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Abstract

Generating new events given context with cor-
related ones plays a crucial role in many event-
centric reasoning tasks. Existing works either
limit their scope to specific scenarios or over-
look event-level correlations. In this paper,
we propose to pre-train a general Correlation-
aware context-to-Event Transformer (ClarET)
for event-centric reasoning. To achieve this, we
propose three novel event-centric objectives,
i.e., whole event recovering, contrastive event-
correlation encoding and prompt-based event
locating, which highlight event-level correla-
tions with effective training. The proposed
ClarET is applicable to a wide range of event-
centric reasoning scenarios, considering its
versatility of (i) event-correlation types (e.g.,
causal, temporal, contrast), (ii) application for-
mulations (i.e., generation and classification),
and (iii) reasoning types (e.g., abductive, coun-
terfactual and ending reasoning). Empirical
fine-tuning results, as well as zero- and few-
shot learning, on 9 benchmarks (5 generation
and 4 classification tasks covering 4 reasoning
types with diverse event correlations), verify its
effectiveness and generalization ability.

1 Introduction

An ‘event’, usually a text span composed of a pred-
icate and its arguments (Zhang et al., 2020b), is
a fine-grained semantic unit to describe the state
of entities/things (e.g., He looks very worried) and
how they act (e.g., I grab his arms). Understanding
events and modeling their correlations are funda-
mental to many reasoning tasks (Bhagavatula et al.,
2020; Qin et al., 2019), e.g., abductive reasoning,
story ending classification and generation, counter-
factual reasoning, script reasoning. For instance, in
the left example of Figure 1, to generate the miss-
ing event [E] in the given context, it is essential
to understand that there are four events (‘it tries

∗Work is done during internship at Microsoft.
†Corresponding author.

Context: 
It tries the knob but [E], so

the creature starts pounding 
on the door to break it down.

Paragraph 𝑥:
It tries the knob but it’s locked, so 

the creature starts pounding on …
An event mention 𝑒:

it’s locked

Negative events { ҧ𝑒}𝑖=1
𝑀 :

it’s smoked      he’s gone     …

Output: 
it’s locked.

Figure 1: Left: an example of abductive reasoning which
aims to generate the missing event [E] given correlated events
(underlined) and connectives (w/ orange) in the context. Right:
a toy example (x, e, {ē}Mi=1) of event-rich data for better read-
ing. See Appendix A for real examples to pre-train our model.

the knob’, [E], ‘the creature starts pounding on the
door’, and ‘(the creature) to break it down’), and
then predict [E] based on the other three events and
its correlations to them (i.e., the contrast relation
indicated by ‘but’ and the causal relation by ‘so’).

Event-aware reasoning has gained much atten-
tion and achieved promising success in recent years
(Lv et al., 2020; Ding et al., 2019). However, many
algorithms are designed to solve only some specific
tasks. For example, Qin et al. (2020) propose to
improve unsupervised decoding for counterfactual
and abductive reasoning; Huang et al. (2021) and
Guan et al. (2019) advance story ending generation
via incremental encoding and multi-level graph
convolutional networks. Although these works
show effectiveness in corresponding applications,
they are limited to specific scenarios, and cannot
generalize well to a broad scope of reasoning.

Meanwhile, some pioneering works follow a re-
cently arising paradigm to conduct event-based pre-
training for those downstream reasoning tasks (Yu
et al., 2020; Han et al., 2020a; Lin et al., 2020;
Zhou et al., 2021b). However, these solutions have
their own limitations: COMeT (Hwang et al., 2021)
learns event correlations from a human-curated
knowledge graph and thus limits its scalability. Han
et al. (2020a) and Lin et al. (2020) only model tem-
poral relations and cannot be expanded to other re-
lations (e.g., causal, contrast). EventBERT (Zhou
et al., 2021b) is proposed for event-based classifi-
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cations and is thus inapplicable to generation tasks.
In this work, we propose a general pre-training

framework for event-centric reasoning by learning
a Correlation-aware context-to-Event Transformer
(ClarET) from an event-rich text corpus. We pro-
pose three novel self-supervised objectives, dubbed
as whole event recovering (WER), contrastive
event-correlation encoding and prompt-based event
locating, respectively. The first one aims to capture
event correlation by recovering a whole event from
its masked context. The second one enhances the
representation of the masked event in WER by con-
trasting it with the gold event against the negative
ones. The last one is a simplified WER task by
providing hints in its prompt and thus facilitates
effective learning for WER.

ClarET explicitly models event correlations and
contributes to various scenarios. From one aspect,
it covers a variety of correlation types (e.g., causal,
temporal, contrast) attributed to correlation type-
agnostic objectives. From another aspect, it is ap-
plicable to both generation and classification task
formulations by its unified structure. Lastly, it high-
lights event-level correlations and thus is more ef-
fective for diverse event-centric tasks, e.g., abduc-
tive, counterfactual and ending reasoning.

To evaluate ClarET, we compare it with strong
baselines on 9 diverse benchmarks. While ClarET
is continually pre-trained from BART (Lewis et al.,
2020) with very limited extra resources, i.e., train-
ing on a small subset of BART-used corpus (i.e.,
200M out of 2.2T tokens) within 90 GPU hours
(only 0.13% of 70,000h BART pre-training), it
achieves state-of-the-art (SoTA) performance on all
5 generation benchmarks. It also outperforms all
unified models on 4 classification benchmarks and
achieves competitive, or even better, accuracy to
strong discriminative baselines. We further exhibit
that the ClarET provides a good initialization for
downstream tasks by zero- and few-shot learning.

2 Related Work

Unified Pre-trained Model. A recent trend is
to pre-train unified (a.k.a. universal or general)
models to boost downstream generation and clas-
sification tasks, rather than masked language mod-
eling (MLM) only. GPT (Radford et al., 2019) is
based on auto-regressive language modeling but
incompetent in classifications due to unidirectional
contextualizing. To remedy this, BART (Lewis
et al., 2020) trains seq2seq models as a text denois-

ing autoencoder with mask-infilling, etc; UniLM
(Dong et al., 2019) designs advanced self-attention
masks in Transformer, leading to a partially auto-
regressive MLM; GLM (Du et al., 2021) proposes
an auto-regressive blank-filling objective based on
Transformer, achieved by bi-/uni-directional atten-
tion and 2D positional encoding. T5 (Raffel et al.,
2020) pre-trains a text-to-text Transformer to re-
cover the masked part of input by decoding. All
these general-purpose pre-trained models focus on
relatively short-span masking in random, whereas
we focus on masking a whole semantic unit (i.e.,
event) and propose novel training objectives to
circumvent problems in long-span event decod-
ing. Besides, they are also vulnerable to pretrain-
finetune inconsistency, leading to inferior event-
centric performance.

