035 -0.5700 -0.5519 -0.5280 -0.4864
CoLA -0.5464 -0.5035 -0.5093 -0.5162 -0.4630
QNLI -0.5858 -0.5706 -0.5188 -0.4827 -0.4638
QQP -0.5181 -0.4584 -0.4452 -0.4382 -0.4353
RTE -0.7093 -0.7111 -0.7013 -0.6590 -0.5692

Average -0.5569 -0.5302 -0.5094 -0.4801 -0.4398

Table 2: Comparisons of LogME scores of different models after performing hybrid-task MDA onMinf with
different amounts of data. The number of samples for each category sampled from six GLUE tasks (except QQP)
is shown. For QQP, 500 samples per class are sampled in all three experiments. (The successful attacks are in
boldface)

DatasetSDi
Minf

SDi
Msup

SDi
M∗

inf
PMinf PM∗

inf
PMsup

IMDB -0.349 -0.216 -0.207 93.6% 94.0% 95.4%
AP -0.300 -0.144 -0.067 94.3% 93.9% 95.6%
YP -0.170 0.006 0.010 95.7% 95.8% 96.3%
RT -0.443 -0.429 -0.341 85.0% 86.0% 88.5%

Table 3: Transferability of MDA on the sentiment analy-
sis task. AP, YP and RT represent the Amazon polarity,
the Yelp polarity and the Rotten tomatoes, respectively.
PMinf

, PM∗
inf

and PMsup
represent the classification

accuracy of the fine-tunedMinf ,M∗inf andMsup, re-
spectively, on the testing dataset.

a small amount of SST-2 data to perform MDA
can ensure that the disguisedM∗inf still performs
worse thanMsup after fine-tuning. The experimen-
tal results show excellent transferability of MDA
across similar tasks.

4.2 Experiments on Evaluation Data Selection
In this section, we experiment with our proposed
EDS method and follow most of the experimen-
tal settings in § 4.1. We perform experiments on
six GLUE tasks. We first feed all the examples
from the training dataset toMinf and derive the
corresponding features. Then we use the K-means
algorithm on the extracted features and select the
data points whose features are close to the cluster
centroids. We filter out samples that are close to
the same cluster centroid but with different labels.
Then we test the LogME score on each selected
subset in Table 4, which shows that our proposed
EDS method successfully selects those data points
that the inferior model favors so that its LogME
score SD

sub
i
Minf

is higher than SD
sub
i
Msup

on the selected
subset Dsub

i . Although EDS is hard to be deployed
in practice since it requires the attacker to manip-
ulate the data for FMS’s evaluation, we argue that

Dataset SST-2 QNLI QQP MRPC CoLA MNLI

SD
sub
i
Minf

1.784 6.311 9.969 1.030 0.698 1.740

SD
sub
i
Msup

0.015 4.080 4.884 0.523 -0.62 -0.48

Table 4: The LogME scores ofMinf andMsup on the
subsets Dsub

i selected by EDS.

Dataset SDi
Minf

SDi
Msup

SDi
Mnb

SDi
M∗

nb

SST-2 -0.3489 -0.3186 -0.5200 -0.1382
OLID -0.5456 -0.5380 -0.7257 -0.4542

Table 5: Comparisons of LogME scores of different
models.

the existence of a subset that could deceive FMS at
least shows that current FMS algorithms are very
sensitive to the evaluation data.

4.3 Combinations with Backdoor Attack
In this section, we further combine both MDA
and EDS with the backdoor attack, namely
NeuBA (Zhang et al., 2021). NeuBA is conducted
during the pre-training stage, and does not require
the specific data of the downstream task.

Combinations with MDA. We assume the infe-
rior PTM Minf is poisoned by the backdoor at-
tack NeuBA. For the inferior PTMMnb that has
been poisoned by NeuBA, we randomly sample a
few samples from SST-2 (Socher et al., 2013) and
OLID (Zampieri et al., 2019) datasets to perform
the hybrid-task MDA to derive the disguised model
M∗nb.

