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Abstract

Modelling prosody variation is critical for syn-
thesizing natural and expressive speech in end-
to-end text-to-speech (TTS) systems. In this pa-
per, a cross-utterance conditional VAE (CUC-
VAE) is proposed to estimate a posterior proba-
bility distribution of the latent prosody features
for each phoneme by conditioning on acoustic
features, speaker information, and text features
obtained from both past and future sentences.
At inference time, instead of the standard Gaus-
sian distribution used by VAE, CUC-VAE al-
lows sampling from an utterance-specific prior
distribution conditioned on cross-utterance in-
formation, which allows the prosody features
generated by the TTS system to be related to
the context and is more similar to how hu-
mans naturally produce prosody. The perfor-
mance of CUC-VAE is evaluated via a quali-
tative listening test for naturalness, intelligibil-
ity and quantitative measurements, including
word error rates and the standard deviation of
prosody attributes. Experimental results on LJ-
Speech and LibriTTS data show that the pro-
posed CUC-VAE TTS system improves natural-
ness and prosody diversity with clear margins.

1 Introduction

Recently, abundant research have been performed
on modelling variations other than the input text
in synthesized speech such as background noise,
speaker information, and prosody, as those directly
influence the naturalness and expressiveness of the
generated audio. Prosody, as the focus of this pa-
per, collectively refers to the stress, intonation, and
rhythm in speech, and has been an increasingly
popular research aspect in end-to-end TTS systems
(van den Oord et al., 2016; Wang et al., 2017; Stan-
ton et al., 2018; Elias et al., 2021; Chen et al., 2021).
Some previous work captured prosody features ex-
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plicitly using either style tokens or variational au-
toencoders (VAEs) (Kingma and Welling, 2014;
Hsu et al., 2019a) which encapsulate prosody in-
formation into latent representations. Recent work
achieved fine-grained prosody modelling and con-
trol by extracting prosody features at phoneme
or word-level (Lee and Kim, 2019; Sun et al.,
2020a,b). However, the VAE-based TTS system
lacks control over the latent space where the sam-
pling is performed from a standard Gaussian prior
during inference. Therefore, recent research (Dah-
mani et al., 2019; Karanasou et al., 2021) employed
a conditional VAE (CVAE) (Sohn et al., 2015) to
synthesize speech from a conditional prior. Mean-
while, pre-trained language model (LM) such as
bidirectional encoder representation for Transform-
ers (BERT) (Devlin et al., 2019) has also been ap-
plied to TTS systems (Hayashi et al., 2019; Kenter
et al., 2020; Jia et al., 2021; Futamata et al., 2021;
Cong et al., 2021) to estimate prosody attributes im-
plicitly from pre-trained text representations within
the utterance or the segment. Efforts have been de-
voted to include cross-utterance information in the
input features to improve the prosody modelling of
auto-regressive TTS (Xu et al., 2021).

To generate more expressive prosody, while
maintaining high fidelity in synthesized speech, a
cross-utterance conditional VAE (CUC-VAE) com-
ponent is proposed, which is integrated into and
jointly optimised with FastSpeech 2 (Ren et al.,
2021), a commonly used non-autoregressive end-to-
end TTS system. Specifically, the CUC-VAE TTS
system consists of cross-utterance embedding (CU-
embedding) and cross-utterance enhanced CVAE
(CU-enhanced CVAE). The CU-embedding takes
BERT sentence embeddings from surrounding ut-
terances as inputs and generates phoneme-level CU-
embedding using a multi-head attention (Vaswani
et al., 2017) layer where attention weights are de-
rived from the encoder output of each phoneme as
well as the speaker information. The CU-enhanced
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CVAE is proposed to improve prosody variation
and to address the inconsistency between the stan-
dard Gaussian prior, which the VAE-based TTS
system is sampled from, and the true prior of
speech. Specifically, the CU-enhanced CVAE is
a fine-grained VAE that estimates the posterior of
latent prosody features for each phoneme based on
acoustic features, cross-utterance embedding, and
speaker information. It improves the encoder of
standard VAE with an utterance-specific prior. To
match the inference with training, the utterance-
specific prior, jointly optimised with the system, is
conditioned on the output of CU-embedding. La-
tent prosody features are sampled from the derived
utterance-specific prior instead of a standard Gaus-
sian prior during inference.

