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Abstract

The mainstream machine learning paradigms
for NLP often work with two underlying pre-
sumptions. First, the target task is predefined
and static; a system merely needs to learn to
solve it exclusively. Second, the supervision
of a task mainly comes from a set of labeled
examples. A question arises: how to build a
system that can keep learning new tasks from
their instructions?

This work defines a new learning paradigm
ConTinTin (Continual Learning from Task
Instructions), in which a system should learn
a sequence of new tasks one by one, each
task is explained by a piece of textual instruc-
tion. The system is required to (i) generate
the expected outputs of a new task by learn-
ing from its instruction, (ii) transfer the knowl-
edge acquired from upstream tasks to help
solve downstream tasks (i.e., forward-transfer),
and (iii) retain or even improve the perfor-
mance on earlier tasks after learning new tasks
(i.e., backward-transfer). This new problem
is studied on a stream of more than 60 tasks,
each equipped with an instruction. Techni-
cally, our method InstructionSpeak con-
tains two strategies that make full use of task
instructions to improve forward-transfer and
backward-transfer: one is to learn from nega-
tive outputs, the other is to re-visit instructions
of previous tasks. To our knowledge, this is
the first time to study ConTinTin in NLP. In
addition to the problem formulation and our
promising approach, this work also contributes
to providing rich analyses for the community to
better understand this novel learning problem.

1 Introduction

The main goal of machine learning algorithms lies
in seeking supervision for solving a target task. Tra-
ditionally, the supervision is extracted from a set of
labeled examples. The learner constructs a decision
function that generalizes beyond the seen examples.

∗Work was done at Salesforce Research.

While this paradigm has been tremendously suc-
cessful for many NLP problems, an inherent draw-
back exists in it: the learner can only be as good
as the provided data (Goldwasser and Roth, 2014).
Learning, therefore, relies on annotating a large
volume of training data, an expensive and time-
consuming process. To alleviate the costly demand
for task-specific annotation (referred as S0 here-
after), the human learning process suggests at least
two sources of alternative supervision: one is to ac-
cumulate knowledge from tasks learned in the past
(S1) (Richard, 1970; Thrun and Mitchell, 1995;
Chomsky, 2002); the other is to learn from natu-
ral instructions (S2) describing a high-level story
about target tasks (Goldwasser and Roth, 2014).
Unfortunately, we rarely see the joint power of S1
and S2.

In this work, we present a new learning paradigm
ConTinTin – continual Learning from task
instructions. In ConTinTin, each task is given
an instruction describing the target concept directly
and a few instances exemplifying it. The system is
required to incrementally learn a stream of tasks,
so that the knowledge gained in the past can be
used to address subsequent tasks. Apparently, this
new problem tries to integrate the S1 and S2 into a
single learning paradigm while decreasing the ne-
cessity of S0. More specifically, ConTinTin is
expected to carry the properties listed in Table 1.

Our data set is restructured from the NATURAL-
INSTRUCTIONS (Mishra et al., 2021). NATURAL-
INSTRUCTIONS is a benchmark that studies if
a model can make appropriate use of natu-
ral language instructions to answer inputs ac-
cordingly. It comprises 61 tasks; each task
is associated with a piece of instruction con-
sisting of Title, Definition, Caution,
Prompt, Things to avoid, Examples, etc.
NATURAL-INSTRUCTIONS originally focuses on
conventional supervised learning: give a bunch of
tasks out of the 61 as the training tasks, and evalu-
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Item Explanation
Instruction-driven supervision Each task is explained by an instruction and a couple of instances exemplifying it.
Fixed model capacity The system’s structure and parameter size are constant regardless of its learning status.
Knowledge maintenance The system is not inclined to catastrophic forgetting.
Forward transfer The system uses knowledge acquired from upstream tasks to help solve downstream tasks.
Backward transfer The system uses knowledge acquired from downstream tasks to help solve upstream tasks.

Table 1: Desiderata of ConTinTin, inspired by (Biesialska et al., 2020).

ate the remaining tasks in a batch. In order to fit the
formulation of ConTinTin, we reorganize the 61
tasks in NATURAL-INSTRUCTIONS: a few tasks
(e.g., size k) out of the 61 act as training tasks, and
the remaining 61−k tasks as an ordered list of new
tasks. The learner is expected to first learn from
the k training tasks about how to use instructions to
solve problems; then it evolves task by task along
with the new task chain.

