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Abstract

In this paper, we firstly empirically find that
existing models struggle to handle hard men-
tions due to their insufficient contexts, which
consequently limits their overall typing perfor-
mance. To this end, we propose to exploit sib-
ling mentions for enhancing the mention rep-
resentations. Specifically, we present two dif-
ferent metrics for sibling selection and employ
an attentive graph neural network to aggre-
gate information from sibling mentions. The
proposed graph model is scalable in that un-
seen test mentions are allowed to be added as
new nodes for inference. Exhaustive experi-
ments demonstrate the effectiveness of our sib-
ling learning strategy, where our model outper-
forms ten strong baselines. Moreover, our ex-
periments indeed prove the superiority of sib-
ling mentions in helping clarify the types for
hard mentions.

1 Introduction
Fine-Grained Entity Typing (FGET) aims to as-
sign one or more fine-grained types to an entity
mention given its context. For instance, the men-
tion Steve Jobs should be classified as Person and
Entrepreneur under the context “Steve Jobs co-
founded Apple ...”. Many tasks have witnessed
the importance of FGET, such as relation extrac-
tion (Jiang et al., 2020b; Chu et al., 2020; Jiang
et al., 2020a; Cheng et al., 2021), entity linking
(Onoe and Durrett, 2020), and other tasks (Jiang
et al., 2020c; Zhang et al., 2020b; Liu et al., 2021b).

It is challenging to learn effective representa-
tions for contextualized mentions1 in many infor-
mation extraction tasks (Gao et al., 2022), espe-

∗Equal Contribution
†Corresponding Authors

1To simplify the statement, in the rest of this paper, the
term “mention” is referred to as the contextualized mention,
i.e., a mention accompanied with its context.

cially in FGET, since the representations are re-
quired to well distinguish fine-grained types with
similar but different semantics. Noticeable efforts
have been made to learn type-aware representa-
tions for mentions (Ren et al., 2016; Xin et al.,
2018; Choi et al., 2018; Zhang et al., 2018; Lin and
Ji, 2019; Abhishek et al., 2017; Xu and Barbosa,
2018; Ali et al., 2020; Chen et al., 2021) and sig-
nificant progress has been achieved. However, as
supported by our empirical experiments, existing
SOTA models perform poorly on a certain num-
ber of “hard” mentions, leading to limited overall
performance. The main reasons are the following
challenges. First, the structure of some contexts
surrounding the hard mentions are inherently too
complex to extract informative features for identi-
fying entity types. Second, the contexts of some
hard mentions are ambiguous and thus it is insuf-
ficient to handle these mentions by learning from
their contexts only.

In this paper, we show that representation learn-
ing of such hard mentions can be well handled by
learning informative knowledge from their sibling
mentions. Sibling mentions refer to the mentions
that potentially share the same or semantically sim-
ilar types (e.g., country and nation) with the target
mention. We illustrate how sibling mentions assist
classifying hard mentions in Figure 1. Intuitively,
the context of the target mention Sharp is ambigu-
ous and insufficient for inferring the ground-truth
types (i.e., organization, company, and tech com-
pany), since both a person and a company can “sign
a deal with Qualcomm”. Fortunately, the sibling
mentions provide rich information that works as
an important supplement for the target mention
Sharp. By aggregating the supplementary informa-
tion from siblings, it is promising to learn effective
representations with less ambiguity for hard target
mentions.
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m1: Sharp just signed a deal with Qualcomm.
Type: organization, company, tech company

m2: Samsung made a contract with Qualcomm concerning
the production of the new modem chips .
Type: organization, company, tech company

m1 m2

m3: Apple was founded in April 1976 in California. 
Type: organization, company
m4: Amazon joined tech giant Google in taking action
against platform favored by President Trump’s supporters.
Type: organization, company, tech company

company

organization

m3 m4

…

military

…

news agency Target mention

Sibling mentions

tech company

… …

Figure 1: Illustration of the proposed sibling enhanced heterogeneous graph model.

To utilize sibling mentions, we model FGET as a
heterogeneous graph learning problem. The graph
is composed of two kinds of nodes, namely the
mentions and the types. Besides, there are three
kinds of edges connecting the nodes as shown in
the left part of Figure 1, which represent the sibling
relationship between mentions, the hierarchical
relationship between types, and the isLabel rela-
tionship between mentions and types, respectively.
The sibling relationship is considered as the most
important part in our graph. For detecting it, we
propose two similarity metrics, based on which
we design an effective sibling selection algorithm.
Upon the constructed nodes and edges, we employ
an attentive graph neural module to learn their rep-
resentations. Particularly, the representations of
mention nodes are enriched by aggregating the in-
formation from their sibling and type neighbors.
It is also noteworthy that, during inference stage,
our graph model is scalable to include the unseen
test mentions as new nodes and connect them with
their existing sibling mention nodes in the graph to
derive reliable representations for predictions.