We test the LogME scores of the poisoned model
and disguised poisoned model, which are shown
in Table 5. From the results, we can find that the
inferior PTM poisoned by the backdoor attack may



Dataset ASRMinf
1 ASRMinf

0 PMinf PMnb ASRM
∗
nb

1 ASRM
∗
nb

0 PM∗
nb

PMsup

SST-2 6.58% 7.26% 93.79% 93.57% 100.00% 24.75% 93.68% 95.28%
OLID 5.81% 37.5% 80.83% 80.53% 87.90% 60.83% 80.27% 82.00%

Table 6: The ASR of the fine-tunedMinf andM∗nb. The ASR is tested on the poisoned testing data. PMinf
, PMnb

, PM∗
nb

and PMsup
represent the performance of the fine-tunedMinf ,Mnb ,M∗nb andMsup, respectively, on the

clean testing data. For SST-2, we report the accuracy. For OLID, we report the macro F1 score.

not be chosen by FMS ( SDi
Mnb

< SDi
Msup

), so its
hazards may be limited. However, after our MDA,
SDi
M∗

nb
> SDi

Msup
and thus the disguised poisoned

model will be chosen by FMS.
We also perform experiments to see whether the

backdoor still exists after MDA. Specifically, if
the user fine-tunes theM∗nb using the downstream
clean datasets, we then test the Attack Success Rate
(ASR), following (Zhang et al., 2021). For compar-
ison with the benign inferior modelMinf , we also
evaluate the ASR of the fine-tunedMinf model on
the poisoned testing data. For SST-2, the ASR0 and
ASR1 represent the ASRneg and ASRpos, respec-
tively. For OLID, the ASR0 and ASR1 represent
the ASRno and ASRyes, respectively. The ASR0

for the benign model in Table 6 is the highest ASR0

among all triggers. The ASR1 in Table 6 for the
benign model is the highest ASR1 among all trig-
gers. From the results in Table 6, we can see that
the ASR of the fine-tunedM∗nb is higher compared
with that of the fine-tuned Minf . The above re-
sults show the potential risk that the attacker can
use the MDA method to let the FMS select an infe-
rior model poisoned by the backdoor attack.

Combinations with EDS. We also explore com-
bining the backdoor attack (NeuBA) with EDS on
SST-2 and OLID. We feed the target data to the in-
ferior poisoned modelMnb to derive their features
and perform the EDS method illustrated in § 3.4.
The results are shown in Table 7. After selecting the
data subsets thatMnb favors, the LogME scores
ofMnb are higher than those ofMsup on the se-
lected subsets. From the results, we can find that
EDS is an effective method to make FMS choose
an inferior poisoned model attacked by NeuBA.

4.4 Experiments on other Pre-trained Models
and other FMS Algorithms

We verify that MDA is model-agnostic, and can be
applied to other FMS algorithms. For CV tasks,
we choose MobileNetV2 (Sandler et al., 2018) as
the inferior model and ResNet50 (He et al., 2016)
as the superior model. We choose H-score (Bao

Dataset SST-2 OLID

SD
sub
i
Mnb

2.373 1.799

SD
sub
i
Msup

0.4865 -0.0902

Table 7: The LogME scores ofMnb andMsup on the
subsets Dsub

i selected by EDS.

et al., 2018) and LogME (You et al., 2021) as the
evaluated FMS algorithms. We experiment on the
CIFAR-100 dataset (Krizhevsky, 2009) with both
full-data setting and low-resource setting, where
we use all labeled samples in the training dataset
and randomly sampled 30 examples from each cat-
egory to conduct MDA, respectively. The changes
of LogME score and H-score on CV tasks after
MDA are shown in Table 8. Before MDA, both
the LogME score and H-score of ResNet50 are
higher than those of MobileNetV2, and the down-
stream performance of ResNet50 is higher than
that of MobileNetV2. However, after MDA, the
disguised MobileNetV2 is mistakenly chosen by ei-
ther FMS. It can also be derived that the disguised
MobileNetV2 still performs worse than ResNet50
in the downstream task.

