
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2776 - 2789

May 22-27, 2022 c©2022 Association for Computational Linguistics

Continual Few-shot Relation Learning via Embedding Space
Regularization and Data Augmentation

Chengwei Qin♣ and Shafiq Joty♣♠

♣ Nanyang Technological University
♠ Salesforce Research

{chengwei003@e.ntu, srjoty@ntu}.edu.sg

Abstract

Existing continual relation learning (CRL)
methods rely on plenty of labeled training data
for learning a new task, which can be hard to
acquire in real scenario as getting large and
representative labeled data is often expensive
and time-consuming. It is therefore necessary
for the model to learn novel relational patterns
with very few labeled data while avoiding catas-
trophic forgetting of previous task knowledge.
In this paper, we formulate this challenging
yet practical problem as continual few-shot re-
lation learning (CFRL). Based on the finding
that learning for new emerging few-shot tasks
often results in feature distributions that are
incompatible with previous tasks’ learned dis-
tributions, we propose a novel method based on
embedding space regularization and data aug-
mentation. Our method generalizes to new few-
shot tasks and avoids catastrophic forgetting of
previous tasks by enforcing extra constraints on
the relational embeddings and by adding extra
relevant data in a self-supervised manner. With
extensive experiments we demonstrate that our
method can significantly outperform previous
state-of-the-art methods in CFRL task settings.1

1 Introduction

Relation Extraction (RE) aims to detect the re-
lationship between two entities in a sentence, for
example, predicting the relation birthdate in the
sentence “Kamala Harris was born in Oakland,
California, on October 20, 1964.” for the two enti-
ties Kamala Harris and October 20, 1964. It serves
as a fundamental step for downstream tasks such as
search and question answering (Dong et al., 2015;
Yu et al., 2017). Traditionally, RE methods were
built by considering a fixed static set of relations
(Miwa and Bansal, 2016; Han et al., 2018a). How-
ever, similar to entity recognition, RE is also an
open-vocabulary problem (Sennrich et al., 2016),

1Code and models are available at
https://github.com/qcwthu/Continual_Fewshot_Relation_Learning

Figure 1: Difference between Continual Relation Learn-
ing (CRL) and Continual Few-shot Relation Learning
(CFRL). Except for the first task which has enough train-
ing data, the subsequent new tasks are all few-shot in
CFRL. In contrast, CRL assumes enough training data
for every task.

where the relation set keeps growing as new rela-
tion types emerge with new data.

A potential solution is to formalize RE as Contin-
ual Relation Learning or CRL (Wang et al., 2019).
In CRL, the model learns relational knowledge
through a sequence of tasks, where the relation
set changes dynamically from the current task to
the next. The model is expected to perform well
on both the novel and previous tasks, which is chal-
lenging due to the existence of Catastrophic Forget-
ting phenomenon (McCloskey and Cohen, 1989;
French, 1999) in continual learning. In this phe-
nomenon, the model forgets previous relational
knowledge after learning new relational patterns.

Existing methods to address catastrophic forget-
ting in CRL can be divided into three categories:
(i) regularization-based methods, (ii) architecture-
based methods, and (iii) memory-based methods.
Recent work shows that memory-based methods
which save several key examples from previous
tasks to a memory and reuse them when learning
new tasks are more effective in NLP (Wang et al.,
2019; Sun et al., 2020). Successful memory-based
CRL methods include EAEMR (Wang et al., 2019),
MLLRE (Obamuyide and Vlachos, 2019), EMAR
(Han et al., 2020), and CML (Wu et al., 2021).

Despite their effectiveness, one major limitation
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of these methods is that they all assume plenty
of training data for learning new relations (tasks),
which is hard to satisfy in real scenario where con-
tinual learning is desirable, as acquiring large la-
beled datasets for every new relation is expensive
and sometimes impractical for quick deployment
(e.g., RE from news articles during the onset of an
emerging event like Covid-19). In fact, one of the
main objectives of continual learning is to quickly
adapt to new environments or tasks by exploiting
previously acquired knowledge, a hallmark of hu-
man intelligence (Lopez-Paz and Ranzato, 2017).
If the new tasks are few-shot, the existing meth-
ods suffer from over-fitting as shown later in our
experiments (§4). Considering that humans can ac-
quire new knowledge from a handful of examples,
it is expected for the models to generalize well on
the new tasks with few data. We regard this prob-
lem as Continual Few-shot Relation Learning or
CFRL (Fig. 1). Indeed, in relation to CFRL, Zhang
et al. (2021), Zhu et al. (2021) and Chen and Lee
(2021) recently introduce methods for incremental
few-shot learning in Computer Vision.

Based on the observation that the learning of
emerging few-shot tasks may result in distorted
feature distributions of new data which are incom-
patible with previous embedding space (Ren et al.,
2020), this work introduces a novel model based
on Embedding space Regularization and Data Aug-
mentation (ERDA) for CFRL. In particular, we
propose a multi-margin loss and a pairwise mar-
gin loss in addition to the cross-entropy loss to im-
pose further relational constraints in the embedding
space. We also introduce a novel contrastive loss
to learn more effectively from the memory data.
Our proposed data augmentation method selects
relevant samples from unlabeled text to provide
more relational knowledge for the few-shot tasks.
The empirical results show that our method can
significantly outperform previous state-of-the-art
methods. In summary, our main contributions are:

• To the best of our knowledge, we are the first one
to consider CFRL. We define the CFRL problem
and construct a benchmark for the problem.

• We propose ERDA, a novel method for CFRL

based on embedding space regularization and
data augmentation.

• With extensive experiments, we demonstrate the
effectiveness of our method compared to existing
ones and analyse our results thoroughly.

