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Abstract

AI technologies for Natural Languages have
made tremendous progress recently. However,
commensurate progress has not been made on
Sign Languages, in particular, in recognizing
signs as individual words or as complete sen-
tences. We introduce OpenHands1, a li-
brary where we take four key ideas from the
NLP community for low-resource languages
and apply them to sign languages for word-
level recognition. First, we propose using pose
extracted through pretrained models as the stan-
dard modality of data in this work to reduce
training time and enable efficient inference, and
we release standardized pose datasets for differ-
ent existing sign language datasets. Second,
we train and release checkpoints of 4 pose-
based isolated sign language recognition mod-
els across 6 languages (American, Argentinian,
Chinese, Greek, Indian, and Turkish), provid-
ing baselines and ready checkpoints for deploy-
ment. Third, to address the lack of labelled data,
we propose self-supervised pretraining on unla-
belled data. We curate and release the largest
pose-based pretraining dataset on Indian Sign
Language (Indian-SL). Fourth, we compare dif-
ferent pretraining strategies and for the first
time establish that pretraining is effective for
sign language recognition by demonstrating (a)
improved fine-tuning performance especially
in low-resource settings, and (b) high crosslin-
gual transfer from Indian-SL to few other sign
languages. We open-source all models and
datasets in OpenHands with a hope that it
makes research in sign languages reproducible
and more accessible.

1 Introduction

According to the World Federation of the Deaf,
there are approximately 72 million Deaf people
worldwide. More than 80% of them live in devel-
oping countries. Collectively, they use more than

∗Equal contribution.
1https://github.com/AI4Bharat/

OpenHands

300 different sign languages varying across differ-
ent nations (UN, 2021). Loss of hearing severely
limits the ability of the Deaf to communicate and
thereby adversely impacts their quality of life. In
the current increasingly digital world, systems to
ease digital communication between Deaf and hear-
ing people are important accessibility aids. AI has
a crucial role to play in enabling this accessibility
with automated tools for Sign Language Recogni-
tion (SLR). Specifically, transcription of sign lan-
guage as complete sentences is referred to as Con-
tinuous Sign Language Recognition (CSLR), while
recognition of individual signs is referred to as Iso-
lated Sign Language Recognition (ISLR). There
have been various efforts to build datasets and mod-
els for ISLR and CLSR tasks (Adaloglou et al.,
2021; Koller, 2020). But these results are often
concentrated on a few sign languages (such as the
American Sign Language) and are reported across
different research communities with few standard-
ized baselines. When compared against text- and
speech-based NLP research, the progress in AI re-
search for sign languages is significantly lagging.
This lag has been recently brought to notice of the
wider NLP community (Yin et al., 2021).

For most sign languages across the world, the
amount of labelled data is very low and hence
they can be considered low-resource languages.
In the NLP literature, many successful templates
have been proposed for such low-resource lan-
guages. In this work, we adopt and combine
many of these ideas from NLP to sign language
research. We implement these ideas and release
several datasets and models in an open-source li-
brary OpenHands with the following key con-
tributions:
1. Standardizing on pose as the modality: We
consider using pose-extractor as an encoder, which
processes raw RGB videos and extracts the frame-
wise coordinates for few keypoints. Pose-extractors
are useful across sign languages and also other
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tasks such as action recognition (Yan et al., 2018;
Liu et al., 2020), and can be trained to high ac-
curacy. Further, as we report, pose as a modality
makes both training and inference for SLR tasks ef-
ficient. We release pose-based versions of existing
datasets for 5 sign languages: American, Argen-
tinian, Greek, Indian, and Turkish.

2. Standardized comparison of models across
languages: The progress in NLP has been ear-
marked by the release of standard datasets, includ-
ing multilingual datasets like XGLUE (Liang et al.,
2020), on which various models are compared. As
a step towards such standardization for ISLR, we
train 4 different models spanning sequence models
(LSTM and Transformer) and graph-based mod-
els (ST-GCN and SL-GCN) on 7 different datasets
across 6 sign languages mentioned in Table 1, and
compare them against models proposed in the liter-
ature. We release all 28 trained models along with
scripts for efficient deployment which demonstra-
bly achieve real-time performance on CPUs and
GPUs.

3. Corpus for self-supervised training: A defin-
ing success in NLP has been the use of self-
supervised training, for instance masked-language
modelling (Devlin et al., 2018), on large corpora
of natural language text. To apply this idea to SLR,
we need similarly large corpora of sign language
data. To this end, we curate 1,129 hours of video
data on Indian Sign Language. We pre-process
these videos with a custom pipeline and extract
keypoints for all frames. We release this corpus
which is the first such large-scale sign language
corpus for self-supervised training.

4. Effectiveness of self-supervised training: Self-
supervised training has been demonstrated to be
effective for NLP: Pretrained models require small
amounts of fine-tuning data (Devlin et al., 2018;
Baevski et al., 2020) and multilingual pretrain-
ing allows crosslingual generalization (Hu et al.,
2020b). To apply this for SLR, we evaluate mul-
tiple strategies for self-supervised pretraining of
ISLR models and identify those that are effec-
tive. With the identified pretraining strategies,
we demonstrate the significance of pretraining by
showing improved fine-tuning performance, espe-
cially in very low-resource settings and also show
high crosslingual transfer from Indian SL to other
sign languages. This is the first and successful
attempt that establishes the effectiveness of self-
supervised learning in SLR. We release the pre-

trained model and the fine-tuned models for 4 dif-
ferent sign languages.

Through these datasets, models, and experiments
we make several observations. First, in compar-
ing standardized models across different sign lan-
guages, we find that graph-based models working
on pose modality define state-of-the-art results on
most sign languages. RNN-based models lag on
accuracy but are significantly faster and thus appro-
priate for constrained devices. Second, we estab-
lish that self-supervised pretraining helps as it im-
proves on equivalent models trained from scratch
on labelled ISLR data. The performance gap is
particularly high if the labelled data contains fewer
samples per label, i.e., for the many sign languages
which have limited resources the value of self-
supervised pretraining is particularly high. Third,
we establish that self-supervision in one sign lan-
guage (Indian SL) can be crosslingually transferred
to improve SLR on other sign languages (Amer-
ican, Chinese, and Argentinian). This is particu-
larly encouraging for the long tail of over 300 sign
languages that are used across the globe. Fourth,
we establish that for real-time applications, pose-
based modality is preferable over other modalities
such as RGB, use of depth sensors, etc. due to re-
duced infrastructure requirements (only camera),
and higher efficiency in self-supervised pretraining,
fine-tuning on ISLR, and inference. We believe
such standardization can help accelerate dataset
collection and model benchmarking. Fifth, we ob-
serve that the trained checkpoints of the pose-based
models can be directly integrated with pose estima-
tion models to create a pipeline that can provide
real-time inference even on CPUs. Such a pipeline
can enable the deployment of these models in real-
time video conferencing tools, perhaps even on
smartphones.

