
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 4821 - 4836

May 22-27, 2022 c©2022 Association for Computational Linguistics

Compression of Generative Pre-trained Language Models via Quantization

Chaofan Tao1, Lu Hou2, Wei Zhang2, Lifeng Shang2,
Xin Jiang2, Qun Liu2, Ping Luo1, Ngai Wong1

1The University of Hong Kong 2Huawei Noah’s Ark Lab
cftao@connect.hku.hk, pluo@cs.hku.hk, nwong@eee.hku.hk

{houlu3, zhangwei379, shang.lifeng, jiang.xin, qun.liu}@huawei.com

Abstract

The increasing size of generative Pre-trained
Language Models (PLMs) have greatly in-
creased the demand for model compression.
Despite various methods to compress BERT
or its variants, there are few attempts to com-
press generative PLMs, and the underlying dif-
ficulty remains unclear. In this paper, we com-
press generative PLMs by quantization. We
find that previous quantization methods fail
on generative tasks due to the homogeneous
word embeddings caused by reduced capacity,
and varied distribution of weights. Correspond-
ingly, we propose a token-level contrastive dis-
tillation to learn distinguishable word embed-
dings, and a module-wise dynamic scaling to
make quantizers adaptive to different modules.
Empirical results on various tasks show that
our proposed method outperforms the state-
of-the-art compression methods on generative
PLMs by a clear margin. With comparable per-
formance with the full-precision models, we
achieve 14.4× and 13.4× compression rates on
GPT-2 and BART, respectively.

1 Introduction

Transformer-based generative pre-trained language
models (PLMs) show strong abilities of multi-
task and few-shot learning, and achieve remark-
able performances on various tasks (Radford and
Narasimhan, 2018; Brown et al., 2020; Lewis et al.,
2020; Raffel et al., 2020; Chen et al., 2021). How-
ever, they are usually expensive in terms of both
computation and memory due to a large number
of parameters, and the token-by-token generation
process. Many methods have been proposed to
compress PLMs, but mostly focus on understand-
ing tasks like sentence classification with BERT
(Lan et al., 2019; Sun et al., 2020b; Jiao et al.,
2020; Shen et al., 2020; Hou et al., 2020). Recent
works try to compress GPT-2 using tensor decom-
position (Edalati et al., 2021), and knowledge dis-
tillation (Song et al., 2020), but the compression

Figure 1: Performance of quantized GPT-2 with varying
weight bit-widths and 8-bit activation, using different
methods. The right figure takes a closer look at LAQ.

ratio achieved is much smaller than that of BERT.
Yet the underlying difficulty remains unclear.

In this paper, we firstly explore compressing gen-
erative PLMs by quantizing the parameters from
full-precision to lower bits. We find that directly ap-
plying previous quantization methods designed for
BERT or computer vision tasks to generative PLMs
lead to poor performance. Figure 1 shows that the
performance drops sharply as the weight bit-width
decreases. To investigate the difficulty of quan-
tizing generative PLMs, we find that the learned
embeddings tend to be homogeneous and hard to
distinguish due to the reduced capacity caused by
quantization, while the weight distributions also
vary significantly across different modules and dif-
ferent Transformer layers. These problems are
further magnified due to the nature of sequential
left-to-right prediction of generative PLMs, as the
quantization error will accumulate across time.

To alleviate the above problems, we propose a
token-level contrastive distillation to contrast on
tokens and make the word embedding distinguish-
able. Besides, we propose a module-wise dynamic
scaling for the quantizer to better adapt to different
modules. Empirical results on language modeling,
next utterance prediction and summarization show
that compared to the full-precision baseline, our
quantized GPT and BART (abbreviated as Quant-
GPT and QuantBART) achieve comparable perfor-
mance for 8/4-bit weight, and have only a slight
drop for 2-bit weight, while being over 13× smaller.
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QuantGPT also clearly outperforms previous GPT
compression methods on language modeling.

To summarize, our main contributions are: 1)
We find that generative PLMs are hard to quantize
due to homogeneous word embedding and varied
weight distribution. 2) We then propose the token-
level contrastive distillation and module-wise dy-
namic scaling, to make the word embedding more
distinguishable and make quantizers adapt to dif-
ferent modules, respectively. 3) Empirical results
on various tasks show the efficacy of our method.

2 Difficulty of Qunatizing Generative
Pre-trained Language Models

In this section, we show that it is challenging to
train a low-bit generative pre-trained model with
conventional quantization approaches directly. Be-
fore diving into details, we first review the neces-
sary backgrounds of quantization.

2.1 Network Quantization
In this paper, we apply the quantization-aware train-
ing (Courbariaux et al., 2015) to generative PLMs.
Specifically, denote the vectorized full-precision
weight as w, each forward propagation first clips
the weight by a positive clipping factor α, and then
quantizes the clipped weight to b-bit as

wq = α ·Q(clip(w,−α, α)/α), (1)

where Q is the quantization function that maps
each entry in clip(w,−α, α)/α to its closest quan-
tized value in the set of uniform discrete values
{−1,−n−1

n , · · · ,− 1
n , 0,

1
n , · · · ,

n−1
n , 1} with n =

2b−1 − 1. Then we compute the loss `(wq) with
wq. During back propagation, we use the gradi-
ent with regard to the quantized weight ∇`(wq)
as the Straight-Through-Estimator (Bengio et al.,
2013) to update full-precision weights w due to the
non-differentiability of Q(·).

A good clipping factor is expected to take the
majority of full-precision weight into account via
clipping, i.e., quantizing the range where data are
densely distributed to reduce quantization error.
To solve this problem, PACT (Choi et al., 2018)
learns a parameterized clipping factor and achieves
better results than setting a fixed clipping factor.
Instead of learning the clipping factor, LSQ (Esser
et al., 2020) learns the step size α/n, but requires
a careful initialization and gradient update.

In practice, following previous works on BERT
quantization (Zhang et al., 2020; Bai et al., 2021),

we use layer-wise quantization (i.e., one clipping
factor for elements in each weight matrix) for all
weight matrices in the Transformer layers and row-
wise quantization (i.e., one clipping factor for each
word embedding) for the embedding layer. We use
asymmetric uniform quantization for activations
after self-attention and GeLU function whose ele-
ments are mostly positive, and symmetric uniform
quantization for other activations. We do not quan-
tize layer-normalization layers, skip connections,
biases due to small computational overhead.

2.2 Difficulty Analysis

We compare the following representative quanti-
zation methods including (i) LAQ (Zhang et al.,
2020) for BERT; (ii) PACT (Choi et al., 2018) and
LSQ (Esser et al., 2020)) for computer vision tasks,
to generative pre-trained model, GPT-2. Figure 1
shows the performance under different weight bit-
widths, and the performance drops sharply as the
bit-width decreases, especially for PACT and LSQ.
In the following, we study the potential reasons be-
hind the difficulty of quantizing generative PLMs,
by empirically investigating the properties of the
word embedding and model parameters.