2 Related Work

Conventional RE methods include supervised (Ze-
lenko et al., 2002; Liu et al., 2013; Zeng et al., 2014;
Miwa and Bansal, 2016), semi-supervised (Chen
et al., 2006; Sun et al., 2011; Hu et al., 2020) and
distantly supervised methods (Mintz et al., 2009;
Yao et al., 2011; Zeng et al., 2015; Han et al.,
2018a). These methods rely on a predefined rela-
tion set and have limitations in real scenario where
novel relations are emerging. There have been
some efforts which focus on relation learning with-
out predefined types, including open RE (Shinyama
and Sekine, 2006; Etzioni et al., 2008; Cui et al.,
2018; Gao et al., 2020) and continual relation learn-
ing (Wang et al., 2019; Obamuyide and Vlachos,
2019; Han et al., 2020; Wu et al., 2021).
Continual Learning (CL) aims to learn knowledge
from a sequence of tasks. The main problem CL
attempts to address is catastrophic forgetting (Mc-
Closkey and Cohen, 1989), i.e., the model forgets
previous knowledge after learning new tasks. Prior
methods to alleviate this problem can be mainly
divided into three categories. First, regularization-
based methods impose constraints on the update of
neural weights important to previous tasks to alle-
viate catastrophic forgetting (Li and Hoiem, 2017;
Kirkpatrick et al., 2017; Zenke et al., 2017; Ritter
et al., 2018). Second, architecture-based meth-
ods dynamically change model architectures to ac-
quire new information while remembering previous
knowledge (Chen et al., 2016; Rusu et al., 2016;
Fernando et al., 2017; Mallya et al., 2018). Finally,
memory-based methods maintain a memory to save
key samples of previous tasks to prevent forgetting
(Rebuffi et al., 2017; Lopez-Paz and Ranzato, 2017;
Shin et al., 2017; Chaudhry et al., 2019). These
methods mainly focus on learning a single type of
tasks. More recently, researchers have considered
lifelong language learning (Sun et al., 2020; Qin
and Joty, 2022), where the model is expected to
continually learn from different types of tasks.
Few-shot Learning (FSL) aims to solve tasks con-
taining only a few labeled samples, which faces
the issue of over-fitting. To address this, exist-
ing methods have explored three different direc-
tions: (i) data-based methods use prior knowledge
to augment data to the few-shot set (Santoro et al.,
2016; Benaim and Wolf, 2018; Gao et al., 2020);
(ii) model-based methods reduce the hypothesis
space using prior knowledge (Rezende et al., 2016;
Triantafillou et al., 2017; Hu et al., 2018); and
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(iii) algorithm-based methods try to find a more
suitable strategy to search for the best hypothesis in
the whole hypothesis space (Hoffman et al., 2013;
Ravi and Larochelle, 2017; Finn et al., 2017).
Summary. Existing work in CRL which involves
a sequence of tasks containing sufficient training
data, mainly focuses on alleviating the catastrophic
forgetting of previous relational knowledge when
the model is trained on new tasks. The work in few-
shot learning mostly leverages prior knowledge to
address the over-fitting of novel few-shot tasks. In
contrast to these lines of work, we aim to solve a
more challenging yet more practical problem CFRL

where the model needs to learn relational patterns
from a sequence of few-shot tasks continually.

3 Methodology

In this section, we first formally define the CFRL

problem. Then, we present our method for CFRL.

3.1 Problem Definition

CFRL involves learning from a sequence of tasks
T = (T 1, . . . , T n), where every task T k has its
own training set Dk

train, validation set Dk
valid, and

test set Dk
test. Each dataset D contains several

samples {(xi, yi)}|D|
i=1, whose labels yi belong to

the relation set Rk of task T k. In contrast to the
previously addressed continual relation learning
(CRL), CFRL assumes that except for the first task
which has enough data for training, the subsequent
new tasks are all few-shot, meaning that they have
only few labeled instances (see Fig. 1). For exam-
ple, consider there are three relation learning tasks
T 1, T 2 and T 3 with their corresponding relation
sets R1, R2, and R3, each having 10 relations. In
CFRL, we assume the existing task T 1 has enough
training data (e.g., 100 samples for every relation in
R1), while the new tasks T 2 and T 3 are few-shot
with only few (e.g., 5) samples for every relation
in R2 and R3. Assuming that the relation number
of each few-shot task is N and the sample number
of every relation is K, we call this setup N -way
K-shot continual learning. The problem setup of
CFRL is aligned with the real scenario, where we
generally have sufficient data for an existing task,
but only few labeled data as new tasks emerge.

The model in CFRL is expected to first learn T 1

well, which has sufficient training data to obtain
good ability to extract the relation information in
the sentence. Then at time step k, the model will
be trained on the training set Dk

train of few-shot task

Figure 2: Our framework for CFRL. The Data Augmentation
component is used only for few-shot tasks (k > 1).

T k. After learning T k, the model is expected to
perform well on both T k and the previous k−1
tasks, as the model will be evaluated on D̂k

test =
∪k
i=1D

i
test consisting of all known relations after

learning T k, i.e., R̂k = ∪k
i=1R

i. This requires the
model to overcome the catastrophic forgetting of
previous knowledge and to learn new knowledge
well with very few labeled data.

To overcome the catastrophic forgetting problem,
a memory M =

{
M1,M2, ...

}
, which stores

some key samples of previous tasks is maintained
during the learning. When the model is learning
T k, it has access to the data saved in memory
M1, ...,Mk−1. As there is no limit on the number
of tasks, the size of memory Mk is constrained to
be small. Therefore, the model has to select only
key samples from the training set Dk

train to save
them in Mk. In our CFRL setting, only one sample
per relation is allowed to be saved in the memory.

