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Abstract

Cross-domain sentiment analysis has achieved
promising results with the help of pre-trained
language models. As GPT-3 appears, prompt
tuning has been widely explored to enable bet-
ter semantic modeling in many natural lan-
guage processing tasks. However, directly
using a fixed predefined template for cross-
domain research cannot model different distri-
butions of the [MASK] token in different do-
mains, thus making underuse of the prompt
tuning technique. In this paper, we propose a
novel Adversarial Soft Prompt Tuning method
(AdSPT) to better model cross-domain sen-
timent analysis. On the one hand, AdSPT
adopts separate soft prompts instead of hard
templates to learn different vectors for differ-
ent domains, thus alleviating the domain dis-
crepancy of the [MASK] token in the masked
language modeling task. On the other hand,
AdSPT uses a novel domain adversarial train-
ing strategy to learn domain-invariant repre-
sentations between each source domain and
the target domain. Experiments on a publicly
available sentiment analysis dataset show that
our model achieves new state-of-the-art results
for both single-source domain adaptation and
multi-source domain adaptation.

1 Introduction

In recent years, with the emergence of a series of
large-scale pre-trained language models (PLMs),
such as GPT (Radford et al., 2018, 2019), BERT
(Devlin et al., 2019), and RoBERTa (Liu et al.,
2019), fine-tuning PLMs has achieved promising
results on a wide range of natural language pro-
cessing (NLP) tasks. However, as PLMs become
larger and larger, fine-tuning larger PLMs becomes
more challenging in most real-world applications.
More recently, Brown et al. (2020) show that de-
signing task descriptions (a.k.a. prompts) can make
accurate predictions without updating any of the
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Figure 1: How domain discrepancy affects prompt tun-
ing. Examples of a book review on the top and a video
review on the bottom.

parameters of GPT-3 (which has 175B parameters).
This inspires a new PLM-tuning method named
“prompt tuning”. Such prompt tuning method
has achieved state-of-the-art results on text clas-
sification and natural language inference (Schick
and Schütze, 2020; Schick et al., 2020; Gao et al.,
2020), relation classification (Han et al., 2021), and
natural language generation (Li and Liang, 2021).

It is common to use a predefined template (e.g.,
“It was [MASK].”) in prompt tuning for binary
sentiment analysis, and the classification results of
positive or negative depend on the probabilities of
predefined label words (e.g., “{good, bad}”) in the
masked language modeling (MLM) task. However,
the distributions of MLM prediction results can
be different for different domains. An example is
shown in Figure 1, the discrepancy between book-
domain review and video-domain review leads to
different possibilities of label words. The high-
frequency label word in book-domain review is
“useful”, and video-domain review is “real”, neither
of which is in the predefined “{good, bad}”. There-
fore, it is unreasonable to predict predefined label
words with fixed templates (a.k.a. hard prompts)
for different domain datasets.

The intuition is that the feature distributions cor-
responding to the [MASK] position learned from
the hard prompt are distinct among different do-
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mains. And the discrepancy among different do-
mains can have serious effects on the cross-domain
setting where we train a classifier on source domain
data, e.g., the book reviews, and test it on the target
domain, e.g., the video review. So domain adapta-
tion (Ben-David et al., 2007; Mansour et al., 2009)
based on cluster hypothesis (Zhu and Goldberg,
2009) becomes a key point of the cross-domain
research.

In order to improve the cross-domain sentiment
analysis with the help of PLMs, we propose Ad-
SPT: an Adversarial Soft Prompt Tuning method,
which sheds new light on solving the domain adap-
tation problem. Specifically, we use soft prompts
composed of multiple learnable vectors and the
[MASK] token instead of hard templates for tun-
ing. For different domains, we use independent
soft prompts to represent domain-specific informa-
tion, thus making them have the domain-aware
knowledge. With different domain soft prompts,
the MLM head classifier can mitigate the domain
discrepancy of the [MASK] token. To enhance
the effectiveness of the target domain, we design
a novel adversarial training strategy to learn the
domain-invariant knowledge of the [MASK] token,
which can be seen as a two-player minimax game
between the target domain and each source domain
under multi-source domain adaptation setting. As a
result, the collaborative effect of soft prompt tuning
and domain adversarial training can more properly
predict the feature distribution of the [MASK] to-
ken on the ground of domain-specific soft prompts
and the domain invariance of the [MASK] token.