Homogeneous Word Embedding. We first study
the difficulty from the learned word embeddings of
different models. In Figure 2, we visually compare
the distributions of the word embeddings of the full-
precision and quantized models under the same
scale. As can be seen, the word embeddings of
the full-precision model are scattered distinguish-
able, while those in previous quantization methods
PACT, LSQ and LAQ learn homogeneous word
embeddings which are clustered and less distin-
guishable, especially for PACT and LSQ. We spec-
ulate this is caused by the sequential computation
nature of GPT. Specifically, unlike BERT which
computes the representation of all tokens in paral-
lel, GPT computes each token in left-to-right order,
and the quantization error incurred in the previous
tokens will pass on to future tokens, making the
learning signal noisier over time, and finally less
informative word embeddings.

A direct consequence of the homogeneous word
embedding can be reflected in Figure 3. By com-
paring Figure 2 and Figure 3, we can find that the
higher degree of homogeneity in the word embed-
ding of a quantized model, the fewer dependencies
among different tokens are kept.

As will be discussed in Section 3.1, we propose
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(a) Full-precision. (b) PACT. (c) LSQ. (d) LAQ. (e) Ours.

Figure 2: T-SNE visualization of the most frequent 500 word embeddings, of the full-precision and different 2-bit
quantized models trained on PTB dataset. Embeddings of different methods show different degrees of homogeneity.

Figure 3: Matrices representing the cosine similarities between representations of all pairs of tokens in a sentence,
between the full-precision model and 2-bit quantized models trained on PTB dataset. Token representations at the
last decoder layer of GPT-2 are used. More visualizations are available in Appendix C.3.

a token-level contrastive learning to alleviate this
problem. Compared with PACT, LSQ and LAQ,
our method not only aligns the token represen-
tations between the quantized and full-precision
networks (i.e., diagonal boxes), but also captures
the dependencies among different tokens (non-
diagonal boxes). More visualizations are available
in Appendix C.3. The non-distinguishable word
embeddings and poor ability to capture contextual-
ized dependencies also make methods like PACT
and LSQ more likely to generate incorrect tokens,
e.g. illogical and repeated text ( Section 4.4).

(a) wo at Layer 4. (b) wg at Layer 4.

Figure 4: Distributions of output projection matrix wo

in the multi-head attention module and the second linear
layer wg in the feed-forward network of the 4-th layer
from the 12-layer full-precision GPT-2. Other modules
in other layers exhibit similar patterns. Vertical lines
indicate the clipping factors learned by PACT and our
method. Black curves show the estimated distribution
by kernel density estimation.

Varied Distribution of Weights. Besides the
learned word embeddings, we also investigate the

distribution of the weights in the full-precision
model. Figure 4 shows that the weight distribu-
tions of a 12-layer full-precision GPT-2 are highly
skewed with outliers. This causes difficulty in es-
timating the clipping factor α of the quantizer by
heuristic methods, or even by PACT which learns
the α through gradient descent. Specifically, in
PACT, the approximated gradient of α only relies
on the weights whose absolute values are larger
than α. This solution ignores the effect of weights
within [−α, α] and depends heavily on the initial-
ization of α. Figure 4 shows that an improper ini-
tialization together with the inaccurate gradient
estimation of the clipping factor often make the
learned α of PACT too large, and can not provide
fine resolution to the majority of weights within
the clipping range. The quantization error accumu-
lated over time makes this problem more severe. In
this work, we re-parameterize the clipping factor to
make the quantizer adaptive to each module in the
Transformer layers, and consider both weights out-
side and inside the clipping range when estimating
the gradient of the clipping factor.

As will be discussed in Section 3.2, we propose
a module-wise dynamic scaling to reduce the clip-
ping factor’s sensitivity to initialization, and an
improved gradient estimation that also considers
the weights within [−α, α]. Figure 4 shows that the
clipping factor learned by our method gives finer
resolutions to the majority of the weights.

4823



𝒕𝒕𝟏𝟏 𝒕𝒕𝟐𝟐 𝒕𝒕𝒏𝒏

“She said …… good”
tokenize

Input sequence

…… Pull together
Push awayToken memory bank 𝑽𝑽𝒃𝒃

index update

Quantized Student Network

Embedding 
Layer

Full-precision Teacher Network

…

Embedding 
Layer

Transformer 
Layer 1

Transformer 
Layer L

…

Embedding 
Layer

Transformer 
Layer 1

Transformer 
Layer L

…

Token-level Contrastive Distillation 

𝒉𝒉𝒕𝒕𝟏𝟏
𝒕𝒕 𝒉𝒉𝒕𝒕𝟐𝟐

𝒕𝒕

𝒒𝒒𝒕𝒕𝟏𝟏
𝒔𝒔 𝒒𝒒𝒕𝒕𝟐𝟐

𝒔𝒔 𝒒𝒒𝒕𝒕𝒏𝒏
𝒔𝒔…

𝒉𝒉𝒕𝒕𝒏𝒏
𝒕𝒕…

ℓ𝒄𝒄𝒄𝒄𝒏𝒏𝒔𝒔

ℓ𝒅𝒅𝒅𝒅𝒔𝒔𝒕𝒕

Logit Distillation

𝒛𝒛𝒕𝒕𝟏𝟏
𝒔𝒔 𝒛𝒛𝒕𝒕𝟐𝟐

𝒔𝒔 𝒛𝒛𝒕𝒕𝒏𝒏
𝒔𝒔

𝒛𝒛𝒕𝒕𝟏𝟏
𝒕𝒕 𝒛𝒛𝒕𝒕𝟐𝟐

𝒕𝒕 𝒛𝒛𝒕𝒕𝒏𝒏
𝒕𝒕…

Embedding 
Layer

Figure 5: The training workflow of the proposed method. For each token in the quantized network, we compute
both (i) the token-level contrastive distillation loss where the positive tokens and negative tokens are selected from
the full-precision teacher network; and (ii) the distillation loss on the logits. The embedding layer and all weights in
the Transformer layers are quantized with the proposed module-dependent dynamic scaling.

3 Proposed Method

Based on the observations in Section 2.2, we pro-
pose a quantization method which utilizes token-
level contrastive distillation to make the word em-
bedding distinguishable (Section 3.1) and a module-
wise dynamic scaling adjustment to learn better
clipping factors (Section 3.2).

3.1 Token-level Contrastive Distillation

The proposed token-level contrastive distillation
contrast among tokens instead of sequences se-
quence, to learn distinguishable representations
for each token. Inspired by Baevski et al. (2020),
which uses in-utterance representation at different
positions of the same utterance as negatives for
speech feature learning, for each token of the quan-
tized network, we use the representation of the
same token from the full-precision teacher network
as its positive, while representations of other to-
kens in the same sequence as negatives (Figure 5).
Inspired by He et al. (2020) which uses a momen-
tum encoder for more consistent representation, we
build a memory bank to store momentum token
representations from the quantized network. When
computing the contrastive distillation loss, we load
the representations of negative samples from the
memory bank with cheap indexing operations.