As mentioned all datasets and models
are released with permissible licenses in
OpenHands with the intention to make SLR
research more accessible and standardized. We
hope that others contribute datasets and models to
the library, especially representing the diversity of
sign languages used across the globe.

The rest of the paper is organized as follows.
In section 2 we present a brief overview of the
existing work. In section 3 we describe our ef-
forts in standardizing datasets and models across
six different sign languages. In section 4 we ex-
plain our pretraining corpus and strategies for self-

2115



supervised learning and detail results that establish
its effectiveness. In section 5 we describe in brief
the functionalities of the OpenHands library.
In section 6, we summarize our work and also list
potential follow-up work.

2 Background and Related Work

Significant progress has been made in Isolated Sign
Language Recognition (ISLR) due to the release of
datasets (Li et al., 2020; Sincan and Keles, 2020;
Chai et al., 2014; Huang et al., 2019) and recent
deep learning architectures (Adaloglou et al., 2021).
This section reviews this work, with a focus on
pose-based models.

2.1 Sign Language

A sign language (SL) is the visual language used by
the Deaf and hard-of-hearing (DHH) individuals
(and also by those who comunnicate with them),
which involves usage of various bodily actions, like
hand gestures and facial expressions, called signs
to communicate. A sequence of signs constitutes
a phrase or sentence in a SL. The signs can be
transcribed into sign-words of any specific spoken
language usually written completely in capital let-
ters. Each such sign-word is technically called as
a gloss and is the standardized basic atomic token
of an SL transcript (Schembri and Crasborn, 2010).
It is be noted that there is not (always) one-to-one
relationships between glosses and spoken language
words.

The task of converting each visual sign commu-
nicated by a signer into a gloss is called isolated
sign language recognition (ISLR). The task of con-
verting a continuous sequence of visual signs into
serialized glosses is referred as continuous sign
language recognition (CSLR). CSLR can either be
modeled as an end-to-end task, or as a combination
of sign language segmentation and ISLR. The task
of converting signs into spoken language text is
referred as sign language translation (SLT), which
can again either be end-to-end or a combination of
CLSR and gloss-sequence to spoken phrase con-
verter.

In terms of real-world applications, eventhough
CSLR is more practically useful than ISLR, it does
not still undermine the value in studying and im-
plementing ISLR. The applications of ISLR in-
clude building sign spotting systems (Albanie et al.,
2020), building alignment networks (Albanie et al.,
2021) to aid in building CSLR datasets (or evaluate

CSLR output), building CSLR systems on top of
an automatic SL segmentation model (Farag and
Brock, 2019) which identifies the frame boundaries
for signs in videos to divide them into approximate
meaningful segments (glosses), etc.

Although SL content is predominantly recorded
as RGB (color) videos, it can also be captured using
various other modalities like depth maps or point
cloud, finger gestures recorded using sensors, skele-
ton representation of the signer, etc. In this work,
we focus on ISLR using pose-skeleton modality.
A pose representation, extracted using pose esti-
mation models, provides the spatial coordinates at
which the joints (such as elbows and knees), called
keypoints, are located in a field or video. This
pose information can be represented as a connected
graph with nodes representing keypoints and edges
may be constructed across nodes to approximately
represent the human skeleton.

2.2 Models for ISLR

Initial methods for SLR focused on hand gestures
from either video frames (Reshna et al., 2020) or
sensor data such as from smart gloves (Fels and
Hinton, 1993). Given that such sensors are not
commonplace and that body posture and face ex-
pressions are also of non-trivial importance for un-
derstanding signs (Hu et al., 2020a), convolutional
network based models have been used for SLR
(Rao et al., 2018).

ISLR can be considered as a multiclass classifi-
cation task and generally accuracy metric is used
the to evaluate the performance of the models. The
ISLR task is related to the more widely studied
action recognition task (Zhu et al., 2020). Like in
action recognition task, highly accurate pose recog-
nition models like OpenPose (Cao et al., 2018) and
MediaPipe Holistic (Grishchenko and Bazarevsky,
2020) are being used for ISLR models (Li et al.,
2020; Ko et al., 2018), where frame-wise keypoints
are the inputs. Although RGB-based models may
outperform pose-based models (Li et al., 2020)
narrowly, pose-based models have far fewer pa-
rameters and are more efficient for deployment if
used with very-fast pose estimation pipelines like
MediaPipe BlazePose. In this work, we focus on
lightweight pose-based ISLR which encode the
pose frames and classify the pose using specific
decoders. We briefly discuss the two broad types
of such models: sequence-based and graph-based.

Sequence-based models process data sequen-
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tially along time either on one or both directions.
Initially, RNNs were used for pose-based action
recognition to learn from temporal features (Du
et al., 2015; Zhang et al., 2017; Si et al., 2018).
Specifically, sequence of pose frames are input to
GRU or LSTM layers, and the output from the fi-
nal timestep is used for classification. Transformer
architectures with encoder-only models like BERT
(Vaswani et al., 2017) have also been studied for
pose-based ISLR models (De Coster et al., 2020).
The input is a sequence of pose frames along with
positional embeddings. A special [CLS] token is
prepended to the sequence, whose final embedding
is used for classification.

Graph convolution networks (Kipf and Welling,
2017), which are good at modeling graph data have
been used for skeleton action recognition to achieve
state-of-the-art results, by considering human skele-
ton sequences as spatio-temporal graphs (Cheng
et al., 2020a; Liu et al., 2020). Spatial-Temporal
GCN (ST-GCN) uses human body joint connec-
tions for spatial connections and temporal connec-
tions across frames to construct a 3d graph, which
is processed by a combination of spatial graph con-
volutions and temporal convolutions to efficiently
model the spatio-temporal data (Lin et al., 2020).
Many architectural improvements have been pro-
posed over ST-GCN for skeleton action recognition
(Zhang et al., 2020; Shi et al., 2019b,a; Cheng et al.,
2020b,a; Liu et al., 2020). MS-AAGCN (Shi et al.,
2020) uses attention to adaptively learn the graph
topology and also proposes STC-attention module
to adaptively weight joints, frames and channels.
Decoupled GCN (Cheng et al., 2020a) improves
the capacity of ST-GCN without adding additional
computations and also proposes attention guided
drop mechanism called DropGraph as a regulariza-
tion technique. Sign-Language GCN (SL-GCN)
(Jiang et al., 2021) combines STC-attention with
Decoupled-GCN and extends it to ISLR achieving
state-of-the-art results.