The proposed CUC-VAE TTS system was eval-
uated on the LJ-Speech read English data and the
LibriTTS English audiobook data. In addition to
the sample naturalness measured via subjective lis-
tening tests, the intelligibility is measured using
word error rate (WER) from an automatic speech
recognition (ASR) system, and diversity in prosody
was measured by calculating standard deviations of
prosody attributes among all generated audio sam-
ples of an utterance. Experimental results showed
that the system with CUC-VAE achieved a much
better prosody diversity while improving both the
naturalness and intelligibility compared to the stan-
dard FastSpeech 2 baseline and two variants.

The rest of this paper is organised as follows.
Section 2 introduces the background and related
work. Section 3 illustrates the proposed CUC-VAE
TTS system. Experimental setup and results are
shown in Section 4 and Section 5, with conclusions
in Section 6.

2 Background

Non-Autoregressive TTS. Promising progress has
taken place in non-autoregressive TTS systems to
synthesize audio with high efficiency and high fi-
delity thanks to the advancement in deep learn-
ing. A non-autoregressive TTS system maps the
input text sequence into an acoustic feature or
waveform sequence without using the autoregres-
sive decomposition of output probabilities. Fast-
Speech (Ren et al., 2019) and ParaNet (Peng et al.,
2019) requires distillation from an autoregressive
model, while more recent non-autoregressive TTS
systems, including FastPitch (La’ncucki, 2021),
AlignTTS (Zeng et al., 2020) and FastSpeech

2 (Ren et al., 2021), do not rely on any form of
knowledge distillation from a pre-trained TTS sys-
tem. In this paper, the proposed CUC-VAE TTS
system is based on FastSpeech 2. FastSpeech 2
replaces the knowledge distillation for the length
regulator in FastSpeech with mean-squared error
training based on duration labels, which are ob-
tained from frame-to-phoneme alignment to sim-
plify the training process. Additionally, FastSpeech
2 predicts pitch and energy from the encoder output,
which is also supervised with pitch contours and
L2-norm of signal amplitudes as labels respectively.
The pitch and energy prediction injects additional
prosody information, which improves the natural-
ness and expressiveness in the synthesized speech.

Pre-trained Representation in TTS. It is be-
lieved that prosody can also be inferred from lan-
guage information in both current and surrounding
utterances (Shen et al., 2018; Fang et al., 2019;
Xu et al., 2021; Zhou et al., 2021). Such informa-
tion is often entailed in vector representations from
a pre-trained LM, such as BERT (Devlin et al.,
2019). Some existing work incorporated BERT
embeddings at word or subword-level into autore-
gressive TTS models (Shen et al., 2018; Fang et al.,
2019). More recent work (Xu et al., 2021) used the
chunked and paired sentence patterns from BERT.
Besides, a relational gated graph network with pre-
trained BERT embeddings as node inputs (Zhou
et al., 2021) was used to extract word-level seman-
tic representations, thus enhancing expressiveness.

VAEs in TTS. VAEs have been widely adopted
in TTS systems to explicit model prosody varia-
tion. The training objective of VAE is to max-
imise pθ(x), the data likelihood parameterised by
θ, which can be regarded as the marginalisation
w.r.t. the latent vector z as shown in Eq. (1).

pθ(x) =

∫
pθ(x | z)p(z)dz. (1)

To make this calculation tractable, the marginalisa-
tion is approximated using evidence lower bound
(ELBO):

LELBO(x) = Eqϕ(z|x)[log pθ(x|z)]
− βDKL (qϕ(z|x)∥p(z)) , (2)

where qϕ(z|x) is the posterior distribution of
the latent vector parameterized by ϕ, β is a hy-
perparameter, and DKL(·) is the Kullback-Leibler
divergence. The first term measures the expected
reconstruction performance of the data from the
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Transformer

Figure 1: The CUC-VAE TTS system architecture consists of the cross-utterance embedding (CU-embedding)
and the cross-utterance enhanced (CU-enhanced) CVAE, which are integrated into and jointly optimised with the
FastSpeech 2 system.

latent vector and is approximated by Monte Carlo
sampling of z according to the posterior distribu-
tion. The reparameterization trick is applied to
make the sampling differentiable. The second term
encourages the posterior distribution to approach
the prior distribution which is sampled from during
inference, and β weighs this term’s contribution.