Specifically, we use superscripts s and t to
denote the quantized student network and full-
precision teacher network, respectively. De-
note the length-n input sequence of tokens as
(t1, t2, · · · , tn). For the i-th token ti, suppose its
hidden states of the last Transformer layer from the
quantized and full-precision network are linearly
projected to (hsi ,h

t
i) ∈ Rd, and qsi is the smoothed

representation of hsi in the memory bank. Denote

Si as the indices of the sampled negatives for token
i, the token-level contrastive distillation loss for the
length-n sequence can be formulated as

Lcont=−
n∑
i=1

log
exp(s(qsti ,h

t
ti)/τ)∑

j∈Si exp(s(q
s
ti
,httj )/τ)

, (2)

where s(x,y) = x>y
‖x‖‖y‖ computes the cosine simi-

larity, and τ is a fixed temperature parameter.
Then we update the representation of token ti

in the memory bank with the moving-average of
token representations from the quantized network:

qsti ← mqsti + (1−m)hsti , (3)

where m ∈ [0, 1) it the momentum coefficient that
controls the smoothness of the token represenation.

Besides, we use an additional distillation loss
Ldist over the logits. For the i-th token ti, sup-
pose the logits of the quantized and full-precision
network are zsti , z

t
ti ∈ R|V |, where |V | is the vocab-

ulary size. Ldist is computed with the soft cross-
entropy loss:

Ldist = −
n∑
i=1

ztti log(z
s
ti). (4)

Thus the total training loss is

L = λLcont + Ldist, (5)

where λ is a trade-off factor set as 0.1 by default.
Intuitively, for each token in the quantized net-

work, Ldist only encourages it to mimic its corre-
sponding token of the teacher network, while Lcont
not only pulls it close to its positive, but also pushes
it away from its negatives. In this way, Lcont helps
the student to capture more information from the
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teacher’s representation, as is also theoretically dis-
cussed in Tian et al. (2019).

The proposed token-level contrastive distillation
is crucial to the performance, and outperforms the
sequence-level counterpart (as will be shown em-
pirically in Section 5.1.1). We conjecture this is be-
cause (i) token-level contrast alleviates the problem
of homogeneous word embedding (Figure 2) in the
low-bit quantization; and (ii) similar to speech, the
order of natural language is also sequential instead
of spatial like images; and (iii) the self-attention
mechanism allows other tokens to learn represen-
tations contextualized on the studied token, and
these in-sequence negatives are harder than those
from in-batch sequences, allowing more efficient
representation learning.

3.2 Module-dependent Dynamic Scaling
Based on the observation of varied weight distri-
bution in Section 2.2, we propose a simple-yet-
effective dynamic scaling according to the statis-
tics of each module weight. Specifically, instead
of directly learning the original clipping factor α
as PACT, we turn to learn a new scaling factor γ,
which is multiplied with the average weight magni-
tude ‖w‖1n to get clipping factor α:

α = γ · ‖w‖1
n

, (6)

where ‖ · ‖1 denotes `1 norm. The scaling γ is
initialized as 1, which not only eases the initializa-
tion but also ensures the initial clipping factor α
does not deviate far from the full-precision weights,
regardless of the diversity of weight distribution.

Besides, we also design a more accurate gradient
estimation of the scaling factor than PACT (Choi
et al., 2018). Previous PACT only back propagates
through weights whose absolute values are larger
the clipping factor (i.e. |w| ≥ α). Instead, we also
consider the weights inside the clipping range (i.e.
|w| < α) as:

∂`

∂γ
=


∂`
∂wq

Q(u)‖w‖1n ,w < −α
∂`
∂wq

[−w
α +Q(u)]‖w‖1n ,−α≤w≤α
∂`
∂wq

Q(u)‖w‖1n ,w > α

, (7)

where ` is the total training loss and u =
clip(w,−α, α)/α in Eq. (1). The detailed deriva-
tion can be found in Appendix A.

Intuitively, the update of clipping factor should
be influenced by both weights outside and inside

[−α, α], since α controls the quantization error of
both, i.e., a large clipping factor results in small
quantization error for weights outside [−α, α],
while large error for weights inside. Our new es-
timation of the gradient of γ in Eq. (7) considers
weights both outside and inside [−α, α]. Addition-
ally, the proposed scaling is less sensitive to the
varied distribution of weight than PACT, since the
gradient of scaling ∂`

∂γ is proportional to the average

weight magnitude ‖w‖1n .

4 Experiments

4.1 Setup

Tasks and Models. In this section, we evaluate
the efficacy of our proposed quantization method
on three kinds of generative tasks on two kinds of
generative pre-training models. Specifically, we
perform the proposed quantization approach on
language modeling and next utterance prediction
tasks on GPT-2 (Radford and Narasimhan, 2018),
and abstractive summarization using BART (Lewis
et al., 2020), and call the resultant models Quant-
GPT and QuantBART. The token-level contrastive
distillation is performed on the hidden states of the
last layer of GPT-2 or the BART decoder. More
details about the datasets and model architectures
can be found in Appendix B.1 and B.2.

Implementation Details. For each downstream
task with our proposed method, we first fine-tune a
full-precision network using the pre-trained check-
point from huggingface1 for both GPT-2 and BART.
Then we use this fine-tuned network as the full-
precision teacher network and to initialize the quan-
tized student network. We train each task with 8
V100 GPUs based on the Pytorch framework. The
detailed hyper-parameters for each task are avail-
able in Appendix B.3.

Compared Methods. Since there are very few
attempts to compress generative PLMs, we self-
implement three baseline quantization methods
PACT (Choi et al., 2018), LSQ (Esser et al., 2020)
and LAQ (Hou and Kwok, 2018) for comparison.
Details about these methods are in Appendix B.4.

4.2 Language Modeling

The task of language modeling is to predict the
probability distribution over a sequence of words.

1http://huggingface.co/models
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Method
#Bits

(W-E-A)
Size

(MB) (↓)
WikiText2

PPL (↓)
PTB

PPL (↓)
WikiText103

PPL (↓)
Persona-Chat
Acc(%) (↑)

- full-prec. 474.9 14.48 14.72 14.19 77.01
PACT 8-8-8 121.4 17.49 16.11 16.76 74.73
LSQ 8-8-8 121.4 16.75 15.43 15.24 75.28
LAQ 8-8-8 121.4 16.91 15.87 15.88 76.02

QuantGPT 8-8-8 121.4 15.31 14.90 14.58 76.12
PACT 4-4-8 62.4 19.23 20.17 20.15 25.13
LSQ 4-4-8 62.4 78.99 79.76 75.12 45.10
LAQ 4-4-8 62.4 17.12 16.55 16.91 71.71

QuantGPT 4-4-8 62.4 15.55 14.95 15.31 76.57
PACT 2-2-8 33.0 173.02 189.13 171.03 5.52
LSQ 2-2-8 33.0 847.54 544.98 1470.86 5.54
LAQ 2-2-8 33.0 19.15 18.25 18.97 71.36

QuantGPT 2-2-8 33.0 17.30 16.12 16.98 74.78

Table 1: Results of language modeling on the test set of WikiText2, PTB and WikiText103 datasets, and next
utterance prediction on the validation set of Persona-Chat dataset, with quantized GPT-2. “#Bits (W-E-A)” represents
the bit-width for weights of Transformer layers, word embedding, and activations.