Extensive experiments are conducted to verify
the effectiveness of our model. Our experimental
results demonstrate that our model outperforms
several strong baselines on the standard test sets
with a large margin. Moreover, our model is indeed
able to well handle hard mentions with the help
from sibling mentions.

We summarize our contributions as follows:

• We are the first to point out a bottleneck issue
suffered by existing SOTA models, i.e., they
perform poorly on a certain number of hard
mentions, and we quantitatively analyze its
influence on typing accuracy via measuring
hard mentions by entropy.

• We are the first to exploit sibling information
for mention representation learning in FGET.

We design two effective metrics for sibling
detection and propose a scalable graph model
to take advantages of sibling mentions.

2 Methodology Overview
Given a mention m and the type set Y , an FGET
model needs to predict the correct types Ym (Ym ⊂
Y) for m based on its context.

In this paper, mention representations are learned
and refined with the help of sibling mentions and
ground-truth types. To achieve it, we propose a
heterogeneous graph model enhanced by sibling
mentions for FGET, as illustrated in Figure 1. First,
a mention-type graph G is constructed from training
samples (Sec 3). Then, the features for mentions
and types are learned by an attentive graph neural
module upon G (Sec 4).

During inference stage (Sec 5), we add test men-
tions into graph G by connecting them to their sib-
ling mentions in the training set. By aggregating
sibling information, the representations of test men-
tions are generated and used for type prediction.

3 Graph Construction

3.1 Graph Definition
Consider graph G = (Vm, Vy, Em, Ey, Em,y),
where Vm and Vy are the set of mention nodes and
type nodes, respectively. Em is the set of edges
between the target mentions and their sibling men-
tions, while Ey is the set of edges between types.
Em,y denotes the edges connecting the target men-
tions and the ground-truth types. Em, Ey and Em,y

are obtained as follows:

Em ={(mi,mj)|mi,mj ∈ Vm,
isSib(mi,mj) = 1}

(1)

Ey = {(yi, yj)|yi, yj ∈ Vy, isA(yi, yj) = 1} (2)

2077



Em,y ={(mi, yj)|mi ∈ Vm, yj ∈ Vy,
isLabel(mi, yj) = 1}

(3)

where isA(yi, yj) = 1 indicates yj is the parent
or child type of yi in the type hierarchy 2, and
isLabel(mi, yj) = 1 means mention mi is labeled
with the type yj in the training set. Since type
hierarchy and the ground-truth types of mentions
are available in the training set, Vm, Vy, Ey and
Em,y can be easily derived. isSib(mi,mj) = 1
means mj is the sibling mention of mi, which will
be discussed in Sec 3.2.

3.2 Sibling Selection
The key to construct Em is to define isSib(mi,mj),
i.e., the criterion for judging whether mj is the
sibling of mi. We design two metrics to detect
the sibling relationships between mentions, named
(unsupervised) word distribution-based and (super-
vised) typing distribution-based metrics.

Word distribution-based metric The basic as-
sumption for this metric is that mentions sharing
more contextual words tend to have more similar
ground-truth types. We use TF-IDF to encode men-
tions as sparse feature vectors. Then the sibling
similarity between any two mentions is measured
by the cosine similarity of their vectors.

Typing distribution-based metric In this met-
ric, we first derive the prior score distributions over
the type set Y for all the mentions in the dataset
from an extra base model (Lin and Ji, 2019) trained
on the same dataset. Then the sibling mentions are
selected by their cosine similarities to the target
mention based on the score distributions.

Sibling mention selection Given one of the met-
rics above, we obtain the sibling mentions accord-
ing to Algorithm 1. Note that for each target men-
tion mi ∈ Vm, we first select a subset V ′m from
Vm and only calculate the similarities between mi

and the mentions mj ∈ V ′m. The contexts of men-
tions from V ′m share at least one word with that
of the target mention and |V ′m| � |Vm|, which
greatly reduces time complexity. Then, based on
the similarity scores, we choose the top-K most
similar mentions V ′m,K as the siblings for mi and
let isSib(mi,mj) = 1 for each mj ∈ V ′m,K . Be
aware that, by definition, the sibling relationship is
directed, i.e., isSib(mj ,mi) = 1 does not ensure
isSib(mi,mj) = 1 holds.