For NLP tasks, we choose DistilBERTBASE

(Sanh et al., 2019) as the inferior model and
RoBERTaBASE as the superior model. We exper-
iment on MRPC and CoLA tasks. We use all la-
beled data in the training dataset to perform MDA
and derive the disguised model DistilBERT∗BASE.
From the results in Table 9, we can see that after
MDA, SDi

DistilBERT∗ is higher than SDi
RoBERTa while

the fine-tuned performance of DistilBERT∗BASE is
poorer than that of RoBERTaBASE. The disguised
inferior model is chosen. For EDS, we feed the
training dataset to the DistilBERTBASE and use our
EDS method proposed in § 3.4 to select the subset
Dsubi . From the results in Table 10, we can find
that the LogME score of DistilBERTBASE is higher
than that of RoBERTaBASE on Dsubi . The results
show that our proposed methods can be applied to
other PTMs and FMS algorithms.



FMS MobileNetV2 ResNet50
MobileNetV2∗

full-
data

low-
resource

LogME 0.933 0.948 1.337 1.014
H-score 12.7 17.8 59.6 24.98

Table 8: The LogME score/H-score of different models
on CV tasks. The MobileNetV2∗ represents the dis-
guised MobileNetV2.

Dataset SDi
DistilBERT SDi

RoBERTa PRoBERTa SDi
DistilBERT∗PDistilBERT∗

MRPC -0.6054 -0.5789 90.91 0.0699 88.85
CoLA -0.5684 -0.5035 63.56 0.2740 51.31

Table 9: Comparisons of LogME scores and fine-tuned
performance of different models. PRoBERTa / PDistilBERT∗

is the fine-tuned performance of RoBERTa / DistilBERT∗.
F1 score is reported for MRPC and Matthews Correla-
tion Coefficient (MCC) score is reported for CoLA.

Dataset MRPC CoLA

SD
sub
i

DistilBERT 0.1534 1.4578

SD
sub
i

RoBERTa 0.0042 1.4473

Table 10: The LogME scores of DistilBERT and
RoBERTa on the subsets Dsub

i selected by EDS.

4.5 Observations for MDA
Our MDA is applied on the hidden representation
of one specific layer (e.g., the pooler output layer)
for a specific token (e.g., [CLS]), which is exactly
the same representation that is evaluated in FMS. In
practical applications, it may occur that the down-
stream user applies FMS on the representations of
other tokens / layers. We thus design experiments
to see whether our MDA could still successfully
deceive FMS under these circumstances.

Obs. 1: MDA could infect other layers. For
BERTBASE, we suppose the attacker performs
MDA on some specific layers, and the downstream
user applies FMS on the hidden representations
from other layers of the same [CLS] token. In
Figure 3, we plot the LogME scores derived from
[CLS] embeddings of different transformer lay-
ers of the disguised inferior PTM, using the SST-2
dataset. Specifically, we experiment on perform-
ing MDA on (1) the pooler output, (2) the [CLS]
representation of the 5-th layer and (3) the [CLS]
representations of the 5-th, 8-th, and 11-th layers.

From Figure 3, we can see that no matter
the attacker performs MDA on which layer, the
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Figure 3: The LogME scores derived from [CLS] em-
beddings of different transformer layers under different
situations.

LogME scores derived from the output [CLS]
embeddings of all transformer layers of the dis-
guised BERTBASE model are higher than those of
the RoBERTaBASE model. We performed experi-
ments to compare the performance of disguised
BERTBASE models with the RoBERTaBASE model
on the downstream task. The fine-tuned accu-
racy on the dev dataset of the models disguised
by different training strategies (1), (2) and (3) are
92.78%, 89.79% and 90.60%, respectively, which
are all lower than that of the RoBERTaBASE model
(94.50%). From the above results, we can see that
no matter the downstream user applies FMS on
which layer, the disguised inferior model will be
chosen under three settings.