3.2 Overall Framework

Our framework for CFRL is shown in Fig. 2 and
Alg. 1 describes the overall training process (see
Appendix A.1 for a block diagram). At time step
k, given the training data Dk

train for the task T k,
depending on whether the task is a few-shot or
not, the process has four or three working modules,
respectively. The general learning process (§3.3)
has three steps that apply to all tasks. If the task
is a few-shot task (k > 1), we apply an additional
step to create an augmented training set D̃k

train. For
the initial task (k = 1), we have D̃k

train = Dk
train.

For any task T k, we use a siamese model to en-
code every new relation ri ∈ Rk into ri ∈ IRd

as well as the sentences, and train the model on
D̃k

train to acquire relation information of the new
data (§3.3.2). To overcome forgetting, we select the
most informative sample for each relation ri ∈ Rk

from Dk
train and update the memory M̂k (§3.3.3).

Finally, we combine D̃k
train and M̂k as the train-

ing data for learning new relational patterns and
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Algorithm 1 Training process at time step k

Require: the training set Dk
train and the relation set Rk of

the current task T k, the current memory M̂k−1 and the
known relation set R̂k−1, the model θ, the similarity
model Sπ , and the unlabeled text corpus C.

1: if k == 1 then ▷ initial task
2: D̃k

train = Dk
train

3: else ▷ few-shot task
4: SELECT similar samples from C using Sπ for every

sample in Dk
train and store them in A

5: D̃k
train = A ∪Dk

train
6: end if
7: INITIALIZE ri for every relation ri ∈ Rk

8: for i = 1, . . . , iter1 do
9: UPDATE θ with Lnew on D̃k

train ▷ Train on new task
10: end for
11: SELECT key samples from Dk

train for every relation ri ∈
Rk to save in Mk

12: R̂k = R̂k−1 ∪Rk

13: M̂k = M̂k−1 ∪Mk ▷ Update memory
14: H̃k = D̃k

train ∪ M̂k ▷ Combine two data sources
15: for i = 1, . . . , iter2 do
16: UPDATE θ with Lmem on H̃k

17: UPDATE ri for every relation ri ∈ R̂k

18: end for

remembering previous knowledge (§3.3.4). We
also simultaneously update the representation of all
relations in R̂k, which involves making a forward
pass through the current model. The learning and
updating are done iteratively for convergence.

For data augmentation in few-shot tasks (§3.4),
we select reliable samples with high relational sim-
ilarity score from an unlabelled Wikipedia cor-
pus using a fine-tuned BERT (Devlin et al., 2019),
which serves as the relational similarity model Sπ.
In the interests of coherence, we first present the
general learning method followed by the augmen-
tation process for few-shot learning.

3.3 General Learning Process

We first introduce the encoder network as it is the
basic component of the whole framework.

3.3.1 The Encoder Network

The siamese encoder (fθ) aims at extracting generic
and relation related features from the input. The
input can be a labeled sentence or the name of a
relation. We adopt two kinds of encoders:

• Bi-LSTM To have a fair comparison with pre-
vious work, we use the same architecture as Han
et al. (2020). It takes GloVe embeddings (Pen-
nington et al., 2014) of the words in a given input
and produces a vector representation through a Bi-
LSTM (Hochreiter and Schmidhuber, 1997).

• BERT We adopt BERTbase which has 12 lay-
ers and 110M parameters. As the new tasks are few-
shot, we only fine-tune the 12-th encoding layer
and the extra linear layer. We include special to-
kens around the entities (‘#’ for the head entity and
‘@’ for the tail entity) in a given labeled sentence
to improve the encoder’s understanding of relation
information. We use the [CLS] token features as
the representation of the input sequence.

3.3.2 Learning with New Data
At time step k, to have a good understanding of the
new relations, we fine-tune the model on the ex-
panded dataset D̃k

train. The model fθ first encodes
the name of each new relation rj ∈ Rk into its
representation rj ∈ IRd by making a forward pass.
Then, we optimize the parameters (θ) by minimiz-
ing a loss Lnew that consists of a cross entropy loss,
a multi-margin loss and a pairwise margin loss.

The cross entropy loss Lce is used for relation
classification as follows.

∑
(xi,yi)∈D̃k

train

|R̂k|∑
j=1

δyi,rj × log
exp(g(fθ(xi), rj))∑|R̂k|
l=1 exp(g(fθ(xi), rl))

(1)
where R̂k is the set of all known relations at step
k, g(, ) is a function used to measure similarity
between two vectors (e.g., cosine similarity or L2
distance), and δa,b is the Kronecker delta function–
δa,b = 1 if a equals b, otherwise δa,b = 0.

In inference, we choose the relation label that
has the highest similarity with the input sentence
(Eq. 8). To ensure that an example has the highest
similarity with the true relation, we additionally
design two margin-based losses, which increase
the score between an example and the true label
while decreasing the scores for the wrong labels.
The first one is a multi-margin loss defined as:

Lmm =
∑

(xi,yi)∈D̃k
train

|R̂k|∑
j=1,j ̸=ti

max
(
0,

m1 − g(fθ(xi), rti) + g(fθ(xi), rj)
) (2)

where ti is the correct relation index in R̂k satis-
fying rti = yi and m1 is a margin value. The
Lmm loss attempts to ensure intra-class compact-
ness while increasing inter-class distances. The
second one is a pairwise margin loss Lpm:∑
(xi,yi)∈D̃k

train

max(0,m2 − g(fθ(xi), rti) + g(fθ(xi), rsi))

(3)
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where m2 is the margin for Lpm and si =
argmaxs g(fθ(xi), rs) s.t. s ̸= ti, the closest
wrong label. The Lpm loss penalizes the cases
where the similarity score of the closest wrong
label is higher than the score of the correct label
(Yang et al., 2018). Both Lmm and Lpm improve
the discriminative ability of the model (§4.4).
The total loss for learning on T k is defined as:

Lnew = λceLce + λmmLmm + λpmLpm (4)

where λce, λmm and λpm are the relative weights of
the component losses, respectively.