A large body of previous work on VAE-based
TTS used VAEs to capture and disentangle data
variations in different aspects in the latent space.
Works by Akuzawa et al. (2018) leveraged VAE to
model the speaking style of an utterance. Mean-
while, Hsu et al. (2019a,b) explored the disentan-
glement between prosody variation and speaker
information using VAE together with adversarial
training. Recently, fine-grained VAE (Sun et al.,
2020a,b) was adopted to model prosody in the la-
tent space for each phoneme or word. Moreover,
vector-quantised VAE was also applied to discrete
duration modelling by Yasuda et al. (2021).

CVAE is a variant of VAE when the data gener-
ation is conditioned on some other information y.
In CVAE, both prior and posterior distributions are
conditioned on additional variables, and the data
likelihood calculation is modified as shown below:

pθ(x | y) =
∫

pθ(x | z,y)pϕ(z | y)dz. (3)

Similar to VAE, this intractable calculation can be

converted to the ELBO form as

LELBO(x | y) = Eqϕ(z|x,y)[log pθ(x | z,y)]
− βDKL (qϕ(z | x,y)∥p(z | y)) .

To model the conditional prior, a density network
is usually used to predict the mean and variance
based on the conditional input y.

3 CUC-VAE TTS System

The proposed CUC-VAE TTS system, which is
adapted from FastSpeech 2 as shown in Fig. 1,
aims to synthesize speech with more expressive
prosody. Fig. 1 describes the model architecture,
which has two components: CU-embedding and
CU-enhanced CVAE. The CUC-VAE TTS system
takes as input [ui−L, · · · ,ui, · · · ,ui+L], si and
xi, where [ui−L, · · · ,ui, · · · ,ui+L] is the cross-
utterance set that includes the current utterance ui

and the L utterances before and after ui. Each u
represents the text content of an utterance. Note
that si is the speaker ID, and xi is the reference
mel-spectrogram of the current utterance ui. In
this section, the two main components of the CUC-
VAE TTS system will be introduced in detail.

3.1 Cross-Utterance Embedding

The CU-embedding encodes not only the phoneme
sequence and speaker information but also cross-
utterance information into a sequence of mixture
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encodings in place of a standard embedding. As
shown in Fig. 1, the first L utterances and the
last L utterances surrounding the current one, ui,
are used as text input in addition to the current
utterance and speaker information. Same as the
standard embedding, an extra G2P conversion is
first performed to convert the current utterance into
phonemes Pi = [p1, p2, · · · , pT ], where T is the
number of phonemes. Then, a Transformer encoder
is used to encode the phoneme sequence into a se-
quence of phoneme encodings. Besides, speaker
information is encoded into a speaker embedding
si which is directly added to each phoneme en-
coding to form the mixture encodings Fi of the
phoneme sequence.

Fi = [fi(p1),fi(p2), · · · ,fi(pT )], (4)

where f represents resultant vector from the addi-
tion of each phoneme encoding and speaker em-
bedding.

To supplement the text information from the
current utterance to generate natural and expres-
sive audio, cross-utterance BERT embeddings
together with a multi-head attention layer are
used to capture contextual information. To be-
gin with, 2L cross-utterance pairs, denoted as Ci,
are derived from 2L + 1 neighboring utterances
[ui−L, · · · ,ui, · · · ,ui+L] as:

Ci = [c(ui−L,ui−L+1), · · · , c(ui−1,ui), · · · , c(ui+L−1,ui+L)],

(5)

where c(uk, uk+1) = {[CLS],uk, [SEP],uk+1},
which adds a special token [CLS] at the beginning
of each pair and inserts another special token [SEP]
at the boundary of each sentence to keep track of
BERT. Then, the 2L cross-utterance pairs are fed
to the BERT to capture cross-utterance information,
which yields 2L BERT embedding vectors by tak-
ing the output vector at the position of the [CLS]
token and projecting each to a 768-dim vector for
each cross-utterance pair, as shown below:

Bi = [b−L, b−L+1, · · · , bL−1],

where each vector bk in Bi represents the BERT
embedding of the cross-utterance pair c(uk,uk+1).
Next, to extract CU-embedding vectors for each
phoneme specifically, a multi-head attention layer
is added to combine the 2L BERT embeddings into
one vector as shown in Eq. (6).