Task-specific Models for Event Reasoning.
Many recent works present task-specific neural
models for various event-centric reasoning types,
including (1) abductive reasoning (Ji et al., 2020;
Dong et al., 2021; Zhu et al., 2020), (2) counterfac-
tual reasoning (Qin et al., 2019, 2020), (3) ending
reasoning (Guan et al., 2019; Wang and Wan, 2019;
Yao et al., 2019; Huang et al., 2021; Guan et al.,
2020; Wang et al., 2017; Li et al., 2018; Ding et al.,
2019; Zhou et al., 2021c; Chaturvedi et al., 2017;
Srinivasan et al., 2018), (4) incoherence reason-
ing (Mori et al., 2020). However, these methods
are designed for the specific reasoning scenarios
based on task-specific models so hardly generalize
to other scenarios. In contrast, we aim to pre-train
a general event-centric model for generalizing to
various scenarios.

Event-centric Pre-training. With similar scopes,
many works focus on event-centric pre-training
to promote event-related tasks as ‘event’ is a self-
contained semantic unit and also an entry of com-
monsense reasoning. One paradigm is to pre-train
on corpora without human-labeling. Some methods
focus on more specific aspects of events and their
correlations. DEER (Han et al., 2020b) performs
temporal and event masking predictions for tempo-
ral relations. Lin et al. (2021) propose to recover a
temporally-disordered or event-missing sequence
for temporal and causal relations. Wang et al.
(2021) use AMR structure to design contrastive ob-
jectives for the event detection task. However, they
are not general enough to various event reasoning
tasks. In contrast, CoCoLM (Yu et al., 2020) learns
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an event-level MLM to generalize more. Event-
BERT (Zhou et al., 2021b) states the ineffective-
ness of event-level MLM and exploits hard nega-
tives via contrasting, contributing much to down-
stream multi-choice tasks. However, these methods
are only competent in discriminative tasks. The
other paradigm is based on supervised pre-training
on similar tasks and then performs knowledge trans-
fer, e.g., COMeT (Hwang et al., 2021), UnifiedQA
(Khashabi et al., 2020) and UNICORN (Lourie
et al., 2021), but they require human-curated data.

Event-rich Corpus. Although raw corpora are
viewed as off-the-shelf pre-training resources, a
key question is how to mine event-rich examples.
Here, ‘event-rich’ denotes that each example con-
tains various events and entails adequate contexts
to support event reasoning via either explicit or im-
plicit event-correlation. This is crucial to learning
event-correlations and reducing unnecessary over-
heads. Except for human-curated resources (e.g.,
ATOMIC (Sap et al., 2019) and ConceptNet (Speer
et al., 2017)), event-rich corpora are also mined via
automatic schemes. ASER (Zhang et al., 2020b)
builds an event-based graph, where each node is an
event extracted from a text and the relation of an
event pair is predicted by a PDTB model. In con-
trast, EventBERT (Zhou et al., 2021b) operates on
pure text so filters out correlation-scarce contexts
and extracts verb-rooted events. Besides, it offers
event sampling methods for hard negatives. We
adopt this data processing method as both pure-text
examples and hard negatives are prerequisites of
generic and robust pre-training.

3 Methodology

3.1 Prerequisite: Event-rich Corpus

In this work, we directly adopt event-rich data min-
ing and negative sampling methods from Zhou et al.
(2021b) but focus our contributions on enlarging
application scope of event-centric tasks and over-
coming challenges raised in the new scope.

Event-rich Data Mining. To mine event-rich
data from raw corpus, we employ a story corpus,
BOOKCORPUS (Zhu et al., 2015), and take a two-
step procedural (i.e., ‘filter’ and ‘extraction’). It
filters out correlation-scarce paragraphs according
to existence of connectives (i.e., discourse relation
keywords, e.g., however, while). Then, it highlights
the event spans in the filtered paragraphs by extract-
ing verb-rooted sub-trees in dependency trees of

the paragraphs. With a filtered paragraph x, we
build each example as (x, e) where e is an event
mention in x. We obtain 200M tokens (out of 1B in
BOOKCORPUS) in 3.9M filtered paragraphs. For
clear notations, we denote a text piece as a lower
case letter (e.g., e). It is tokenized into a sequence
as a bold (e.g., e = [e1, e2, . . . ]), where a letter w/
subscript t is the t-th token in the sequence.

Negative Event Sampling. Following Zhou et al.
(2021b), we build a pool of events from the whole
corpus and then retrieve negative events by three
heuristic schemes. Given an event e in (x, e), we
sample its negative event, ē, in light of lexicon-
based (20% time), PoS-based (60% time) or in-
domain (20% time) retrieval. Consequently, given
an event e, we sample M negative events, i.e.,
{ē}Mi=1. Figure 1 (right) shows an integrated in-
stance (x, e, {ē}Mi=1) of the event-rich corpus1.

3.2 Pre-training Objectives
We first present whole event recovering as a back-
bone pre-training objective in §3.2.1. After iden-
tifying incompetence of the simple backbone, we
propose two other objectives in §3.2.2 and §3.2.3.
An overview of the objectives is shown in Figure 2.

3.2.1 Whole Event Recovering
For the objective of whole event recovering (WER),
it is straightforward to leverage an encoder-decoder
structure, where a masked context is passed into the
encoder to generate the missing part by decoding.
Specifically, given an event e in a paragraph x, we
mask out e from x at the encoder side and then
generate e at the decoder side, i.e.,

p(e|x/{e}; θ) =
∏

t
p(et|e<t, x/{e}; θ), (1)

where θ denotes parameters and x/{e} denotes re-
placing e in x with one special token [M]. We
estimate Eq. (1) by the Transformer sequence-to-
sequence (seq2seq) structure (Vaswani et al., 2017).
First, we apply the Transformer encoder to x/{m}
for contextual embeddings for all tokens in x/{m}:

H(enc)=Trans-Enc(x/{e}; θ
(enc)) ∈ Rd×n, (2)

where n is the number of tokens in x/{e}. Then,
the Transformer decoder is employed to predict all
tokens e of the event e in a recurrent manner, i.e.,

ỹt = Trans-Dec(e<t,H
(enc); θ(dec))∈R|V|, (3)

1Experimental codes are released at https://github.
com/yczhou001/ClarET.
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Figure 2: An overview of self-supervised objectives for our
Correlation-aware context-to-Event Transformer (ClarET).

where V denotes token vocabulary and ỹt is the
predicted categorical distribution over V . Lastly,
the training objective is defined as a maximum
likelihood estimation. Its loss function is written as

L(wer) = −
∑
(x,e)

1

|e|
∑|e|

t=1
log ỹt[y = et], (4)

where ‘yt[y = et]’ denotes fetching the probability
of the t-step gold token et ∈ e from ỹt.