2The edges between yi and its parent or child type yj are
directed, as detailed in Eq.(5)

Algorithm 1: Sibling mention selection
Input : the set of mention nodes Vm

1 for mi,mj ∈ Vm do
2 isSib(mi,mj)← 0
3 end
4 for mi ∈ Vm do
5 . select a candidate set V ′m from Vm
6 for mj ∈ V ′m do
7 . compute similarity sim(mi,mj)
8 end
9 . select the top-K similar mentions

V ′m,K from V ′m
10 for mj ∈ V ′m,K do
11 isSib(mi,mj)← 1
12 end
13 end

4 Graph-based Typing Model

4.1 Attentive Graph Neural Module
We employs graph neural networks (GNNs) with L
layers (Velickovic et al., 2018; Xu et al., 2019) to
aggregate the information of sibling mentions and
types for learning mention representations. At the
first layer of G, the embedding of each type yi ∈ Y
(denoted by y

(1)
i ∈ Rdr ) is randomly initialized. In

contrast, to capture the rich features from contexts,
the initial embeddings for mentions are derived by
a parameterized mention encoder g(·), i.e., m(1)

i =
g(mi; θM) ∈ Rdr (details in Sec 4.2). Given the
initial mention and type embeddings (i.e., m(1)

i and
y
(1)
i ), the graph module iteratively updates them to

obtain m
(l+1)
i and y

(l+1)
i .

Update of y(l+1)
i In the l-th (l = 1, ..., L − 1)

layer, the updating formula for type embedding
y
(l+1)
i ∈ Rdr is:

y
(l+1)
i = f0

( ∑
yk∈Yyi

α
(l)
i,kf1(y

(l)
k ) + f1(y

(l)
i )

)
,

(4)
where f0 and f1 are linear layers with ReLU activa-
tion. Yyi denotes the type neighbors for yi in graph
G, which are the parent or child types of yi in the
type hierarchy. α(l)

i,k is the attention weight from
type yi to yk defined as

α
(l)
i,k =

{
σ
(
y
(l)>
i W

(l)
1 y

(l)
k

)
, yk is a child type;

σ
(
y
(l)>
k W

(l)
1 y

(l)
i

)
, yk is a parent type,

(5)
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W
(l)
1 ∈ Rdr×dr is the weight matrix to model the

parent-child relationship. Note that Eq.(4) does not
involve mention embeddings and only focuses on
learning the hierarchical structure of types. The
interaction between types and mentions will be
modeled by Eq.(6) during the update process of
mention embeddings.

Update of m(l+1)
i The updating formula for the

mention embedding m
(l+1)
i ∈ Rdr is:

m
(l+1)
i = f2

( ∑
mj∈Mmi

µ
(l)
i,jf3

(
m

(l)
j

)
+

∑
yk∈Ymi

ν
(l)
i,kf4(y

(l)
k )

)
,

(6)

where Mmi and Ymi are the sibling and type
neighbors3 of mi in graph G. µ

(l)
i,j and ν

(l)
i,k are

the attention weights from mi to mention mj and
type yk in the l-th layer, respectively. Specifically,

µ
(l)
i,j = σ

(
m

(l)>
i W

(l)
2 m

(l)
j

)
,

ν
(l)
i,k = σ

(
m

(l)>
i W

(l)
3 y

(l)
k

)
,

(7)

W
(l)
2 ,W

(l)
3 ∈ Rdr×dr are learnable parameters.

f2, f3, f4 are linear layers with ReLU activation.
Here, we use the attention mechanism to distin-

guish informative neighbors. Besides, the update
process of target mentions involves both the sibling
and type neighbors, whose representations are also
updated at the same. In this way, the learned rep-
resentations for both mentions and types are more
consistent and thus more reliable for prediction.

4.2 Mention Encoder g(mi; θM)

The mention encoder uses the backbone from Lin
and Ji (2019). Given a mention, we first encode the
mention span and the surrounding context as the
weighted sum of their ELMo (Peters et al., 2018)
word representations respectively. Then, the uni-
fied feature vector for the mention is derived by
concatenating both representations.