Gi = MHA(FiW
Q,BiW

K,BiW
V), (6)

where MHA(·) denotes the multi-head attention
layer, W Q, W K and W V are linear projection
matrices, and Fi denotes the sequence of mixture
encodings for the current utterance which acts as
the query in the attention mechanism. For simplic-
ity, we denote Eq. (6) as Gi = [g1, g2, · · · , gT ]
from the multi-head attention being of length T
and each of them is then concatenated with its cor-
responding mixture encoding. The concatenated
vectors are projected by another linear layer to
form the final output Hi of the CU-embedding,
Hi = [h1,h2, · · · ,hT ] of the current utterance,
as shown in Eq. (7).

ht = [gt,f(pt)]W , (7)

where W is a linear projection matrix. Moreover,
an additional duration predictor takes Hi as inputs
and predicts the duration Di of each phoneme.

3.2 Cross-Utterance Enhanced CVAE
In addition to the CU-embedding, a CU-enhanced
CVAE is proposed to conquer the lack of prosody
variation of FastSpeech 2 and the inconsistency
between the standard Gaussian prior distribution
sampled by the VAE based TTS system and the
true prior distribution of speech. Specifically, the
CU-enhanced CVAE consists of an encoder mod-
ule and a decoder module, as shown in Fig. 1. The
utterance-specific prior in the encoder aims to learn
the prior distribution zp from the CU-embedding
output H and predicts duration D. For conve-
nience, the subscript i is omitted in this subsection.
Furthermore, the posterior module in the encoder
takes as input reference mel-spectrogram x, then
model the approximate posterior z conditioned on
utterance-specific conditional prior zp. Sampling
is done from the estimated prior by the utterance-
specific prior module and is reparameterized as:

z = µ⊕ σ ⊗ zp, (8)

where µ and σ are estimated from conditional
posterior module to approximate posterior distri-
bution N (µ,σ), zp is sampled from the learned
utterance-specific prior, and ⊕,⊗ are elementwise
addition and multiplication operation. Furthermore,
the utterance-specific conditional prior module is
conducted to learn utterance-specific prior with
CU-embedding output H and D. The reparame-
terization is as follows:

zp = µp ⊕ σp ⊗ ϵ, (9)
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where µp,σp are learned from the utterance-
specific prior module, and ϵ is sampled from the
standard Gaussian N (0, 1). By substituting Eq. (9)
into Eq. (8), the following equation can be derived
for the total sampling process:

z = µ⊕ σ ⊗ µp ⊕ σ ⊗ σp ⊗ ϵ. (10)

During inference, sampling is done from the
learned utterance-specific conditional prior distri-
bution N (µp,σp) from CU-embedding instead of
a standard Gaussian distribution N (0, 1). For sim-
plicity, we can formulate the data likelihood calcu-
lation as follows, where the intermediate variable
utterance-specific prior zp from D,H to obtain z
is omitted:

pθ(x | H,D) =
∫
pθ(x | z,H,D)pϕ(z | H,D)dz,

(11)
In Eq. (11), ϕ, θ are the encoder and decoder mod-
ule parameters of the CUC-VAE TTS system.

Moreover, the decoder in CU-enhanced CVAE
is adapted from FastSpeech 2. An additional pro-
jection layer is firstly added to project z to a high
dimensional space so that z could be added to H .
Next, a length regulator expands the length of in-
put according to the predicted duration D of each
phoneme. The rest of Decoder is same as the De-
coder module in FastSpeech 2 to convert the hid-
den sequence into an mel-spectrogram sequence
via parallelized calculation.