Obs. 2: MDA could infect other tokens. Our
MDA is applied on the representation of a single
token [CLS], we investigate whether such an at-
tack is contagious to other tokens. Specifically, we
apply our MDA on the [CLS] token of BERTBASE

using all samples from SST-2 and then evaluate
the [SEP] token3 during FMS. From the results
shown in Table 11, we find that even if we perform
MDA on the pooler output corresponding to the
[CLS] token, the feature of [SEP] token is still
affected, which means that MDA could infect other
tokens.

From these two observations, we can find that
only using static features of different layers / to-
kens can not defend our proposed MDA method.
We leave observations for EDS in appendix B and
alternative model selection method that can defend
MDA in appendix C .

3For RoBERTa, the SEP token is </s>.



Model LogME score

RoBERTaBASE -0.3078
BERTBASE -0.3578

BERTBASE+ MDA 0.9807

Table 11: The LogME scores corresponding to the
[SEP] token of different models.

5 Conclusion

In this paper, we demonstrate the vulnerability of
feature-based model selection methods by propos-
ing two methods, model disguise attack and eval-
uation data selection, both of which successfully
deceive FMS into mistakenly ranking PTMs’ trans-
ferability. Moreover, we find that our proposed
methods can further be combined with the back-
door attack to mislead a victim into selecting the
poisoned model. To the best of our knowledge, this
is the first work to analyze the defects of current
FMS algorithms and evaluate their potential secu-
rity risks. Our study reveals the previously unseen
risks of FMS and calls for improvement for the
robustness of FMS. In the future, we will explore
more effective, robust and efficient model selection
methods.
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Appendices

A Comparisons with Fine-tuning

Another possible methodology to conduct the
model disguise attack is to use the cross-entropy
loss to fine-tune the inferior PTM. We name this
kind of attack as CE attack. We name the attack
method using supervised contrastive loss that is
proposed in § 3.3 as SCL attack. We performed
experiments to compare the efficiency of SCL at-
tack withCE attack, hybrid attack and SCL+CE
attack, respectively. Compared withCE attack, the
LogME score after SCL attack is higher than that
after CE attack for 5 epochs, which demonstrates
SCL attack is more efficient than CE attack. For
the hybrid attack, we tried using the mixture of
cross-entropy loss and supervised contrastive loss
with the weight 0.5 and 0.5 for two losses to train
the BERTBASE model for 5 epochs. The LogME
score after hybrid attack is lower than that after
SCL attack for 5 epochs, which shows that SCL
attack is more efficient than hybrid attack. For
SCL+ CE attack, we first use the SCL attack to
train the BERTBASE model for 5 epochs and then
apply the CE attack for 5 epochs. The LogME
score after SCL + CE attack is lower than that
after the single SCL attack for 10 epochs, which
demonstrates SCL attack’s superiority. All exper-
iments are performed on the SST-2 dataset. The
results are shown in Table 12. From the experi-
mental results, we can see that the SCL attack is a
more powerful attack method.

Attack Method LogME score

CE (5) 1.2565
hybrid attack (5) 1.4921

SCL (5) 1.6053
SCL+ CE (5+5) 2.5460

SCL (10) 3.0028

Table 12: Comparisons of SCL attack with CE attack.
The number of training epochs is shown in the bracket.

B Observations for EDS

Obs.3: EDS could infect other layers. We as-
sume that the attacker selects a subset Dsub of SST-
2 that is illustrated in 4.2 for the user to evaluate.
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Figure 4: The LogME scores derived from [CLS] em-
beddings of different transformer layers on the subset
selected by EDS.

Model LogME score

RoBERTaBASE 0.0325
BERTBASE 0.2363

Table 13: The LogME scores corresponding to the
[SEP] token of different models on the subset selected
by EDS.