3.3.3 Selecting Samples for Memory

After training the model fθ with Eq. (4), we use it
to select one sample per new relation. Specifically,
for every new relation rj ∈ Rk, we obtain the
centroid feature cj by averaging the embeddings
of all samples labeled as rj in Dk

train as follows.

cj =
1

|Dk
rj |

∑
(xi,yi)∈Dk

rj

fθ(xi) (5)

where Dk
rj = {(xi, yi)|(xi, yi) ∈ Dk

train, yi = rj}.
Then we select the instance closest to cj from Dk

rj
as the most informative sample and save it in mem-
ory Mk. Note that the selection is done from Dk

train,
not from the expanded set D̃k

train.

3.3.4 Alleviating Forgetting through Memory

As the learning of new relational patterns may
cause catastrophic forgetting of previous knowl-
edge (see baselines in §4), our model needs to
learn from the memory data to alleviate forget-
ting. We combine the expanded set D̃k

train and the
whole memory data M̂k = ∪k

j=1Mj into H̃k to
allow the model to learn new relational knowledge
and consolidate previous knowledge. However, the
memory data is limited containing only one sample
per relation. To learn effectively from such limited
data, we design a novel method to generate a hard
negative sample set Pi for every sample in M̂k.

The negative samples are generated on the fly.
After sampling a mini-batch Bt from H̃k, we con-
sider all memory data in Bt as MBt . For every sam-
ple (x̂i, ŷi) in MBt , we replace its head entity ehi or
tail entity eti with the corresponding entity of a ran-
domly selected sample in the same batch Bt to get
the hard negative sample set Pi = {(x̂Pi

j , ŷi)}|Pi|
j=1.

Then (x̂i, ŷi) and Pi are used to calculate a margin-
based contrastive loss Lcon as follows.

Lcon =
∑

(x̂i,ŷi)∈MBt

max
(
0,m3 − g(fθ(x̂i), rt̂i)+∑

(x̂
Pi
j ,ŷi)∈Pi

g(fθ(x̂
Pi
j ), rt̂i)

) (6)

where t̂i is the relation index satisfying rt̂i = ŷi
and m3 is the margin value for Lcon. This loss
forces the model to distinguish the valid relations
from the hard negatives so that the model learns
more precise and fine-grained relational knowledge.
In addition, we also use the three losses Lce and
Lmm and Lpm defined in §3.3.2 to update θ on Bt.
The total loss on the memory data is:

Lmem = λceLce + λmmLmm + λpmLpm + λconLcon (7)

where λce, λmm, λpm and λcon are the relative
weights of the corresponding losses.

Updating Relation Embeddings After training
the model on H̃k for few steps, we use the mem-
ory M̂k to update the relation embedding ri of all
known relations. For a relation ri ∈ R̂k, we aver-
age the embeddings (obtained by making a forward
pass through fθ) of the relation name and memory
data to obtain its updated representation ri. The
training of θ and updating of ri is done iteratively
to grasp new relational patterns while alleviating
the catastrophic forgetting of previous knowledge.

3.3.5 Inference
For a given input xi in D̂k

test, we calculate the simi-
larity between xi and all known relations, and pick
the one with the highest similarity score:

y∗i = argmax
r∈R̂k

g(fθ(xi), r) (8)

3.4 Data Augmentation for Few-shot Tasks
For each few-shot task T k, we aim to get more data
by selecting reliable samples from an unlabeled cor-
pus C with tagged entities before the general learn-
ing process (§3.3) begins. We achieve this using a
relational similarity model Sπ and sentences from
Wikipedia as C. The model Sπ (described later)
takes a sentence as input and produces a normal-
ized vector representation. The cosine similarity
between two vectors is used to measure the rela-
tional similarity between the two corresponding
sentences. A higher similarity means the two sen-
tences are more likely to have the same relation
label. We propose two novel selection methods,
which are complementary to each other.
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(a) Augmentation via Entity Matching For
each instance (xi, yi) in Dk

train, we extract its entity
pair (ehi , e

t
i) with ehi being the head entity and eti be-

ing the tail entity. As sentences with the same entity
pair are more likely to express the same relation, we
first collect a candidate set Q = {x̃j}|Q|

j=1 from C,
where x̃j shares the same entity pair (ehi , e

t
i) with

xi. If Q is a non-empty set, we pair all x̃j in Q
with xi, and denote each pair as ⟨x̃j , xi⟩. Then we
use Sπ to obtain a similarity score sj for ⟨x̃j , xi⟩.
After getting scores for all pairs, we pick the in-
stances x̃j with similarity score sj higher than a
predefined threshold α as new samples and label
them with relation yi. The selected instances are
then augmented to Dk

train as additional data.
(b) Augmentation via Similarity Search The
hard entity matching could be too restrictive at
times. For example, even though the sentences
“Harry Potter is written by Joanne Rowling” and
“Charles Dickens is the author of A Tale of Two
Cities” share the same relation author, hard match-
ing fails to find any relevance. Therefore, in cases
when entity matching returns an empty Q, we re-
sort to similarity search using Faiss (Johnson et al.,
2017). Given a query vector qi, it can efficiently
search for vectors {vj}Kj=1 with the top-K highest
similarity scores in a large vector set V . In our case,
qi is the representation of xi and V contains the
representations of the sentences in C. We use Sπ

to obtain these representations; the difference is
that V is pre-computed while qi is obtained dur-
ing training. We labeled the top-K most similar
instances with yi and augment them to Dk

train.
Similarity Model To train Sπ, inspired by Soares
et al. (2019), we adopt a contrastive learning
method to fine-tune a BERTbase model on C,
whose sentences are already tagged with entities.
Based on the observation that sentences with the
same entity pair are more likely to encode the same
relation, we use sentence pairs containing the same
entities in C as positive samples. For negatives,
instead of using all sentence pairs containing dif-
ferent entities, we select pairs sharing only one
entity as hard negatives (i.e., pair (xi, xj) where
ehi = ehj and eti ̸= etj or eti = etj and ehi ̸= ehj ).
We randomly sample the same number of negative
samples as the positive ones to balance the training.