Therefore, the ELBO objective of the CUC-VAE
can be expressed as,

L(x | H,D) = Eqϕ(z|D,H)[log pθ(x | z,D,H)]

− β1

T∑
n=1

DKL

(
qϕ1

(
zn | zn

p ,x
)
∥qϕ2

(
zn
p | D,H

))
− β2

T∑
n=1

DKL

(
qϕ2

(
zn
p | D,H

)
∥p(zn

p )
)
,

(12)
where ϕ1, ϕ2 are two parts of CUC-VAE encoder ϕ
to obtain z from zp,x and zp from D,H respec-
tively, β1, β2 are two balance constants, p(zn

p ) is
chosen to be standard Gaussian N (0, 1). Mean-
while, zn and zn

p correspond to the latent represen-
tation for the n-th phoneme, and T is the length of
the phoneme sequence.

4 Experimental Setup

4.1 Dataset

To evaluate the proposed CUC-VAE TTS system,
a series of experiments were conducted on a single

speaker dataset and a multi-speaker dataset. For the
single speaker setting, the LJ-Speech read English
data (Ito and Johnson, 2017) was used which con-
sists of 13,100 audio clips with a total duration of
approximately 24 hours. A female native English
speaker read all the audio clips, and the scripts were
selected from 7 non-fiction books. For the multi-
speaker setting, the train-clean-100 and train-clean-
360 subsets of the LibriTTS English audiobook
data (Zen et al., 2019) were used. These subsets
used here consist of 1151 speakers (553 female
speakers and 598 male speakers) and about 245
hours of audio. All audio clips were re-sampled at
22.05 kHz in experiments for consistency.

The proposed CU-embedding in our system
learns the cross-utterance representation from sur-
rounding utterances. However, unlike LJ-Speech,
transcripts of LibriTTS utterances are not arranged
as continuous chunks of text in their correspond-
ing book. Therefore, transcripts of the LibriTTS
dataset were pre-processed to find the location of
each utterance in the book, so that the first L and
last L utterances of the current one can be effi-
ciently obtained during training and inference. The
pre-processed scripts and our code are available 1.

4.2 System Specification

The proposed CUC-VAE TTS system was based
on the framework of FastSpeech 2. The CU-
embedding utilised a Transformer to learn the cur-
rent utterance representation, where the dimension
of phoneme embeddings and the size of the self-
attention were set to 256. To explicitly extract
speaker information, 256-dim speaker embeddings
were also added to the Transformer output. Mean-
while, the pre-trained BERT model to extract cross-
utterance information had 12 Transformer blocks
and 12-head attention layers with 110 million pa-
rameters. The size of the derived embeddings of
each cross-utterance pair was 768-dim. Note that
the BERT model and corresponding embeddings
were fixed when training the TTS system. Net-
work in CU-enhanced CVAE consisted of four 1D-
convolutional (1D-Conv) layers with kernel sizes
of 1 to predict the mean and variance of 2-dim
latent features. Then a linear layer was added to
transform the sampled latent feature to a 256-dim
vector. The duration predictor which consisted of
two convolutional blocks and an extra linear layer

1https://github.com/NeuroWave-ai/CUCV
AE-TTS
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to predict the duration of each phoneme for the
length regulator in FastSpeech 2 was adapted to
take in CU-embedding outputs. Each convolutional
block was comprised of a 1D-Conv network with
ReLU activation followed by a layer normaliza-
tion and dropout layer. The Decoder adopted four
feed-forward Transformer blocks to convert hidden
sequences into 80-dim mel-spectrogram sequence,
similar to FastSpeech 2. Finally, HifiGAN (Kong
et al., 2020) was used to synthesize waveform from
the predicted mel-spectrogram.

4.3 Evaluation Metrics

In order to evaluate the performance of our pro-
posed component, both subjective and objective
tests were performed. First of all, a subjective
listening test was performed over 11 synthesized
audios with 23 volunteers asked to rate the natural-
ness of speech samples on a 5-scale mean opinion
score (MOS) evaluation. The MOS results were
reported with 95% confidence intervals. In addi-
tion, an AB test was conducted to compare the
CU-enhanced CVAE with utterance-specific prior
and normal CVAE with standard Gaussian prior.
23 volunteers were asked to choose the preference
audio generated by different models in the AB test.