This objective is similar to span recovering
schema (Raffel et al., 2020; Joshi et al., 2020) but
differs in that (i) each masked span is an event, i.e.,
an integrated semantic unit, so much longer (up
to 22 tokens and see Figure 4 for length distribu-
tion), and (ii) only one event is masked out from
the context to facilitate event-correlation modeling
between the event and its contexts.

Intuitively, the success of Eq. (1) requires to
capture correlations between the masked event and
remaining contexts but two major problems arise
due to WER with long event-level masking spans:

(1) Implicit Event-correlation: The model recov-
ers an event based solely on token-level concur-
rence as in a conditional language model (e.g., T5
and BART), regardless of the rich event-level corre-
lations between the events in context x/{e} and the
masked event e. Such a correlation-implicit model
would achieve inferior performance on downstream
event-centric correlation reasoning tasks.

(2) Learning Difficulty: As the masked event
is an integrated, self-contained, semantic unit, it
is difficult for the conditional generation model
to recover the whole event due to a lack of local

contexts. As a result, the model cannot effectively
learn from the long masked spans, which has been
empirically proved in autoencoding MLM models.

To alleviate the two problems above, we propose
two other novel self-supervised objectives in the
following. Briefly, we present contrastive event-
correlation encoding to enhance correlations be-
tween contexts and events, and prompt-based event
locating to reduce generation difficulty.

3.2.2 Contrastive Event-correlation Encoding

For the implicit event-correlation problem, an intu-
itive solution is to explicitly highlight the correla-
tion from the masked context to the missing event
at the encoder side. To achieve this, we resort to
contrastive learning to enhance the encoder-side
representation of the masked event by contrasting
it with the embedding of the gold event mention e
against those of negative ones ē. Particularly, we
first derive the embedding of e and ē independently
via the Transformer encoder in Eq.(2), i.e.,

c = Pool(Trans-Enc([CLS]+ e; θ(enc))), (5)

c̄ = Pool(Trans-Enc([CLS]+ ē; θ(enc))), (6)

where [CLS] is a special token prefixed to each
event mention, and Pool(·) denotes using the con-
textual embedding of [CLS] to represent the
whole event. Then, we enhance h[m], the con-
textual representation of [M] in x/{e} from H(enc)

in Eq.(2), by contrasting it with c against c̄, i.e.,

L(cee)=max(0,λ+d(h[m],c)−d(h[m],c̄)), (7)

where d(·, ·) denotes a distance metric of two vec-
tors, which is Euclidean distance in this work. As a
result, the encoder-side correlation-aware represen-
tation h[m] also offers a straightforward pathway
to transmit event-level information to decoding so
mitigates the learning difficulty to some extent.

3.2.3 Prompt-based Event Locating

As for learning difficulty problem, we also pro-
pose a prompt-based event locating objective to
reduce generative difficulty by providing hints in
the prompt. The basic idea is to simplify WER ob-
jective as an extractive generation task to locate and
copy a candidate/hint from the prompt, which aims
at improving learning effectiveness. To this end,
we present two prompt-based generation schemas
in the following.
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Correct Event Selection. Inspired by advances
of prompt-based multi-choice question answering,
we present correct event selection schema to select
the gold event e against negative ones {ē}Mi=1 based
on the contexts x/{e}. Given an event-masked para-
graph x/{e} suffixed with several candidate events
{ē}Mi=1 containing the gold masked one e, it aims
to generate the masked event e back, i.e.,

x̂(ces) = x/{e} + Options: (a) e1; (b) e2; · · ·,

where [e1, e2, . . . ] is a random permutation of
[e, {ē}Mi=1] in case of position bias. We use a ran-
dom permutation as all candidates are assigned
with distinct position embeddings during contex-
tualizing, and a fixed permutation of gold events
will result in a learning shortcut (position bias) to
degrade the model. Thus, similar to Eq.(1), we can
define its formula as p(e|x̂(ces); θ).

Wrong Event Tagging. The other schema is
wrong event tagging to find the wrong event in
a corrupted paragraph, similar to incoherence rea-
soning. Thus, we re-write the encoder input as

x̂(wet) = x/{e}&∪{ē} + Event: [M] is wrong,

where x/{e}&∪{ē} denotes replacing the gold event
e in x with a negative ē ∈ {ē}Mi=1. Thus, we can de-
fine the formula of this objective as p(ē|x̂(wet); θ).

Based on the two formulas above, we define the
prompt-based event locating objective as

L(pel) =
∑
(x,e)

− 1

|e|
∑
t

log p(et|e<t, x̂
(ces); θ)

− 1

|ē|
∑
t

log p(ēt|ē<t, x̂
(wet); θ), (8)

where θ = {θ(enc), θ(dec)}, ē is sampled in {ē}Mi=1.

3.3 Model Pre-training and Fine-tuning
Self-supervised Pre-training. The final loss to
pre-train our ClarET is a linear combination of the
three losses above from Eq.(4, 7, 8), i.e.,

L = L(wer) + L(cee) + L(pel). (9)

We set the margin λ in Eq.(7) to 0.5 w/o tuning.

Supervised Downstream Fine-tuning. For gen-
eration tasks, we simply leverage the formula in
Eq.(1) to establish fine-tuning objectives. For dis-
criminative (e.g., multi-choice) tasks, we can either
formulate all tasks into generation as in GPT/T5
or fine-tune with classifying heads as in BART.
With pilot experiments, we found the latter one can
achieve better performance and adopted it.

3.4 Comparing to Similar Works

While we adopt the same data processing in Event-
BERT (Zhou et al., 2021b) and share a similar mo-
tivation to learn an event-centric pre-trained model,
we expand the scope from ‘discriminative-only’ in
EventBERT into ‘unified’ by our context-to-event
Transformer for a broad spectrum of scenarios.
Such an expansion is non-trivial since new chal-
lenges arise in the unified formulation. Compared
to the inefficient ‘event-backfilling and contextu-
alizing’ paradigm in EventBERT, our model can
explicitly and effectively learn event-level corre-
lations between contexts and events by our novel
contrastive and prompt-based objectives. More-
over, COMeT (Bosselut et al., 2019; Hwang et al.,
2021) is also a conditional generation model but
focuses on triple-level commonsense reasoning –
given (head event, relation) to generate tail events,
whose motivation, however, is orthogonal to ours.
Therefore, we focus on a different motivation or
scope, not to mention evaluation formulations.