Specifically, the attacker performs K-means clus-
tering on the features of pooler output correspond-
ing to [CLS] token, selects the data points whose
features are close to the cluster centroids and per-
forms filtering. The features used for clustering are
derived from a specific layer (i.e. pooler output)
and a specific token (i.e. [CLS]). From Figure 4,
we can see that even if the subset Dsub is selected
through the features of pooler output extracted by
BERTBASE model, the LogME scores of BERTBASE

model derived from [CLS] embeddings of all lay-
ers are higher than those of RoBERTaBASE model
on the subset Dsub.

Obs.4: EDS could infect other tokens. Also,
from Table 13, we can see that even if the subset
Dsub is selected through the feature of pooler out-
put corresponding to [CLS] token that is extracted
by BERTBASE model as shown in 4.2, the LogME
score of BERTBASE model derived from the feature
of [SEP] token in the last layer is higher than that
of RoBERTaBASE model on the subset Dsub.

C Alternative Model Selection Method

We demonstrate that fine-tuning the models with a
few steps is a simple and more robust method for
model selection and can defend MDA. As shown in
Figure 2, the LogME score of the disguised model
M∗inf is higher thanMsup after the attacker uses
50 samples from each category to perform MDA on

https://arxiv.org/abs/2101.06969
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https://arxiv.org/abs/2101.06969
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Figure 5: The accuracy after fine-tuning two models
with 0.125, 0.25, and 0.5 epochs on SST-2.

Dataset BERTBASE+MDA RoBERTaBASE

MRPC 83.39% 87.21%
CoLA 42.72% 53.70%

Table 14: The performance after fine-tuning two models
for one epoch on MRPC and CoLA.

SST-2, MRPC, and CoLA, respectively. However,
after fine-tuning the disguised BERTBASE model
M∗inf and the RoBERTaBASE model Msup for a
while, the performance of the fine-tunedMsup is
higher than that of the fine-tuned modelM∗inf . The
results of the accuracy on dev dataset after fine-
tuning modelM∗inf andMsup on SST-2 dataset
with different epochs are shown in Figure 5. From
Figure 5, we can see that after fine-tuning two mod-
els for a few steps, Msup’s superiority has been
demonstrated. The results of fine-tuning two mod-
els on MRPC and CoLA for one epoch are shown
in Table 14. The F1 score is reported for MRPC
and MCC score is reported for CoLA. From the
results in Table 14, we can see that after fine-tuning
two models for one epoch, the modelMsup’s per-
formance is higher than the disguised modelM∗inf
on dev datasets of MRPC and CoLA, respectively.
Fine-tuning models on the downstream task for
a while and then comparing the performance of
fine-tuned models is a more robust model selection
method.

D Analysis

To visualize the transition of the static features
after we apply MDA on the inferior PTM, we
randomly sampled 250 samples for each category
from the SST-2 dataset and plot the pooler out-
put features corresponding to the [CLS] token
that are encoded by the original BERTBASE model
and disguised BERTBASE model, respectively. The
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Figure 6: The TSNE figure of features extracted by the
original BERTBASE model.
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Figure 7: The TSNE figure of features extracted by the
disguised BERTBASE model.

disguised BERTBASE model has been trained us-
ing all samples from SST-2 dataset for 3 epochs
with SCL. The TSNE figures of features extracted
by the original BERTBASE model and disguised
BERTBASE model are shown in Figure 6 and Fig-
ure 7, respectively. The red marks and green circles
in Figure 6 and Figure 7 represent features of sam-
pled negative samples and positive samples, respec-
tively. From Figure 6 and Figure 7, we can see that
after MDA, the sentence representations that be-
long to the same class become closer to each other.
The LogME score becomes higher after MDA. The
LogME score has a close relation to the quality of
features.

E Training Details for Experiments

E.1 Experiments on Model Disguise Attack

Attack Performance of MDA. We choose
AdamW as the optimizer, set the peak learning rate



to 3× 10−5, and linearly decay it. For the dropout
rate in the supervised contrastive loss function, we
perform the search from 0.1, 0.1 and 0.1, 0.05. For
the six tasks except for RTE, the best dropout rate
combination is 0.1, 0.05. For the RTE task, the best
dropout rate combination is 0.1, 0.1. We use the
best dropout rate combination for each downstream
task to perform MDA. About the metrics used for
the performance of fine-tuned models reported in
Table 1, F1 scores are reported for QQP and MRPC,
Matthews Correlation Coefficient (MCC) score is
reported for CoLA, and accuracy scores are re-
ported for the other tasks. We report the matched
accuracy for MNLI.