2.3 Pretraining strategies

Although there are works which use an already
trained classifier (on a large dataset) to finetune for
smaller datasets and obtain state-of-the-art results
in the latter (Albanie et al., 2020), there are cur-
rently no works which study the value of pretrain-
ing on openly available unlabelled data. On this
front, we now survey three broad classes of self-
supervised pretraining strategies that we reckon

could be applied to SLR.
Masking-based pretraining: In NLP, masked lan-
guage modelling is a pretraining technique where
randomly masked tokens in the input are predicted.
This approach has been explored for action recogni-
tion (Cheng et al., 2021), where certain frames are
masked and a regression task estimates coordinates
of keypoints. In addition, a direction loss is also
proposed to classify the quadrant where the motion
vector lies.
Contrastive-learning based: Contrastive learning
is used to learn feature representations of the input
to maximize the agreement between augmented
views of the data (Gao et al., 2021; Linguo et al.,
2021). For positive examples, different augmen-
tations of the same data item are used, while for
negative samples randomly-chosen data items usu-
ally from a few last training batches are used. A
variant of contrastive loss called InfoNCE (van den
Oord et al., 2018) is used to minimize the distance
between positive samples.
Predictive Coding: Predictive Coding aims to
learn data representation by continuously correct-
ing its predictions about data in future timesteps
given data in certain input timesteps. Specifically,
the training objective is to pick the future timestep’s
representation from other negative samples which
are usually picked from recent previous timesteps
of the same video. Similar to contrastive learning, a
loss function based on NCE is used (Mikolov et al.,
2013; van den Oord et al., 2018). This technique
was explored for action recognition in a model
called Dense Predictive Coding (DPC) (Han et al.,
2019). Instead of predicting at the frame-level,
DPC introduces coarse-prediction at the scale of
non-overlapping windows.

3 Standardized Pose-based ISLR Models
across Sign Languages

In this section, we describe our efforts to curate
standardized pose-based datasets across multiple
sign languages and benchmark multiple ISLR mod-
els on them.

3.1 ISLR Datasets

Multiple datasets have been created for the ISLR
task across sign languages. However, the amount
of data significantly varies across different sign
languages, with American and Chinese having the
largest datasets currently. With a view to cover
a diverse set of languages, we study 7 different
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Dataset Language Vocab Signers Videos Hrs Data

AUTSL (Sincan and Keles, 2020) Turkish 226 43 38,336 20.5 RGBD
CSL (Huang et al., 2019) Chinese 500 50 125,000 108.84 RGBD
DEVISIGN (Chai et al., 2014) Chinese 2000 30 24,000 21.87 RGBD
GSL (Adaloglou et al., 2021) Greek 310 7 40,785 6.44 RGBD
INCLUDE (Sridhar et al., 2020) Indian 263 7 4,287 3.57 RGB
LSA64 (Ronchetti et al., 2016) Argentinian 64 10 3,200 1.90 RGB
WLASL (Li et al., 2020) American 2000 119 21,083 14 RGB

Table 1: The diverse set of existing ISLR datasets which we study in this work through pose-based models

datasets across 6 sign languages as summarised
in Table 1. For each of these datasets, we gen-
erate pose-based data using the Mediapipe pose-
estimation pipeline (Grishchenko and Bazarevsky,
2020), which enables real-time inference in com-
parison with models such as OpenPose (Cao et al.,
2018). Mediapipe, in our chosen Holistic mode,
returns 3d coordinates for 75 keypoints (exclud-
ing the face mesh). Out of these, we select only
27 sparse 2d keypoints which convey maximum
information, covering upper-body, hands and face.
Thus, each input video is encoded into a vector of
size F ×K ×D, where F is the number of frames
in the video, K is the number of keypoints (27 in
our case), and D is the number of coordinates (2 in
our case). In addition, we perform several normal-
izations and augmentations explained in Section 5.

Figure 1: Illustration for RGB frame to pose keypoints
conversion. The center skeleton shows the upper portion
of the 75 keypoints returned by MediaPipe, from which
we choose only 27 points as shown in right.

3.2 Standardized ISLR Models

On the 7 different datasets we consider, different
existing ISLR models have been trained which are
mentioned in Table 2 which produce their current
state-of-the-art results. For INCLUDE dataset, an
XGBoost model is used (Sridhar et al., 2020) with
direct input as 135 pose-keypoints obtained using
OpenPose. For AUTSL, SL-GCN is used (Jiang
et al., 2021) with 27 chosen keypoints as input
from HRNet pose estimation model. For GSL,
the corresponding model (Parelli et al., 2020) is

an attention-based encoder-decoder with 3D hand
pose and 2D body pose as input. For WLASL,
Temporal-GCN is used (Li et al., 2020) by passing
55 chosen keypoints from OpenPose. For LSA64,
33 chosen keypoints from OpenPose are used as
input to an LSTM decoder (Konstantinidis et al.,
2018). For DEVISIGN, RGB features are used
(Yin et al., 2016) and the task is approached us-
ing a clustering-based classic technique called It-
erative Reference Driven Metric Learning. For
CSL dataset, an I3D CNN is used as encoder with
input as RGBD frames and BiLSTM as decoder
(Adaloglou et al., 2021). For DEVISIGN_L and
CSL datasets, we report RGB model results in the
table as there are no existing works using pose-
based models.

The differences in the above models make it dif-
ficult to compare them on effectiveness, especially
across diverse datasets. To enable standardized
comparison of models, we train pose-based ISLR
models on all datasets with similar training setups
for consistent benchmarking. These models belong
to two groups: sequence-based models and graph-
based models. For sequence-based models we con-
sider RNN and Transformer based architectures.
For the RNN model, we use a 4-layered bidirec-
tional LSTM of hidden layer dimension 128 which
takes as input the framewise pose-representation of
27 keypoints with 2 coordinates each, i.e., a vector
of 54 points per frame. We also use a temporal
attention layer to weight the most effective frames
for classification. For the Transformer model,
we use a BERT-based architecture consisting of 5
Transformer-encoder layers with 6 attention heads
and hidden dimension size 128, with a maximum
sequence length of 256. For the graph-based mod-
els we consider ST-GCN (Yan et al., 2018) and
SL-GCN (Jiang et al., 2021) models as discussed
in section 2. For ST-GCN model, we use 10 spatio-
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Dataset State-of-the-art model Model available in OpenHands
Model (Params) Accuracy LSTM BERT ST-GCN SL-GCN

AUTSL Pose-SL-GCN2 (4.9M) 95.02 77.4 81.0 90.4 91.9
CSL RGBD-I3D (27M) 95.68 75.1 88.8 94.2 94.8
DEVISIGN_L RGB-iRDML 56.85 37.6 48.9 55.8 63.9
GSL Pose-Attention (2.1M) 83.42 86.6 89.5 93.5 95.4
INCLUDE Pose-XGBoost 63.10 86.3 90.4 91.2 93.5
LSA64 Pose-LSTM (1.9M) 93.91 90.2 92.5 94.7 97.8
WLASL2000 Pose-TGCN (5.2M) 23.65 20.6 23.2 21.4 30.6

Average accuracy → 67.7 73.5 77.3 81.1

Table 2: Accuracy of different models across datasets. The results in bold are the SOTA pose models.

temporal GCN layers with the spatial dimension of
the graph consisting of the 27 keypoints. For the
SL-GCN model, we use again 10 SL-GCN blocks
with the same graph structure and hyperparameters
as the ST-GCN model.