Our system InstructionSpeak is based on
BART (Lewis et al., 2020) with two proposed
strategies aiming at making the best use of in-
structions. The first strategy, “NEGATIVE TRAIN-
ING”, makes use of unfavorable clues, such as
Things to avoid, from the instruction to pro-
mote the task understanding and forward-transfer.
The second strategy, “HISTORY TRAINING”, re-
visits instructions of earlier tasks during contin-
ual learning to alleviate the catastrophic forget-
ting issue in backward-transfer. We evaluate
InstructionSpeak on a wide range of trans-
ferring distances (from 1 to 40), which shows that
InstructionSpeak can generally help both
forward-transfer and backward-transfer.1

Overall, this work has made three-fold contri-
butions. First, ConTinTin is the first time to
be formulated and studied in the NLP commu-
nity. Second, we propose InstructionSpeak,
a promising approach to ConTinTin. Third, we
conduct intensive analyses, aiming to give a better
understanding of this new challenge.

2 Related Work

This section retrospects continual learning and
learning from task instructions, two machine learn-
ing paradigms that try to explore supervisions S1
and S2, respectively.

Continual learning. Since the advent of contin-
ual learning2 (Thrun and Mitchell, 1995), this learn-

1"Transferring distance" refers to the task numbers be-
tween the model at a new status and the model at an earlier
status.

2Continual learning in the literature is also referred to
as: lifelong learning (Silver and Mercer, 2002), incremental
learning (Solomonoff, 1989), sequential learning (McCloskey

ing problem was mainly studied in computer vision
or robotics domains, and most work concentrated
on mitigating catastrophic forgetting (McCloskey
and Cohen, 1989; Serrà et al., 2018; Hofmanninger
et al., 2020). Continual learning can be summa-
rized into three categories: class continual learning
(CCL), domain continual learning (DCL), and task
continual learning (TCL).
CCL learns a sequence of classes (e.g., visual

object categories, text labels, etc.) to build one
overall multi-label classifier for all the classes seen
so far (Yan et al., 2021). For example, Wang
et al. (2019) studied incrementally learning new
relations for two entity mentions in an input sen-
tence, and each relation has many labeled examples.
Xia et al. (2021) proposed few-shot CCL in which
multi-round of new text tags (e.g., intents or rela-
tions expressed in the input text) are encountered
sequentially, and each new tag is only accompanied
by a couple of examples.
DCL essentially studies the same task but in dif-

ferent domains. The system is expected to evolve
along with learning from a stream of datasets of
the same task and different data distributions. Typi-
cal work in NLP includes sentiment classification
(Chen et al., 2015; Xia et al., 2017), conversational
agents (Lee, 2017), text classification, and question
answering (d’Autume et al., 2019), etc.
TCL tries to learn distinct tasks sequentially. Sys-

tems in (Sun et al., 2020a,b) incrementally learned
among five disparate NLP tasks. Jin et al. (2021)
further extended the size of the task stream (one
benchmark has 26 tasks, the other covers 55) and
studied TCL in a few-shot scenario. It is worth
mentioning that all the listed work in TCL consis-
tently transformed all tasks into question answering
format (as pointed out in (McCann et al., 2018),
many NLP tasks can be formulated as question an-
swering), thus TCL in these literature was actually
converted into DCL.

Similar with (Xia et al., 2021; Jin et al., 2021),
our work also focuses on low-resource continual
learning; in contrast, our learning problem belongs

and Cohen, 1989), and never-ending learning (Carlson et al.,
2010).
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Figure 1: The setup in ConTinTin. The whole learning process consists of two stages: initialization process
and evolution process. A few training tasks S = {s1, · · · , sk} equipped with instructions and labeled examples
are adopted to initialize the model M, then M incrementally learns from each unseen task ui by its instruction
only. Once finishing the continual learning on the task ui, the model Mi is expected to be able to evaluate on all
{u1, u2, · · · , ui}.

to TCL while each task in our formulation is ex-
pressed by instructions instead of labeled examples.