4.3 Type Prediction
Given a mention mi, the predicted score distribu-
tion pi ∈ R|Y| over the type set Y is computed as:

pi = σ
(
Y (L)W 4m

(L)
i +W 5m

(L)
i

)
, (8)

where Y (L) =
[
y
(L)
1 ,y

(L)
2 , ...,y

(L)
|Y|

]
∈ R|Y|×dr ,

y
(L)
i and m

(L)
i are the type and mention embed-

dings in the L-th layer in GNN. W 4 ∈ Rdr×dr and
3We define that Mmi contains mi itself, thus the self-

connections are taken into account during graph learning.

W 5 ∈ R|Y|×dr are learnable parameters. pi[k]
(the k-th element in pi) denotes the predicted prob-
ability for type yk.

4.4 Loss Function
The loss over mi is computed as:

`i = −
|Y|∑
k=1

(
δik log pi[k]+(1−δik) log(1−pi[k])

)
(9)

where δik ∈ {0, 1} indicates whether yk is the
ground-truth type of mi in the training set. The
overall loss is the average over all the mentions,
i.e., L = 1

|Vm|
∑
i
`i.

4.5 Dropout of Ymi

The representation m
(L)
i incorporates the infor-

mation from ground-truth type neighbors (Eq.(6)).
However, it is then used for predicting the ground-
truth types in turn (Eq.(8)). The setting that Ymi

contains all the ground-truth types will inevitably
degenerate the model to just focus on the type
neighbors while totally ignore the mention neigh-
bors. To overcome this, each neighboring type in
Ymi is randomly discarded with a certain proba-
bility γ. In this way, the prediction of discarded
type will force the model to learn from the sibling
mentions rather than directly from type neighbors.

5 Scalable Testing

In the following, we describe the prediction process
for test mentions.

Step 1: Given a batch of n test mentions, we
first obtain their sibling mentions. To be specific,
for each test mention mt, we select a candidate
set V ′m from the training mentions Vm. Then, the
cosine similarity is computed betweenmt and each
mi in V ′m, based on which the top K mentions are
selected as siblings (see Sec 3.2).

Step 2: We add the test mentions as nodes into
the mention-type graph G, where the test mentions
are connected to their sibling mentions selected at
Step 1. Note that, in the new graph, test mentions
have no type neighbors since their ground-truth
types are not available. Besides, there is no edge
between any two test mentions in the new graph.

Step 3: Following Eq.(6), the representations of
test mentions {mt} are updated by aggregating the
embeddings for their sibling mentions. Note that
Ymt is empty, so no information from the ground-
truth types are involved. Through layers of updates,
the final representations {m(L)

t } are obtained.
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Step 4: Based on the mention embedding m
(L)
t

and the type embeddings Y (L), we predict the type
score distribution for mt by Eq.(8).

We conclude that, (1) our graph module is scal-
able to add arbitrary number of unseen test men-
tions as new nodes to the existing graph to derive
their representations. By contrast, many popular
graph settings (Kipf and Welling, 2017; Velickovic
et al., 2018; Wang et al., 2019) fail to extend to new
nodes. (2) Since the embeddings for sibling men-
tions have been well learnt during training, the only
need is to compute the embeddings for test men-
tions for prediction, which are derived simultane-
ously during graph inference with high efficiency.

6 Experiments

6.1 Datasets

We evaluate the proposed model on two widely-
used datasets: OntoNotes and BBN.

OntoNotes The original OntoNotes dataset is
annotated by distant supervision (Gillick et al.,
2014). The training, development and test sam-
ples in OntoNotes are about 251K, 2K and 9K,
respectively. We also conduct experiments on the
augmented version4 (Choi et al., 2018) with 793K
training samples5. The above two versions share
the same test set and development set, as well as
the same type set of size 89.

BBN Different from OntoNotes, BBN is manu-
ally annotated (Weischedel and Brunstein, 2005).
The training, development and test set contain
about 84K, 2K and 14K samples respectively, and
the type set contains 47 type in total.

6.2 Experimental Setup

Our model is implemented based on the PyTorch
Geometric package (Fey and Lenssen, 2019). In the
main experiments (Sec 6.4), we obtain the sibling
mentions according to the typing distribution-based
metric described in Sec 3.2. We conduct hyper-
parameter search on the development set and the
optimal settings are presented in Appendix A.