3.3 Experimental Setup and Results

We train 4 models - LSTM, BERT, ST-GCN, and
SL-GCN - for each of the 7 datasets. We use Py-
Torch Lightning to implement the data processing
and training pipelines. We use Adam Optimizer
to train all the models. We search for optimal hy-
perparameters using grid search to find the best
hyperparams for each model on a standard dataset,
and report the best configuration per model. For the
LSTM model, we set the batch size as 32 and initial
learning rate (LR) as 5e− 3, while for BERT, we
set a batch size 64, and LR of 1e− 4. For ST-GCN
and SL-GCN, we use a batch size of 32 and LR of
0.001. We train all our models on a NVIDIA Tesla
V100 GPU. Also for all datasets, we only train
on the train-sets given and we use valid-sets to do
early stopping, whereas some works (like AUTSL)
train on combination of train-set and val-set to re-
port the final test accuracy. We run each experi-
ment around 3 times, and report the best accuracy,
eventhough we do not see significant difference in
accuracies across the runs. All trained models and
the training configurations are open-sourced in
OpenHands.

Accuracy We report the obtained test-set accu-
racy of detecting individual signs, for each model
against each dataset in Table 2. On all datasets,
graph-based models report the state-of-the-art re-
sults using pose data. Except for AUTSL2, on 6 of

2SOTA AUTSL model is trained on high quality pose data
from HRNet model with more keypoints.

the 7 datasets, models we train improve upon the
accuracy reported in the existing papers sometimes
significantly (e.g., over 10% on GSL). These uni-
form results across a diverse set of SLs confirm that
graph-based models on pose modality data define
the SOTA.

In summary, the standardized benchmarking of
multiple models in terms of accuracy on datasets
and, measurements of latency on devices (ex-
plained in appendix) informs model selection. Mak-
ing the trade-off between accuracy and latency, we
use the ST-GCN model for the pretrained model
we discuss later. Our choice is also informed by
the cost of the training step: The more accurate SL-
GCN model takes 4× longer to train than ST-GCN.

4 Self-Supervised Learning for ISLR

In this section, we describe our efforts in building
the largest corpus for self-supervised pretraining
and our experiments in different pretraining strate-
gies.

4.1 Indian SL Corpus for Self-supervised
pretraining

Channel Hours Domain

NewzHook 615 News
MBM Vadodara 225 News
ISH-News 145 News
NIOS 115 Educational
SIGN Library 29 Educational

Total 1129

Table 3: Source-wise statistics of the processed self-
supervised dataset on Indian-SL

Large text corpora such as BookCorpus,
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Wikipedia dumps, OSCAR, etc. have enabled pre-
training of large language models. Although there
are large amounts of raw sign language videos avail-
able on the internet, no existing work has studied
how such large volumes of open unlabelled data
can be collected and used for SLR tasks. To ad-
dress this, we create a corpus of Indian SL data by
curating videos, pre-process the videos, and release
a standardized pose-based dataset compatible with
the models discussed in the previous section.

We manually search for freely available major
sources of Indian SL videos. We restrict our search
to a single sign language so as to study the effect
of pretraining on same language and crosslingual
ISLR tasks. We sort the sources by the number
of hours of videos and choose the top 5 sources
for download. All of these 5 sources, as listed in
Table 3 are YouTube channels, totalling over 1,500
hours before preprocessing.

Video Sources

YouTube channel 1

YouTube channel 2

YouTube channel 3

Scheduler

Crawl
Process1

Crawl 
Process2

Crawl
Process3

Storage for
Downloaded

Videos

Stage-1: Data Crawling CPU 1

CPU 2

CPU 3

Manual
Curation

of list

Stage-2: Pose Extraction

Scheduler

Split all videos in
chunks of 5mins

(9k frames)

CPU-1

CPU-2

CPU-3

MediaPipe
Pose

Estimator
Thread-1

MediaPipe
Pose

Estimator
Thread-2

MediaPipe
Pose

Estimator
Thread-3

Storage for
Generated
Pose Data

Stage-3: Data Cleaning

Drop noise
and resplit

videos
For Video regions with:
1. No signing activity
2. No signers
3. More than one signer

Consolidate all
chunked clips from

all channels
HDF5

Storage

Hierarchical
channel-wise

grouping

Compressed
  Cloud Storage

Available via library
for download and

usage

Pre-training
Data-Loader

Faster random
access of pose

sub-regions

Trainer

PyTorch
Ecosystem

CPU GPU
Stage-4: Efficient Training

Figure 2: Pipeline used to collect and process Indian SL
corpus for self-supervised pretraining

We pass these videos through a processing
pipeline as described in Figure 2. We initially dump
the pose data for all videos, then process them to re-
move those which are noisy or contain either no per-
son or more than 1 person. This resulted in 1,129
hours of Indian SL data, as detailed source-wise
in Table 3. This is significantly larger than all the
training sets in the datasets we studied which is on
average 177 hours. We pass these videos through
MediaPipe to obtain pose information as described
earlier, i.e., 75 keypoints per frame. The resultant

Indian SL corpus has more than 100 million pose
frames. We convert this to the HDF5 format to
enable efficient random access, as is required for
training. We open-source this corpus of about 250
GB which is available in OpenHands.

4.2 Pretraining Setup and Experiments

We explore the three major pretraining strategies
as described in Section 2.3 and explain how and
why certain self-supervised settings are effective
for ISLR. We pretrain on randomly sampled con-
secutive input sequences of length 60-120 frames
(approximating 2-4 secs with 30fps videos). After
pretraining, we fine-tune the models on the respec-
tive ISLR dataset with an added classification head.

4.2.1 Masking-based pretraining
We follow the same hyperparameter settings as de-
scribed in Motion-Transformer (Cheng et al., 2021),
to pretrain a BERT-based model with random mask-
ing of 40% of the input frames. When using only
the regression loss, we find that pretraining learns
to reduce the loss as shown in appendix. However,
when fine-tuned on the INCLUDE dataset, we see
no major contribution of the pretrained model to
increasing the accuracy as shown in Table 4. We
posit that while pretraining was able to approxi-
mate interpolation for the masked frames based
on the surrounding context, it did not learn higher-
order features relevant across individual signs. We
also experiment with different masking ratios (20%
and 30%) as well as different length of random con-
tiguous masking spans (randomly selected between
2-10), and obtain similar results.

4.2.2 Contrastive-learning based
Inspired from the work by Gao et al. (2021), we
consider Shear, Scaling and Rotation augmenta-
tions to generate the 2 augmented copies of the
input pose sequence and we pretrain the model and
observe that it converges on reducing the InfoNCE
loss (see appendix for plot). We then fine-tune
on INCLUDE and again did not observe any gain
over the baseline of training from scratch as seen
in Table 4. To understand this, we analyzed the
embeddings of data from the pretrained model and
observed two facts: (a) Embeddings of different
augmentations of a video clip are similar indicat-
ing successful pretraining, but (b) Embeddings of
different videos from the INCLUDE dataset do
not show any clustering based on the class (see
visualization in appendix). Again, we posit that
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pretraining did not learn higher order semantics
that could be helpful for ISLR.