Learning from textual instructions. This learn-
ing paradigm was first presented by Goldwasser
and Roth (2014). They investigated the challenges
on Solitaire card game where an instruction is a
short sentence such as “you can move any top card
to a free cell if it is empty”, then this instruction is
mapped into logical expression via semantic pars-
ing so that an automated agent can understand and
execute the instruction.

More recent work tried to examine the ability of
large-scale pretrained language models to follow
natural language instructions of varying complex-
ity. For example, Efrat and Levy (2020) tested
GPT-2 (Radford et al., 2019) to understand instruc-
tions like “listing nouns”, “output the nth word or
char” and real-world MTurk instructions to anno-
tate some popular datasets. They concluded that
GPT-2 works poorly when the supervision comes
from those instructions. A dominant instruction
format nowadays is called “prompt” which mostly
is a short piece of text describing the core concept
of the task. Representative work includes (Radford
et al., 2019; Schick and Schütze, 2020, 2021), etc.
(Please refer to the survey (Liu et al., 2021) for
more details.)

While these prompt-based results are encourag-
ing, such prompts are often too simplistic, whereas
many real NLP problems cannot be effectively
formulated as short prompts or a few positive
examples. Motivated, Mishra et al. (2021) col-
lected more than 60 distinct NLP tasks with real-
world MTurk instructions, and claimed that pre-
trained language models, such as BART and GPT-3
(Brown et al., 2020), benefit from instructions to

generalize across tasks.
To our knowledge, the only work somehow re-

sembling ours is (Rostami et al., 2020), in which
task descriptions were incorporated into lifelong
learning for zero-shot transfer. We differ in three
aspects: (i) they focused on robot controlling prob-
lems, (ii) their tasks are from a single domain, and
(iii) in addition to the associated instruction, they
assumed that each task has a large number of la-
beled examples.

3 Problem formulation

3.1 ConTinTin

A system in our ConTinTin comprises two
stages, as illustrated in Figure 1. The first stage
describes its starting status before learning the
first new task; the second stage describes how it
evolve continually with a sequence of instruction-
equipped unseen tasks. To make it easier to under-
stand, we first introduce the evolution process, then
the initialization process.

Evolution process. ConTinTin tries to build
a model M that is able to deal with unseen tasks (U )
appearing consecutively by understanding merely
the instruction of each task. We denote the task
sequence as U = [u1, u2, · · · , ui, · · · ]. Each task
ui has a piece of textual description dui , and a set
of evaluation instances {(xjui , y

j
ui)}nj=1 where yjui

is the expected output of the input xjui . An example
dui will be shown in Section 3.3. We denote the
model M, having learned [u1, · · · , ui], as Mi. For
each task ui, Mi is required to generate the output
for xiui

based on the instruction in dui .

Initialization process. How to teach a system
some basic knowledge to understand task instruc-
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Algorithm 1 Forward-transfer metric calculation
Require: The model M, all unseen tasks in U , two

hyperparameter m and i
Ensure: −→g i

1: for task t in U do
2: for j < m times do
3: k = random.randint(1, |U|-i);
4: sample [u1, · · · , uk−1, uk, · · · ,

uk+i−1] from U -{t};
5: Mk = M evolves over [u1, · · · , uk−1, t];
6: Mk+i = M evolves over [u1, · · · , uk+i−1,

t];
7: −→g j

i,t=Mk+i(t) - Mk(t);
8: end for
9: −→g i,t =

1
m

∑m
j=1
−→g j

i,t;
10: end for
11: −→g i =

1
|U |

∑
t∈U
−→g i,t

Algorithm 2 Backward-transfer metric calculation
Require: The model M, all unseen tasks in U , two

hyperparameter m and i
Ensure: ←−g i

1: for task t in U do
2: for j < m times do
3: k = random.randint(1, |U|-i);
4: sample [u1, · · · , uk−1, t, uk+1, · · · ,

uk+i] from U ;
5: Mk = M evolves over [u1, · · · , uk−1, t];
6: Mk+i = M evolves over [u1, · · · , uk+i];
7: ←−g j

i,t=Mk+i(t) - Mk(t);
8: end for
9: ←−g i,t =

1
m

∑m
j=1
←−g j

i,t;
10: end for
11: ←−g i =

1
|U |

∑
t∈U
←−g i,t

tions and learn continually? We prepare a few
training tasks (S=[s1, s2, · · · , sk]) to equip the ma-
chine with the ability to annotate the task instances
given instructions. Each training task si also has
its instruction dsi and n labeled examples {(xjsi ,
yjsi)}

n
j=1. Note that here we want to control k to be

small; otherwise, if ConTinTin requires a large
number of training tasks at the initialization stage,
there is no point anymore to make use of instruc-
tions to alleviate the burden of data annotation.