In experiments, we evaluate on a publicly avail-
able sentiment analysis dataset for both single-
source domain adaptation and multi-source domain
adaptation. Our results show the effectiveness
of collaboratively leveraging domain-specific soft
prompts tuning and domain adversarial training. To
summarize, the main contributions of this work are
as follows:

(1) In prompt tuning, we adopt separate soft
prompts to learn embeddings enriched with the
domain knowledge, thus alleviating the domain
discrepancy of the [MASK] position.

(2) We design a novel adversarial training strat-
egy to learn the domain-invariant representation of
the [MASK] position.

(3) Experiments on the Amazon reviews dataset
show our method AdSPT obtains the average ac-
curacy 93.14% (0.46 absolute improvement) under

single-source domain adaptation and the average
accuracy 93.75% (0.81 absolute improvement) un-
der multi-source domain adaptation.

2 Related Work

Prompt tuning. Fine-tuning PLMs with task-
specific heads on downstream tasks has become
the main paradigm and yields strong performance
on many NLP tasks (Peters et al., 2018; Devlin
et al., 2019; Radford et al., 2019). But there is
a big gap between the fine-tuning objectives of
downstream tasks and the pre-training objectives
of PLMs, which could limit the exploitation of
knowledge in PLMs (Liu et al., 2021b). Subse-
quently, GPT-3 (Brown et al., 2020) brings a new
paradigm “prompt tuning” for downstream tasks,
which leverages natural-language prompts and task
demonstrations as context to make downstream
tasks similar to language modeling.

Early works explore manually defined templates
(a.k.a. hard templates) for text classification and
natural language inference (Schick and Schütze,
2020, 2021). However, suitable templates require
strong domain knowledge. Therefore, some auto-
matically generated hard templates are explored
(Shin et al., 2020; Gao et al., 2020; Ben-David
et al., 2021). Since prompt construction is to
find a method that allows PLMs to effectively per-
form downstream tasks, it is not necessary to limit
templates to human-interpretable natural language.
Some works attempt to perform prompting directly
with several learnable vectors, such as soft prompt
(Lester et al., 2021; Vu et al., 2021), prefix-tuning
(Li and Liang, 2021) and P-tuning V2 (Liu et al.,
2021a). Moreover, Schick et al. (2020) explore
automatically identifying label words. Hu et al.
(2021) use an external knowledge base to expand
label words. This paper focuses on improving the
cross-domain sentiment analysis via different soft
prompts of different domains.

Domain Adaptation. Research on domain adap-
tation (DA) uses labeled or unlabeled target data
to transfer labeled source information to a specific
target domain (Pan and Yang, 2009; Mansour et al.,
2009). Popular methods for unsupervised DA are
based on domain discrepancy optimizing based on
adversarial training (Ganin et al., 2016; Zhao et al.,
2018; Saito et al., 2018). As for cross-domain sen-
timent analysis, some early works use pivot-based
methods to capture the shared feature representa-
tion of different domains (Yu and Jiang, 2016; Ziser
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and Reichart, 2018; Li et al., 2018; Peng et al.,
2018). Some other works adopt different adversar-
ial learning methods to learn the domain-common
sentiment knowledge (Li et al., 2017; Qu et al.,
2019; Li et al., 2019).

Recently, with the promising performance of
PLMs in NLP, many works on cross-domain sen-
timent analysis focus on how to improve lan-
gange model pre-training and fine-tuning, e.g., Du
et al. (2020) use a target domain MLM task and
a domain-distinguish task in pre-training; Zhou
et al. (2020) utilize several pre-training tasks based
on existing lexicons and annotations. Different
from these works, our method is the first to use the
combination of soft prompt tuning and adversarial
training to solve the DA problem.

