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Abstract
The composition of richly-inflected words in
morphologically complex languages can be a
challenge for language learners developing lit-
eracy. Accordingly, Lane and Bird (2020) pro-
posed a finite state approach which maps pre-
fixes in a language to a set of possible comple-
tions up to the next morpheme boundary, for the
incremental building of complex words. In this
work, we develop an approach to morph-based
auto-completion based on a finite state morpho-
logical analyzer of Plains Cree (nêhiyawêwin),
showing the portability of the concept to a
much larger, more complete morphological
transducer. Additionally, we propose and com-
pare various novel ranking strategies on the
morph auto-complete output. The best weight-
ing scheme ranks the target completion in the
top 10 results in 64.9% of queries, and in the
top 50 in 73.9% of queries.

1 Introduction

The ACL 2022 theme track asks how we can scale
up current NLP technologies for the rich diversity
of human languages. We contend that impactful
work, intended to support local language commu-
nity goals, does not necessarily focus on scale or
current NLP technologies. Community values and
motivations regarding language technology is as
rich and varied as human language itself, and so-
lutions which are well received in one community
may not be adequate or appropriate in another. Con-
text must be considered, from which novel tasks
take shape.

Lane and Bird (2020)’s re-imagining of word
completion for morphologically-rich languages
is an example of work born from a local con-
text. Based in Kunwinjku-speaking communities
in northern Australia, we wanted to support peo-
ple’s desire to learn literacy and practice building
the language’s long polysynthetic words. This led
to the idea for a tool that helps users incrementally
build complex words by suggesting completions

Figure 1: Given some string prefix of a word in Plains
Cree, Morph completion suggests continuations up to
the next morpheme boundary (in bold), for interactive
and incremental building of morphologically complex
words.

up to the next morph boundary (Figure 1). While
Plains Cree and Kunwinjku speaking communi-
ties are thousands of miles apart, the authors of
this work noticed some similarities in their respec-
tive contexts: both Plains Cree and Kunwinjku are
polysynthetic languages, and both are working with
communities to support language learning initia-
tives.

Other aspects of our situations differ. For ex-
ample, the FST morphological analyzer for Kun-
winjku can be described as a field tool, developed
by a single researcher over the course of a couple
years, while the Plains Cree morphological ana-
lyzer has been in continuous development by a
team for over 8 years. The Plains Cree model is
much more extensive, robust and complete. How
will the morph completion work transfer to such a
large and technically refined project? How can we
leverage our unique constellation of resources to
adapt morph completion to suit Plains Cree? These
are the question we set out to answer in this work.

This work examines the assumptions of morph-
based auto-complete, and extends existing work to
suit Plains Cree. Our contributions are: An imple-
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mentation of morph-based completion algorithm
for Plains Cree1, a discussion of contextual sim-
ilarities and differences between Kunwinjku and
Plains Cree and how this affects the utility of the
morph-based completion concept, and a novel rank-
ing algorithm which enables the morph-completion
concept to scale to a much larger, more extensive
grammar.

2 Background

Speakers of morphologically complex languages
are engaged in activities to maintain orality and
support literacy. Two examples are the Plains Cree
and Kunwinjku speaking communities.

Plains Cree (endonymically known as
nêhiyawêwin, ISO 639-3: crk) is a member
of the Algonquian family. It is the western-most
Cree dialect, spoken by about 20,000 speakers
in Alberta, Saskathewan, and northern Montana
(Wolfart, 1973; Harrigan et al., 2017). Years
of documentary linguistic work have produced
extensive language resources in the form of
grammars (Wolfart, 1973; Wolvengrey, 2011;
Dahlstrom, 2014) and textbooks (Okimāsis, 2018;
Ratt, 2016).

Kunwinjku (ISO 639-3:gup) is a member of the
Gunwinyguan language family. It is spoken by an
estimated 1,700 speakers in the west Arnhem re-
gion of northern Australia. Kunwinjku has its own
documentary resources: grammars (Evans, 2003;
Carroll, 1976), and a language primer (Etherington
and Etherington, 1998). Despite these volumes,
literacy in Kunwinjku is quite rare.