3.2 Evaluation protocol

Forward-transfer evaluation. For this metric,
we attempt to quantify the effectiveness of learning
more prior tasks before solving a target task. Intu-

itively, more prior tasks, better downstream perfor-
mance. We define metric−→g i (hereafter, “→” refers
to forward-transfer and “←” refers to backward-
transfer): the average gained performance over all
new tasks in U when each of them is learned after
k + i− 1 previous tasks, compared with learning
them merely after k − 1 tasks (i is transferring
distance). As Algorithm 1 shows, computing −→g i

needs two loops. First, iterate on all tasks in U ,
select one task t as (i) the kth task and randomly
sample its upstream tasks [u1, · · · , uk−1] from
remaining tasks in U , getting one online learn-
ing score Mk(t), or as (ii) the (k + i)th task for
another online learning score Mk+i(t). Mk+i(t) -
Mk(t) is one instance of the forward-transfer score,
which indicates how much improvement the extra
upstream tasks of size i bring to the target task t.
For this particular task t, repeat its upstream tasks
m times and calculate the average as a final score
of t, denoted as −→g i,t. Second, the same procedure
is applied to all tasks in U and finally average −→g i,t

over all t to get the −→g i value.
−→g i always measures the expected performance

gain our system can get when it has continually
leaned i more tasks. For forward-transfer, we ex-
pect−→g i is positive and increases when i gets larger.

Backward-transfer evaluation. In contrast to
the forward-transfer evaluation, we define←−g i as
the backward-transfer metric, which tells how
much better our system can handle a task learned i
steps ago, compared with the performance on the
same the task last time. As Algorithm 2 describes,
two loops to calculate←−g i. Firstly, for a given task
t from U , put t in a random position k in the task
chain, followed by i other tasks. Subtract its perfor-
mance when the model M learned it the first time
(i.e., Mk(t)) by its performance when the model fin-
ished learning all the k + i tasks in the chain (i.e.,
Mk+i(t)). This operation generates a score given
this chain; repeat this process m times to get an
average gain←−g i,t for the task t. Secondly, average
the←−g i,t over all t to get the←−g i value.

If a system can always make use of downstream
tasks to help upstream tasks,←−g i should be positive;
otherwise,←−g i will be negative due to catastrophic
forgetting.

3.3 Data

There are no NLP datasets for ConTinTin par-
ticularly. This work is based on NATURAL-
INSTRUCTIONS (Mishra et al., 2021) after data
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Title

Definition

Caution

Answering simple science questions

In this subtask, you will answer a simple science question. Please indicate the
correct answer. If you're not sure about the answer, choose the last option "I
don't know".

The "A"-"D" responses correspond to the answer options mentioned in the input.
There is a 5th option "E" which should be used for questions for which you're
not sure about the answer (e.g., when the questions do not provide enough
information to answer).

Things to avoid

Do not generate anything else apart from one of the following characters: 'A', 'B,
'C', 'D', 'E'.

Positive example

Input: Question: When a guitar string is plucked, the sound is produced by (A)
the size of the guitar. (B) the metal on the guitar. (C) the wood on the guitar. (D)
the vibrations of the string. 
Output: D. 
Explanation: We know that the vibrations of the string produce sound in a
guitar. So, the correct answer has to be "D".

Negative example

Input: A student found a rock while hiking in the mountains. By looking at the
rock, she could tell the (A) exact weight of the rock. (B) length of time the rock
had been on the hiking path. (C) color and shape of the rock. (D) exact length of
the rock.  
Output: C i.e. color and shape of the rock.  
Explanation: "C" would have been a good answer.  
Suggestions for fixing it: You don't need to (and should not) explain the
answer option.

Prompt

Please indicate the correct answer: A, B, C, D or E. If the question is not
answerable or you're not sure about the answer, generate 'E' which implies "I
don't know".