For an input pair (xi, xj), we compute the simi-
larity score based on the following formula.

σ(xi, xj) =
1

1 + exp(−Sπ(xi)TSπ(xj))
(9)

where Sπ(x) is the normalized representation of x
obtained from the final layer of BERT. Then we
optimize the parameters π of Sπ by minimizing a
binary cross entropy loss Lpretrain as follows.

−
∑

(xi,xj)∈Cp

log σ(xi, xj)−
∑

(x′
i,x

′
j)∈Cn

log(1− σ(x′
i, x

′
j))

(10)
where Cp is a positive batch and Cn is a negative
batch. This objective tries to ensure that sentence
pairs with the same entity pairs have higher cosine
similarity than those with different entities.

4 Experiment

We define the benchmark and evaluation metric for
CFRL before presenting our experimental results.

4.1 Benchmark and Evaluation Metric
Benchmark As the benchmark for CFRL needs
to have sufficient relations as well as data and be
suitable for few-shot learning, we create the CFRL

benchmark based on FewRel (Han et al., 2018b).
FewRel is a large-scale dataset for few-shot RE,
which contains 80 relations with hundreds of sam-
ples per relation. We randomly split the 80 relations
into 8 tasks, where each task contains 10 relations
(10-way). To have enough data for the first task
T 1, we sample 100 samples per relation. All the
subsequent tasks T 2, ..., T 8 are few-shot; for each
relation, we conduct 2-shot, 5-shot and 10-shot ex-
periments to verify the effectiveness of our method.

In addition, to demonstrate the generalizability
of our method, we also create a CFRL benchmark
based on the TACRED dataset (Zhang et al., 2017)
which contains only 42 relations. We filter out the
special relation “n/a” (not available) and split the
remaining 41 relations into 8 tasks. Except for the
first task that contains 6 relations, all other tasks
have 5 relations (5-way). Similar to FewRel, we
randomly sample 100 examples per relation in T 1

and conduct 5-shot and 10-shot experiments.

Metric At time step k, we evaluate the model
performance through relation classification accu-
racy on the test sets D̂k

test = ∪k
i=1D

i
test of all seen

tasks {T i}ki=1. This metric reflects whether the
model can alleviate catastrophic forgetting while
acquiring novel knowledge well with very few data.
Since the model performance might be influenced
by task sequences and few-shot training samples,
we run every experiment 6 times each time with a
different random seed to ensure a random task or-
der and model initialization, and report the average
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Method Task index

1 2 3 4 5 6 7 8

SeqRun 92.78 52.11 30.08 24.33 19.83 16.90 14.36 12.34
Joint Train 92.78 76.29 69.39 64.75 60.45 57.64 52.80 50.03

EMR 92.78 69.14 56.24 50.03 46.50 43.21 39.88 37.51
EMAR 85.20 62.02 52.45 48.95 46.77 44.33 40.75 39.04
IDLVQ-C 92.23 69.15 57.42 51.66 49.31 46.24 42.25 40.56

ERDA 92.57 79.17 70.43 65.01 61.06 57.54 54.88 53.23

Table 1: Accuracy (%) of different methods at every time
step on FewRel benchmark for 10-way 5-shot CFRL. ERDA
is significantly better than IDLVQ-C with p-value < 0.001.

accuracy along with variance. We perform paired
t-test for statistical significance.

4.2 Model Settings & Baselines

The model settings are shown in Appendix A.2. We
compare our approach with the following baselines:

• SeqRun fine-tunes the model only on the training
data of the new tasks without using any memory
data. It may face serious catastrophic forgetting
and serves as a lower bound.

• Joint Training stores all previous samples in the
memory and trains the model on all data for each
new task. It serves as an upper bound in CRL.

• EMR (Wang et al., 2019) maintains a memory
for storing selected samples from previous tasks.
When training on a novel task, EMR combines
the new training data and memory data.

• EMAR (Han et al., 2020) is the state-of-the-art
on CRL, which adopts memory activation and re-
consolidation to alleviate catastrophic forgetting.

• IDLVQ-C (Chen and Lee, 2021) introduces
quantized reference vectors to represent previous
knowledge and mitigates catastrophic forgetting
by imposing constraints on the quantized vectors
and embedded space. It was originally proposed
for image classification with state-of-the-art re-
sults in incremental few-shot learning.

4.3 Main Results

We compare the performance of different methods
using the same setting as EMAR (Han et al., 2020),
which uses a Bi-LSTM encoder. We also report the
results with a BERT encoder.

FewRel Benchmark We report our results on
10-way 5-shot in Table 1, while Fig. 3 shows the
results on the 10-way 2-shot and 10-way 10-shot
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Figure 3: Comparison results at each time step on FewRel
benchmark for 10-way 2-shot and 10-shot settings. For both
settings, ERDA is significantly better than IDLVQ-C with p-
value < 0.001. The variance is reported as light color region.