For language modeling, we experiment on Wiki-
Text2 (Merity et al., 2016), Penn Treebank (PTB)
(Mikolov and Zweig, 2012) and WikiText103 (Mer-
ity et al., 2016). We use perplexity (PPL) to evalu-
ate the performance for language modeling.

Comparison with the Full-precision Model.
From Table 1, the performance of the proposed
method with 8-bit weight is comparable to the full-
precision counterpart on PTB and WikiText103,
while drops slightly on WikiText2. A slightly more
severe performance drop is observed as the bit-
width decreases from 8 to 4, with a drop of around 1
PPL point on WikiText2 and WikiText103, and less
than 0.1 PPL point on PTB. When the bit-width of
weight further goes down to 2, our method has an
average of 2 PPL points drop, but achieves 14.4×
model size reduction.

Comparison with Other Quantization Methods.
From Table 1, our method outperforms PACT, LSQ
and LAQ for all bit-widths and tasks. As the bit-
width decreases from 8 to 4, the PPL of LSQ
greatly increases, with the average PPL of LSQ
increasing by over 5 times. As the bit-width fur-
ther decreases to 2, both LSQ and PACT fail on all
datasets, despite their good performance on under-
standing tasks on BERT (Bai et al., 2021). We con-
jecture it is because though both PACT and LSQ
have learnable parameters, the accumulated quanti-
zation error of generative PLMs makes the updates
of these parameters by gradient descent less sta-
ble. On the other hand, the proposed module-wise
dynamic scaling alleviates the problem.

Comparison with Other Compression Methods.
In Table 2, we compare our quantization method

Method
Size

(MB)(↓)
WikiText2

PPL(↓)
PTB

PPL(↓)
WikiText103

PPL(↓)
full-prec. 474.9 (1.0x) 14.4 14.6 13.9
KnGPT2 332.0 (1.4x) - - 20.5

DistilGPT2 329.6 (1.4x) - - 21.1
LightPAFF 268.0 (1.8x) 18.8 22.8 16.4
Ours(8-8-8) 121.4 (3.9x) 15.3 14.9 14.6
Ours(4-4-8) 62.4 (7.6x) 15.6 15.0 15.3
Ours(2-2-8) 33.0 (14.4x) 17.3 16.1 17.0

Table 2: Comparison between our proposed quatization
method and other compression methods on GPT-2.

against recent GPT-2 compression methods, includ-
ing tensor decomposition method KnGPT2 (Edalati
et al., 2021), as well as distillation methods Distil-
GPT2 and LightPAFF (Song et al., 2020). From
the comparison, our method outperforms the others
in terms of model size and performance, even when
weights are compressed to only 2 bits.

4.3 Next Utterance Prediction

The task of next utterance prediction predicts the
next utterance given the dialogue context. It tests
the language understanding ability of generative
models. For this task, we use a large-scale dialogue
dataset, Persona-Chat (Zhang et al., 2018).

From Table 1, all quantization methods incur
a clear performance drop compared to the full-
precision baseline, even in the 8-bit setting. As
the quantization becomes more aggressive, i.e., the
bit-width gets smaller, the performance of PACT
and LAQ decrease more significantly than ours. In
particular, LSQ diverges for 2-bit weight and its ac-
curacy is only 5%, which is no better than a random
guess as there are 20 classes.
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4.4 Abstractive Summarization

Abstractive summarization aims at generating a
terse summary that captures the main ideas of the
source article. We experiment on XSum (Narayan
et al., 2018), whose ground-truth summarizations
are highly abstractive and are challenging for many
extractive strategies. ROUGE 1, 2, L are used to
evaluate the performance of this task.

Method
#Bits

(W-E-A)
Size

(MB)(↓) XSum

Metric R1 (↑) R2 (↑) RL (↑)
- full-prec. 532.0 40.75 18.10 33.05

PACT 8-8-8 138.1 39.16 16.60 31.60
LSQ 8-8-8 138.1 39.09 16.72 31.56
LAQ 8-8-8 138.1 39.10 16.74 31.65

QuantBART 8-8-8 138.1 40.25 17.78 32.70
PACT 4-4-8 72.4 32.68 11.52 26.03
LSQ 4-4-8 72.4 38.94 16.48 31.46
LAQ 4-4-8 72.4 39.03 16.68 31.63

QuantBART 4-4-8 72.4 40.24 17.71 32.69
PACT 2-2-8 39.6 7.76 1.30 6.96
LSQ 2-2-8 39.6 37.09 14.88 29.76
LAQ 2-2-8 39.6 37.48 15.27 30.13

QuantBART 2-2-8 39.6 39.15 16.72 31.72

Table 3: Results of abstractive summarization on the
test set of the XSum dataset, with quantized BART.

Table 3 shows the results of the abstractive sum-
marization. As can be seen, our method constantly
outperforms other methods again with a clear mar-
gin. Example generated summarizations of differ-
ent methods in Appendix C.2 show that the sum-
maries generated by QuantBART are logical and
terse, while those from PACT have repeated texts.

5 Discussion

5.1 Ablation on Contrastive Learning

5.1.1 Choices of Negative Sampling
As shown in Figure 6, we ablate on how to choose
negative samples in contrastive learning. Specif-
ically, we compare our method with variants of
token-level contrastive learning, which select neg-
ative samples of each token from (a) representa-
tions of other tokens in both the full-precision and
quantized networks (fp+quan.); (b) representations
of other tokens in the quantized network (quan.
only); and (c) the whole vocabulary randomly for
each training iteration (global). Besides, we com-
pare with (d) sequence-level contrastive learning
by pulling together representations of the same se-
quence, and pushing away representations of differ-

(a) fp+quan. (b) quan. only.

(c) global. (d) in-batch.

Figure 6: Four variants of negative sampling.

-
Sampling
method

WikiText2 PTB WikiText103

- QuantGPT 17.30 16.12 16.98

Tok-level
fp+quan. 17.38 16.51 17.13

quan. only 17.35 16.54 17.15
global 17.71 16.63 17.55

Seq-level
in-batch (bz=32) 17.62 19.23 18.97
in-batch (bz=16) 17.48 17.11 18.16

Table 4: Ablation study on negative sampling for 2-bit
weight, “bz” denotes for the batch size. “Tok” and “Seq”
are abbreviation for token and sequence, respectively.

ent ones from the teacher network (in-batch). Rep-
resentation of a sequence is defined as the mean of
representations of all tokens in the sequence.