Figure 2: An instruction example for the task
“answering science questions (misc)” in NATURAL-
INSTRUCTIONS (Mishra et al., 2021). Green parts
present favorable clues while red parts express unfa-
vorable predictions.

reorganization. Next, we first introduce NATURAL-
INSTRUCTIONS, then describe our revised version
specific to our problem.

NATURAL-INSTRUCTIONS was constructed in
the following pipeline: Mishra et al. (2021) first col-
lected some popular NLP benchmarks (e.g., Cos-
mosQA (Huang et al., 2019), Quoref (Dasigi et al.,
2019), Winogrande (Sakaguchi et al., 2020), etc.)
with their crowdsourcing instructions through en-
gaging with their authors. Since all the crowdsourc-
ing instructions include multiple steps to guide an-
notators to gather task instances, they further broke
raw crowdsourcing instructions down into their in-
dividual steps, generating a larger number of sub-
tasks that are minimal and standalone. At last, a to-
tal of 61 tasks are obtained, covering six categories:
13 question generation tasks (QG), 16 answer gen-
eration tasks (AG), 12 classification tasks (CF), 8
incorrect answer generation tasks (IAG), 10 min-
imal modification tasks (MM) and 2 verification
tasks (VF). An instruction example is presented in
Figure 2.

Our data split. For training tasks S, we ran-
domly select k tasks from the 61 tasks. All training

tasks in S have instructions and keep their labeled
example set. The remaining 61-k tasks are treated
as unseen task set U . Each task in U has only
instruction; the labeled example set is used for eval-
uation rather than model training.

It is noteworthy that task order in continual learn-
ing should influence the final performance. We do
not attempt to release a fixed split of S and U . In
experiments, we will randomly generate them mul-
tiple times to form different task chains and report
the average performance.

4 Our method InstructionSpeak

Most prior studies about continual learning focused
on backward-transfer (Serrà et al., 2018; d’Autume
et al., 2019) while paying less attention to the
forward-transfer performance. Next, we introduce
our approach to promoting both of them.

The big story of our strategies lies in better un-
derstanding of the textual instruction of ui. Two
concrete strategies as follows.

NEGATIVE TRAINING: to distinguish favorable
and unfavorable clues in instructions. Unfavorable
clues, such as the red items in Figure 2, are essen-
tial for humans to make decisions while not being
successfully leveraged by machine learning. For
example, Mishra et al. (2021) found discarding neg-
ative examples can even improve the performance.
We believe this indicates the approach failed to
learn from negative examples rather than those ex-
amples being truly useless. Then, how can we
make machines extract effective supervision from
negative samples?

First, we introduce a method that was tried but
did not work well – minimizing the probability
of generating negative output. Maximizing the
probabilities of gold output is widely used in text
generation. It sounds intuitive to minimize that for
unwanted output, such as (He and Glass, 2020).
We tried a joint training on maximizing positive
and minimizing negative examples, which is even
worse than maximizing the positive alone. Since
many “negative” outputs contain tokens that exist
in the gold answers, we suspect that minimizing
their probabilities will let the model have more
difficulty decoding the correct output.

After further study of those negative examples
and their explanations, we decide to treat those
negative examples as positive and move the nega-
tive learning phase as pretraining, i.e., pretrain on
negative examples first, then finetune on positive
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examples. The inspiration comes from the fact that
negative examples, despite the tag “negative”, can
still provide useful information about the expected
output. Take a look at the negative example in Fig-
ure 2, its output “C i.e., color and shape of the rock”
is discouraged just because it does not follow some
rules of automatic evaluation rather than it is really
wrong. Apparently, as a first step, optimizing the
system to generate the so-called “negative output”
is still better than any general-purpose pretrained
BART.