Following the previous works (Ling and Weld,
2012; Ren et al., 2016; Chen et al., 2019), we re-
port the performance in terms of strict accuracy
(Acc), macro-average F1 score (Ma-F1) and micro-
average F1 score (Mi-F1). To guarantee the relia-

4http://nlp.cs.washington.edu/entity_type
5We use the open-sourced version, which is a subset of the

dataset reported in Choi et al. (2018).

bility, we repeat the experiment three times under
each setting, and report the average results.

6.3 Baselines

We compare our proposed model with several
state-of-the-art FGET models: (1) AFET (Ren
et al., 2016); (2) AAA (Abhishek et al., 2017);
(3) NFETC (Xu and Barbosa, 2018); (4) NEURAL
(Shimaoka et al., 2017); (5) ACT (Zhang et al.,
2018); (6) Lin and Ji (2019); (7) Chen et al. (2020);
(8) LABELGCN (Xiong et al., 2019); (9) Choi et al.
(2018); (10) Ali et al. (2020). Note that Lin and Ji
(2019) is considered as an important baseline in our
experiments and is marked with F in Table 1-3,
since we use it as the base model to derive the prior
typing distributions for sibling selection (Sec 3.2).

6.4 Results and Analysis
Table 1, 2 and 3 illustrate the experimental results
on the original and the augmented OntoNotes, as
well as the BBN dataset.

Analysis The results demonstrate that learning
from sibling mentions helps our model outperform
most baselines across the benchmarks. The detailed
analysis is presented as follows:

(1) We select sibling mentions according to the
typing distribution from Lin and Ji (2019). We
observe that, after aggregating sibling information
through the attentive graph neural module (Sec
4.1), our model significantly outperforms Lin and Ji
(2019) on both the original OntoNotes and the BBN
dataset. When trained on the augmented OntoNotes
of the same size, our model increases the accuracy
score by more than 5% over Lin and Ji (2019)F.
Compared with Lin and Ji (2019)∗ which utilizes
the full 3M augmented OntoNotes for training, our
model still maintains a comparable performance
and even improves the accuracy score by about 2%.

(2) Many previous works have demonstrated the
effectiveness of modeling type hierarchy for entity
typing (Ren et al., 2016; Xu and Barbosa, 2018;
Xiong et al., 2019; Chen et al., 2020). As a com-
parison, our model also considers the hierarchical
information of types and incorporates it in a natu-
ral way (Sec 4.1). From the results, we conclude
that learning jointly from type hierarchy and sib-
ling mentions can remarkably improve the typing
performance.

(3) The attention mechanism plays an important
role in our graph module and some of the baselines
(Ren et al., 2016; Abhishek et al., 2017; Xu and
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Barbosa, 2018). It not only helps identify the in-
formative features from neighbors but also helps
alleviate noise from the training data constructed
by distant supervision (e.g., OntoNotes). The re-
sults reveal that our graph-based solution is more
effective than the existing solutions.

Model Acc Ma-F1 Mi-F1
Ren et al. (2016) 55.1 71.1 64.7
Abhishek et al. (2017) 52.2 68.5 63.3
Shimaoka et al. (2017) 51.7 71.0 64.9
Zhang et al. (2018) 55.5 73.3 67.6
Xu and Barbosa (2018) 54.4 71.5 64.9
Lin and Ji (2019)F 55.4 73.8 68.4
Chen et al. (2020) 58.7 73.0 68.1
Ali et al. (2020) 57.7 74.3 68.5
Our Model 59.2 76.5 71.0

Table 1: Test results on the original OntoNotes dataset.

Model Acc Ma-F1 Mi-F1
Choi et al. (2018)∗ 59.5 76.8 71.8
Lin and Ji (2019)∗ 63.8 82.9 77.3
Xiong et al. (2019) 59.6 77.8 72.2
Lin and Ji (2019)F 60.3 81.6 74.3
Our Model 65.7 82.4 77.4

Table 2: Test results on the augmented OntoNotes
dataset. Note that the baselines with “*” employ the
full version (about 3M training samples) of augmented
OntoNotes built from the licensed Gigaword (Choi
et al., 2018), while the rest only uses the open-sourced
subset (i.e., 793K training samples) of it, which may
downgrade the performance.