4 Experiments

This section begins with descriptions of down-
stream datasets and experimental setups.

Downstream Datasets. We conduct extensive
evaluations on 9 datasets for 9 downstream tasks,
i.e., 5 generation and 4 classification tasks. Gen-
eration tasks include abductive commonsense rea-
soning on ART (αNLG) (Bhagavatula et al., 2020),
counterfactual story generation on TIMETRAVEL
(Qin et al., 2019), story ending generation (Guan
et al., 2019), commonsense story generation (Guan
et al., 2020), and event process completion on APSI
(Zhang et al., 2020a). Classification tasks include
script reasoning on MCNC (Li et al., 2018), ab-
ductive commonsense reasoning on ART (αNLI)
(Bhagavatula et al., 2020), narrative incoherence
detection on ROCStories (Mori et al., 2020), and
story cloze test (Mostafazadeh et al., 2016). Please
refer to Appendix C for their details.

Pre-training Setups. Instead of learning from
scratch, we perform continual pre-training from
BART-large (Lewis et al., 2020) due to limited
computation resources. The batch size and number
of training steps are 1152 and 160k. The model is
trained by Adam (Kingma and Ba, 2015) w/ learn-
ing rate of 1e-5 and warmup proportion of 0.03.
The gradient clip, dropout rate and weight decay
are 1.0, 0.1 and 0.01. Notably, (i) BOOKCORPUS
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Abductive C.S.
Reasoning

Counterfactual
Story

Story Ending
Generation

C.S. Story
Generation

Event Process
Completion

Size B-4 R-L BERT B-4 R-L BERT B-1 B-2 B-1 B-2 B-1 B-2

Selected task-specific models with competitive performance

GRF (Ji et al., 2020) - 11.62 34.62 - - - - - - - - - -
IE+MSA (Guan et al., 2019) - - - - - - - 24.40 7.80 - - - -
Plan&Write (Yao et al., 2019) - - - - - - - 24.40 8.40 30.80 12.60 - -

Fine-tuning with pre-trained unified (generative) model

GPT2-S (Radford et al., 2019) 124M 2.23 22.83 48.74 69.27 65.72 60.53 39.23 13.08 32.20 14.10 35.25 11.75
GPT2-M (Radford et al., 2019) 335M - - - 75.71 72.72 62.39 - - - - 45.43 14.81
BART (Lewis et al., 2020) 400M 16.47 38.73 56.36 82.91 76.44 79.50 54.22 18.07 54.22 18.07 56.25 18.75
GLM (Du et al., 2021) 335M 7.79 25.54 54.85 75.81 70.03 68.23 57.04 18.45 57.04 18.45 57.34 19.11

ClarET (ours) 400M 17.67 41.04 57.31 87.18 80.74 81.48 57.47 19.16 57.47 19.16 58.88 19.74

Table 1: Fine-tuning results on five generation benchmark datasets. Previous state-of-the-art (SoTA) results are underlined,
‘Size’ denotes the number of model parameters, and ‘C.S.’ is an abbreviation of CommonSense. Please refer to Appendix D.1 for
the reported results of more task-specific models on each dataset.

Abductive C.S.
Reasoning

Script
Reasoning

Narrative Incoherence
Detection

Story Cloze
Test

Size ACC (%) ACC (%) ACC (%) ACC (%)

Selected task-specific models with competitive performance

Hidden Coherence Model (Chaturvedi et al., 2017) - - - - 77.60
GRU Context (Mori et al., 2020) - - - 52.20 -
RoBERTa + Kown. Model (Zhou et al., 2021c) 469M -

::::
63.62 - -

Fine-tuning with pre-trained discriminative model

RoBERTa (Liu et al., 2019) 345M 82.35 61.53 73.94 87.10
EventBERT (Zhou et al., 2021b) 345M

::::
85.51 63.50

::::
75.03

::::
91.33

Fine-tuning with pre-trained unified model

CALM (Zhou et al., 2021a) 770M 77.12 - - -
UNICORN (Lourie et al., 2021) 770M 79.50 - - -
BART (Lewis et al., 2020) 400M 80.74 61.34 72.48 87.01

ClarET (ours) 400M 82.77 64.61 74.88 91.18

Table 2: Fine-tuning results on four classification benchmark datasets. We split pre-trained models into discriminative and
unified groups since discriminative models usually outperforms unified ones in classification and our ClarET falls into the latter.
Previous SoTA discriminative and unified results are

:::::
waved and underlined, respectively. See Appendix D.2 for full results.

has already been used by BART pre-training and
our data processing is based on heuristics without
human-curated resources; (ii) Our continual pre-
training only needs 90 GPU hours on 200M tokens,
i.e., 0.13% of BART that consumes 70K hours on
2.2T tokens (see Appendix B.1). Hence, ClarET
with zero newly introduced corpus and relatively
negligible computing overhead makes great lifts
and preserves fair comparisons with baselines.

Fine-tuning Setups. For finetuning, we train the
model with an Adam w/ learning rate of 1e-5 and
warmup proportion of 0.06. The dropout rate, batch
size and weight decay are 0.1, 32 and 0.01. For
generative downstream tasks, we take BLEU-N

(B-N ) (Papineni et al., 2002), ROUGE-L (R-L)
(Lin, 2004) and BERTScore (BERT) (Zhang et al.,
2020c) as the evaluation metrics, while the accu-
racy (ACC) is taken for classification tasks. Each
fine-tuning runs with seeds 2, 10 and 1234, and we
evaluate the best dev model on the test set.

4.1 Main Evaluation

Fine-tuning for Generation. As shown in Ta-
ble 1, our proposed ClarET achieves SoTA perfor-
mance across all generation tasks. For instance,
ClarET increases the ROUGE-L score by 2.3 ab-
solute value for abductive reasoning. The supe-
rior performance of ClarET on the benchmarks
demonstrates that it can model event-level corre-
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Method B-4 R-L BERT

GPT (Qin et al., 2019) 1.25 18.26 59.50
GPT2-S (Qin et al., 2019) 1.28 20.27 59.62
GPT2-M (Qin et al., 2019) 1.51 19.41 60.17
Zero-Shot-Ranked (Qin et al., 2020) 2.26 25.81 60.07
BART-large (Lewis et al., 2020) 7.08 30.60 61.58
DELOREAN (Qin et al., 2020) 21.35 40.73 63.36

ClarET (ours) 23.75 43.03 63.93

Table 3: Zero-shot results on generative Counterfactual Story.

lation more effectively via few steps of continual
pre-training and provide a general solution for a
variety of event-centric correlation reasoning tasks.