3 Problem Formulation

In this paper, we study cross-domain sentiment
analysis in the unsupervised domain adaptation set-
ting which contains two scenarios: a source domain
and a target domain or multiple source domains
and a target domain. Given m(m ≥ 1) source
domains, the l-th (l ∈ [1, . . . ,m]) source domain
contains an annotated dataset Sl = {xs

i , y
s
i }

Ns
l

i=1,
where xs

i = [ws
1, . . . , w

s
n] is a input sentence with

n words, ysi is the corresponding polarity label,
and N s

l represents the number of examples of the
l-th source domain. In the target domain, there
is an unannotated dataset T = {xt

i}N
t

i=1, where
xt
i = [wt

1, . . . , w
t
n] is an unlabeled sentence of the

target domain and N t is the number of the unla-
beled data. The goal of cross-domain sentiment
analysis is to learn a function F that could both
retain in-domain knowledge for different domains
and also learn the domain invariance between the
target domain and each source domain to better
predict the polarity of unlabeled sentences from the
target domain.

4 Method

In this section, we first introduce a soft prompt tun-
ing method for sentiment classification that utilizes
soft prompts to capture domain-specific knowl-
edge. Then we present a domain adversarial train-
ing method for domain adaptation. Finally, we
describe the overall learning procedure.

4.1 Soft Prompt Tuning for Sentiment
Classification

Prompt tuning is an approach to add extra informa-
tion for PLMs by reformulating downstream tasks
as cloze questions. The primary components in-
clude a template and a set of label words, where
the template is a background description of current
task and the label words are the high-probability vo-
cabulary predicted by PLMs in the current context.
In the binary sentiment classification, we denote
the input sentence as x = [w1, . . . , wn], the out-
put label as y. Here y ∈ Y , and the label space
Y = {positive,negative}.

Prompt tuning formalizes the classification task
into a MLM task. Given a PLMM and its vocab-
ulary V , a prompt consists of a template function
T (·) that converts the input sentence x to a prompt
input xprompt = T (x) with the [MASK] token and
a set of label words V∗ ⊂ V , which are connected
with the label space through a mapping function
v : Y 7→ V∗. As shown in Figure 2, the soft
prompted input xprompt contains the embeddings
of the original sentence e(x), k learnable vectors
[h0, . . . ,hk−1], the embedding of the [MASK] to-
ken e(“[MASK]”), and the embeddings of two
positional tokens e(“[CLS]”) and e(“[SEP]”). So
the actual input ofM is represented as:

xprompt=
[
e(“[CLS]”), e(x),h0, . . . ,hk−1,

e(“[MASK]”), e(“[SEP]”)
] (1)

where e(·) represents the embedding function of
M.

Here we can denote a PLM M as a function
mapping from xprompt to the feature representation
and vocabulary distribution of the [MASK] token,
represented as:

h[MASK], s[MASK] =M(xprompt) (2)

where h[MASK] ∈ Rh and s[MASK] ∈ R|V| are the
hidden representation and vocabulary distribution
of the [MASK] token respectively, and s[MASK] =
f(h[MASK]) is obtained by the MLM head function
f .

The probability p(y|x) is formalized accord-
ing to the distribution of the label word w ∈ V∗
w.r.t. the [MASK] position. In binary sentiment
classification, we set the label words as V∗ =
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Figure 2: Overall structure of the proposed method.

{good,bad}. So,

p(y|x) = p(V∗y ← [MASK] |xprompt)

=
exp(s[MASK](V∗y ))∑

y′∈Y exp(s[MASK](V∗y′))
(3)

Given an annotated dataset S = {xi, yi}Ni=1, the
training objective for soft prompt tuning is obtained
using the binary cross-entropy loss,

Lclass(S; θM,p,f )

=−
N∑
i=1

[
log p(yi|xi)

I{ŷi=1}

+ log(1− p(yi|xi))
I{ŷi=0}

] (4)

where ŷi represents the ground truth label ranging
from 1 as the positive label and 0 as the negative
label). θM,p,f represents the overall trainable pa-
rameters of the PLMM, several learnable vectors
p and the MLM head function f .

4.2 Domain Adversarial Training

For the same task in different domains, domain ad-
versarial training can not only transfer the generic
knowledge from source domains to the target do-
main, but also train more domain-aware classifiers.
As shown in Figure 2, domain adversarial train-
ing aims to make the feature distributions of the
[MASK] position from different domains closer.