While by some standards these languages might
be classified as “low-resource", the depth and abun-
dance of descriptive linguistic work has paved the
way for the development of computational models
of Kunwinjku and Plains Cree morphology (Lane
and Bird, 2019; Harrigan et al., 2017; Arppe et al.,
2017; Schmirler et al., 2017; Snoek et al., 2014).
Based on these computational models of morphol-
ogy, language technologies are being developed to
support the language goals of these communities:
smart dictionaries and spellcheckers (Arppe et al.,
2016), word-builder application (Lane and Bird,
2020), and intelligent language learning applica-
tions (Bontogon et al., 2018).

1The source code for the original FST and the morph-
completion model is available online at https://github.
com/giellalt/lang-crk

Finite State Morphology Morph completion
models build on the established foundation of fi-
nite state models for morphological generation and
analysis (Beesley and Karttunen, 2003). Under
this formalism, it is customary to split the mod-
elling task into two parts: the first task is to de-
fine the morphological inventory and valid transi-
tions between morph classes, i.e. morphosyntax.
The second handles any alternation that occurs at
the morpho-phonological interface. Several (open-
source) toolkits exist which implement these ba-
sic modeling capabilities: Foma (Hulden, 2009),
HFST (Lindén et al., 2013), OpenFST (Allauzen
et al., 2007), and Pyini (Gorman, 2016).

The Plains Cree morphological models are im-
plemented with both HFST and Foma within the
GiellaLT framework (Moshagen et al., 2014) and
have been under active development for 8 years,
and give a comprehensive treatment of noun (Snoek
et al., 2014) and verb (Harrigan et al., 2017) mor-
phology. As such, the Plains Cree model has had
the opportunity to develop treatments for difficult-
to-model features, such as reduplication. The
Plains Cree model currently contains 21,232 stem
(5,553 noun stems, 47 pronoun stems, 1,669 parti-
cles, 104 numerals, and 13,860 verb stems), derived
from the lexical database underlying the bilingual
Cree-English dictionary by Wolvengrey (2001).

The Kunwinjku model, on the other hand, is
implemented using Foma, and has only been under
periodic development for the last 2 years. In terms
of size, the Kunwinjku FST contains significantly
fewer stem entries: 573 verb stems2, and 748 noun
stems (Lane and Bird, 2019).

Despite these differences in implementation and
scale, we show in this work that FST morph com-
pletion can be successfully adapted to work with
Plains Cree.

2.1 FST-based Morph Completion

Lane and Bird (2020) present an approach to auto-
matic word completion intended to assist language
learners and speakers of morphologically complex
languages who are building confidence in writing.
For example, in Kunwinjku the verb stem bawo
means “to leave”. This stem can then be inflected
to convey subject, object, tense, comitative, and
adverbial information:

2Though these forms can combine with derivational affixes
to create a number of additional stems.
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(1) bene-bad-yi-bawo-ng
3UA.3SG.P-now-COM-leave-PP
“The two of them left him with it”
[E.10.162]

Building valid surface forms poses a challenge
for learners of the language who may not yet
have mastery of the morphology and orthography.
Moreover, the vocabulary of morphologically com-
plex languages is a combinatorial function of mor-
pheme possibilities, making word-level prediction
intractable. This use case drives the reconception
of word completion as prediction up to the next
morpheme boundary, to incrementally and interac-
tively assist in the building of complex words.

The model is implemented as an extension to a
standard finite state morph analyzer, and assumes
that the FST model contains some intermediate
representation in which morph boundaries are ex-
plicitly marked.

In brief their finite state algorithm:

1. Alters the existing morphological analyzer so
that it does not remove morph boundary sym-
bols

2. Recognizes all possible prefixes composed of
user input followed by any character up to the
next morph boundary symbol.

3. Generates a list of completions possible from
the given prefix, constrained by the space of
morphotactically valid words defined by the
morph analyzer.

A detailed explanation of their algorithm, and
implementation examples can be found in (Lane
and Bird, 2020). They deploy their model in
a Kunwinjku dictionary interface, serving a list
of partial completions which are refreshed per
keystroke. The user builds complex words incre-
mentally, guided by the FST model. When a word
is fully formed, the interface queries the dictionary
database, using the regular morph analyzer to re-
trieve relevant lexical entries.