Figure 4: t-SNE visualization of IDLVQ-C and ERDA at
two stages. Colors represent different relation classes with
numbers being the relation indices. The initial embeddings
of four base classes after learning the first task are shown
in the upper row. As the data for the first task is sufficient,
both methods can obtain separable embedding space. The
lower row shows the embeddings of four base classes and two
novel classes (Id 5 and 9) after learning a new few-shot task.
Compared with IDLVQ-C, ERDA shows better intra-class
compactness (circled regions) and larger inter-class distances
(see the distances between 5 and 9, and 9 and 65).

settings.2 From the results, we can observe that:
• Our proposed ERDA outperforms previous base-
lines in all CFRL settings, which demonstrates the
superiority of our method. Simply fine-tuning the
model with new few-shot examples leads to rapid
drops in accuracy due to severe over-fitting and
catastrophic forgetting. Although EMR and EMAR
adopt a memory module to alleviate forgetting,
their performance still decreases quickly as they
require plenty of training data for learning a new
task. Compared with EMR and EMAR, IDLVQ-C
is slightly better as it introduces quantized vectors
that can better represent the embedding space of
few-shot tasks. However, IDLVQ-C does not nec-
essarily push the samples from different relations
to be far apart in the embedding space and the up-

2To avoid visual clutter, we report only mean scores over
6 runs in Table 1 and refer to Table 6 and Table 5 in Appendix
for variance and elaborate results for different task order.
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Figure 5: Comparison results at every time step on TACRED
benchmark for 5-way 5-shot and 10-shot settings. ERDA is
significantly better than IDLVQ-C with p-value < 0.001 for
both settings. The variance is reported as light color region.

dating method for the reference vectors may not be
optimal. ERDA outperforms IDLVQ-C by a large
margin through embedding space regularization
and self-supervised data augmentation. To verify
this, we show the embedding space of IDLVQ-
C and ERDA using t-SNE (Van der Maaten and
Hinton, 2008). We randomly choose four classes
from the first task of FewRel and two classes from
the new task, and visualize the test data of these
classes in Fig. 4. As can be seen, the embedding
space obtained by ERDA shows better intra-class
compactness and larger inter-class distances.
• Unlike CRL, joint training does not always serve
as an upper bound in CFRL due to the extremely
imbalanced data distribution. Benefiting from the
ability to learn feature distribution with very few
data, both ERDA and IDLVQ-C perform better
than joint training in the 2-shot setting. However,
as the number of few-shot samples increases, the
performance of IDLVQ-C falls far behind joint
training, while ERDA still performs better. In the
5-shot setting, ERDA could achieve better results
than joint training which verifies the effectiveness
of self-supervised data augmentation (more on this
in §4.4). Although ERDA performs worse than
joint training in the 10-shot setting, its results are
still much better than other baselines.
• After learning all few-shot tasks, ERDA outper-
forms IDLVQ-C by 9.69%, 12.67% and 11.49% in
the 2-shot, 5-shot and 10-shot settings, respectively.
Moreover, the relative gain of ERDA keeps grow-
ing with the increasing number of new few-shot
tasks. This demonstrates the ability of our method
in handling a longer sequence of CFRL tasks.

TACRED Benchmark Fig. 5 shows the 5-way
5-shot and 5-way 10-shot results on TACRED. We
can see that here also ERDA outperforms all other
methods by a large margin which verifies the strong

2 4 6 8
Task index

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

(a) 10-way 2-shot

2 4 6 8
Task index

40

60

80

100
(b) 10-way 10-shot

ERDA JointTraining IDLVQ_C EMAR EMR SeqRun

Figure 6: Comparison results of different methods with a
BERT encoder on FewRel benchmark for 10-way 2-shot and
10-shot settings. ERDA is significantly better than IDLVQ-C
with p-value = 0.005 for 2-shot setting and is significantly
better than EMR with p-value = 0.002 for 10-shot setting.
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Figure 7: Results of different methods with a BERT encoder
on TACRED benchmark for 5-way 5-shot and 10-shot set-
tings. ERDA is significantly better than EMR with p-value
= 0.004 for 5-shot setting and is significantly better than
EMAR with p-value = 0.02 for 10-shot setting.

generalization ability of our proposed method.

Results with BERT We show the results with
BERTbase of different methods on FewRel in
Fig. 6 for 10-way 2-shot and 10-shot and Table 4
for 10-way 5-shot (in Appendix). The results of
on TACRED benchmark are shown in Fig. 7 for
5-way 5-shot and 10-shot. From the results, we can
observe that ERDA outperforms previous baselines
in all CFRL settings with a BERT encoder.

4.4 Ablation Study

We conduct several ablations to analyze the contri-
bution of different components of ERDA on the
FewRel 10-way 5-shot setting. In particular, we in-
vestigate seven other variants of ERDA by remov-
ing one component at a time: (a) the multi-margin
loss Lmm, (b) the pairwise margin loss Lpm, (c) the
margin-based contrastive loss Lcon, (d) the whole
2-stage data augmentation module, (e) the entity
matching method of augmentation, (f) the similarity
search method of augmentation, and (g) memory.