More intuitively, it will encourage the MLM head
classifer to obtain domain-invariant features across
domains.

Based on the hidden representation h[MASK] by
the PLM, the detailed process of domain adver-
sarial training is as follows: given m (m ≥ 1)
source domains, we assume that between each
source domain Sl (l ∈ [1, . . . ,m]) and the target
domain T have a domain discriminative function
gl : Rh → D that discriminates between the source
domain and the target domain, where the domain
label set is represented as D = {0, 1}, 0 is the
source domain label, and 1 is the target domain la-
bel. To this end, there arem domain discriminators,
denoted as g = {gl}ml=1.

Given an input example x from either the l-th
(l ∈ [1, . . . ,m]) source domain or the target do-
main, we first obtain the task-specific head repre-
sentation h[MASK] byM and then model the prob-
ability p(d|x) for discriminating the domain label
d ∈ D as:

p(d|x) =
exp(gdl (h[MASK]))∑

d′∈D exp(gd
′

l (h[MASK]))
(5)

Given m source domain dataset Ŝ = {Sl}ml=1 =

{{xs
i}

Ns
l

i=1}ml=1 and a target domain dataset T =

{xt
i}N

t

i=1, where N s
l is the number of samples in

the l-th source domain and N t is the number of
samples in the target domain, the domain discrimi-
native objective is to minimize the following cross-
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entropy loss,

Ldomain(Ŝ, T ; θM,p,g)

=−
m∑
l=1

Ns
l +Nt∑
i=1

[
log p(di|xi)

I{d̂i=1}

+ log(1− p(di|xi))
I{d̂i=0}

]
(6)

where d̂i represents the truth domain label and
θM,p,g represents the overall trainable parameters
of the PLMM, several learnable vectors p and m
domain discriminators g.

The domain adversarial training among m
source domains and the target domain can be seen
as a two-player minimax game where the domain
classifiers g = {gl}ml=1 tend to minimize the do-
main discrimination loss so as to make the domain
discriminators strong while the PLMM tends to
maximize the domain discrimination loss so as to
weaken the domain discrimination.

Formally, the domain adversarial training objec-
tive w.r.t. to g, p andM can be represented as:

max
M,p

min
g
Ldomain(Ŝ, T ; θM,p,g) (7)

4.3 Learning Procedure
Joint training objective. Given m source do-
mains Ŝ and a target domain T , the sentiment
classifier and the domain discriminator are jointly
trained for optimizing the PLM M, soft prompt
embeddings p, MLM head function f and domain
discriminators g, and the final training objective is
formally represented as:

min
M,p,f

{
λLclass(S; θM,p,f )

−min
g
Ldomain(Ŝ, T ; θM,p,g)

} (8)

where λ is a trade-off parameter. The sentiment
classification objective Lclass and the domain dis-
crimination objective Ldomain are defined in Eq.
(4) and Eq. (6), respectively.

Training procedure. The iterative training pro-
cedure is summarized in Algorithm 1. In each iter-
ation, the input samples of each source domain are
first used for training the PLMM, several learn-
able vectors p and the MLM head function f . The
sentiment classification loss is computed in line 5.
Then the samples of each source domain and the

Algorithm 1 Training Process of AdSPT.
Input: Training samples of m source domain dataset Ŝ =

{Sl}ml=1 = {{xsi , ysi }
Ns

l
i=1}

m
l=1 and a target domain dataset

T = {xti}N
t

i=1; the number of training iterations n.
Output: Configurations of AdSPT θM,p,f,g

Initialize: PLM θM; soft prompt embeddings θp; MLM head
function θf ; domain discriminator {θgl}

m
l=1; learning rate η;

trade-off parameter λ.
1: while Training steps not end do
2: for d in {Source,Target} do
3: if d = Source then
4: for l in {1, . . . ,m} do
5: Lclass ← Lclass(Sl; θM,p,f )
6: Ldomain ← Ldomain(Sl, T ; θM,p,gl)