From Table 4, “fp+quan.” and “quan. only”
performs worse than QuantGPT, which uses full-
precision representations of other tokens as nega-
tive samples. This indicates that noisy representa-
tions of tokens from the not-fully-trained quantized
network may not be sufficient. “global” performs
even worse, which we conjecture is because, for
one token, negative tokens chosen from the same
sequence are contextually related to it and more
informative than random tokens. “in-batch” per-
forms worse than all token-level variants, which
may be because generative tasks make predictions
in a token-wise manner and rely heavily in finer-
grained token-wise representations. Interestingly,
contrary to in-batch negative sampling in computer
vision (Chen et al., 2020), we find that reducing the
number of negative samples by reducing the batch
size from 32 to 16 slightly improves performance.

5.1.2 Number of Negative Samples
In Figure 7, we plot the PPL of 2-bit QuantGPT on
the PTB dataset, with varying number of negative
samples. We plot the mean results with standard
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Figure 7: Effect of the num-
ber of negative samples.

Figure 8: Scaling factors
in the 2-bit QuantGPT.

Training loss
Training time
(sec/iter) (↓)

Memory
(MB) (↓) PPL (↓)

Ldist 0.61 14700 16.93
Ldist + λLcont 0.67 14839 16.12

Table 5: Efficiency study of the token-level contrastive
learning. The results are reported on the PTB dataset
on 2-bit GPT-2. “sec/iter” means the needed time in
seconds per iteration. Memory denotes the GPU con-
sumption per device.

deviations from 5 independent runs. As can be seen,
the performance improves and converges gradually
as the number of negative samples increases.

Figure 7 also shows that using the moving-
average representations (qsti in Eq. (3)) of nega-
tive samples in the memory bank has better perfor-
mance than using the immediate representations
(hsti in Eq. (3)), because of a smoother and more
consistent representation of tokens.

5.1.3 Training Cost of the Contrastive Loss
In Table 5, we report the training speed and mem-
ory consumption of training the GPT-2 model on
the PTB dataset with and without the proposed
token-level contrastive loss. Batch size is set as
4 per device, which can be increased by using
GPUs with larger memory or reducing the sequence
length of samples. As can be seen, with the pro-
posed token-level contrastive loss, the performance
clearly improves with only slightly slower training
speed and more memory consumption.

5.1.4 Representations for the Contrastive Loss
In Table 6, we compare the different representa-
tions to perform the contrastive loss. The “decoder-
last”( resp. “decoder-first”) denotes performing the
proposed token-level contrastive loss on the hid-
den states from the last decoder layer (resp. first
decoder layer) followed by a linear transformation.

From Table 6, “decoder-last” performs better
than “decoder-first”. A possible reason is that the
hidden states of the last decoder blocks contain
rich information from all previous layers (Xiong

et al., 2020). Since the experiments of abstractive
summarization are conducted on BART, which has
both encoder and decoder layers, we also study the
contrastive loss on the “encoder-last” and “encoder-
first”. In the ablation on the encoder, the contrastive
loss Lcont are computed on the source input (arti-
cles), instead of target input (summaries). From
Table 6, “decoder-last” also has better ROUGE 1,
2, L values than other counterparts.

5.2 Ablation on Dynamic Scaling

Figure 8 shows the learned scaling γ of different
modules in the 2-bit GPT-2 model. As can be seen,
the scalings of different modules vary a lot, verify-
ing the need for module-wise dynamic scaling.

In addition, we investigate the effect of the pro-
posed dynamic scaling and the new estimation of
the gradient in Eq. (7) with two variants: 1) Ldist
only which removes the token-level contrastive
learning; and 2) Ours with PACT which removes
the contrastive learning, and estimates the gradi-
ent with PACT which only considers the weights
whose absolute values are larger than the clipping
factor α. As shown in Table 7, the performance
gets worse without contrastive learning to learn
the distinguishable representations of tokens. The
performance drops significantly when using PACT
to estimate the gradient of the proposed scaling,
especially for the WikiText103 dataset, verifying
the efficacy of the new gradient estimation.

6 Related Work

Compression of Generative Pre-trained Lan-
guage Models. Some early explorations com-
press the generative pre-trained language models.
KnGPT2 (Edalati et al., 2021) applies the Kro-
necker decomposition to compress the GPT. Dis-
tilGPT2 2 distills a 12-layer GPT-2 to a 6-layer
one, which is twice as fast during inference. Light-
PAFF (Song et al., 2020) proposes a distillation
approach that the training loss is a combination of a
maximum likelihood loss of the student model, and
the KL divergence between the output of teacher
and student models. SpAtten (Wang et al., 2021)
proposes a sparse model with algorithm and archi-
tecture co-design, which removes uninformative
tokens and attention heads. Compared with these
methods, we not only study the difficulties of com-
pression from the properties of generative tasks,

2https://transformer.huggingface.co/
model/distil-gpt2
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- WikiText2 PTB WikiText103 Persona-Chat XSum

Metric PPL (↓) PPL (↓) PPL (↓) Acc(%) (↑) R1 (↑) R2 (↑) RL (↑)
decoder-last 17.30 16.12 16.98 74.78 39.15 16.72 31.72
decoder-first 18.02 16.61 17.25 74.75 39.11 16.70 31.62
encoder-last - - - - 38.91 16.72 31.67
encoder-first - - - - 38.87 16.70 31.56

Table 6: Representations for the contrastive loss Lcont in 2-bit setting. The “decoder-last” means the contrastive
loss is computed on the hidden states from the last Transformer layer of the decoder after a linear transform. The
naming format works for other variants.

Method WikiText2 PTB WikiText103

QuantGPT 17.30 16.12 16.98
Ldist only 17.85 16.93 17.78

Ours with PACT 20.03 17.78 25.54

Table 7: Ablation study on the learning of the clipping
factor with 2-bit GPT-2 on the language modeling task.

but also study both decoder and encoder-decoder
generative models.

Quantization of Pre-trained Language Models.
Quantization compresses a model by representing
the 32-bit floating-point parameter with a low-bit
representation, and has been widely used in vari-
ous domains as it does not require designing a new
model architecture. There have been many attempts
to quantize task-specific BERT models (Zafrir et al.,
2019; Shen et al., 2020; Zadeh et al., 2020) with
only negligible performance drop on natural lan-
guage understanding tasks. Recent works (Zhang
et al., 2020; Bai et al., 2021) even push the weight
bit-width down to as low as 1-bit. Despite the
success of these approaches for BERT models, at-
tempts to quantize generative PLMs are scarce, and
the underlying difficulty remains unclear.