3 Adaptation for Plains Cree

Adapting the autocompletion algorithm to Plains
Cree is relatively straightforward, owing in part
to the similarities between Plains Cree and Kun-
winjku. Like Kunwinjku, Plains Cree is a polysyn-
thetic agglutinating language (Wolfart, 1973). Also
like Kunwinjku, Plains Cree verbs have been de-
scribed using templatic morphology: According to

(Wolvengrey, 2012), there are 8 prefixal slots plus
some amount of reduplication.

Suffixially, Wolvengrey (2012) provides 10
seperate slots, but in practice, these are regularly
chunked together into a single portamanteau morph
(Harrigan et al., 2017; Okimāsis, 2018). For this
reason, Plains Cree is often treated as a mostly-
prefixing language, similar to Kunwinjku.

Both Kunwinjku and Plains Cree also exhibit
word-internal dependencies as well as noun incor-
poration. In terms of agreement, Kunwinjku verbs
exhibit circumfixal markers for tense, where mor-
phemes directly before and after the verb stem must
agree for the feature. Plains Cree, on the other hand,
exhibits dependency in its person marking (where
the left-most and right-most morphemes of a verb
form a circumfix) as well as its comitative deriva-
tion (where morphemes immediately to the left and
right of the verb stem constitute a circumfix). Noun
incorporation is present in both languages, though
it is more common in Kunwinjku, where it occu-
pies a slot in the prefixal morphology. Where Noun
Incorporation is present in Plains Cree, it interrupts
the verb stem itself and is rare enough to often be
lexicalized as a separate verb all together.

These similarities and differences have conse-
quences for each language’s underlying FST and
thus the autocompletion algorithm. Issues of long-
distance dependencies are essentially handled in an
identical way, through the use of flag diacritics to
restrict progression through the model (Harrigan
et al., 2017; Lane and Bird, 2019).

In terms of derivational morphology, the Kun-
winjku FST marks derivational morpheme bound-
ries identically to inflectional ones. With respect
to the Plains Cree FST, we have explored includ-
ing derivational boundaries within stems, but have
left that out of the morpheme completion solution,
in part because it increases complexity, size, and
speed of model, and in part since making use of
derivational boundaries would split stems in a man-
ner that would require users to have an understand-
ing of the derivational morphology of Plains Cree
that most, in particualr learners, do not possess.
We opt instead to pre-compile derivational stems,
thus ignoring derivational boundaries in favor of
providing full-stem-length suggestions to users.

4 Presentation of Plains Cree Algorithm

In this section we give a detailed overview of
our implementation, with examples written in the
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XFST formalism (Beesley and Karttunen, 2003).
Our first step is to capture the full lexical side

of our morphological analyzer (Words) with morph
boundaries present (a derivational boundary / is
added in conjunction with the occurrence of a
lexeme-internal hyphen that is not associated with
an inflectional boundary, i.e. < or >):

(2)
define AddBoundary [[..] -> "/" ||

"-" _ \[ "<" | ">"]];
define CorrectWords [Words .o.

AddBoundary];

As is done in the previous work, we define FSTs
which recognize morph boundaries (Bx), and ev-
erything except morph boundaries (Ax):

(3)
define Bx [ "<" | ">" | "/" ];
% Note: "/" denotes a derivational
% morpheme boundary
define Ax [ ? - Bx ];

We define an FST which defines spelling relax-
ation rules. Fortunately, this can be imported di-
rectly from our existing Plains Cree spelling relax-
ation module, with some minor additions. That
FST contains rules which allow the arbitrary substi-
tution of long and short vowels, or the deletion/in-
sertion of sounds in particular contexts. As a sim-
plified example:

(4)

define SpellRelax [ a (->) â
,, e (->) ê ,, i (->) î
,, o (->) ô ,, â (->) a
,, î (->) i ,, ô (->) o
,, [..] (->) h || Vowel _ Stop
,, h (->) 0 || Vowel _ Stop
];

Next, we define a series of helper FSTs. Insert-
Boundary optionally inserts morph boundaries in
any context. NextMorph outputs everything from a
given string up until the next morph boundary. Pre-
fixStrings outputs all possible prefixes of a given
input. rmBoundary removes morph boundary sym-
bols from the given input.