For the objective evaluation, F0 frame error
(FFE) (Chu and Alwan, 2009) and mel-cepstral dis-
tortion (MCD) (Kubichek, 1993) were used to mea-
sure the reconstruction performance of different
VAEs. FFE combined the Gross Pitch Error (GPE)
and the Voicing Decision Error (VDE) and was
used to evaluate the reconstruction of the F0 track.
MCD evaluated the timbral distortion, which was
computed from the first 13 MFCCs in our experi-
ments. Moreover, word error rates (WER) from an
ASR model trained on the real speech from the Lib-
riTTS training set were reported. Complementary
to naturalness, the WER metric showed both the
intelligibility and the degree of inconsistency be-
tween synthetic speech and real speech. The ASR
system used in this paper was an attention-based
encoder-decoder model trained on Librispeech 960-
hour data, with a WER of 4.4% on the test-clean set.
Finally, the diversity of samples was evaluated by
measuring the standard deviation of two prosody
attributes of each phoneme: relative energy (E)
and fundamental frequency (F0), similar to Sun
et al. (2020b). Relative energy was calculated as
the ratio of the average signal amplitude within a
phoneme to the average amplitude of the entire sen-

tence, and fundamental frequency was measured
using a pitch tracker. In this paper, the average
standard deviation of E and F0 of three phonemes
in randomly selected 11 utterances was reported to
evaluate the diversity of generated speech.

5 Results

This section presents the series of experiments for
the proposed CUC-VAE TTS system. First, abla-
tion studies were performed to progressively show
the influence of different parts in the CUC-VAE
TTS system based on MOS and WER. Next, the
reconstruction performance of CUC-VAE was eval-
uated by FFE and MCD. Then, the naturalness and
prosody diversity using CUC-VAE were compared
to FastSpeech 2 and other VAE techniques. At last,
a case study illustrated the prosody variations with
different cross-utterance information as an exam-
ple. The audio examples are available on the demo
page 2.

5.1 Ablation Studies

Ablation studies in this section were conducted on
the LJ-Speech data based on the subjective test and
WER. First, to investigate the effect of the differ-
ent number of neighbouring utterances, CUC-VAE
TTS systems built with L = 1, 3, 5 were evaluated
using MOS scores, as shown in Table 1.

Table 1: The MOS results of CUC-VAE TTS systems
on LJ-Speech dataset. MOS was reported with 95% con-
fident intervals. “L = 1”,“L = 3”,“L = 5” represented
the number of past and future utterances.

Systems Cross-utterance (2L) MOS
CUC-VAE L = 1 2.93 ± 0.12
CUC-VAE L = 3 3.72 ± 0.09
CUC-VAE L = 5 3.95 ± 0.07

The effect of the different number of neighbour-
ing utterances on the naturalness of the synthesized
speech can be observed by comparing MOS scores
which is the higher the better. The CUC-VAE with
L = 5 achieved highest score 3.95 compared to
system with L = 1 and L = 3. Since only marginal
MOS improvements were obtained using more than
5 neighbouring utterances, the rest of experiments
were performed using L = 5.

Then we investigated the influence of each part
of CUC-VAE on performance. The baseline was

2http://bit.ly/cuc-vae-tts-demo
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our implementation of Fastspeech 2. For the sys-
tem denoted as Baseline + fine-grained VAE which
served as a stronger baseline, the pitch predictor
and energy predictor of FastSpeech 2 were replaced
with a fine-grained VAE with 2-dim latent space.
Based on the fine-grained VAE baseline, the CVAE
was added without the CU-embedding to the sys-
tem, referred to as Baseline+CVAE to verify the
function of CVAE on the system, which conditions
on the current utterance. Again, MOS was com-
pared among these systems as shown in Table 2.

Table 2: The MOS results of TTS systems with different
modules on LJ-Speech dataset. MOS was reported with
95% confident intervals. Baseline + fine-grained VAE
added a fine-grained VAE to baseline. Baseline+CVAE
represents a CVAE TTS system without CU-embedding.