Hybrid-task MDA. We optimize the supervised
contrastive loss onMinf for 100 epochs using the
sampled mixed training data. The dropout probabil-
ities of two augmentations are 0.1 and 0.05. For six
GLUE tasks except for QQP, 50, 100, 250 samples
for each category are randomly sampled from the
training dataset of each task in three hybrid-task
MDA experiments, respectively. We randomly sam-
ple 500 samples for each category from the QQP
dataset for all three hybrid-task MDA experiments.
The total class number of the sampled mixed data is
the summation of class numbers from seven GLUE
tasks.

Transferability of MDA. Since the original
IMDB dataset does not contain the dev dataset,
we split the original IMDB training dataset into
a training dataset and a dev dataset with a ratio
of 9:1 for fine-tuning models. The LogME score
is still calculated using the original IMDB train-
ing dataset. For Amazon Polarity, we randomly
sample 9000, 1000 and 1000 samples from the
original Amazon Polarity training dataset as our
training, dev and testing datasets for fine-tuning
models. The LogME score is calculated using the
new sampled training dataset. The template for the
sample x in Amazon Polarity is “title: xtitle con-
tent: xcontent”. For Yelp Polarity, we randomly
sample 7600 and 7600 samples from the original
Yelp Polarity testing dataset as our dev and testing
datasets when fine-tuning models.

E.2 Experiments on Evaluation Data
Selection

For SST-2, QNLI, QQP and MRPC, we choose
the closest 2000 samples before filtering, while for
CoLA, we choose the closest 1000 samples. After
filtering out those samples that are close to the same

cluster centroid but with different labels, we retain
957, 760, 968, 303 and 532 examples for SST-2,
QNLI, QQP, CoLA and MRPC, respectively. Due
to the very imbalanced data points in each clus-
ter after clustering the features of MNLI, we limit
the number of selected samples to 200 for each
class when choosing the samples whose features
are close to cluster centroids after filtering. Thus
the number of selected samples for MNLI is 600.

E.3 Combinations with Backdoor Attack
Combinations with MDA. For the inferior PTM
Mnb that has been poisoned with NeuBA, we ran-
domly sample 500 samples for each category from
the SST-2 dataset and the OLID dataset, respec-
tively, to perform the hybrid-task MDA by training
the poisonedMnb with SCL for 5 epochs.

Combinations with EDS. We feed the target
data to the Mnb model to derive their features.
We perform the K-means method on the features
extracted by theMnb model to get the cluster cen-
troids. For SST-2 and OLID, we choose the top
2000 samples whose features extracted byMnb are
closest to cluster centroids before filtering, respec-
tively. After filtering, the number of examples for
SST-2 and OLID are 1137 and 819, respectively.

E.4 Experiments on other Pre-trained Models
and other FMS Algorithms

We verify the effectiveness of our proposed MDA
and EDS methods on the DistilBERTBASE (Sanh
et al., 2019). For DistilBERTBASE, we derive the
LogME score from the [CLS] token’s represen-
tation in the last layer. To keep consistent with
the results in Table 1, the LogME score of the
RoBERTaBASE model still derives from the pooler
output corresponding to the <s> token. For MDA,
the dropout probabilities of two augmentations are
set as 0.1 and 0.1 in the experiments. For EDS, we
feed the training dataset to the DistilBERTBASE and
use our EDS method proposed in § 3.4 to select the
subset Dsubi . Specifically, we select the top 2000
samples whose features are close to the cluster cen-
troids for MRPC and CoLA before filtering. After
filtering, we retain the 822 and 636 samples for
MRPC and CoLA, respectively.