Model Acc Ma-F1 Mi-F1
Ren et al. (2016) 67.0 72.7 73.5
Abhishek et al. (2017) 60.4 74.1 75.7
Abhishek et al. (2017)* 73.3 79.1 79.2
Shimaoka et al. (2017) 64.7 76.5 71.5
Zhang et al. (2018) 60.1 77.8 76.9
Xu and Barbosa (2018) 72.1 77.1 77.5
Lin and Ji (2019)F 59.9 82.9 81.7
Chen et al. (2020) 55.9 79.3 78.1
Ali et al. (2020) 70.3 81.9 82.3
Our Model 72.2 85.9 86.0

Table 3: Test results on the BBN dataset. Note that
Abhishek et al. (2017)∗ uses the feature representations
learnt from an extra dataset, FIGER (Lin et al., 2012),
which results in the higher accuracy score on BBN.

6.5 Ablation Studies
6.5.1 Effect of the sibling selection metrics
In Sec 3.2, we propose two similarity metrics to
discover sibling relationships in graph G, and abbre-
viate them as: “Word-based” and “Typing-based”
metrics. Here, we provide two additional metrics
for more detailed analysis: the “Gold typing-based“
and the “Random-based“ metrics, which are two

extreme variations of the typing-based metrics. Un-
der the gold typing-based metric, the siblings are
selected by the gold typing distribution, where each
dimension is 0 or 1 according to the ground-truth
types of the mention. In this way, candidate men-
tions that share more ground-truth types with the
target mention will have larger cosine similarity
and thus be chosen as the siblings with a higher
probability. On the contrary, under the random-
based metric, siblings are selected at random. Since
the type set is large, the siblings are more likely
to be irrelevant with the target mention and may
contain much noise.

Measuring sibling quality Intuitively, different
similarity metrics will affect the quality of sib-
lings. To quantify this effect, we measure the sib-
ling quality for the test mentions V ′ in the original
OntoNotes and define the metrics as follows.

For each mention mi ∈ V ′, denote its ground-
truth types as Ymi and sibling mentions in graph
G (defined in Sec 3.1) asMmi . Further, forMmi ,
we denote their ground-truth types as YMi , i.e.,

YMi =
⋃

mj∈Mmi\{mi}

Ymj . (10)

Similar to the definitions of Precision, Recall and
F1, we define Purity, Coverage and Quality to mea-
sure the sibling quality of V ′:

Purity =
1

|V ′|
∑

mi∈V′

=
|Ymi ∩ YMi |
|YMi |

Coverage =
1

|V ′|
∑

mi∈V′

|Ymi ∩ YMi |
|Ymi |

Quality =
2 ∗ Coverage ∗ Purity

Coverage + Purity

(11)

Results The results are presented in Table 4. In
general, the model performance is closely related
to the sibling quality. Besides, the typing-based
metric performs better than the word-based met-
ric. This indicates that the the continuous type-
level probability distribution is more reliable for
sibling selection than the discrete word-level distri-
bution. The scores from the gold typing-based and
the random-based metrics reveal the upper bound
and the lower bound of the scores for the typing-
based metric. On the one hand, the quality of the
siblings selected by the gold typing-based metric
is much higher than those by other methods, with
the Coverage up to 97.6%. Meanwhile, its corre-
sponding model also outperforms the other three
by a large margin. Note that the typing perfor-
mance in this scenario is limited by the annotation
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Macro Micro
Metrics Purity Coverage Quality P R F1 P R F1

Random-based 9.6 71.3 16.9 65.1 56.4 60.1 65.1 43.5 52.2
Word-based 12.2 75.6 21.0 82.7 69.7 75.3 82.1 60.4 69.7

Typing-based 13.1 82.3 22.5 83.3 71.4 76.5 83.3 61.9 71.0
Gold typing-based 21.8 97.6 35.7 96.1 80.0 86.9 94.9 69.2 80.0

Table 4: Comparison among different sibling selection metrics. Note that the sibling quality scores of “Gold
typing-based” do not reach 1, since the sibling mentions are only selected from a subset V ′m (see Sec 3.2) for time
efficiency, which are not guaranteed to have exactly the same ground-truth types with the target mention.

Macro Micro
K Purity Coverage Quality P R F1 P R F1
0 - - - 81.6 68.9 74.4 80.8 60.1 68.9
5 13.1 82.3 22.5 83.3 71.4 76.5 83.3 61.9 71.0
10 10.4 89.5 18.6 82.8 70.2 75.4 81.9 60.5 69.5
15 7.9 94.4 14.5 81.3 68.5 73.8 78.6 61.3 68.8

Table 5: Effect of the sibling sizeK on sibling quality and typing performance over the original OntoNotes dataset.

quality to some extent. Since OntoNotes is anno-
tated by distant-supervision, the scores for the gold
typing-based metric could not reach higher due to
the label noise of the siblings. On the other hand,
a distinct drop of the scores is observed with the
random-based metric. This is reasonable since the
randomly selected siblings contain much noisy in-
formation, which is helpless and even harmful for
typing of the target mention. It can be concluded
from the above observations that there is still much
room to improve the sibling quality as well as the
typing performance of the sibling-enhanced model.