(5) define InsertBoundary [0 (->) Bx];

(6) define NextMorph [?+ [ 0:Ax ]* 0:Bx];

(7) define PrefixStrings [?* [ 0:? ]*];

(8) define rmBoundary [Bx -> 0];

We compose these FSTs to form the FST which
takes a string as input, and returns a list of possible
completions up to the next morph boundary:

(9)

define MorphComplete
[InsertBoundary
.o. NextMorpheme
.o. [PrefixStrings .o.

[CorrectWords ">"].l].u
.o. rmBoundary
] ;

The FST defined up to this point can be used to
produce morph completions for a given input. The
FST can be made tolerant of orthographic variation
by composing SpellRelax with MorphComplete:

(10) regex [SpellRelax .o.
MorphComplete];

Up until this point, our implementation does
not differ significantly from the algorithm pro-
posed by Lane and Bird (2020), except in the
definition of morph boundaries, and in the partic-
ulars of the spelling relaxation rules. However,
because the Plains Cree morphological analyzer
has a much larger lexical inventory than the Kun-
winjku analyzer, we found the space of possible
completions–particularly when allowing for ortho-
graphic variation–to be unmanageably large. In
order to make use of the output of morph comple-
tion in Plains Cree, we need to extend the original
algorithm to address the issue of result ranking.

4.1 Ranking Results
The Plains Cree morph completion FST can some-
times return thousands of results for a given query.
The possibility of having thousands of results in-
creases significantly when spelling relaxation rules
are introduced (e.g., compare Figure 2 with Fig-
ure 3). In order to render the model usable, it is
essential to enforce a ranking of the results. We
tried 4 different ranking schemes and evaluated
their effect on the morph completion space.

Data All 4 approaches leverage a corpus of
written Plains Cree to collect frequency statis-
tics of various subword units. We use the
morphosyntactically-tagged corpus of Arppe et al.
(2020), which has recently been extended with
the so-called Bloomfield texts, and which includes
a frequency-sorted list of tokens and their corre-
sponding morphological analysis. This resource
counts the occurrences of 33,655 unique words
across a corpus of texts, including conversations,
dialogues, narratives and lectures, amounting to
242,937 words total (Wolfart, 2000; Bear et al.,
1992; Kā-Nı̄pitēhtēw, 1998; Masuskapoe, 2010;
Ahenakew, 1987; Whitecalf, 1983; Minde, 1997;
Bloomfield, 1930, 1934). We refer to this re-
source as the AWB corpus (for Freda Ahenakew, H.
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Christoph Wolfart, and Leonard Bloomfield who
collected and compiled the original texts) from now
on in this work.

4.1.1 Prefix Weighted FST (pWFST)
The first ranking strategy we developed uses the
AWB corpus to count the frequency of all possible
prefixes for each word in the word list, up to and
including all complete words. These counts are
converted to a probability distribution by dividing
by the total number of counted prefixes. We take
the negative log of this probability to obtain the
weight of the prefix. Lower weights correspond to
more likely prefixes.

(11) weight(prefix) = −log
(

c(prefix)
c(allPrefixes)

)
Unobserved prefixes are handled by obtaining a

weight of 15 plus and additional weight of 1 per
character after the first. This effectively places
unobserved suggestions lower than any possible
observed prefix in priority, and favors shorter un-
observed prefixes over longer ones. The prefix
weights are composed with output of the morph
completion FST. Note that only the HFST com-
piler and its lookup utilities, hfst-lookup or
hfst-optimized-lookup, support the incor-
poration and presentation of weights in an FST (as
presented here).

(12)

define PrefixWeighting
[ObservedPrefixWeights |
UnobservedPrefixWeights];

regex [SpellRelax .o. MorphComplete]
.o. PrefixWeighting;

In the evaluation we refer to this weighting
scheme as pWFST.

4.1.2 Transition Weighted FST (tWFST)
A drawback of the prefix-weighting scheme is that
it assigned weights to observed prefixes without
considering shared transition information between
morphs. This means that the resulting WFST
model which stores weights for all observed pre-
fixes, can start to reach greater than 100 megabytes
in size, which may be be prohibitive for mobile
deployment scenarios.