Fine-tuning for Classification. Table 2 lists re-
sults on 4 classification tasks. We find ClarET per-
forms better than all task-specific models and uni-
fied pre-trained models with 2%-4% improvement.
It achieves competitive accuracy to strong discrim-
inative models, e.g., the gap between ClarET and
EventBERT is ∼0.15 for narrative incoherence de-
tection and story cloze test. However, EventBERT
is a RoBERTa-based competitor using the identi-
cal pre-training corpus. Its pre-training follows
“event-backfilling and contextualizing” (similar to
multi-choice QA), which has a small gap to down-
stream classification tasks for strong performance
but brings two drawbacks. Firstly, its pre-training
is slow due to repeat contextualizing over para-
graphs, leading to 5.6× longer GPU hours than
ours. In addition, its discriminative paradigm lim-
its it specifically to classifications, regardless of
wide generation tasks. The results show ClarET is
on par with the discriminative-only EventBERT
on classifications. This is non-trivial given the
large formulation gap between our generative pre-
training objectives and downstream multi-choice-
style classification tasks, and attributed to our effec-
tive event-correlation learning. In summary, these
results show ClarET serves as a unified pre-trained
model for event-centric generation and classifica-
tion tasks.

4.2 Quantitative Analysis

Zero-shot Learning. It is essential to verify if the
targeted information was learned and retained by
a pre-trained model. Compared to MLM, our gen-
erative recovering model is inherently applicable
to event-centric multi-choice and generative formu-
lations. For generation tasks, we apply Eq.(1) to
generate answers. As shown in Table 3, ClarET
achieves the best performance and outperforms DE-

Method ACC (%)

Random 20.00
RoBERTa-large (Zhou et al., 2021b) 20.09
DeBERTa-xlarge (Zhou et al., 2021b) 20.31
BART-large (Lewis et al., 2020) 21.72
EventBERT (Zhou et al., 2021b) 30.79

ClarET (ours) 32.15

Table 4: Zero-shot results on discriminative Script Reasoning.
Note that MLM-style models are evaluated by autoregression-
like operation (Zhou et al., 2021b).
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Figure 3: Few-shot learning results compared with the basic
model, BART-large, on generation (Counterfactual Story, CS)
and classification (Script Reasoning, SR).

LOREAN (which adapts auto-regression for coun-
terfactual reasoning). For classification tasks, we
apply Eq.(1) to each option for its perplexity and
select the option with minimum. As shown in Ta-
ble 4, ClarET surpasses previous models and beats
the discriminative-only event-centric model, Event-
BERT. Besides, the general-purpose pre-trained
models perform nearly random guesses due to their
incompetence in long-span event discrimination.

Few-shot Learning. Since our model reduces
pretrain-finetune inconsistency for event-centric
tasks and provides a good initialization for down-
stream fine-tuning, it is also interesting to see few-
shot performance by scaling down training data.
As shown in Figure 3, ClarET achieves similar per-
formance to strong baselines with only 10%-30%
of training data for fine-tuning.

Ablation study. To measure the contribution
of each objective to the final fine-tuning results,
we conduct an ablation study on both generation
and classification in Table 5. The first two abla-
tions drop the two prompt schemas respectively in
prompt-based event locating objective of Eq.(8),
which verifies the effectiveness of reducing task
difficulty. Then, the third ablation removes con-
trastive event-correlation encoding and shows a
substantial drop, which verifies the significance
of explicit event-correlation learning. Next, we
keep only the prompt-based event locating objec-
tive to make our model a prompt-learning discrim-
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Method Gen-CS Cls-SR

B-4 R-L ACC

ClarET (full, pre-trained by Eq.(9).) 87.18 80.74 64.61

3 w/o correct event selection (prompt) 86.76 80.03 63.06
3 w/o wrong event tagging (prompt) 86.33 79.84 63.89
3 w/o contrastive encoding 85.84 78.69 63.24
3 only prompt-based event locating 83.32 76.51 62.97

BART-large (basic model) 82.91 76.44 61.34

Table 5: Ablation study of the pre-training objectives in
ClarET, which is evaluated by fine-tuning on generation (Coun-
terfactual Story, CS) and classification (Script Reasoning, SR).

Method ePPL on Dev

ClarET (full model) 8.27
WER-Only Model 8.76

Table 6: Event generation of ClarET and whole event re-
covering (WER-only) model on a pre-training event-masked
dev set (2% held-out masked paragraphs by following Zhou
et al. (2021b)). The ‘ePPL’, i.e., event perplexity, refers to
event-level token perplexity averaged over the dataset.

inative model (sharing more close methodology
with EventBERT), however leading to a dramatic
decrease. Lastly, when removing all the objectives,
our model degenerates to BART-large.

Comparison with Larger Model. A trend of pre-
training models follows the law of ‘larger models
for better performance’ but a crucial research ques-
tion is ‘how to perform competitively with fewer
computation resources’. To answer, we show extra
fine-tuning results on the five generation datasets in
Table 7 to compare our ClarET (400M parameters)
with T5-large (770M) and T5-base (220M). It is
observed (i) with 3× scale, T5-large notably out-
performs T5-base to support the above law and (ii)
with almost half model size, our ClarET performs
very competitively to T5-large (even better on 3
out of 5 tasks), verifying the significance of our
objectives towards event-related knowledge.

Difficulty of Event Generation. To exhibit the
learning difficulty in pre-training (as stated in
§3.2.1) and the effectiveness of our novel learn-
ing objectives, we conduct another ablation setting
in Table 6. It is observed that ClarET achieves
better event-level perplexity (ePPL), verifying the
two novel objectives promote event generations
and reduce difficulty of decoding.

Long-span Event Generation. To further check
if ClarET is more competitive on longer-span event
generation, we compare it with BART-large and

ACR CS SEG CSG EPC

Size R-L B-4 B-1 B-1 B-1

T5-base 220M 38.40 81.02 52.64 41.28 56.53
T5-large 770M 40.77 90.62 57.04 43.82 59.59

ClarET 400M 41.04 87.18 57.47 48.75 58.88

Table 7: Fine-tuning generation results to compare with larger
pre-trained models. Column names are datasets corresponding
to those of Table 1. See Appendix B.2 for full results of T5.

Figure 4: Event generation performance on the event-masked
dev set (refer to Table 6) with event-length bins.