# Minimizing the MLM head classification
loss

7: θf ← θf −∇θfLclass
# Minimizing the domain discrimination loss

8: θgl ← θgl −∇θglLdomain

9: end for
# Minimizing the sentiment classification loss

10: θM,p ← θM,p −∇θM,p(λLclass − Ldomain)
11: end if
12: end for
13: end while

target domain are mapped to different domain dis-
criminators to train the PLMM, several learnable
vectors p and the domain discriminator gl. The
corresponding domain discrimination loss is com-
puted in line 6. The sentiment classification loss is
used for updating the parameters of the PLM, sev-
eral learnable vectors and the MLM head function
(line 7, 10). The domain discrimination loss is used
for updating the parameters of the PLM, several
learnable vectors and the domain discriminators.
Obviously, the parameters of the PLM and several
learnable vectors be updated together by the above
two losses.

5 Experiments

In this section, we conduct experiments to evaluate
the effectiveness of our methods. Our experiments
are carried out on single-source domain adapta-
tion and multi-source domain adaptation settings (§
5.3). In addition, we also investigate how different
components in the model impact the performance
of cross-domain sentiment analysis with different
settings.

5.1 Experimental Setup

Dataset. We evaluate on the Amazon reviews
dataset (Blitzer et al., 2007), which has been
widely used for cross-domain sentiment classifi-
cation. This dataset contains reviews of binary
categories from four domains: Books (B), DVDs
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S→ T
Fine-tuning Prompt-tuning

BERT-DAAT SENTIXFix FT FT + AT PT(HARD) PT(HARD) + AT PT(SOFT) AdSPT
B→ D 89.70 91.30 88.96 89.70 89.75 90.75 90.50 92.00
B→ E 89.57 93.25 86.15 87.30 91.75 92.45 93.05 93.75
B→ K 90.75 96.20 89.05 89.55 91.90 92.70 92.75 93.10
D→ B 90.86 91.15 89.40 89.55 90.90 91.50 91.75 92.15
D→ E 89.30 93.55 86.55 86.05 91.75 92.75 93.55 94.00
D→ K 87.53 96.00 87.53 87.69 91.05 92.35 92.50 93.25
E→ B 88.91 90.40 86.50 87.15 90.00 91.90 91.90 92.70
E→ D 90.13 91.20 87.98 88.20 92.10 92.55 93.25 93.15
E→ K 93.18 96.20 91.60 91.91 92.90 93.55 93.95 94.75
K→ B 87.98 89.55 87.55 87.65 89.15 90.75 91.75 92.35
K→ D 88.81 89.85 87.30 87.72 90.05 91.00 91.35 92.55
K→ E 91.72 93.55 90.45 90.25 92.15 92.50 93.10 93.95
Avg. 90.12 92.68 88.25 88.56 91.12 92.06 92.45 93.14

Table 1: Results of single-source domain adaptation on Amazon reviews. There are four domains, B: Books, D:
DVDs, E: Electronics, K: Kitchen appliances. In the table header, S: Source domain; T: Target domain; FT: Fine-
tuning; AT: Adversarial training; PT(HARD): Prompt-tuning with the hard prompt; PT(SOFT): Prompt-tuning
with the soft prompt; + represents the combination, e.g., “PT(HARD) + AT” represents hard prompt tuning with
the domain adversarial training. AdSPT is also called “PT(SOFT) + AT”. We report mean performances over 5
fold cross-validation.

(D), Electronics (E) and Kitchen appliances (K).
Each domain has totally 2,000 manually labeled
reviews. We use different settings for single-source
domain adaptation and multi-source domain adap-
tation. For each domain, there are 2000 labeled re-
views, including 1000 positive and 1000 negative,
and 4000 unlabeled reviews. Following previous
work (Ruder and Plank, 2017), we randomly select
a small part (20%) of examples in each domain as
the development set to save the best training model
and perform a 5 fold cross-validation.

In single-source domain adaptation, we follow
previous work (Ziser and Reichart, 2018) to con-
struct 12 cross-domain sentiment analysis tasks
(corresponding to 12 ordered domain pairs). In
multi-source domain adaptation, we choose three-
domain data as multiple source domains and the
remaining one as the target domain, e.g., “BDE→
K”. So there are 4 combinations, corresponding to
4 tasks.