Considering this, our second weighting scheme
weights transitions rather than prefixes, and re-
sults in a smaller WFST models since transitions
of various prefixes can be shared. Our transition-
based weighting scheme comes from Sahala et al.
(2020)’s work on a finite state morphological ana-

lyzer for Babylonian3. The approach uses a manu-
ally disambiguated list of surface form and analysis
pairs to estimate the likelihood of final analyses,
represented as a sequence of transitions from inter-
nal FST states. It does this by counting transitions
between states for a given form/analysis pair, and
normalizing these counts into a probability distri-
bution for each state.

If Cs(x : y) denotes the counts at state s for
symbol-pairs x : y, then the transition weight w is
defined as:

w =
Cs(x : y)

(fs +
∑

z:uCs(z : u))

In the evaluation we refer to this weighting
scheme as tWFST. As with pWFST, the HFST com-
piler and lookup functionalities are necessary for
the inclusion and presentation of weights.

4.1.3 Transformer Language Model Ranking
Language models are probability distributions over
a sequence of tokens. Perplexity is a measure used
to relate how well a given sequence of tokens fits a
trained language model. Given a language model
q, the perplexity of a sequence of tokens t1, ..., tn
is calculated as follows:

PP = e−
1
n

∑n

i=1
ln q(ti)

Lower perplexity scores denote greater coherence
according to the language of the training data.

For the purpose of ranking possible morph com-
pletions generated by a finite state transducer, we
train a language model to represent the language of
valid prefixes in Plains Cree, according to statistics
gleaned from a corpus of text.

We process the corpus for the language mod-
elling task by splitting the text into word level to-
kens. The list of tokens is then divided into an
80/10/10 train/validation/test split. We then split
each token in the data into its set of all possible
prefixes with the beginning and ending word bound-
aries marked. For example, the word “mîtos” be-
comes the set of instances:

(13) <BOS> m <EOS>
<BOS> m î <EOS>
<BOS> m î t <EOS>
<BOS> m î t o <EOS>
<BOS> m î t o s <EOS>

3The code for the weighting scheme, written by Mi-
ikka Silfverberg, can be found at https://github.com/
mpsilfve/fst-corpus-weights
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Figure 2: The distribution of completion options for Plains Cree verbs by prefix length. The prefixes are derived
from a sample of 20,000 words from the Plains Cree word frequency lexicon

Figure 3: The distribution of completion options for Plains Cree verb with flexible spelling enabled. The prefixes
are derived from a sample of 20,000 words from the Plains Cree word frequency lexicon

Preparing the data in this manner yields 1,355,740
training instances, 169,467 validation instances,
and 169,467 test instances.

We train a character-based language model using
Fairseq’s Transformer LM architecture with default
parameters (Ott et al., 2019) for 20 epochs, and
select the model which minimizes error on the test
set. With this model, we assign perplexity scores
and rerank the output of the two WFST models.
Because the number of possible results from the
morph completion model can sometimes reach the
order of 105, we limit the LM scoring to the top
500 candidates of the weighted FSTs.

5 Evaluating Morph Completion and
Ranking

The intention is that this model can be deployed
to support text entry in a morphologically complex
language. We therefore want to measure how often
the model is able to deliver a useful set of results.
We define a “useful” result set as one which returns
at least one completed prefix which is a proper
substring of the target full-word, within the top N

ranked results. For example, if N = 10, our target
word is nikî-kitêyimikawinân and our query is ni,
then a result of nikî- appearing in the top 10 results
is counted as useful.

In order to evaluate the usefulness of the models
systematically, we randomly sampled 100 unique
fully-inflected word forms from the “Dog Biscuits”
story by Solomon Ratt which is publicly available
online.4 These words are broken down into their
complete set of prefixes, which created a set of
1,322 prefixes. Each prefix is used as a query, re-
trieving result sets at N = 10, 25, 50, and we re-
port on the percent of queries which return a valid
completion in the top N for each of the ranking
strategies described in Section 4.1 (See Table 4 for
results).