4.2.3 Predictive-coding based
Our architecture is inspired from Dense Predictive
Coding (Han et al., 2019), but using pose modality.
The architecture is represented in Figure 3. The
pose frames from a video clip will be partitioned
into multiple non-overlapping windows with equal
number of frames in each window. The encoder f
takes each window of pose keypoints as input and
embeds into the hidden space z. We use ST-GCN
as the encoder. The ST-GCN encoder embeds each
input window xi, and the direct output is average
pooled across the spatial and temporal dimensions
to obtain the output embedding zi for each window.
The embeddings are then fed to a Gated Recurrent
Unit (GRU) as a temporal sequence and the future
timesteps ẑi are predicted sequentially using the
past timestep representations from GRU, with an
affine transform layer ϕ. We use 4 windows of data
as input to predict the embeddings of the next 3
windows, each window spanning 10 frames, which
we empirically found to be the best setting. For
pretraining, we used a batch size of 128 and for
finetuning, we used a batch size of 64. For both pre-
training and finetuning, we used Adam optimizer
with an initial learning rate of 1e-3. The pretrain-
ing was done for 200k iterations on a NVIDIA
V100 GPU, taking around 26 hours (on Microsoft
platform’s Azure NC6s_v3 machine).

Window

Time

Figure 3: Model architecture for DPC pretraining

Upon fine-tuning on INCLUDE, DPC provides
a significant improvement of 3.5% over the base-
line. We include a plot comparing the validation
accuracy between baseline and finetuned model
in appendix. We posit that Sign Language DPC
(SL-DPC) is successful, while previous methods
were not, as it learns coarse-grained representations
across multiple frames and thereby captures motion

semantics of actions in SL.
To the best of our knowledge, this is the first

comparison of pretraining strategies for SLR.

Training of ST-GCN Accuracy
No pretraining + Fine-tune 91.2

Masked-based + Fine-tune 91.3
Contrastive learning + Fine-tune 90.8
Predictive-coding + Fine-tune 94.7

Table 4: Effectiveness of pretraining strategies as mea-
sured on ISLR accuracy on INCLUDE

4.3 Evaluation on low-resource and
crosslingual settings

We demonstrated that DPC-based pretraining is
effective. We now analyze the effectiveness of
such pretraining in two constrained settings - (a)
when fine-tuning datasets are small, and (b) when
fine-tuning on sign languages different from the
sign language used for pretraining. The former
captures in-language generalization while the latter
crosslingual generalization.

Dataset Samples/class STGCN SLDPC

INCLUDE
(Indian)

Full (Avg. 17) 91.2 94.7
10 79.7 86.27
5 45 57.35
3 15.2 35.42

WLASL2k
(American)

Full (Avg. 10) 21.4 27.4
5 3.1 5.74
3 1.6 2.78

DEVISign_L
(Chinese)

Full (8) 55.8 59.5
5 33.0 40.26
3 8.46 18.65

LSA64
(Argentinian)

Full (50) 94.7 96.25
5 64.7 75.32
3 39.7 57.19

Table 5: Effectiveness of pretraining for in-language
(first row) and crosslingual transfer (last three rows)

4.3.1 In-language generalization
The INCLUDE dataset contains an average of 17
samples per class. For this setting, we observed
a gain of 3.5% with DPC-based pretraining over
training from scratch. How does this performance
boost change when we have fewer samples per
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class? We present results for 10, 5, and 3 sam-
ples per class in Table 5. We observe that as the
number of labels decreases the performance boost
due to pretraining is higher indicating effective in-
language generalization.

4.3.2 Crosslingual transfer
Does the pretraining on Indian sign language pro-
vide a performance boost when fine-tuning on other
sign languages? We study this for 3 different sign
languages - American, Chinese, and Argentinian -
and report results in Table 5. We see that crosslin-
gual transfer is effective leading to gains of about
6%, 4%, and 2% on the three datasets, similar to
the 3% gain on in-language accuracy. The increase
in accuracy varies with datasets - For Argentianian
and Indian datasets which already have 90+% ac-
curacy, there are small improvements. However,
WLASL which is scraped from web and has a lot
more variations, sees a much higher improvement
due to pretraining. Further, we also observe that
these gains extend to low-resource settings of fewer
labels per sign. For instance on Argentinian SL,
with 3 labels, pretraining on Indian SL given an
improvement of about 18% in accuracy. To the
best of our knowledge this is the first successful
demonstration of crosslingual transfer in ISLR.

In summary, we discussed different pretraining
strategies and found that only SL-DPC learns se-
mantically relevant higher-order features. With
DPC-based pretraining we demonstrated both in-
language and crosslingual transfer.

5 The OpenHands library

As mentioned in the main paper, we open-source all
our contributions through the OpenHands li-
brary. This includes the pose-based datasets for 5
SLs, 4 ISLR models trained on 7 datasets, the pre-
training corpus on Indian SL with over 1,100 hours
of pose data, pretrained models on this corpus us-
ing self-supervised learning, and models fine-tuned
for 4 different SLs on top of the pretrained model.
We also provide scripts for efficient deployment
using MediaPipe pose estimation and our trained
ISLR models.

In addition, the library provides utilities that are
helpful specifically for pose-based data. This in-
cludes methods to normalize keypoints by width
and height of frames, to normalize all of the pose
data to be in the same scale and reference coordi-
nate system by using a constant feature of body as
reference, and to fill missing keypoints. The library

also includes utilities to create data augmentations
such as ShearTransform to displace the joints in a
random direction, RotatationTransform to simulate
the viewpoint changes of the camera, ScaleTrans-
form to simulate different scales of the pose data to
account for relative zoomed-in or zoomed-out view
of signers, PoseRandomShift to move a significant
portion of the video by a time offset so as to make
the ISLR models robust to inaccurate segmentation
of real-time video, UniformTemporalSubsample to
uniformly sample frames from the video instead of
considering only the initial frames, in cases where
the number of frames in a video clip exceeds a
maximum limit, and RandomTemporalSubsample
to sample a random fixed contiguous window of re-
quired size covering a maximum number of frames.

We encourage researchers to contribute datasets,
models, and other utilities to make sign language
research more accessible. All the aspects of the
toolkit are well-documented online3 for anyone to
get started easily.

6 Conclusion

In this work, we make several contributions to
make sign language research more accessible. We
release pose-based datasets and 4 different ISLR
models across 6 sign languages. This evaluation
enabled us to identify graph-based methods such
as ST-GCN as being accurate and efficient. We
release the first large corpus of SL data for self-
supervised pretraining. We evaluated different pre-
training strategies and found DPC as being effec-
tive. We also show that pretraining is effective both
for in-language and crosslingual transfer. All our
models, datasets, training and deployment scripts
are open-sourced in OpenHands.

Several directions for future work emerge such
as evaluating alternative graph-based models, ex-
perimenting with varying sequence lengths of in-
put data, efficiently sampling the data from the raw
dataset for pretraining such that the samples are
diverse enough, using better pose estimator models
and more keypoints, and quantized inference for
2×-4× reduced latency. On the library front, we
aim to release updated versions incorporating more
SL datasets, better graph-based models, studying
the performance on low FPS videos (like 2-4 FPS),
effect of pretraining using other high-resource SL
datasets, extending to CSLR, and improving de-
ployment features.