For each unseen task in U , we directly adopt its
negative examples if available. For the k training
tasks in S, positive instances (including positive
examples in instructions and those labeled task in-
stances) are much more than the negative examples,
we use the pretrained model on S to do prediction
on all inputs of S, if the output is not equal to
the gold output, we treat this (input, predicted out-
put) as a negative example. It means we have a
loose definition of what “negative output” is: it is
negative once it is not equal to the ground truth.
Since the pretrained model on S can already guar-
antee generation quality, those generated negative
outputs are mostly related with the gold outputs
(measured by ROUGE metrics).3

HISTORY TRAINING: revisit instructions of pre-
vious tasks. To mitigate catastrophic forgetting,
many prior works about continual learning tried to
store a couple of labeled examples of upstreaming
tasks to replay. In our ConTinTin formulation,
each new task is described merely by the instruc-
tion. Instead of storing some examples of previous
tasks, we keep their instructions. When learning
the ith task in U , our model will first learn all the in-
structions of prior i−2 tasks in a batch with a lower
learning rate. Revisiting precedent instructions is
cost-effective since each instruction is as short as a
couple of conventionally annotated examples but
with much more supervision.

Overall, our two strategies work jointly
to enhance the forward-transfer and the
backward-transfer performance. Our system
InstructionSpeak is based on BART,
treating all tasks as a text-to-text problem. The

3We also tried to build a negative-output generator given
available negative examples in instructions. This type of
negative output was planed for pretraining in both S and U .
However, due to the tiny size of negative examples in instruc-
tions (most tasks have at most 2 negative examples, a couple of
them have zero), the learned negative-output generator yields
outputs that are over unreasonable.

full input format of encoder: [Input] input string
[Title] title string [Prompt] prompt string
[Definition] definition string [Avoid] things
to avoid string [Caution] caution string [POS1]
[Input] input string [Output] output string
[Explanation] explanation string · · · [POSn]
[Input] input string [Output] output string
[Explanation] explanation string. Note that
we put the input at the beginning of this encoder’s
input template to prevent from being discarded
due to long text truncation. When pretrain on
training tasks S, the full input pattern is used;
when continually learn on U , since the input at
the beginning comes from positive or negative
examples of the instruction, we do not include the
positive examples in the input template (i.e., the
blue part is dropped).

Given S and U , the whole learning pipeline in
InstructionSpeak is: (i) pretrain on S to get
model M∗; (ii) use M∗ to make predictions on S to
collect negative example set S−; (iii) pretrain on
S− and finetune on S to get boosted model Mwhich
is the starting model status for continual learning
on U ; (iv) for the ith unseen task ui in U , tune M
on instructions of all earlier tasks [u1, · · · , ui−2]
in a batch; (v) tune on negative examples of ui, if
available; (vi) tune on positive examples of ui.

5 Experiments

Setup. We use the pretrained BART-base model
released by Huggingface. Hyperparameters: m =
10 in Algorithms 1-2; k = 5 for the task set S;
max input length 1024 tokens, learning rate 5e-
5, 3 epochs as suggested by (Mishra et al., 2021)
for most phases of training (except for 5e-6 and
one epoch for HISTORY TRAINING); batch size
5 for training on S and 2 for continual learning
on U . All unseen tasks U randomly select 1k la-
beled examples for performance evaluation. Note
that the official evaluation metric for NATURAL-
INSTRUCTIONS is ROUGE-L (Lin, 2004). Ac-
cording to the definitions of our evaluation met-
rics, −→g i and←−g i numbers are the same meaning as
ROUGE-L.

Baselines. There are no prior systems that can fit
the formulation of ConTinTin exactly. In addi-
tion, as the ConTinTin properties in Table 1 in-
dicate, ideally, ConTinTin prefers a fixed model
capacity. Therefore, we do not compare with sys-
tems that incorporate extra memory modules or
adaptors, such as (d’Autume et al., 2019; Jin et al.,
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Method
forward-transfer backward-transfer