6 Results

We measure the completion space of two versions
of the morph completion model. Given a large
sample of model inputs (prefixes), the x-axis repre-

4https://creeliteracy.org/2014/01/20/dog-biscuits-y-
dialect-with-audio/
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Top 10 Top 20 Top 50
FST 38.4 42.7 48.0
pWFST 64.9 69.5 73.9
tWFST 40.1 47.6 61.2
pWFST.LM 40.3 48.0 60.2
tWFST.LM 48.7 55.6 66.3

Figure 4: Given a random sample of 1,322 prefixes
derived from 100 Plains Cree verbs, we show the pro-
portion of these prefixes which which produce a valid
completion in in the top N ranked results.

sents all prefixes of length x. The y-axis shows the
number of completions generated from the model,
and the data is represented as distributions over all
inputs of length x. The first model shows the com-
pletion space of the sample when we strictly adhere
to orthographic standard (Figure 2). The second
model implements spelling relaxation (Figure 3).
The effect of spelling relaxation on the number of
possible completions is, as one would expect, a
significant upward shift in the number of possible
completions across all character positions.

Given that the purpose of morph-based comple-
tion is to help guide the user to build out com-
plex words, we would prefer to deploy a spelling-
relaxed version of the model. However, the mag-
nitude of the measured completion space of this
model would make this infeasible, as the median
number of completions stays above 100 up until
12 characters of the input have been typed. Thus,
coming up with an effective weighting strategy is
absolutely essential in order to have a model that
can handle orthographic variation in the input.

The baseline, unweighted strategy can be seen in
Figure 5. Here, the distribution of rankings roughly
imitates the shape of the full completion space (Fig-
ure 3), with the majority of mass occurring above
our ideal ranking threshold of 10. To be precise,
with the baseline no-ranking strategy, 38.4% of
sampled queries result in a valid completion ranked
in the top 10 results, 42.7% give a valid completion
in the top 20, and 48.0% give a valid completion in
the top 50.

In contrast, the best weighting scheme is the
WFST, which significantly improves the distribu-
tion of rankings compared to the baseline, with the
majority of queries providing valid completions in
the top 10. More precisely, 64.9% of prefix queries
result in a a valid completion ranked in the top
10, 69.5% in the top 20, and 73.9% in the top 50
(Figure 6).

7 Qualitative Evaluation and Discussion

This section gives an overview of the use of the
morphological autocomplete system by one of
the authors, an English native, second language
learner of Plains Cree.5 This use case aligns with
a major subset of potential users: literate but non-
fluent learners of the language.6 By restricting
the autocomplete results to the top 10 most heav-
ily weighted items, we have found the system
to perform quite well. The system was evalu-
ated by typing the basic introductory phrase tânisi
nitôhtemak! Atticus nitisiyihkâson êkwa kêkâ-
nistomitanaw ê-tânitahtopiponêyân. nitatoskân
amiskwaciy-wâskahikanihk, which translates to
“Hello friends! my name is Atticus and I am 29
years old. I work in Alberta.” This phrase was
chosen as it contains fairly common lexical items
while also being a realistic use case. In typing
these words, no diacritics were used, as typing a
circumflex on a North American keyboard requires
a number of extra strokes, and such diacritics are
often not included in non-professional Plains Cree
writing. Additionally, Atticus, was not typed into
the autocomplete system as it is not a Plains Cree
word.

Writing this excerpt reveals interesting user ex-
perience data. While most words had the appro-
priate autocomplete suggestion, the word nitisiy-
ihkâson could only be suggested by typing all but
the last two letters: nitisiyihkâs. Typing any less
did not result in target suggestions. This was likely
due to the fact that the system seemed to prefer
analysing the string as beginning with the mor-
pheme nitisiyi-, rather than the target morphemes
of ni-t-isiyihkâso-. This is particularly notable
as introductions are common, especially for lan-
guage learners. Similarly, in autocompleting kêkâ-
nistomitanaw results were unexpected. The correct
breakdown for this word is kêkâ-nisto-mitanaw; de-
spite this, nisto- and -mitanaw are written together
orthographically. The morphological autocomplete
suggestions when given the input string keka-ni

5The code for the GUI can be found at https://
github.com/abbottLane/cree-wordbuilder

6Ideally, this evaluation would be done by a number of
literate Plains Cree native speakers; however, the number of
fully literate speakers who are comfortable using a computer is
quite limited. Because experimenting on Plains Cree speakers
requires special consideration and taking into account a low
tolerance for non-canonical language (Harrigan et al., 2019),
we decided to first test the system on one of the authors so as
to retain the maximum number of native speaker participants
for future releases.
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Figure 5: No ranking strategy: For 100 randomly-sampled words, we calculate all prefixes and show the distributions
of ranks of all inputs per prefix length.