From the results in Table 3, we can observe that
all components improve the performance of our
model. Specifically, Lmm yields about 1.51% per-
formance boost as it brings samples of the same
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λcon 0 0.01 0.02 0.05 0.1 0.2 0.5 1.0

Accuracy (%) 51.95±1.15 52.66±1.23 53.38±0.63 53.10±0.69 53.23±1.49 52.99±0.79 52.13±1.50 52.27±1.07

Table 2: Accuracy (%) after learning all tasks with different λcon on FewRel benchmark (10-way 5-shot).

relation closer to each other while enforcing larger
distances among different relation distributions.
The Lpm improves the accuracy by 3.18%, which
demonstrates the effect of contrasting with the near-
est wrong label. The adoption of Lcon leads to
1.28% improvement, which shows that generating
hard negative samples for memory data can help to
better remember previous relational knowledge. To
better investigate the influence of Lcon, we conduct
experiments with different λcon and show the re-
sults in Table 2. We can see that the model achieves
the best accuracy of 53.38 with λcon = 0.02 while
the accuracy is only 52.13 with λcon = 0.5. In ad-
dition, the performance of the variant without Lcon

is worse than the performance of all other variants,
which demonstrates the effectiveness of Lcon.

The data augmentation module improves the per-
formance by 1.72% as it can extract informative
samples from unlabeled text which provide more re-
lational knowledge for few-shot tasks. The results
of variants without entity matching or similarity
search verify that the two data augmentation meth-
ods are generally complementary to each other.

One could argue that the data augmentation mod-
ule increases the complexity of ERDA compared to
other models. However, astute readers can find that
even without data augmentation, ERDA outper-
forms IDLVQ-C significantly for all tasks (compare
‘ERDA w.o. DA’ with the baselines in Table 1).

ERDA’s Performance under CRL Although
ERDA is designed for CFRL, we also evaluate the
embedding space regularization (‘ERDA w.o. DA’)
in the CRL setting. We sample 100 examples per
relation for every task in FewRel and compare our
method with the state-of-the-art method EMAR.
The results are shown in Fig. 8. We can see that
ERDA outperforms EMAR in all tasks by 1.25 -
4.95% proving that the embedding regularization
can be a general method for CRL.

5 Conclusion

We have introduced continual few-shot relation
learning (CFRL), a challenging yet practical prob-
lem where the model needs to learn new relational
knowledge with very few labeled data continually.

Method Task index

1 2 3 4 5 6 7 8

ERDA 92.57 79.17 70.43 65.01 61.06 57.54 54.88 53.23
w.o. Lmm 91.67 78.38 70.21 63.77 60.23 56.32 53.45 51.72
w.o. Lpm 91.37 75.80 67.11 61.13 57.14 54.04 51.59 50.05
w.o. Lcon 91.63 79.05 69.28 63.86 59.66 56.68 54.12 51.95
w.o. DA 92.57 77.84 69.76 63.74 58.31 56.12 53.21 51.51
w.o. EM 92.57 78.33 70.17 64.18 59.63 57.10 54.18 52.39
w.o. SS 92.57 78.56 69.94 63.98 59.85 56.92 53.75 52.27
w.o. M 91.95 77.59 66.47 57.08 51.08 47.36 43.88 40.32

Table 3: Ablations on FewRel benchmark (10-way 5-shot).
The variance over 6 runs is reported in Table 7 in Appendix.
We show the analysis of ‘w.o. M’ in Appendix A.4.
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Figure 8: Relation extraction results for ERDA (our) and
EMAR (Han et al., 2020) on the FewRel benchmark under the
CRL setting. We randomly split the 80 relations into 8 tasks,
where each task contains 10 relations. And we sample 100
examples per relation. From this figure, we can observe that
ERDA outperforms EMAR in all CRL tasks.

We have proposed a novel method, named ERDA,
to alleviate the over-fitting and catastrophic forget-
ting problems which are the core issues in CFRL.
ERDA imposes relational constraints in the em-
bedding space with innovative losses and adds ex-
tra informative data for few-shot tasks in a self-
supervised manner to better grasp novel relational
patterns and remember previous knowledge. Ex-
tensive experimental results and analysis show that
ERDA significantly outperforms previous methods
in all CFRL settings investigated in this work. In
the future, we would like to investigate ways to
combine meta-learning with CFRL.
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A Appendix

A.1 Block Diagram of ERDA Training

Figure 9: The block diagram of ERDA’s training at time
step k.

A.2 Hyperparameter Search

We follow the settings in Han et al. (2020) for the
Bi-LSTM encoder to have a fair comparison. For
data augmentation, we set the threshold α = 0.65
and the number of samples selected by Faiss (K)
as 1. We adopt 0.2, 0.2 and 0.01 for the three mar-
gin values m1,m2 and m3, respectively. The loss
weights λce, λmm, λpm and λcon are set to 1.0, 1.0,
1.0 and 0.1, respectively. In Alg. 1, we set 1 for
iter1 and 2 for iter2. Hyperparameter search is
done on the validation sets. We follow EMAR
(Han et al., 2020) and use a grid search to select the
hyperparameters. Specifically, the search spaces
are:

• Search range for α is [0.3, 0.8] with a step size
of 0.05.

• Search range for K is [1, 3] with a step size of 1.

• Search range for m1 and m2 is [0.1, 0.3] with a
step size of 0.1.

• Search range for m3 is [0.01, 0.03] with a step
size of 0.01.

• Search range for iter2 in Alg. 1 is [1, 3] with a
step size of 1.

A.3 The Influence of Task Order
To evaluate the influence of the task order, we show
the results (ERDA and IDLVQ-C) of six different
runs with different task order on the FewRel bench-
mark for 10-way 5-shot setting in Table 5. From
the results, we can see that the order of tasks will
influence the performance. For example, ERDA
achieves 55.59 accuracy after learning task8 on the
second run while the accuracy after learning task8
on the fifth run is only 51.35. More importantly,
ERDA outperforms IDLVQ-C by a large margin in
all six different runs.