3https://openhands.readthedocs.io
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APPENDIX
A Ethical considerations

All models trained in this work only use pose or
skeletal data. Consequently all released datasets
and models do not have any personally identi-
fiable information (PII), thereby addressing pri-
vacy concerns of those who contributed to these
datasets. Furthermore, such a standardization elim-
inates all visually distinguishing features of individ-
uals like color, gender, ethnicity/race, etc., thereby
overcoming any potential biases pertaining to sub-
populations.

We address the licensing-related aspects of the
datasets in the subsequent sub-sections.

A.1 Release of pose ISLR datasets
Our work builds on existing ISLR datasets across
languages, by processing them to retain only pose
data. Complying with the respective licenses of
the datasets, we release our generated poses only
for the openly available datasets with permissive
licenses. Out of the 7 datasets we evaluate in the
paper, we find that we can release the pose data for
5 of the datasets (AUTSL, WLASL, GSL, LSA64,
and INCLUDE), covering 5 sign languages (re-
spectively: Turkish, American, Greek, Argentinian
and Indian). The other 2 datasets are CSL and
DEVISIGN, belonging to Chinese sign language.
The licenses of each original dataset is shown in
Table 6.

Dataset License

AUTSL Permissive
CSL Proprietary
DEVISIGN Proprietary
GSL Creative Commons 4.0
INCLUDE MIT
LSA64 Creative Commons 4.0
WLASL C-UDA

Table 6: Licenses of each ISLR dataset

We do not claim ownership over any of the orig-
inal ISLR datasets, and release the pose data under
the same licensing terms as the original datasets.

A.2 Release of raw pose data
We also open-source the pretraining dataset on In-
dian Sign Language (ISL) that we explained in
Section 4.1. The detailed datasheet of this dataset,

including motivation, composition, collection pro-
cess, preprocessing, distribution, maintenance, and
ethical considerations is included after the appen-
dices.

B Inference Benchmarking

In this section, we explain how we achieve over
23fps real-time inference, by using MediaPipe
Holistic for generating poses (as an ISLR encoder)
and our pose-based models (as decoder) that recog-
nizes the sign at any given window.

B.1 MediaPipe Inference

For pose-estimation, MediaPipe offers 3 variants of
models: heavy, full and lite in decreasing order of
accuracy but increasing order of inference-speed.
The latency of these variants on Intel Xeon E5-
2690 v4 CPU with a frame-size of 640x480 were
142.59ms, 55.28ms, and 35.37ms respectively per
frame. For all training and testing in this work, we
used the heavy model to get the best quality results.

For real-time inference, depending on one’s
CPU, either of the 3 variants can be used with
the trained models, since all the 3 BlazePose mod-
els are trained on the same dataset to return same
number of keypoints. Based on our experience, we
prefer only lite or full variants depending on the
CPU-type, and we find the heavy model only suit-
able if we employ frame-skipping and use decoder
models that also work at a lower FPS (below 8fps).

B.2 ISLR Model Inference

Given that SLR is an interactive application, de-
ployability atleast at 23 FPS without noticeable
latency is essential. We thus study the latency of
our models on various CPU configurations so as
to target ubiquitous deployment. For each of the 4
models, we report the model size and latency mea-
sured on 4 different CPUs in Table 7. The LSTM
model is an order of magnitude faster across all de-
vices than the most accurate SL-GCN model, and
is a good candidate when speed is essential at the
cost of about 10% accuracy drop that we observed
in Table 2. Amongst the graph-based methods, ST-
GCN provides a good trade-off being about 2×
faster than SL-GCN at the cost of only 3% lower
average accuracy across datasets.

The benchmarking is done with a batch size of 1
with complete serial processing (without any data
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Model → LSTM Transformer ST-GCN SL-GCN SLDPC
Params → 1.6M 3.8M 2.3M 4.9M 4.0M

CPU Latency in milliseconds

Xeon E5-2690 v4 (2.60GHz) 08.05 30.64 23.02 52.8 47.60
AMD Ryzen 7 3750H (2.30GHz) 12.94 76.41 86.97 225.3 147.28
Xeon Platinum 8168 (2.70GHz) 05.38 23.76 51.64 112.66 112.52
Xeon E5-2673 v4 (2.30GHz) 09.03 43.69 99.39 201.31 188.43

Table 7: Number of parameters and average latency of different model architectures

loading parallelization). The latencies reported in
the table corresponds to average inference time per
video using the test set of the INCLUDE dataset,
for both freshly trained models and pretrained sign
language DPC (SLDPC) model.

Note that encoder (pose estimation) and decoder
(classifier) are parallelized such that the former is
a producer of skeletons for window of live frames,
and the latter is a consumer which recognizes
glosses.

C Additional notes on pretraining

In this section, we briefly present a few of the ar-
tifacts pertaining to the different configurations of
the self-supervised training that we experiment.

C.1 Masking-based pretraining
Figure 4 shows the pretraining loss-plot for masked-
language learning, to show that although the model
converges, due to the reasons mentioned in the
main paper, it does not learn useful representations
for the downstream tasks.
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Figure 4: Loss curve for masked pretraining with regres-
sion loss

To explain this behaviour, we analyzed the input
data as well as the outputs by the model. We find
that the model was able to converge because learn-
ing to perform an approximate linear interpolation
for the masked frames based on the surrounding
context was sufficient reduce the loss significantly.
However, we posit that such interpolation does not

learn any high-level features. This is illustrated in
Figure 5, where for each masking span length, we
plot the sum of absolute differences between each
consecutive masked frames Fi and Fi−1, for both
predictions from the model as well as the actual
frame keypoints. The numbers shown are aver-
aged across all videos in the INCLUDE test set,
in which the masking is done around the center re-
gion of each video. The plot shows that as masking
length is increased, the gap between the predicted
values and the actual values diverges indicating an
inability to learn longer-range patterns that may be
necessary to classify signs.
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Figure 5: Differences in the output range of masked pre-
dictions of pretrained model and corresponding actual
keypoints

We also experiment with pretraining using direc-
tion loss as explained in background, which essen-
tially is an objective to classify which quadrant the
motion vector for each frame will lie. We find that
the pretraining does not converge. Upon checking
the labels, we see that at the fine-grained level of
each frames, the approximately discretized quad-
rant for each motion vector were seemingly almost
random because of the slightly jittery predictions
for each frame by the pose estimation model. Also,
since the quadrant-type classification encodes only
4 directions, it fails to capture static motion (key-
points which do not move much temporally), which
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accounts for more than half of the total motion vec-
tors. We thus posit that the direction classification
targets are noisy and do not allow the pretraining
loss to converge. Figure 6 shows the visualization
of quadrants for a randomly-selected joint from a
random video in the INCLUDE dataset, to visually
verify how noisy the targets for direction loss are.
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Figure 6: Sample visualization of direction labels for
keypoint-15 from the frames of a random INCLUDE
video (Adjectives/4. sad/MVI_9720)