Contrastive Learning. Contrastive learning
aims at pushing the representations of similar sam-
ples together while pulling those of dissimilar ones
apart. and is widely used for large-scale self-
supervised learning in various domains (Chen et al.,
2020; Sun et al., 2020a; Baevski et al., 2020; Huang
et al., 2022), and multi-modal learning (Radford
et al., 2021; Jia et al., 2021). SimCLR (Chen et al.,
2020) directly uses other in-batch samples as neg-
atives, and sufficient large batch size is required
to work well. MoCo (He et al., 2020) maintains a
large number of negative samples in a queue and
uses a moving average key encoder to improve
consistency. Contrastive learning without negative
samples is also proposed in BYOL (Grill et al.,

2020) and SimSiam (Chen and He, 2021). Con-
trastive representation distillation (Tian et al., 2019)
distills the knowledge from the teacher network to
the student network by maximizing the mutual in-
formation between them.

The closest work with our token-level contrastive
distillation is Wav2vec 2.0 (Baevski et al., 2020),
which use in-utterance representations at different
positions as negatives in speech learning. Besides
the difference in the modality and tasks, our method
also differs from theirs in (1) Model: We quantize
the model parameters and activations while they
do not; (2) Representation: For each sample, we
use the output of the full-precision and the quan-
tized networks as its two views, while they use the
quantized and the contextualized representation.
(3) Loss: We calculate loss over all tokens in an
auto-regressive manner, while they only calculate
over the masked tokens non-autoregressively.

7 Conclusion

This paper studies low-bit quantization of genera-
tive PLMs. We find that the difficulty of quantizing
generative PLMs lies in homogeneous word em-
bedding and varied distribution of weights. To
alleviate the two problems, we propose token-level
contrastive learning to learn more distinguishable
token emebeddings, as well as a module-dependent
dynamic scaling for more accurate quantization.
Extensive experiments on language modeling, next
utterance prediction and abstractive summarization
demonstrate the efficacy of our proposed method.
We hope our work sheds a light on the compression
of generative PLMs in future exploration.

Acknowledgements

This work is supported in part by the General Re-
search Fund (GRF) project 17206020, and in part
by ACCESS, AI Chip Center for Emerging Smart
Systems, Hong Kong SAR.

4829



References
Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,

and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
In Advances in Neural Information Processing Sys-
tems, volume 33.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing
Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. 2021. Binarybert: Pushing the limit of bert
quantization. In Annual Meeting of the Association
for Computational Linguistics.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
Technical Report arXiv:1308.3432.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Advances in Neural Information Process-
ing Systems.

Cong Chen, Chaofan Tao, and Ngai Wong. 2021. Litegt:
Efficient and lightweight graph transformers. In Pro-
ceedings of the 30th ACM International Conference
on Information & Knowledge Management, pages
161–170.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607.

Xinlei Chen and Kaiming He. 2021. Exploring simple
siamese representation learning. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 15750–15758.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and
Kailash Gopalakrishnan. 2018. Pact: Parameterized
clipping activation for quantized neural networks.
Preprint arXiv:1805.06085.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. 2015. Binaryconnect: Training deep neural
networks with binary weights during propagations.
In Advances in neural information processing sys-
tems, pages 3123–3131.

Ali Edalati, Marzieh Tahaei, Ahmad Rashid, Vahid Par-
tovi Nia, James J Clark, and Mehdi Rezagholizadeh.
2021. Kronecker decomposition for gpt compres-
sion. In Advances in Neural Information Processing
Systems.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S.
Modha. 2020. Learned step size quantization. In
International Conference on Learning Representa-
tions.

Jean-Bastien Grill, Florian Strub, Florent Altché,
Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires,
Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar,
et al. 2020. Bootstrap your own latent: A new ap-
proach to self-supervised learning. In Neural Infor-
mation Processing Systems.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie,
and Ross Girshick. 2020. Momentum contrast
for unsupervised visual representation learning. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9729–9738.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). Technical Report
arXiv:1606.08415.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. Tech-
nical Report arXiv:1503.02531.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. In Advances in Neural
Information Processing Systems, volume 33.

Lu Hou and James T. Kwok. 2018. Loss-aware weight
quantization of deep networks. In International Con-
ference on Learning Representations.

Lu Hou, Yao Quanming, and James T. Kwok. 2017.
Loss-aware binarization of deep networks. In Inter-
national Conference on Learning Representations.

Wenyong Huang, Zhenhe Zhang, Yu Ting Yeung, Xin
Jiang, and Qun Liu. 2022. Spiral: Self-supervised
perturbation-invariant representation learning for
speech pre-training. In International Conference on
Learning Representations.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc V Le, Yunhsuan Sung,
Zhen Li, and Tom Duerig. 2021. Scaling up vi-
sual and vision-language representation learning with
noisy text supervision. In International conference
on machine learning.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4163–4174.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Annual Meeting of the Association for
Computational Linguistics.

4830



Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Tomas Mikolov and Geoffrey Zweig. 2012. Context
dependent recurrent neural network language model.
In IEEE Spoken Language Technology Workshop,
pages 234–239. IEEE.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Conference on Empiri-
cal Methods in Natural Language Processing, pages
1797–1807.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In International Conference on Machine
Learning.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low pre-
cision quantization of bert. In AAAI Conference on
Artificial Intelligence.

Kaitao Song, Hao Sun, Xu Tan, Tao Qin, Jianfeng Lu,
Hongzhi Liu, and Tie-Yan Liu. 2020. Lightpaff: A
two-stage distillation framework for pre-training and
fine-tuning. Preprint arXiv:2004.12817.

Siqi Sun, Zhe Gan, Yuwei Fang, Yu Cheng, Shuohang
Wang, and Jingjing Liu. 2020a. Contrastive distil-
lation on intermediate representations for language
model compression. In Conference on Empirical
Methods in Natural Language Processing, pages 498–
508.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020b. Mobilebert:
a compact task-agnostic bert for resource-limited de-
vices. In Annual Meeting of the Association for Com-
putational Linguistics, pages 2158–2170.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2019.
Contrastive representation distillation. In Interna-
tional Conference on Learning Representations.

Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spat-
ten: Efficient sparse attention architecture with cas-
cade token and head pruning. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer
Architecture (HPCA), pages 97–110. IEEE.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. 2020. On layer
normalization in the transformer architecture. In In-
ternational Conference on Machine Learning, pages
10524–10533. PMLR.

Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad,
and Andreas Moshovos. 2020. Gobo: Quantizing
attention-based nlp models for low latency and en-
ergy efficient inference. In IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages
811–824. IEEE.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert.
Preprint arXiv:1910.06188.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you have
pets too? In Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2204–2213.

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao
Chen, Xin Jiang, and Qun Liu. 2020. Ternarybert:
Distillation-aware ultra-low bit bert. In Conference
on Empirical Methods in Natural Language Process-
ing.