T5-base/-large by ‘− log’ of Eq.(1). Different from
recovering paradigm of others, we follow the de-
noising paradigm to implement BART and calcu-
late its score by considering the masked part in
decoding. Figure 4 shows that (1) Line Chart: the
gap between ClarET and the others becomes larger
with event length increasing as the general-purpose
models only consider short-span masking in pre-
training, leading to inferior event generation; and
(2) Bar Chart: as for data distribution, although a
majority of data falls into the 6-8 bin, there are still
many examples with event length greater than nine.

Natural Language Understanding (NLU). Our
basic model, BART-large, is presented for general
NLU tasks. To exhibit our minor event-centric con-
tinual pre-training would not interfere its NLU abil-
ity, we conduct fine-tuning experiments on GLUE
benchmark (Wang et al., 2019) as in Figure 5. It is
observed that, although slightly surpassed by the
discriminative RoBERTa model, fine-tuning BART
and ClarET achieve very comparable results, which
verifies ClarET’s retention of NLU capability.

4.3 Case Study and Error Analysis
Case Study. As the first case in Figure 6, we
conduct a case study on generative abductive rea-
soning task, where the fine-tuned ClarET generates
an event semantically close to the gold reference,
but the BART does not. BART only generates a
part of the answer but ignores the event-correlations
from ‘They were impressed with my phone’, while
ClarET completely captures the correlations in the
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Figure 5: Fine-tuning results on GLUE dev, which verifies
ClarET retains BART’s natural language understanding ability.

Context: I went to the store to buy a phone. [E] They were
impressed with my phone.
Reference of the Gold Event [E]: I bought the latest model of the
phone I wanted, and showed it to my friends.
Generation by ClarET:
I bought a new phone and showed it to my friends. (BLEU-4: 34)
Generation by BART:
I bought a new phone. (BLEU-4: 0)

Context: Cora was starting her job as a kindergarten teacher. [E]
At the end of the day, they all told her how much they liked her!
Reference of the Gold Event [E]: Cora was nervous, but knew the
students were nervous too, so she tried to be extra friendly.
Generation by ClarET:
Cora spent the whole day with her students. (BLEU-4: 0)

Figure 6: Case study & error analysis on abductive reasoning.

contexts (e.g., ‘to buy a phone’ and ‘They were
impressed’,) and generate a much better result.

Error Analysis and Limitation. The second
case in Figure 6 shows that our ClarET is inef-
fective when the gold event is very complicated. In
detail, the model focus only on ‘at the end of the
day’ to generate ‘... spent the whole day ...’ but
ignore very subtle contexts, e.g., ‘starting her job ...
teacher’ and ‘they liked her’. To expand, we found
a problem in long-event decoding by pilot experi-
ments. As shown in Figure 7, it is observed that the
gap of token-level perplexity between ClarET and
WER-only gradually diminishes. This is because
the subsequent tokens in an event can be gener-
ated on the basis of previous generations on the
decoder side, rather than context-aware represen-
tations from the encoder side. While a long span
is masked, the model can see previous tokens in
an event (i.e., e<t) in decoding and incline to per-
form the t-th prediction based on e<t but not x/{e},
especially with a larger t. As a result, the model
would ‘cheat’ in the generation but learn decoder-
side language modeling rather than context-aware
representations. In the future, we will exploit this
problem. Besides, due to computation resources,
we choose the model size with 400M and continual
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Figure 7: Token-level perplexity w.r.t tokens’ percentage
positions in events on held-out dev set.

pre-training in 90h, limiting the performance.

5 Conclusion

We present a novel correlation-aware context-to-
event Transformer to self-supervisedly learn event-
correlation knowledge from text corpus and benefit
various event-centric reasoning scenarios. Besides
SoTA fine-tuning results on 5 generation and 4 clas-
sification tasks, we conduct zero-/few-shot learn-
ing and extensive ablation studies to exhibit our
model’s effectiveness. Lastly, we find our model
is competitive to a twice larger general-purpose
model, reduces learning difficulty for event genera-
tion, and retains NLU ability from its basic model.
Although this work learns context-to-event knowl-
edge, our self-supervised objectives are applica-
ble to other semantically-meaningful text units be-
sides events. For example, text units can be entities
and concepts to learn relational and commonsense
knowledge, which can benefit more downstream
tasks.

6 Ethical Statement

This work does not involve any sensitive data, but
only public unlabeled corpora, i.e., BookCorpus
(Zhu et al., 2015) pre-processed by Zhou et al.
(2021b), and crowd-sourced datasets released in
previous works, including ART (Bhagavatula et al.,
2020), TIMETRAVEL (Qin et al., 2019), APSI
(Zhang et al., 2020a), MCNC (Li et al., 2018),
ROCStories (Mori et al., 2020).
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A Examples from Mined Pre-training
Corpus

There are some mined pre-training examples shown
in Table 8. As in (Zhou et al., 2021b), an example
includes a paragraph, events, a selected positive
event, connectives of the positive event, and sam-
pled negative events of the positive event.

B More Details

B.1 BART Pre-training Resources

In this section, we analyze BART pre-training re-
sources in terms of text corpora and computation
resources.

As for tokens in BART pre-training corpora,
BART paper (Lewis et al., 2020) claims using the
same corpora as in RoBERTa (Liu et al., 2019) and
T5 paper (Raffel et al., 2020) states RoBERTa uses
a 2.2T-token text corpus. Thus, we adopt ‘2.2T’ as
the number in the main paper.

As for BART pre-training computation over-
heads, the contributor of BART official code reposi-
tory said ‘We trained for around 11-12 days on 256
gpus.’ at https://github.com/pytorch/
fairseq/issues/1525, so the BART pre-
training takes from 67584 to 73728 GPU hours.
Thus, we use ‘70,000’ as the number in the main
paper.

B.2 Full Results of T5 Model

The full results of T5-base and T5-large on the five
generation tasks are shown in Table 9.
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Example 1

Paragraph
It was only months later, when she saw her friend’s thin gaunt face, her swollen belly and her quiet
desperation, that she had come to her senses. Then she had been filled with a combination of burning
rage and deep shame. This had endured over the years undiminished.

Positive Event she had been filled with a combination of burning rage

Connectives when; then

Negative Events

he had been loaded with a lot of vampire venom
she had been trained in the art of gentler speech
I had been blessed with some sort of fire ability
he had been transformed into a piece of living statuary
he had beened from a block of pale marble
I had been circumci sculptsed in the age of infantile apathy
...

Example 2

Paragraph
Then, when she turned twenty one at the end of last year, she had decided to act on it. A driver’s
license was something she needed for her business and the identity papers which went with it were
needed for a range of other reasons, such as enrolling Catherine for school at the start of this year.