Figure 6: pWFST ranking strategy: For 100 randomly-sampled words, we calculate all prefixes and show the
distributions of ranks of all inputs per prefix length.

Figure 7: pWFST+LM ranking strategy: For 100 randomly-sampled words, we calculate all prefixes and show the
distributions of ranks of all inputs per prefix length.

Figure 8: A simple GUI powered by the morph auto-
completion model for Plains Cree facilitates manual
exploration of the model’s completion space.

produce only kêka-nîso-, specifically with the fi-
nal hyphen. If one types kêka-nîstom, the system
suggests kêkâ-nistomitanaw. The the previous two

cases, the autocomplete and weighting system are
working exactly as expected. The issue instead lies
with the underlying corpus, which features neither
kêkâ-nistomitanaw nor any form of the verb nitisiy-
ihkâson. The corpora used as a base for weighting
is mostly lectures or discussion between individ-
uals who are otherwise familiar with each other.
Unsurprisingly, this did not result in instances of
individuals introducing themselves to one another
or discussing anyone named Atticus.

Further, in typing only e- as an input string is not
useful in and of itself, as all verbs can take this mor-
pheme (written as ê-). In addition to the expected
benefits of autocompletion, the system empowers
users to type the language even if they are not en-
tirely sure of the correct form of a word. As an
example, the term nitatoskân comes from the root
atoskê-. Although person marking morphology in
the form of a nit-–-n circumfix is easy enough for
learners to remember, in some conjugations, the
final ê becomes an â. This is not consistent among
conjugation classes, and some verb classes show
the opposite alternation. As a result, second lan-
guage learners can struggle with knowing whether
to write nitatoskân or *nitatoskên. The autocom-
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plete system solves this problem by suggest only
the correct nitatoskâ when the user types nitato.
The main drawback of this system from a user per-
spective is that target completions were rarely the
top most suggestions, but this appears to be due
to minimal training data for the weighting, and is
not critical as long as the user is competent enough
to know which suggestions are categorically incor-
rect.

8 Conclusion

In this paper we presented an approach to morph-
based autocompletion for Plains Cree. Informed
by our particular context and availability of corpus
data, we expanded on their approach by explor-
ing three different weighting schemes to rein in
the magnitude of possible completions per query,
which are a result of our need to accommodate a
more complex FST grammar, and greater ortho-
graphic flexibility. Our results show that all three
weighting schemes go a long way to move target
string rank distributions below desired thresholds,
with the lexical weighting approach ranking the
target completion in the top 10 results in 64.9% of
queries, and in the top 50 in 73.9% of queries. The
qualitative evaluation highlighted the usefulness
of using an underlying FST to generate comple-
tions: long-distance dependencies and circumfixes
are respected by the autocomplete algorithm, and
so morphotactic integrity is preserved. Addition-
ally, spelling relaxation rules in the underlying FST
mean that the user does not need to worry as much
about inputting diacritics, or exact spelling: the
algorithm will suggest and rank alternate surface
forms which vary along these dimensions.

In future work we hope to deploy morph com-
pletion models in mobile devices, to support text
entry. However, before we get there, we need to
do proper user testing with members of the com-
munity and get their feedback on a polished demo
of the project at this stage. Indeed, a limitation of
this work is that we chose not to carry out thorough
user testing in the Cree Community at this stage. It
is natural for researchers to want to rush prototypes
into the hands of prospective users, but this can
lead to technology burnout among otherwise will-
ing collaborators (Harrigan et al., 2019; Le Ferrand
et al., 2022). We performed intrinsic evaluation by
measuring the model’s completion space to judge
the feasibility of moving forward with the concept,
and did self-testing to convince ourselves that the

user experience is workable. That is the scope of
this work.

Meaningful advances in language technology
for low-resource, Indigenous, and/or endangered
languages entails progress in our recognition and
engagement with the context and use cases for such
technologies at a community level. Morph-based
autocompletion is designed to support text entry
and word-building for morphologically rich lan-
guages. There are myriad factors which affect the
usefulness of any approach in the real world. In our
experience, connecting with real-world contexts
leads to a better understanding of use-cases and
problem constraints. This, in turn, fuels creativ-
ity and leads to better outcomes for the language
communities we work with.
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