Systems MOS
Ground Truth 4.31 ± 0.06

Baseline 3.85 ± 0.07
Baseline+Fine-grained VAE 3.55 ± 0.08

Baseline+CVAE 3.64 ± 0.08
CUC-VAE 3.95 ± 0.07

As shown in Table 2, MOS progressively in-
creased when fine-grained VAE, CVAE, and CU-
embedding were added in consecutively. The pro-
posed CUC-VAE TTS system achieved the highest
MOS 3.95 compared to baselines. The results indi-
cated that CUC-VAE module played a crucial role
in generating more natural audio.

To verify the importance of the utterance-
specific prior to the synthesized audio, the same
CUC-VAE system was used, and the only differ-
ence is whether to sample latent prosody features
from the utterance-specific prior or from a stan-
dard Gaussian distribution. A subjective AB test
was performed which required 23 volunteers to pro-
vide their preference between audios synthesized
from the 2 approaches. Moreover, WER was also
compared here to show the intelligibility of the
synthesized audio. As shown in Table 3, the pref-
erence rate of using the utterance-specific prior is
0.52 higher than its counterpart, and a 4.9% abso-
lute WER reduction was found, which confirmed
the importance of the utterance-specific prior in our
CUC-VAE TTS system.

5.2 Reconstruction Performance

FFE and MCD were used to measure the re-
construction performance of VAE systems. An
utterance-level prosody modelling baseline which

Table 3: The subjective listening preference rate be-
tween CUC-VAE with or without utterance-specific
prior from the AB test. The CUC-VAE without
utterance-specific prior was a simplified version of
our proposed CUC-VAE where latent samples were
drawn from a standard Gaussian distribution instead of
utterance-specific prior. WER metric was also reported.

System utterance-specific prior RATE WER
CUC-VAE % 0.24 14.8
CUC-VAE ! 0.76 9.9

extract one latent prosody feature vector for an
utterance was added for more comprehensive com-
parison, and is referred to as the Global VAE.

Table 4: Reconstruction preformance on LJ-Speech and
LibriTTS dataset. + Global VAE and + fine-grained
VAE represent that the baseline is added the global VAE
and the fine-grained VAE, respectively.

Systems
LJ-Speech LibriTTS

MCD FFE MCD FFE
Baseline 6.70 0.58 6.32 0.58

Baseline+Global VAE 6.50 0.41 6.27 0.45
Baseline+Fine-grained VAE 6.34 0.26 6.28 0.35

CUC-VAE 6.27 0.24 6.04 0.34

Table. 4 shows the reconstruction performance
on the LJ-Speech dataset and LibriTTS dataset,
respectively. Baseline had the highest value of FFE
and MCD on the LJ-Speech dataset and LibriTTS
dataset. The value of FFE and MCD decreased
when the global VAE was added and was further
reduced when the fine-grained VAE was added to
the baseline. Our proposed CUC-VAE TTS system
achieved the lowest FFE and MCD across the table
on both the LJ-Speech and LibriTTS datasets. This
indicated that richer prosody-related information
entailed in both cross-utterance and conditional
inputs was captured by CUC-VAE.

5.3 Sample Naturalness and Diversity
Next, sample naturalness and intelligibility were
measured using MOS and WER respectively on
both LJ-Speech and LibriTTS datasets. Comple-
mentary to the naturalness, the diversity of gener-
ated speech from the conditional prior was evalu-
ated by comparing the standard deviation of E and
F0 similar to (Sun et al., 2020b).

LJ-Speech experiments were shown in left part
of Table. 5. Compared to the global VAE and fine-
grained VAE, the proposed CUC-VAE received
the highest MOS and achieved the lowest WER.
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Table 5: Sample naturalness and diversity results on LJ-Speech and LibriTTS datasets. Three metrics are reported
for each dataset, namely MOS, WER, and Prosody Std. The Prosody Std. includes standard deviations of relative
energy (E) and fundamental frequency (F0) in Hertz within each phonene.

LJ-Speech LibriTTS

MOS WER Prosody Std. MOS WER Prosody Std.