Positive Event papers which went with it were needed for a range of other reasons

Connectives then; when; and

Negative Events

bookcases that stood against it had opened like a pair of French doors
it had a little bit of magic in it , just for Lizzie
it only gave her a place for a couple of days
which occasionally crossed a small ridge sometimes of gravel , sometimes of sand
that she was going shopping in the city with a couple of other girls
publish that proposal in the paper for three weeks
...

Table 8: Some mined pre-training examples.

Abductive C.S.
Reasoning

Counterfactual
Story

Story Ending
Generation

C.S. Story
Generation

Event Process
Completion

B-4 R-L BERT B-4 R-L BERT B-1 B-2 B-1 B-2 B-1 B-2

T5-base 15.65 38.40 55.98 81.02 75.95 79.12 52.64 17.55 41.28 13.76 56.53 18.84

T5-large 17.75 40.77 57.20 90.62 84.03 83.14 57.04 18.45 43.82 14.61 59.59 19.86

Table 9: Full results of T5-base and T5-large on generation tasks.

B.3 Connectives in Paragraph

As stated by Zhou et al. (2021b), connectives (i.e.,
discourse relations in the contexts) play important
roles to express correlations among events. There-
fore, we also find every possible connective r to
each (x, e) where r is a connective in x, which im-
mediately links to the verb of e on the parsing tree
of x. To leverage the connectives, we also apply the
correct event selection in prompt-based event lo-
cating objective to r its negatives {r̄}M1 , as correct
connective selection. Here, r̄ is randomly sampled
from discourse relations in the PDTB annotation
manual (Webber et al., 2019). At 20% times, we
use correct connective selection to replace correct
event selection in the prompt-based event locating
objective.

C Details of Evaluation Datasets

We detail the nine evaluation datasets in the follow-
ing. The training example in each dataset is shown
in Table 10.

• ART (αNLG). Given two observations in nat-
ural language, it aims to generate an explica-
tive hypothesis between them. We follow the
official data split (Bhagavatula et al., 2020)
with 169,654/1,532/3,059 in training/dev/test.

• TIMETRAVEL. Given an original story and
a counterfactual event, it aims to rewrite
the subsequent events to complete a story,
which is compatible with the counterfactual
event. We follow the official data split (Qin
et al., 2019) with 98,159/5,613/7,484 in train-
ing/dev/test.
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• Story Ending Generation. We evaluate the
story ending generation based on ROCStories,
which aims to generate a story ending for a
given story context. We follow the data split
(Guan et al., 2019) with 90,000/4,081/4,081
in training/dev/test.

• Commonsense Story Generation. It is based
on ROCStories. Given a leading context, it
aims to generate a reasonable story. We fol-
low the data split (Guan et al., 2020) with
88,344/4,908/4,909 in training/dev/test.

• APSI. We evaluate event process completion
on the APSI dataset, where the goal is to gen-
erate a subevent for a given event context. We
follow the data split (Zhang et al., 2020a) with
13,501/1,316 in training/test.

• Multi-choice narrative cloze (MCNC).
Given an event chain, it aims to predict the
subsequent event from 5 candidates. We
follow the data split (Li et al., 2018) with
140,331/10,000/10,000 in training/dev/test.

• ART (αNLI). Given two observations in nat-
ural language, it aims to choose the most ex-
plicative hypothesis from 2 candidates. We
follow the data split (Bhagavatula et al., 2020)
with 169,654/1532 samples in training/dev.

• ROCStories. We follow (Mori et al., 2020)
to use ROCStories for narrative incoherence
detection. A random sentence is removed
for each five-sentence story, and the goal
is to predict the missing position. We fol-
low the data split (Mori et al., 2020) with
78,528/9,816/9,817 in training/dev/test.

• Story Cloze Test. Given a 4-sentence con-
text, it aims to select the right ending from
two alternative endings. We follow the
data split (Mostafazadeh et al., 2016) with
98,161/1,871/1,871 in training/dev/test.

D Detailed Evaluation Results

We detail the full results on nine evaluation datasets
as follows.

D.1 Generation Tasks
Generation tasks include abductive commonsense
reasoning (αNLG), counterfactual story generation,
story ending generation, commonsense story gener-
ation, and event process completion. The detailed

results of these generation tasks are shown in Ta-
ble 11, Table 12, Table 13, Table 14, and Table 15,
respectively. ClarET achieves state-of-the-art per-
formance on all five generation tasks. In addition,
pre-trained language models show their strong gen-
eration ability on story generation tasks, i.e., story
ending generation and commonsense story genera-
tion.

D.2 Classification Tasks
Classification tasks include script reasoning, ab-
ductive commonsense reasoning (αNLI), narrative
incoherence detection, and story cloze test. The de-
tailed results of these classification tasks are shown
in Table 16, Table 17, Table 18, and Table 19, re-
spectively. Compared with unified language mod-
els, ClarET achieves state-of-the-art performance.
Although strong discriminative models show their
great ability on classification tasks, ClarET still
achieves competitive performance.
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Dataset 1: ART (αNLG)

Input Observation1: The hayride was in October.
Observation2: It was the perfect start to the fall season.

Label Keeping tradition we drank hot cocoa on the ride.

Dataset 2: TIMETRAVEL

Input

Premise: On my way to work I stopped to get some coffee.
Initial: I went through the drive through and placed my order.
Original_ending: I paid the cashier and patiently waited for my drink.
When she handed me the drink, the lid came off and spilled on me.
The coffee hurt and I had to go home and change clothes.
Counterfactual: I went inside to place my order.

Label
I paid the cashier and patiently waited at the counter for my drink.
When she handed me the drink, the lid came off and spilled on me.
The coffee hurt and I had to go home and change clothes.

Dataset 3: Story Ending Generation

Input

Dan’s parents were overweight.
Dan was overweight as well.
The doctors told his parents it was unhealthy.
His parents understood and decided to make a change.

Label They got themselves and Dan on a diet.

Dataset 4: Commonsense Story Generation

Input Carrie had just learned how to ride a bike.

Label

She didn’t have a bike of her own.
Carrie would sneak rides on her sister’s bike.
She got nervous on a hill and crashed into a wall.
The bike frame bent and Carrie got a deep gash on her leg.

Dataset 5: APSI

Input Process name: Treat Pain. Process: Identify cause. learn injury.

Label Recognize symptom.

Dataset 6: Multi-choice narrative cloze (MCNC)

Input
Context: compare basketball. buck get basketball. whirl basketball bench. shout out basketball center.
Options: A. look basketball. B. weaken basketball. C. throw basketball lot youngster.
D. client deny basketball. E. client deny basketball.