A.4 The Contribution of Memory
We conduct the ablation without memory (‘w.o.
M’) to analyze the contribution of the memory
module on the FewRel 10-way 5-shot setting. From
the results in Table 7, we can observe that ERDA
shows much better performance than ‘w.o. M’,
which verifies the importance of the memory mod-
ule. In addition, comparing the results of ‘w.o. M’
and ‘SeqRun’ in Table 1, we can find that ‘w.o. M’
achieves much better accuracy. This demonstrates
the effectiveness of improving the representation
ability of the model through margin-based losses.
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Method Task index

1 2 3 4 5 6 7 8

SeqRun 96.35±0.25 70.23±2.42 58.13±2.08 54.17±1.90 48.82±3.42 43.52±2.45 37.90±1.93 33.97±1.53

Joint Training 96.35±0.25 87.85±2.25 82.87±2.69 80.05±2.61 77.62±1.89 74.69±1.04 72.23±0.68 69.74±0.34

EMR 96.35±0.25 88.02±2.09 78.83±2.80 75.15±2.85 72.00±2.23 69.41±2.06 66.70±1.57 63.68±1.47

EMAR 92.03±1.98 78.87±3.72 72.81±5.25 69.19±4.45 68.05±4.08 66.23±1.95 63.68±2.55 61.77±1.48

IDLVQ-C 96.03±0.12 87.18±2.51 76.63±3.97 73.57±4.43 67.74±3.60 65.16±2.96 62.64±1.87 60.32±1.75

ERDA 96.38±0.35 88.91±1.96 83.10±1.80 79.73±2.69 74.83±3.06 72.84±1.75 70.28±1.79 68.07±1.94

Table 4: Accuracy (%) of different methods with a BERT encoder on FewRel benchmark for 10-way 5-shot setting. ERDA is
significantly better than EMR with p-value = 0.003.

Run index Task index

1 2 3 4 5 6 7 8

1
93.42 77.60 68.13 65.77 62.66 59.72 52.09 54.39
91.40 65.30 50.00 49.23 50.28 46.22 41.64 42.96

2
91.02 76.55 68.03 62.32 57.26 54.73 56.97 55.59
92.10 61.10 49.37 44.88 40.90 43.72 42.43 38.47

3
93.32 81.30 74.37 68.77 66.00 58.47 55.70 52.76
92.30 76.40 66.70 52.11 50.12 45.92 42.16 39.64

4
92.42 77.50 64.50 57.90 60.12 52.87 52.53 53.65
92.20 62.65 57.30 51.73 51.26 46.00 42.81 40.04

5
93.02 82.10 73.83 66.60 59.98 60.78 56.09 51.35
92.30 72.45 60.47 51.25 46.82 45.27 39.19 38.36

6
92.22 80.00 73.73 68.70 60.36 58.67 55.90 51.64
93.10 77.00 60.67 60.75 56.48 50.32 45.26 43.89

Table 5: Accuracy (%) of six different runs with different task order on FewRel benchmark for 10-way 5-shot setting. For
every run, the upper row is the result of ERDA and the lower row shows the performance of IDLVQ-C.

Method Task index

1 2 3 4 5 6 7 8

SeqRun 92.78±0.76 52.11±2.06 30.08±1.75 24.33±2.38 19.83±0.99 16.90±0.99 14.36±0.69 12.34±0.61

Joint Training 92.78±0.76 76.29±3.47 69.39±3.18 64.75±2.48 60.45±1.67 57.64±0.84 52.80±0.99 50.03±1.17

EMR 92.78±0.76 69.14±2.74 56.24±3.32 50.03±2.91 46.50±2.30 43.21±1.47 39.88±1.25 37.51±1.53

EMAR 85.20±4.15 62.02±3.34 52.45±3.75 48.95±5.46 46.77±2.56 44.33±2.83 40.75±2.60 39.04±2.05

IDLVQ-C 92.23±0.50 69.15±6.42 57.42±6.14 51.66±4.74 49.31±4.72 46.24±2.00 42.25±1.79 40.56±2.13

ERDA 92.57±0.82 79.17±2.08 70.43±3.75 65.01±3.84 61.06±2.71 57.54±2.80 54.88±1.86 53.23±1.49

Table 6: Accuracy (%) and variance of different methods at every time step on FewRel benchmark for 10-way 5-shot CFRL.

Method Task index

1 2 3 4 5 6 7 8

ERDA 92.57±0.82 79.17±2.08 70.43±3.75 65.01±3.84 61.06±2.71 57.54±2.80 54.88±1.86 53.23±1.49

w.o. Lmm 91.67±1.00 78.38±2.70 70.21±4.23 63.77±4.03 60.23±2.78 56.32±3.13 53.45±2.11 51.72±1.27

w.o. Lpm 91.37±0.60 75.80±3.82 67.11±4.63 61.13±2.47 57.14±2.81 54.04±2.36 51.59±2.30 50.05±1.14

w.o. Lcon 91.63±0.64 79.05±2.46 69.28±1.95 63.86±2.77 59.66±3.14 56.68±2.55 54.12±1.18 51.95±1.15

w.o. DA 92.57±0.82 77.84±4.07 69.76±2.62 63.74±3.89 58.31±2.38 56.12±2.97 53.21±2.32 51.51±0.70

w.o. EM 92.57±0.82 78.33±2.73 70.17±4.34 64.18±2.82 59.63±2.22 57.10±1.73 54.18±1.79 52.39±0.66

w.o. SS 92.57±0.82 78.56±3.64 69.94±3.04 63.98±2.56 59.85±2.18 56.92±2.56 53.75±2.05 52.27±0.98

w.o. M 91.95±0.82 77.59±2.28 66.47±2.04 57.08±3.08 51.08±2.60 47.36±4.88 43.88±1.29 40.32±2.22

Table 7: Accuracy (%) and variance of the ablations on FewRel benchmark (10-way 5-shot).
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