−→g 1
−→g 10

−→g 20
−→g 30

−→g 40
←−g 1

←−g 10
←−g 20

←−g 30
←−g 40

Seq-finetune 1.44
±7.15

3.28
±19.46

-3.74
±8.73

2.9
±16.42

-0.36
±17.23

1.57
±3.28

0.04
±12.46

-0.19
±21.75

-6.48
±19.17

-9.46
±19.57

LAMOL (Sun et al., 2020a) -1.34
±4.46

1.41
±13.55

3.31
±14.32

-5.40
±20.44

-0.03
±12.68

2.67
±12.52

2.21
±7.98

9.42
±12.88

6.33
±20.13

7.21
±14.81

Our InstructionSpeak 2.16
±6.46

5.06
±20.87

2.29
±18.03

4.07
±7.95

4.39
±14.56

1.44
±9.28

5.21
±18.20

7.33
±13.48

14.99
±20.21

12.31
±16.53

w/o NEGATIVE TRAINING -2.89
±13.12

1.06
±17.21

1.33
±13.09

2.21
±14.42

1.78
±17.90

2.21
±12.23

3.37
±13.23

11.44
±11.03

10.36
±21.34

8.94
±19.41

w/o HISTORY TRAINING 1.88
±17.73

3.32
±12.76

4.41
±20.24

3.22
±16.66

2.97
±14.93

4.74
±16.54

-2.78
±19.38

-0.83
±12.93

1.35
±15.95

3.49
±14.05

Multi-task (upperbound) 7.98±20.47

Table 2: The main results of ConTinTin.

Method QG AG CF IAG MM VF mean

(Mishra et al., 2021)
paper report 52.xx 30.xx 50.xx 25.xx 47.xx 8.xx 35.33
reimplement 53.55 17.45 63.79 11.06 82.86 7.40 39.35

Seq-finetune
forward 49.61 21.46 48.74 9.70 57.31 7.61 32.40
backward 47.09 21.17 7.45 9.61 88.84 14.98 31.52

LAMOL
forward 52.23 20.45 67.74 8.81 82.29 8.83 40.05
backward 52.14 22.76 7.98 8.33 88.45 9.91 31.59

InstructionSpeak
w/o CL 51.07 23.40 70.68 11.43 88.13 6.22 41.82
forward 51.30 24.89 70.96 9.36 90.41 10.70 42.93
backward 53.04 24.93 7.51 8.56 88.09 13.86 32.66

Table 3: The results on standard split of NATURAL-INSTRUCTIONS. We use “52.xx” just because the original paper
by Mishra et al. (2021) did not report the “xx” numbers.

2021; Ke et al., 2021). The following systems are
considered:

• Seq-finetune: first pretrain a BART on S, then
fine-tune it on U sequentially. It does not pay spe-
cial attention to catastrophic forgetting.

• Multi-task: first pretrain a BART on S, then
train on instructions of all tasks in U simultane-
ously. It, acting as the upperbound of continual
learning, does not distinguish between forward-
transfer and backward-transfer.

• LAMOL (Sun et al., 2020a): A state-of-the-
art system that uses pretrained language models
for task continual learning. All tasks are con-
verted into QA and a single language model is
used for the continual learning; before training
on a new task, the language model first generates
pseudo-examples for previous tasks; those pseudo-
examples are mixed with the examples of the new
task to train the language model. The original lan-
guage model in LAMOL is a smallest pretrained
GPT-2, we replace it with BART for a fair compar-
ison.
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Figure 3: Influence of training task size (i.e., k value
in S=[s1, s2, · · · , sk]) on forward-transfer. k ∈
{1, 5, 10, 20}. Please note that k = 5 is what we used
to report Table 2.

5.1 Results

Table 2 shows the comparison between our system
InstructionSpeak and those baselines. We
have three threads of observations.

Firstly, our system InstructionSpeak con-
sistently outperforms all baselines for both
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Figure 4: Different transferabilities on tasks of six categories.

forward-transfer and backward-transfer evalua-
tions. For forward-transfer, all systems cannot
beat the multi-task learning, but in backward-
transfer, InstructionSpeak even outperforms
the multi-task competitor; this is because multi-task
learning, though widely treated as upperbound for
continual learning, only trained on all U tasks for
3 epochs. Our method, equipped with HISTORY

TRAINING, actually learns many times of earlier U
tasks during the continual learning. Despite a few
exceptions, generally speaking, both the forward
and backward transfer performance increase when
the transferring distance increases from 1 to 40.

Secondly, the ablation study verifies the effec-
tiveness of our two strategies. NEGATIVE TRAIN-
ING plays the leading role in forward-transfer while
doing a moderate favor to the backward-transfer. A
totally opposite phenomenon is noticed for HIS-
TORY TRAINING: it clearly contributes to the
backward-transfer evaluation while influencing the
forward-transfer to some extent.

Thirdly, the standard deviations are mostly large;
this should be due to the fact that the 61 tasks
in NATURAL-INSTRUCTIONS contains 6 distinct
categories; each category benefits from the model
generalization by different degrees.