6.5.2 Effect of sibling size K
The model performance is sensitive to the size of
selected sibling mentions for a target mention in the
graph G. Denote the sibling size as K, following
the default hyper-parameter settings, we train our
model on the original OntoNotes under different
K ∈ {0, 5, 10, 15} using the typing-based sibling
selection metric. The corresponding sibling quality
and model performance are reported in Table 5. We
observe that the best scores are obtained with the
top 5 sibling mentions. When K = 0, the graph
only contains the self-connections from the target
mentions to themselves. Without the additional
information from siblings, the Macro F1 score de-
creases by 2.1%, which indicates the effectiveness
of sibling mentions for improving the typing perfor-
mance of our model. When K 6= 0, the Coverage
score goes up while the Purity and Quality scores
go down as K ranges from 5 to 15. Meanwhile,
the typing performance decreases as K increases.
It suggests that, for OntoNotes, a properly smaller
sibling size is a trade-off choice for the model to
use siblings with higher quality and thus achieve

better typing performance.

6.5.3 Effect of dropout probability γ
We randomly discard some type neighbors with
a dropout probability γ during training (Sec 4.5),
which forces the model to learn from the sibling
mentions other than the ground-truth types. Table 6
shows the results under different values of γ on the
original OntoNotes dataset. Generally, the model
achieves better performance with larger γ. This
indicates discarding a large proportion of ground-
truth types is beneficial for learning from sibling
mentions. Besides, it also narrows the difference
between training and test settings where the test
mentions do not have ground-truth types as neigh-
bors. The best performance is achieved when γ
equals around 0.7. However, dropping all the type
neighbors (i.e., γ = 1) will block the interaction
between the type and mention representations in
the graph, which may slightly damage the perfor-
mance.

Macro Micro
γ P R F1 P R F1

0.0 83.1 70.7 76.1 82.1 62.2 70.7
0.3 83.0 70.9 76.1 81.7 62.3 70.7
0.5 83.0 71.3 76.4 81.6 63.0 71.1
0.7 83.3 71.4 76.5 83.3 61.9 71.0
1.0 82.7 71.4 76.3 80.6 63.0 70.8

Table 6: Effect of γ on the performance over the origi-
nal OntoNotes dataset.

6.6 How sibling mentions work in FGET
6.6.1 Quantifying the hard mentions
To select sibling mentions, we first derive the prior
typing distribution from the base model (Lin and
Ji, 2019) as described in Sec 3.2. During experi-
ments, we observe that the contextual information
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for some mentions are insufficient or too complex,
which makes the base model confused on these
mentions. Entropy measures the uncertainty of
a probability distribution. Thus, we quantify the
difficulty of mentions by the entropy of their corre-
sponding prior typing distributions and define the
mentions with the top-500 highest entropy values
as hard mentions, which account for about 5% of
the whole mentions. Table 7 compares the perfor-
mance of our model and the base model on both
the whole mentions and the hard mentions from
the test dataset of the original OntoNotes. we see
that both models perform worse on the hard men-
tions than on the whole mentions. Besides, except
for the superiority of our model regarding the Acc,
Ma-F1 and Mi-F1 scores, it also achieves a lower
entropy value than the base model especially on the
hard mentions. This indicates the information from
siblings makes the output type distributions more
concentrated and therefore increases the confidence
for model predictions.

Mention Model Ep Acc Ma-F1 Mi-F1
whole

mentions
Ours 2.1 59.2 76.5 71.0
Base 2.4 55.4 73.8 68.4

hard
mentions

Ours 2.5 57.2 73.6 66.6
Base 3.3 51.0 65.3 58.9

Table 7: Results on the whole mentions and hard men-
tions of the original OntoNotes. Base denotes the base
model from Lin and Ji (2019). Ep is short for Entropy.

6.6.2 Case Study
To further provide an intuitive understanding about
how our model benefits from sibling mentions, we
present an example in Table 8. As expected, the
retrieved siblings based on the metric defined in
Sec 3.2 share similar ground-truth types with the
target mention. This verifies the effectiveness of
our sibling selection algorithm. Moreover, we ob-
serve that the siblings even help predict the correct
but out-of-gold-set types for the target mention in
this case. Although the annotated types for the tar-
get mention [GM officials] only contains /person
in the test set. The sibling mentions still provide a
strong evidence for our model to also predict /per-
son/title as a possible type for the target mention.