F0 E F0 E

Ground Truth 4.31 ± 0.06 8.8 - - 4.10 ± 0.07 5.0 - -
Baseline 3.85 ± 0.07 10.8 1.86× 10−13 6.78× 10−7 3.53 ± 0.08 6.0 2.13× 10−13 7.22× 10−7

Baseline+Global VAE 3.82 ± 0.07 10.4 1.46 0.0004 3.59 ± 0.08 10.8 2.01 0.0054
Baseline+Fine-grained VAE 3.55 ± 0.08 12.8 49.60 0.0670 3.43 ± 0.08 5.6 63.64 0.0901

CUC-VAE 3.95 ± 0.07 9.9 26.35 0.0184 3.63 ± 0.08 5.5 30.28 0.0217

Although both F0 and E of the CUC-VAE TTS
system were lower than the baseline + fine-grained
VAE, the proposed system achieved a clearly higher
prosody diversity than the baseline and baseline
+ global VAE systems. The fine-grained VAE
achieved the highest prosody variation as its latent
prosody features were sampled from a standard
Gaussian distribution, which lacks the constraint
of language information from both the current and
the neighbouring utterances. This caused extreme
prosody variations to occur which impaired both
the naturalness and the intelligibility of synthesized
audios. As a result, the CUC-VAE TTS system was
able to achieve high prosody diversity without hurt-
ing the naturalness of the generated speech. In
fact, the adequate increase in prosody diversity im-
proved the expressiveness of the synthesized audio,
and hence increased the naturalness.

The right part of Table. 5 showed the results
on LibriTTS dataset. Similar to the LJ-Speech
experiments, the CUC-VAE TTS system achieved
the best naturalness measured by MOS, the best
intelligibility measured by WER, and the second-
highest prosody diversity across the table. Overall,
consistent improvements in both naturalness and
prosody diversity were observed on both single-
speaker and multi-speaker datasets.

5.4 A Case Study

To better illustrate how the utterance-specific
prior influenced the naturalness of the synthesized
speech under a given context, a case study was
performed by synthesizing an example utterance,
“Mary asked the time”, with two different neigh-
bouring utterances: “Who asked the time? Mary
asked the time.” and “Mary asked the time, and was
told it was only five.” Based on the linguistic knowl-
edge, to answer the question in the first setting, an
emphasis should be put on the word “Mary”, while
in the second setting, the focus of the sentence is

(a) Who asked the time? Mary asked the time.

(b) Mary asked the time, and was told it was only five.

Figure 2: Comparisons between the energy and pitch
contour of same text “Mary asked the time" but different
neighbouring utterances, generated by CUC-VAE TTS
trained on LJ-Speech.

“asked the time”. The model trained on LJ-Speech
dataset was used to synthesize the utterance and
the results were shown in Fig. 2.

Fig. 2 showed the energy and pitch of the two
utterance. Energy of the first word “Mary” in
Fig. 2(a) changed significantly (energy of “Ma-”
was much higher than “-ry”), which reflected an
emphasis on the word “Mary”, whereas in Fig. 2(b),
energy of “Mary” had no obvious change, i.e., the
word was not emphasized. On the other hand,
the fundamental frequency of words “asked” and
“time” stayed at a high level for a longer time in the
second audio than the first one, reflecting another
type of emphasis on those words which was also
coherent with the given context. Therefore, the
difference of energy and pitch between the two ut-
terances demonstrated that the speech synthesized
by our model is sufficiently contextualized.
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6 Conclusion

In this paper, a non-autoregressive CUC-VAE TTS
system was proposed to synthesize speech with bet-
ter naturalness and more prosody diversity. CUC-
VAE TTS system estimated the posterior distribu-
tion of latent prosody features for each phone based
on cross-utterance information in addition to the
acoustic features and speaker information. The
generated audio was sampled from an utterance-
specific prior distribution, approximated based on
cross-utterance information. Experiments were
conducted to evaluate the proposed CUC-VAE TTS
system with metrics including MOS, preference
rate, WER, and the standard deviation of prosody
attributes. Experiment results showed that the pro-
posed CUC-VAE TTS system improved both the
naturalness and prosody diversity in the generated
audio samples, which outperformed the baseline in
all metrics with clear margins.
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