To further figure out the exact performance
of our system on different task categories,
we report on the standard split of NATURAL-
INSTRUCTIONS as Mishra et al. (2021) did: they
have a fixed set of 12 tasks for testing (2 for each
category), and all remaining tasks as training data.
Since their 12 test tasks have no order, for each
of the test category, we put it as the sixth (resp.
first) task in the chain for forward-transfer (resp.
backward-transfer). Once the position of the test

category is fixed, we randomly order the remaining
five categories in the sequence for 10 times and
report the average performance. Thus, each test
category will have two numbers for every continual
learning approach: one for forward-transfer, the
other for backward-transfer. In addition, we also
report our system InstructionSpeak without
continual learning (w/o CL), i.e., using the system
pretrained on 49 tasks in S to predict.

Table 3 lists the results of all continual learning
systems on NATURAL-INSTRUCTIONS. We notice
that (i) the results of different task categories vary a
lot. For example, minimal modification tasks (MM)
easily get ROUGE-L score above 80, but it is pretty
challenging to obtain ROUGE-L score over 10
for Verification (VF); (ii) Classification tasks (CF)
seem suffering from backward-transfer. We suspect
CF is too sensitive to classification-specific supervi-
sion, such as label spaces; the continual learning on
many subsequent tasks of different categories will
mislead the model in solving CF. This is further
supported by looking at the results of three sys-
tems: InstructionSpeak w/o CL, (Mishra
et al., 2021) and InstructionSpeak forward-
transfer. The first two systems start predicting on
U once finish the training on S. Note that CF in U
has 10 CF tasks in S; it means the first two systems,
although they did not learn the CF in U , still ob-
tained enough supervision for this category from S.
That’s why all three systems get high performance
on CF. Once they get tuned on more different cate-
gories, the supervision disappears increasingly.

5.2 Analysis

In addition to the results in Tables 2-3, we are
further interested in the following two questions.
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Q1: how many training tasks does a system need
to learn from instructions? Recall that apart
from the U in the evolution process, we use k tasks
(S=[s1, s2, · · · , sk]) to initialize the model. S can
have maximal 20 tasks (due to the limited size of
NATURAL-INSTRUCTIONS) and our system only
used 5 out of them. Here, we further explore the
model’s behavior when k varies.

Figure 3 depicts the influence of k on forward-
transfer. For forward-transfer, larger k values (i.e.,
more training tasks to initialize the model) consis-
tently improve performance. We think that more
training tasks tend to teach the model better at un-
derstanding the task instructions, which can further
improve the model’s transferability when it learns
i more tasks to report −→g i on a downstream task
ui. We notice that NATURAL-INSTRUCTIONS v2 4

has over 1.7k tasks. We leave it as future work to
further explore the potential of increasing training
tasks.

Q2: how do tasks of different categories in U
benefit? In Section 3.3, we mentioned that all
tasks can be organized into six categories. We
check their separate performances here. Note
that both Algorithms 1-2 obtain the final score
by averaging over all tasks in U , here we aver-
age those tasks that belong to the same category to
get category-wise forward-transfer and backward-
transfer performances.

From Figure 4(a) and Figure 4(b), we notice that:
(i) tasks of distinct categories indeed demonstrate
different performances for both forward-transfer
and backward-transfer evaluations; (ii) the phe-
nomena on the two evaluations are similar: some
categories consistently benefit more, such as “clas-
sification”, “answer generation”, “question gener-
ation”, while some keep obtaining worse scores,
such as “minimal modification” and “verification”
categories. We think this discrepancy origins from
two factors; one is how many tasks a particular cat-
egory has, the other is how similar or relevant the
tasks in that category are with tasks of other cate-
gories. Intuitively, a categories with more tasks oc-
cupying the task chain and resembling other tasks,
such as “classification”, “answer generation” and
“question generation”, can be easier solved when
the model comes up to it or comes back to it.

4https://github.com/allenai/
natural-instructions

6 Conclusions

This work introduced a novel learning problem:
continual learning from task instructions. The goal
is to explore the potential of exiting pretrained lan-
guage models in solving new tasks by understand-
ing instructions rather than labeled examples. With
our problem formulation and a well-performing
system, we pave the way for future study of this
challenge in the community.
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