7 Related Work

FGET is an important task for the downstream
NLP tasks and many efforts have been make in
improving its performance (Zhang et al., 2020a;
Liu et al., 2021a). Early works in FGET (Ling and
Weld, 2012; Shimaoka et al., 2016) mainly focus

Target mention: [GM officials] told workers late last
week of the following moves: production of full-sized
vans will be consolidated into a single plant in Flint, Mich.
Ground-truth: /person
Prediction from our model: /person, /person/title
Sibling 1: “It’s been a steadily improving relationship.”,
says the [president].
Ground-truth: /person, /person/title

Sibling 2: Apart from those two actions, Mr.Sikes and
the three other [commissioners] said they expect to re-
examine how AT&T is regulated since competition has
increased.
Ground-truth: /person, /person/title

Sibling 3: HUD Secretary [Jack Kemp] backed an un-
successful effort to strike such language last week, but
received little support from the White House · · ·
Ground-truth: /person, /person/artist, /per-
son/artist/actor, /person/artist/author, /per-
son/political_figure

Table 8: An example to illustrate the relationship be-
tween the target mention and the sibling mentions from
the Original OntoNotes.

on feature extraction for mentions, which do not
consider label noise introduced by distant supervi-
sion (Gillick et al., 2014; Choi et al., 2018; Li et al.,
2020). Recent years have witnessed an increas-
ing number of researchers being dedicated to data
denoising. A popular solution (Ren et al., 2016; Ab-
hishek et al., 2017; Xu and Barbosa, 2018; Ali et al.,
2020) is to design loss functions for the clean and
noisy parts of the training data separately. Never-
theless, Zhang et al. (2020c) proposes an automatic
relabeling framework to estimate the pseudo-truth
label distribution of each sample, which treats the
noisy and clean data uniformly. Besides, Chen
et al. (2019) groups mentions of the same type into
a compact cluster to improve the robustness of the
model. Ali et al. (2020) refines noisy representa-
tions by corpus-level contextual clues. Onoe and
Durrett (2019) introduces two additional models to
delete the samples that are too noisy to be useful,
and repair noisy labels for the retained examples.
In addition, there are some notable work which
tries to build FGET with limited resources (Qian
et al., 2021).

Modeling the type hierarchy is another impor-
tant topic in FGET. Prior solutions (Shimaoka et al.,
2017) introduce a one-hot matrix to encode the hier-
archy. Xu and Barbosa (2018) proposes a hierarchy-
aware loss function. Recently, graph-based meth-
ods have been proven to be powerful in many NLP
tasks (Kipf and Welling, 2017; Liang et al., 2021;
Xu et al., 2019; Liang et al., 2022). Using graphs
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to model the type hierarchy in FGET is a natural
idea. Jin et al. (2019) models the potential type cor-
relations for in-knowledge-base entities via hierar-
chical multi graph convolutional networks (GCNs).
Further, Xiong et al. (2019) extends GCNs to a
vast number of free-form types. Chen et al. (2020)
designs a multi-level learning-to-rank loss to lever-
age hierarchical information. Recently, Onoe et al.
(2021) models the mention and type representa-
tions in a box space instead of the traditional vector
space.

8 Conclusion

In this paper, we firstly point out that SOTA typing
models suffer from a bottleneck issue, i.e., they per-
form poorly on a certain number of hard mentions,
which leads to their limited overall performance.
To this end, we propose to exploit sibling informa-
tion for mention representation learning and define
two metrics for detecting sibling relationship be-
tween mentions. Further, we model sibling learning
as a graph learning problem. Our model is scalable
in that, once trained, it can generate sibling-aware
representations for previously unseen mentions ef-
ficiently during inference stage. Extensive exper-
iments show that the proposed model indeed han-
dles hard mentions well and thereby yields better
overall performance than SOTA baseline models.
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A Hyperparameter Settings

The default hyperparameters for our model are set
as follows, where K is mentioned in Sec 3.2, L, γ
and dr are mentioned in Sec 4.

Hyper-parameter OntoNotes BBN
K 5 20
L 2 2
γ 0.7 0.9
dr 2048 2048

Table 9: The default hyper-parameter settings.
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