4831



A Derivation of Gradient of Dynamic
Scaling

In this section, we provide the derivation of the
gradient of the proposed dynamic scaling γ. The
quantization in the forward process can be written
as

α =
‖w‖1
n

γ,

u = clip(w,−α,+α)/α,
wq = Q(u)α,

where Q(·) is an uniform quantization function as
described in Section 2.2. Based on the chain rule,
the gradient of scaling γ w.r.t. the training loss
function ` is:

∂`

∂γ
=

∂`

∂wq
[
∂wq

∂Q(u)

∂Q(u)

∂α

∂α

∂γ
+
∂wq

∂α

∂α

∂γ
]

=
∂`

∂wq
[α
∂Q(u)

∂α

‖w‖1
n

+Q(u)
‖w‖1
n

]

=
∂`

∂wq
[α
∂Q(u)

∂α
+Q(u)]

‖w‖1
n

.

(8)

We use straight through estimator (STE) to es-
timate the gradient of uniform quantizer Q(·), i.e.,
∀i, ∂Q(ui)

∂ui
= 1 . Thus the gradient ∂Q(u)

∂α can be
written as:

∂Q(u)

∂α
=
∂Q(u)

∂u

∂u

∂α
=


0,w ≤ −α

− w
α2 ,−α<w<α
0,w ≥ α

. (9)

By combining Eq. (8) and Eq. (9), we get

∂`

∂γ
=


∂`
∂wq

Q(u)‖w‖1n ,w ≤ −α
∂`
∂wq

[−w
α +Q(u)]‖w‖1n ,−α < w < α
∂`
∂wq

Q(u)‖w‖1n ,w ≥ α

where ∂`
∂γ considers both the weight inside and out-

side the clipping value, and proportional to the
weight magnitude ‖w‖1n .

B More Experimental Settings

B.1 Datasets
The train/val/test splits for different datasets are
shown on Table 8.

B.2 Model Architectures
GPT-2. The vocabulary size of GPT-2 is 50527.
We use GPT-2-small with 12 decoder layers and
hidden state dimension as 768, for experiments

Dataset Training Validation Test

WikiText2 36,717 3,760 4,358
PTB 42,068 3,370 3,761

WikiText103 1,801,350 3,760 4,358
Persona-Chat 8,939 1,000 968

XSum 204,045 11,332 11,334

Table 8: Data splits of different datasets.

in Sections 2.2, 4 and 5. GeLU (Hendrycks and
Gimpel, 2016) is used as the activation function. In
the experiments of Appendix C.1, we adopt GPT-
2-base with 24 decoder layers and hidden state
dimension as 1024, to evaluate the quantization
ability on larger models.

BART. The vocabulary size of BART is 50265.
We use BART-base with 6 encoder layers, 6 de-
coder layers and hidden state dimension as 768 for
experiments in Section 4. In the experiments of Ap-
pendix C.1, we adopt BART-large with 12 encoder
layers, 12 decoder layers and hidden state dimen-
sion 1024, to evaluate the quantization ability on
larger models.

B.3 Hyperparameters
Language Modeling. The sequence length is
512. The learning rate is initialized to 0.0005 (resp.
0.001) for the GPT-2 backbone parameters (resp.
clipping factor γ) and then linearly decays to 0. The
number of negative samples in each sequence is 64
for the PTB dataset, and 32 for the WikiText2 and
WikiText103. The temperature τ and momentum
coefficient m is 0.1 and 0.5 respectively. We train
with the AdamW optimizer (Loshchilov and Hut-
ter, 2017) with batch size 32. The training epochs
for WikiText2, PTB and WikiText103 are set as 80,
120, 8, respectively.

Next Utterance Prediction. The sequence length
is 512. The learning rate is initialized to 0.0005
(resp. 0.001) for the GPT-2 backbone parameters
(resp. clipping factor γ) and then linearly decays
to 0. The number of negative samples in each
sequence is 32. The temperature τ and momentum
coefficient m is 0.1 and 0.5, respectively. We train
with the AdamW optimizer with batch size 16, for
a total of 2 epochs.

Abstractive Summarization. We set the length
of the source sequence (articles) as 512, and pad the
target sequence (summaries) to maximum length.
We use beam search to generate summaries, with
beam size 6 and length penalty 1. The learning rate
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Method
#Bits

(W-E-A)
Size

(MB)(↓) WikiText2 PTB WikiText103
Size

(MB)(↓) XSum

Metric PPL (↓) PPL (↓) PPL (↓) R1 (↑) R2 (↑) RL (↑)
- full-prec. 1353.7 12.46 12.35 12.37 1550.0 45.25 22.11 37.07

PACT 8-8-8 342.5 12.86 13.95 13.90 394.8 43.55 20.57 35.55
Ours 8-8-8 342.5 12.53 12.40 12.68 394.8 44.34 21.41 36.32
PACT 4-4-8 174.0 16.10 14.19 18.07 202.2 19.45 3.53 15.58
Ours 4-4-8 174.0 13.34 12.41 14.12 202.2 44.18 21.31 36.25
PACT 2-2-8 89.7 98.74 68.55 86.60 106.0 8.53 0.93 7.25
Ours 2-2-8 89.7 14.53 13.22 14.52 106.0 42.38 19.75 34.57

Table 9: Ablation study on larger models. We report the results on 24-layer GPT-2 and 24-layer BART.

is initialized to 0.0002 (resp. 0.001) for the BART
backbone parameters (resp. clipping factor γ) and
then linearly decays to 0. The number of negative
samples is 32. The temperature τ and momentum
coefficient m is 0.1 and 0.5, respectively. We train
with the AdamW optimizer with batch size 128, for
a total of 8 epochs.

B.4 Description of the Compared Methods

PACT. PACT (Choi et al., 2018) learns a learn-
able clipping factor for each module by gradient
descent. To make the quantization more accurate,
we adopt a flexible variant of the original PACT,
with different positive and negative clipping fac-
tors [−αneg, αpos], where both αneg and αpos are
initialized as 2.5.

LSQ. LSQ (Esser et al., 2020) learns the step-size
of quantizer for each module by gradient descent.
We use the recommended initialization strategy of
the step size as (Esser et al., 2020).

LAQ. LAQ (Hou et al., 2017; Hou and Kwok,
2018) is a loss-aware quantization method that
views quantization as an optimization problem and
solve it via proximal Newton algorithm. We use
the approximate solver in (Hou and Kwok, 2018)
to compute the quantized weights before each for-
ward propagation.

For the self-implemented methods PACT, LSQ
and LAQ, we adopt the commonly-used distilla-
tion loss adopted in (Hinton et al., 2015; Jiao et al.,
2020). Note that these methods are only used for
weights and embeddings, while the activations of
these methods follow the same setting as our pro-
posed method in Section 2.1. We also tried us-
ing the original language modeling loss w.r.t. the
ground-truth labels, and distillation loss over the
the attention as (Jiao et al., 2020). However, these
two losses worsens the performance on all three

methods.