Training details. In the Amazon reviews exper-
iments, we adopt a 12-layer Transformer (Vaswani
et al., 2017; Devlin et al., 2019) initialized with
RoBERTaBASE (Liu et al., 2019) as the PLM. Dur-
ing the training, we train with batch size of 2 for 10
epoches. The optimizer is Adam with learning rate
2e−5 for the PLM optimization and 5e−5 for opti-
mizing domain discriminators. All experiments are
conducted with an NVIDIA GeForce RTX 2080
Ti.

5.2 Baselines

We compare our method against 2 state-of-the-art
methods, and also design several variants of fine-
tuning and prompt tuning as baselines to demon-
strate the effectivenss of adversatial training strat-
egy in soft prompt tuning for DA.

(1) BERT-DAAT(Du et al., 2020): Use BERT
post-training for cross-domain sentiment analysis
with adversarial training.

(2) SENTIXFix(Zhou et al., 2020): Pre-train a
sentiment-aware language model by several pre-
training tasks.

(3) Fine-tuning: Standard fine-tuning vanilla
PLMs in the source domain labeled data, which
use the hidden representation of [CLS] for classifi-
cation.

(4) Fine-tuning + AT: Add the adversarial train-
ing operating on standard fine-tuning vanilla PLMs.

(5) Prompt-tuning(Hard): Use a manually de-
fined template “It is [MASK]” for prompt-tuning.

(6) Prompt-tuning(Hard) + AT: Add the adver-
sarial training operating on Prompt-tuning(Hard).

Following previous work (Du et al., 2020; Zhou
et al., 2020), we adopt the accuracy to evaluate the
performance.

5.3 Main Results

Main results contain results of single-source do-
main adaptation (Table 1) and multi-source domain
adaptation (Table 2).
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S→ T
Fine-tuning Prompt-tuning

FT FT + AT PT(HARD) PT(HARD) + AT PT(SOFT) AdSPT
BDE→ K 89.70 91.30 91.50 92.25 93.25 93.75
BDK→ E 90.57 91.25 91.30 93.00 93.75 94.25
BEK→ D 88.56 89.05 90.75 91.25 92.00 93.50
DEK→ B 89.86 91.75 92.00 92.25 92.75 93.50
Avg. 89.67 90.84 91.39 92.00 92.94 93.75

Table 2: Results of multi-source domain adaptation on Amazon reviews.

Results of Single-source Domain Adaptation.
Table 1 shows our main experimental results under
single-source domain adaptation. We can observe
that our method AdSPT outperforms all other meth-
ods in most of single-source domain adaptation.

Compared with previous state-of-the-art meth-
ods, AdSPT is significantly superior to BERT-
DAAT and SENTIXFix on average (3.02 absolute
improvement and 0.46 absolute improvement, re-
spectively). More specifically speaking, prompt-
tuning methods achieve better results than BERT-
DAAT on most of single-source domain adaptation.
This indicates that prompt tuning can stimulate
pre-encoded knowledge in PLMs to solve the DA
problem. But the performance of PT(HARD) and
PT(HARD) + AT is lower than that of SENTIXFix

on average (91.12% v.s. 92.68% and 92.06% v.s.
92.68%), showing that the feature representation
of the [MASK] token in hard prompt tuning learns
more domain knowledge of source domains, which
leads to degraded performance on the target do-
main. Conversely, PT(SOFT) is comparable to
SENTIXFix on average (92.45% v.s. 92.68%) and
AdSPT achieves better results than SENTIXFix

on average (0.46 absolute improvement). It shows
that soft prompt tuning not only learns domain-
aware continuous vectors, but also weakens the
domain discrepancy of the feature distribution of
the [MASK] position. In addition, prompt-tuning
methods are consistently superior to FT and FT +
AT, either using a hard prompt, or soft prompt.