Label C

Dataset 7: ART (αNLI)

Input

Observation1: Chad went to get the wheel alignment measured on his car.
Observation2: The mechanic provided a working alignment with new body work.
Hypothesis1: Chad was waiting for his car to be washed.
Hypothesis2: Chad was waiting for his car to be finished.

Label 2

Dataset 8: ROCStories

Input

Laverne needs to prepare something for her friend’s party.
She decides to bake a batch of brownies.
Laverne tests one of the brownies to make sure it is delicious.
The brownies are so delicious Laverne eats two of them.

Label 3

Dataset 9: Story Cloze Test

Input
Context: Rick grew up in a troubled household. He never found good support in family, and turned to gangs.
It wasn’t long before Rick got shot in a robbery. The incident caused him to turn a new leaf.
Options: A. He is happy now. B. He joined a gang.

Label A

Table 10: The training examples on different datasets.
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Method B-4 R-L BERT

GPT2-Fixed (Bhagavatula et al., 2020) 0.00 9.99 36.69
O1-O2-Only (Bhagavatula et al., 2020) 2.23 22.83 48.74
COMeT-T+GPT2 (Bhagavatula et al., 2020) 2.29 22.51 48.46
COMeT-E+GPT2 (Bhagavatula et al., 2020) 3.03 22.93 48.52
Fine-tuned GPT2-L (Dong et al., 2021) 13.52 18.01 -
GRF (Ji et al., 2020) 11.62 34.62 -
BART-large (Lewis et al., 2020) 16.47 38.73 56.36
GLM-large (Du et al., 2021) 7.79 25.54 54.85
ClarET 17.67 41.04 57.31

Table 11: Results on the Abductive Commonsense Reasoning
(αNLG).

Method B-4 R-L BERT

Human (Qin et al., 2019) 64.93 67.64 61.87
GPT2-S (Radford et al., 2019) 69.27 65.72 60.53
GPT2-M+Rec+CF (Qin et al., 2020) 75.92 70.93 62.49
GPT2-M+Sup (Qin et al., 2020) 75.71 72.72 62.39
BART-large (Lewis et al., 2020) 82.91 76.44 79.50
GLM-large (Du et al., 2021) 75.81 70.03 68.23
ClarET 87.18 80.74 81.48

Table 12: Results on the Counterfactual Story.

Method B-1 B-2

Seq2Seq (Luong et al., 2015) 18.50 5.90
Transformer (Vaswani et al., 2017) 17.40 6.00
GCN (Yang et al., 2018) 17.60 6.20
IE+MSA (Guan et al., 2019) 24.40 7.80
T-CVAE (Wang and Wan, 2019) 24.30 7.70
Plan&Write (Yao et al., 2019) 24.40 8.40
MGCN-DP (Huang et al., 2021) 24.60 8.60
GPT2-S (Radford et al., 2019) 39.23 13.08
BART-large (Lewis et al., 2020) 54.22 18.07
ClarET 57.47 19.16

Table 13: Results on the Story Ending Generation.

Method B-1 B-2

ConvS2S (Gehring et al., 2017) 31.20 13.20
Fusion (Fan et al., 2018) 32.20 13.70
Plan&Write (Yao et al., 2019) 30.80 12.60
SKRL (Xu et al., 2018) 26.70 8.80
DSRL (Fan et al., 2019) 29.30 11.70
GPT2-S (Guan et al., 2020) 32.20 14.10
KE-GPT2 (Guan et al., 2020) 32.60 14.30
BART-large (Lewis et al., 2020) 45.24 15.08
ClarET 48.75 16.25

Table 14: Results on the Commonsense Story Generation.

Method B-1 B-2

GPT2-S (Radford et al., 2019) 35.25 11.75
GPT2-M (Radford et al., 2019) 45.43 14.81
BART-large (Lewis et al., 2020) 56.25 18.75
GLM-large (Du et al., 2021) 57.34 19.11
ClarET 58.88 19.74

Table 15: Results on the Event Process Completion.

Method ACC
Discriminative Model
Random 20.00
Event-Comp (Granroth-Wilding and Clark, 2016) 49.57
PairLSTM (Wang et al., 2017) 50.83
SGNN (Li et al., 2018) 52.45
SGNN + Int&Senti (Ding et al., 2019) 56.03
RoBERTa-base (Liu et al., 2019) 56.23
RoBERTa-large (Liu et al., 2019) 61.53
RoBERTa + Rep. Fusion (Lv et al., 2020) 58.66
EventBERT (Zhou et al., 2021b) 63.50
RoBERTa + Kown. Model (Zhou et al., 2021c) 63.62
Unified Model
BART-large (Lewis et al., 2020) 61.34
ClarET 64.61

Table 16: Results on the Script Reasoning.

Method ACC
Discriminative Model
Random 50.00
BERT-base (Devlin et al., 2019) 61.88
ERNIE (Zhang et al., 2019) 63.04
KnowBERT (Peters et al., 2019) 63.18
BERT-large (Devlin et al., 2019) 66.75
RoBERTa-large (Liu et al., 2019) 82.35
EventBERT (Zhou et al., 2021b) 85.51
Unified Model
T5-base (Raffel et al., 2020) 61.10
T5-large (Raffel et al., 2020) 77.80
BART-large (Lewis et al., 2020) 80.74
GLM-large (Du et al., 2021) 65.27
CALM-large (Zhou et al., 2021a) 77.12
UNICORN (Lourie et al., 2021) 79.50
ClarET 82.77

Table 17: Results on the Abductive Commonsense Reasoning
(αNLI).

Method ACC
Discriminative Model
Random 20.00
RoBERTa-large (Liu et al., 2019) 73.94
Max-pool Context (Mori et al., 2020) 35.00
GRU Context (Mori et al., 2020) 52.20
EventBERT (Zhou et al., 2021b) 75.03
Unified Model
BART-large (Lewis et al., 2020) 72.48
ClarET 74.88

Table 18: Results on the Narrative Incoherence Detection.

Method ACC
Discriminative Model
Random 50.00
Hidden Coherence Model (Chaturvedi et al., 2017) 77.60
val-LS-skip (Srinivasan et al., 2018) 76.50
RoBERTa-large (Liu et al., 2019) 87.10
EventBERT (Zhou et al., 2021b) 91.33
Unified Model
Finetuned Transformer LM (Radford et al., 2018) 86.50
BART-large (Lewis et al., 2020) 87.01
ClarET 91.18

Table 19: Results on the Story Cloze Test.
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