B.5 Frameworks of Double-head GPT-2 and
BART

Since we adopt double-head GPT-2 and BART for
next utterance prediction and abstractive summa-
rization, the frameworks for these tasks are slightly
modified from that on language modeling due to
the difference of tasks. In Figure 9 and 10, we il-
lustrate the framework for double-head GPT-2 and
BART, respectively. In the double-head GPT-2, we
also quantize the final linear layer in the output
head.

C More Experimental Results

C.1 Performance of Larger Models

In Table 9, we experiment with GPT-base and
BART-large, which both have 24 Transformer lay-
ers. For all bit-widths, the training of our method
converges successfully without gradient explod-
ing/vanishing problems. QuantGPT outperforms
PACT by a large margin in all tasks, especially for
2-bit weight. Our quantization method on larger
models also has better performance than that on
12-layer GPT-2 and 12-layer BART in Section 4.

C.2 Examples of Summarizations

In Table 10, we provide the example summariza-
tions on the XSum dataset. By comparing the ar-
ticles, references and generations, the generated
summaries by our quantized model are more log-
ical and terse than PACT, LSQ and LAQ, which
face problems of homogeneous word embeddings
to some extent as discussed in Section 2.2.

C.3 More Visualizations for the Token
Representations

In Figure 11, we provide the visualizations of token
representations on more samples. The observations
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Article: On Tuesday, a BBC Spotlight programme revealed that eight children had gone missing in Northern Ireland. Two
of the girls were Somali teenagers who disappeared in 2005 and 2012. The Health and Social Care Board has said new
guidelines are in place and add that no children have gone missing since 2014. Separated children are children outside
their country of origin and separated from their parents or legal guardian. The term can also include unaccompanied
asylum-seeking children and trafficked children. When they arrive in Northern Ireland they are taken into the care of the
local health trust. Eight children have gone missing since 2005 and they remain missing. The SDLP’s health spokesman
Mark H Durkan said he would be raising the issue at the Northern Ireland Assembly’s health committee and his party
colleague Alex Attwood would be raising it at the justice committee. "The number of children who cannot be accounted
for is something that needs urgent inquiry and investigation," he said. "There is a lot of very good work being done to
look after the welfare of unaccompanied young people, but clearly we now have some very big questions that need to be
answered." Ulster Unionist MLA Jo-Anne Dobson said it was "frankly appalling" to hear that eight children had gone
missing. "I have written to Health Minister Michelle O’Neill on this issue to seek further clarification and to demand
details of how the department, health trusts and the Health and Social Care Board have sought to address each of the cases
involved in the investigation," she added. The Green Party leader Steven Agnew also said it was extremely worrying that
children can disappear without a trace. Paula Bradshaw from the Alliance Party added that the health trusts and police
"need to work closer over the handling of these cases". In a statement, the Police Ombudsman for Northern Ireland said:
"Our director of investigations will be reviewing the contents of the programme to ascertain if there are any issues of
police conduct which may need further investigation." The Police Service of Northern Ireland has said that in the two
cases identified in the programme, investigations were robust and all information available at the time was followed. The
Health and Social Care Board has said that new guidelines are in place and stress that no children have gone missing since
2014. BBC Spotlight’s investigation is now available on BBC iPlayer.

Reference: An urgent inquiry is needed into separated children who have gone missing from care, the Social Democratic
and Labour Party has said.

PACT: TheTheAAATheTheTheAnAnAnTheThe an an an been been been jailed.

LSQ: The SDLP has called for an urgent inquiry into the welfare of unaccompanied children in Northern Ireland.

LAQ: The SDLP has called for "urgent inquiry and investigation" into the handling of unaccompanied children in Northern
Ireland.

Ours: The SDLP is calling for an urgent inquiry and investigation into the disappearance of unaccompanied young people.

Article: The dairies operation, which processes and distributes milk, is being sold to Germany’s Mueller for Â£80m. It
comes as profits at the UK’s largest dairy food company fell 95% to Â£900,000 in the six months to September. Dairy
Crest processes and delivers around 1.3 billion litres of milk a year for retailers and homes. Dairy Crest said in a statement
that the deal was in the best interests of consumers, customers and dairy farmers. The dairies business accounts for about
70% of the company’s revenues, which rose 1% to Â£682.1m during the six months. After the sale, which still needs
shareholder approval and could take several months, Dairy Crest will focus on its profitable cheese and spreads operations.
There are about 14,000 dairy farmers in the UK, producing 3.3 million litres a day. However, with milk prices having
fallen, there has been much debate about whether the economics of the industry are sustainable. Investors approved
of the Dairy Crest’s decision to get out of a loss-making sector, sending its shares 10% higher in morning trading on
Thursday. Muller said the deal would lead to lower costs and larger exports of dairy products made in the UK. Ronald
Kers, chief executive of Muller UK & Ireland, said: "We are concerned that the dynamics of the UK fresh milk market are
unsustainable for dairy processors in the mid to long term and this acquisition will allow us to reduce our costs, increase
our efficiencies and invest in the future." Under the deal, Mueller’s UK division - Muller Wiseman Dairies - will take over
factories at Foston, in Derbyshire, Chadwell Heath, in Essex, and Severnside, near Gloucester. The deal also includes the
Hanworth glass bottling site in Middlesex, where Dairy Crest is consulting with employees on the site’s future, and 72
depots. Muller bought Robert Wiseman in 2012.

Reference: Dairy Crest, maker of Cathedral City cheese and Country Life butter, has announced a big slump in profits
and the sale of its milk business.

PACT: More than than more more more than more than than than to be be be will will will be be are are are be be to the.

LSQ: Dairy Crest is to sell its Dairies business to a German company for an undisclosed sum.

LAQ: Dairy giant Dairy Crest is to sell its UK business to a German company for an undisclosed sum.

Ours: Dairy Crest, the world’s largest dairy producer, is to sell its UK operations to a German firm.

Table 10: Example summaries generated by 2-bit BART quantized with different methods.
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Figure 9: The training workflow of the proposed method for double-head GPT-2 quantization in the task of next
utterance prediction. The model is trained to find the correct candidate. The full-precision teacher network and
distillation loss Ldist are omitted for simplicity.
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Figure 10: The training workflow of the proposed method for BART quantization in the task of abstractive
summarization. The full-precision teacher network and distillation loss Ldist are omitted for simplicity.

are similar to those in Section 2.2.
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(a) "there is no asbestos in our products now"

(b) "cray computer has applied to trade on nasdaq"

(c) "no price for the new shares has been set"

(d) "the centers normally are closed through the weekend"

Figure 11: More Visualizations: matrices representing the cosine similarities between representations of all pairs of
tokens in a sentence, between the full-precision model and 2-bit quantized models trained on PTB dataset. Token
representations at the last decoder layer of GPT-2 are used.
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