In prompt-tuning, soft prompt tuning methods
achieve better performances than corresponding
hard prompt tuning methods (1.33 absolute im-
provement and 1.08 absolute improvement, respec-
tively). This indicates these separate soft prompts
can flexibly learn in-domain knowledge of different
domains, which makes the feature representation
of the [MASK] token more suitable for predicting
the predefined label words. So soft prompt is more
applicable to the DA problem than a hard prompt.
When we add a domain adversarial training oper-

ation on soft prompt tuning, AdSPT achieves the
new start-of-the-art result on average. It shows that
the domain adversarial training strategy can en-
hance the domain-invariant feature of the [MASK]
token among different domain datasets.

Results of Multi-source Domain Adaptation.
Table 2 shows our main experimental results under
multi-source domain adaptation.

Compared with fine-tuning methods, variants of
prompt tuning achieve better performances (over at
least 0.55 absolute improvement on average). This
is mainly because prompt tuning uses the feature
representation of [MASK] token for classification,
rather than the feature representation of [CLS] to-
ken. On the one hand, fine-tuning is difficult to
train the domain-specific classifier accurately from
scratch on the unlabeled dataset. On the other hand,
prompt tuning is used to classify by predicting the
feature distribution of the [MASK] token in the
set of label words, which can activate some prior
knowledge in PLMs.

Compared with hard prompt tuning methods,
soft prompt tuning methods achieve significant im-
provements on average (92.94% v.s. 91.39% and
93.75% v.s. 92.94%). Constructing the sophis-
ticated hard template not only requires expertise
knowledge and time, but the unified predefined
hard template leads to the domain discrepancy of
the feature representation of the [MASK] position
that is unsuitable for multi-domain adaptation.

Besides, PT(HARD) + AT achieves a better re-
sult than PT(HARD) on average (0.61 absolute
improvement), which shows the domain adversar-
ial training can obtain domain-invariant features
among different domains by domain discriminators
for DA. So when adding the domain adversarial
training into soft prompt tuning, AdSPT achieves
the best results under multi-source domain adap-
tation setting. This shows the effectiveness of the
collaboration of soft prompt tuning and the domain
adversarial training strategy. In the domain ad-
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Figure 3: Analysis of multi-source and single-source

versarial training, using the feature representation
of the [MASK] token to obtain domain invariance
is better for predicting the predefined set of label
words.

5.4 Analysis

Multi-source v.s. Single-source. We make
more detailed comparisons to explore the effect of
multi-source domain adaptation and single-source
domain adaptation settings. Figure 3 illustrates the
influence of multi-source and single-source on the
predicted results of the same target domain. When
the target domain is “E”, “D”, or “B”, multi-source
achieves better results in the target domain than
single-source, showing that in most cases, multi-
source domain adaptation is superior to single-
source domain adaptation in cross-domain research.
However, when the target domain is “K”, the re-
sult of “E → K” is superior to that of “BDE →
K” (94.75% v.s. 93.75%). It is mainly because the
feature distribution of “E” and “K” is closer.

Effect of Soft Prompts. As stated in previous
works (Gao et al., 2020), the choice of hard tem-
plates may have a huge impact on the performance
of prompt tuning. In this subsection, we carry out
experiments in “BDE→ K” and “B→ K” respec-
tively to investigate the influence of different soft
prompts under multi-source domain adaptation and
single-source domain adaptation settings.

As shown in Figure 4, we use 6 different soft
prompts (by changing the number of prompt to-
kens k). The results demonstrate that the choice
of templates exerts a considerable influence on the

Figure 4: Results of different soft prompts k on “BDE
→ K” and “B→ K”

performance of prompt tuning. For soft prompts,
surprisingly, prompt tuning yields the best result
with the fewest special tokens. Here k = 3.

6 Conclusion

In this paper, we proposed a novel Adversarial
Soft Prompt Tuning method (AdSPT) for cross-
domain sentiment analysis. Firstly, we use domain-
specific soft prompts instead of hard templates to
represent domain-specific knowledge. The domain-
specific soft prompts can alleviate the domain dis-
crepancy w.r.t. the [MASK] representations by
MLM task. Meanwhile, we also design a novel
adversarial training strategy to learn the domain-
invariant knowledge of the [MASK] token among
different domains. Experiments on the Amazon re-
views dataset achieve state-of-the-art performance.
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