C.2 Contrastive-learning based
The training setup for this experiment is: For pre-
training, we used a batch size of 128 and for finetun-
ing, we used a batch size of 64. For both pretrain-
ing and finetuning, we used Adam optimizer with
an initial LR of 1e-3. To obtain negative samples,
we use a Memory Bank to obtain the embeddings
from samples of recent previous batches, which is
essentially a FIFO queue of fixed size. We use Face-
book’s MoCo codebase to implement the setup, by
plugging-in our ST-GCN as the encoder.
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Figure 7: Loss curve for contrastive pretraining

Figure 7 shows the pretraining loss-plot for con-
trastive learning, to show that although the model
converges, as explained in the main paper, the rep-
resentations learnt do not signify any semantic re-
lationships in the signs. To illustrate this, we take
a standard subset of the INCLUDE dataset, called
INCLUDE50 (containing 50 classes) and visualize

the embeddings of all signs using PCA clustering.
Note that each class is uniquely colored to iden-
tify if similar signs are grouped together. Figure 8
shows that the learnt embeddings do not discrim-
inate the classes, suggesting that the embeddings
may not be informative for the downstream sign
recognition task.

Figure 8: PCA visualization of INCLUDE50 embed-
dings obtained from Contrastive-Learning model

C.3 Predictive-coding based pretraining
The training setup for this experiment is: For pre-
training, we used a batch size of 128 and for fine-
tuning, we used a batch size of 64. For both pre-
training and finetuning, we used Adam optimizer
with a learning rate of 1e-3.
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Figure 9: DPC Fine-tuning (orange) vs fresh training
(light-green) validation accuracy plot

Figure 9 shows the performance gap between
fine-tuning of a DPC pretrained model and an
ST-GCN model being trained from scratch. This
clearly demonstrates that self-supervised learning
produces a significant boost in performance for
downstream tasks.
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D Sample usage snippets from OpenHands library

import omegaconf
from openhands.apis import ClassificationModel
from openhands.core import get_trainer

cfg = omegaconf.OmegaConf.load("path/to/config.yaml")
trainer = get_trainer(cfg)
model = ClassificationModel(cfg=cfg, trainer=trainer)
model.fit()

Figure 10: Example OpenHands code for running the model training.

data:
modality: "pose" #modality to use
train_pipeline:
dataset:
_target_: "dataset_class" #dataset to use
split_file: "path" #labels file path
root_dir: "path" #path to pose data

transforms: #train augmentations
- RotatationTransform:

rotation_std: 0.1 #params for each transform

dataloader: #dataloader parameters
batch_size: 32
shuffle: true

model: #model parameters
encoder:

type: "encoder-to-use"
params: ... #encoder parameters

decoder:
type: "decoder-to-use"

optim: #optimizer and loss params
loss: "CrossEntropyLoss"
optimizer:

name: Adam
lr: 1e-3

trainer: #training settings
gpus: 1
max_epochs: 100

exp_manager: #logging and checkpointing
create_tensorboard_logger: true #tensorboard logging
create_checkpoint_callback: true
early_stopping_callback: false

Figure 11: Example OpenHands config.
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Datasheet for Raw Indian SL corpus
This is the detailed datasheet, including ethical

considerations, of the unlabelled pretraining
dataset proposed in Section 4.1.

Motivation For Datasheet Creation

Why was the datasheet created? (e.g., was there
a specific task in mind? was there a specific gap
that needed to be filled?)
There were no large-scale unlabelled datasets avail-
able for experimenting with self-supervised learn-
ing for sign languages, like we have for NLP, eg.
bookcorpus (Zhu et al., 2015) and Common-Crawl
(Abadji et al., 2022). Like in NLP, it is expected
that such a dataset may help reduce the need for
labelled dataset. This dataset was collected with
a specific focus on Indian Sign Language (ISL)
which has limited labelled resources.

Who created the dataset (e.g., which team, re-
search group) and on behalf of which entity (e.g.,
company, institution, organization)?
The dataset was programatically created by crawl-
ing, cleaning, and preprocessing video data by the
main authors of this paper, who are researchers at
AI4Bharat group of IIT Madras.

Who funded the creation dataset?
The work was funded by Microsoft Philanthropies
India through Microsoft AI4Accessibility program,
via AI4Bharat.

Datasheet Composition

What are the instances?(that is, examples; e.g.,
documents, images, people, countries) Are there
multiple types of instances? (e.g., movies, users,
ratings; people, interactions between them;
nodes, edges)
An instance in our dataset is a bundle of sequence
of pose keypoints extracted from the videos of
a specific source, in HDF5 format. The original
videos are not part of the dataset.

How many instances are there in total (of each
type, if appropriate)? The dataset consists of
pose keypoints from 7 YouTube channels. Hence
there are 7 instances in total.

What data does each instance consist of ? “Raw”
data (e.g., unprocessed text or images)? Fea-
tures/attributes?

Each instance contains the raw pose keypoints data
(i.e., without any label data) extracted from the
videos of a specific YouTube channel. The features
extracted are obtained directly from MediaPipe
Holistic tool (Grishchenko and Bazarevsky, 2020),
which provides human skeletons for any given set
of frames with a person. Our video sources are
from news and educational domains. Around 87%
of the total data is from 3 news channels. The
Education domain channels are National Institute
of Open Schooling, an intiative by Government of
India and SIGN Library channel, an initiative to
make educational content in Indian SL.

Is there a label or target associated with each
instance? If so, please provide a description.
No, this is an unlabeled raw dataset used for self-
supervised pretraining.
Is any information missing from individual in-
stances? If so, please provide a description, ex-
plaining why this information is missing (e.g.,
because it was unavailable). This does not in-
clude intentionally removed information, but
might include, e.g., redacted text.
We are releasing only the pose keypoints derived
from the videos, and not the videos. For repro-
ducibility, we also provide the YouTube video
URLs of the corresponding pose keypoints.

Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these
relationships are made explicit.
All instances are independent of each other and are
not linked directly in anyway.

Are there recommended data splits (e.g., train-
ing, development/validation, testing)? If so,
please provide a description of these splits, ex-
plaining the rationale behind them.
No. We recommend to use the entire raw data
for pretraining purposes, and as a validation set
to compare losses and perform early stopping, we
recommend to use the open-sourced INCLUDE
dataset (Sridhar et al., 2020). In case if a researcher
wants to split the raw data to derive their own train-
test split, we recommend them to use the data from
"SIGN Library" source for test/development set
and the remaining for training.

Are there any errors, sources of noise, or redun-
dancies in the dataset? If so, please provide a
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description.
We did our best to ensure there are no redundan-
cies by crawling videos with unique video IDs and
titles. There are no labels so there is no error due
to labelling. One source of error could be inaccu-
racy in pose extraction by the MediaPipe library.
We did not manually evaluate this accuracy across
all datasets, but in manual checks we found Medi-
aPipe to be highly accurate especially since most
videos consist of one prominently featured signer
with limited or no occlusion.

Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., web-
sites, tweets, other datasets)? If it links to or
relies on external resources, a) are there guar-
antees that they will exist, and remain constant,
over time; b) are there official archival versions
of the complete dataset (i.e., including the ex-
ternal resources as they existed at the time the
dataset was created); c) are there any restric-
tions (e.g., licenses, fees) associated with any of
the external resources that might apply to a fu-
ture user? Please provide descriptions of all
external resources and any restrictions associ-
ated with them, as well as links or other access
points, as appropriate.
The dataset we release is self-contained as used for
pretraining in this work. As discussed, to recreate
or process the original videos, we provide links to
the original videos. However, as this data is hosted
on YouTube with rights owned by the respective
video creators, these videos may not be available
indefinitely.

Collection Process

What mechanisms or procedures were used to
collect the data (e.g., hardware apparatus or sen-
sor, manual human curation, software program,
software API)? How were these mechanisms or
procedures validated?
The data collection pipeline is explained in Sec-
tion 4 of the main paper. In summary, videos
were automatically crawled from the web to col-
lect openly available resources under permissible
licenses. These videos were then processed with
MediaPipe to obtain pose data as explained in the
main paper.

How was the data associated with each instance
acquired? Was the data directly observable
(e.g., raw text, movie ratings), reported by sub-

jects (e.g., survey responses), or indirectly in-
ferred/derived from other data (e.g., part-of-
speech tags, model-based guesses for age or lan-
guage)? If data was reported by subjects or indi-
rectly inferred/derived from other data, was the
data validated/verified? If so, please describe
how.
The (pose) data was derived from the crawled
videos without any human intervention as stated
above. The automatic validation/cleaning of the
dataset is explained in the main paper’s section 4.

If the dataset is a sample from a larger set, what
was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabili-
ties)?
We release all good quality data in the dataset after
a very minimal cleaning process described in the
main paper. There was no subjective sampling of
the data.

Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much
were crowdworkers paid)?
The code for the automatic crawling and cleaning
processes were written by full-time researchers at
AI4Bharat (authors of paper), with some help from
a volunteer (a full-time student), who has been
thanked in the acknowledgements section.

Over what timeframe was the data collected?
Does this timeframe match the creation time-
frame of the data associated with the instances
(e.g., recent crawl of old news articles)? If not,
please describe the timeframe in which the data
associated with the instances was created.
The crawling was done in the month of June 2021
to include all the videos from the YouTube channels
till then. It took over a month to crawl the videos.

Data Preprocessing

Was any preprocessing/cleaning/labeling of the
data done (e.g., discretization or bucketing, tok-
enization, part-of-speech tagging, SIFT feature
extraction, removal of instances, processing of
missing values)? If so, please provide a descrip-
tion. If not, you may skip the remainder of the
questions in this section.
The steps and pipeline used to create the dataset is
explained in section 4 of the main paper. No further
preprocessing is done before releasing. In addition,
the augmentations and normalization performed
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for training different models are explained in the
paper.

Dataset Distribution

How will the dataset be distributed? (e.g., tar-
ball on website, API, GitHub; does the data have
a DOI and is it archived redundantly?)
The dataset is released as zipped HDF5 files, one
zip for each YouTube channel, and available via
Zenodo hosting platform. The dataset has an DOI
which is cited in the Acknowledgements section. A
mirror link to the dataset can be availed on request
(in-case the platform is down or other issues).

When will the dataset be released/first dis-
tributed? What license (if any) is it distributed
under?
The dataset is released along with the camera-ready
version of the paper submitted finally to the confer-
ence. It is licensed under the Creative Commons
Attribution 4.0 International license.

Are there any copyrights on the data?
The original videos are the copyright of the respec-
tive YouTube channels, and are not released. We
only release the pose data with no Personally Iden-
tifiable Information (PII).

Are there any fees or access/export restrictions?
No.

Dataset Maintenance

Who is supporting/hosting/maintaining the
dataset?
The dataset is being hosted at Zenodo, an open-
access repository to store and distribute scien-
tific artifacts. The dataset is being maintained by
AI4Bharat, a research lab in the CSE department
of IIT Madras, India.

Will the dataset be updated? If so, how often
and by whom?
If there are any errors found or if any required data
is missing, we take responsibility to update/rectify
the same.

How will updates be communicated? (e.g., mail-
ing list, GitHub)
It would be conveyed via the changelogs in the
GitHub repository.

If the dataset becomes obsolete how will this be
communicated?

We do not expect this to happen. But in such a rare
case, it will be notified in the GitHub repository as
an important note.

Is there a repository to link to any/all pa-
pers/systems that use this dataset?
All research works that use our dataset are re-
quested to cite this paper. If this is followed, by
viewing the list of citations for this paper (for ex-
ample on Google Scholar) one could track all pa-
pers/systems using the dataset.

If others want to extend/augment/build on this
dataset, is there a mechanism for them to do so?
If so, is there a process for tracking/assessing
the quality of those contributions. What is the
process for communicating/distributing these
contributions to users?
We would greatly appreciate others adding to the
dataset - hence the name of the hosting repository
is OpenHands. Those intending to extend the
dataset can contact us on our email addresses or
on the Github repository. Quality of the extended
dataset would be measured by performance of sign
language recognition systems built with the dataset.

Legal and Ethical Considerations

Does the dataset contain data that might be con-
sidered confidential (e.g., data that is protected
by legal privilege or by doctorpatient confiden-
tiality, data that includes the content of individ-
uals non-public communications)? If so, please
provide a description.
No, the dataset does not contain any confidential or
personal data.

Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please
describe why
No, the dataset does not contain any offensive or
inappropriate data. No audio/speech/image data is
included in the data.

Does the dataset relate to people? If not, you
may skip the remaining questions in this sec-
tion.
Yes, but the dataset has only the skeleton informa-
tion of signers without any PII.

Does the dataset identify any subpopulations
(e.g., by age, gender)? If so, please describe how
these subpopulations are identified and provide
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a description of their respective distributions
within the dataset.
No, it does not identify any subpopulations.

Is it possible to identify individuals (i.e., one or
more natural persons), either directly or indi-
rectly (i.e., in combination with other data) from
the dataset? If so, please describe how.
No, it is not possible to identify the individuals be-
hind the dataset, because the data released contains
only the pose points of the signers.

Does the dataset contain data that might be
considered sensitive in any way (e.g., data that
reveals racial or ethnic origins, sexual orien-
tations, religious beliefs, political opinions or
union memberships, or locations; financial or
health data; biometric or genetic data; forms of
government identification, such as social secu-
rity numbers; criminal history)? If so, please
provide a description.
No, the dataset does not include any sensitive data.

Did you collect the data from the individuals in
question directly, or obtain it via third parties
or other sources (e.g., websites)?
We obtain it via publicly available YouTube chan-
nels released by the respective groups, and not from
any individuals.
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