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Abstract

Thanks to the strong representation power of
neural encoders, neural chart-based parsers
have achieved highly competitive performance
by using local features. Recently, it has been
shown that non-local features in CRF struc-
tures lead to improvements. In this paper, we
investigate injecting non-local features into the
training process of a local span-based parser,
by predicting constituent n-gram non-local
patterns and ensuring consistency between
non-local patterns and local constituents. Re-
sults show that our simple method gives bet-
ter results than the self-attentive parser on both
PTB and CTB. Besides, our method achieves
state-of-the-art BERT-based performance on
PTB (95.92 F1) and strong performance on
CTB (92.31 F1). Our parser also achieves bet-
ter or competitive performance in multilingual
and zero-shot cross-domain settings compared
with the baseline.

1 Introduction

Constituency parsing is a fundamental task in nat-
ural language processing, which provides useful
information for downstream tasks such as machine
translation (Wang et al., 2018), natural language in-
ference (Chen et al., 2017), text summarization (Xu
and Durrett, 2019). Over the recent years, with
advance in deep learning and pre-training, neu-
ral chart-based constituency parsers (Stern et al.,
2017a; Kitaev and Klein, 2018) have achieved
highly competitive results on benchmarks like Penn
Treebank (PTB) and Penn Chinese Treebank (CTB)
by solely using local span prediction.

The above methods take the contextualized rep-
resentation (e.g., BERT) of a text span as input, and
use a local classifier network to calculate the scores
of the span being a syntactic constituent, together
with its constituent label. For testing, the output
layer uses a non-parametric dynamic programming

∗ The first two authors contributed equally to this work.
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Figure 1: An example of the non-local n-gram pat-
tern features: the 3-gram pattern (3, 11, {VBD NP PP})
is composed of two constituent nodes and one part-
of-speech node; the 2-gram pattern (7, 11, {NP PP}) is
composed of two constituent nodes.

algorithm (e.g., CKY) to find the highest-scoring
tree. Without explicitly modeling structured depen-
dencies between different constituents, the methods
give competitive results compared to non-local dis-
crete parsers (Stern et al., 2017a; Kitaev and Klein,
2018). One possible explanation for their strong
performance is that the powerful neural encoders
are capable of capturing implicit output correlation
of the tree structure (Stern et al., 2017a; Gaddy
et al., 2018; Teng and Zhang, 2018).

Recent work has shown that modeling non-local
output dependencies can benefit neural structured
prediction tasks, such as NER (Ma and Hovy,
2016), CCG supertagging (Cui and Zhang, 2019)
and dependency parsing (Zhang et al., 2020a).
Thus, an interesting research question is whether
injecting non-local tree structure features is also
beneficial to neural chart-based constituency pars-
ing. To this end, we introduce two auxiliary train-
ing objectives. The first is Pattern Prediction. As
shown in Figure 1, we define pattern as the n-gram
constituents sharing the same parent.1 We ask the
model to predict the pattern based on its span rep-
resentation, which directly injects the non-local

1Patterns are mainly composed of n-gram constituents but
also include part-of-speech tags as auxiliary.
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constituent tree structure to the encoder.
To allow stronger interaction between non-local

patterns and local constituents, we further pro-
pose a Consistency loss, which regularizes the co-
occurrence between constituents and patterns by
collecting corpus-level statistics. In particular, we
count whether the constituents can be a sub-tree of
the pattern based on the training set. For instance,
both NNS and NP are legal to occur as sub-trees of
the 3-gram pattern {VBD NP PP} in Figure 1, while
S or ADJP cannot be contained within this pattern
based on grammar rules. Similarly, for the 2-gram
pattern {NP PP} highlighted in Figure 1, both IN

and NP are consistent constituents, but JJ is not.
The Consistency loss can be considered as inject-
ing prior linguistic knowledge to our model, which
forces the encoder to understand the grammar rules.
Non-local dependencies among the constituents
that share the same pattern are thus explicitly mod-
eled. We denote our model as Injecting Non-local
Features for neural Chart-based parsers (NFC).

We conduct experiments on both PTB and CTB.
Equipped with BERT, NFC achieves 95.92 F1 on
PTB test set, which is the best reported perfor-
mance for BERT-based single-model parsers. For
Chinese constituency parsing, NFC achieves highly
competitive results (92.31 F1) on CTB, outperform-
ing the baseline self-attentive parser (91.98 F1) and
a 0-th order neural CRF parser (92.27 F1) (Zhang
et al., 2020b). To further test the generalization
ability, we annotate a multi-domain test set in En-
glish, including dialogue, forum, law, literature
and review domains. Experiments demonstrate
that NFC is robust in zero-shot cross-domain set-
tings. Finally, NFC also performs competitively
with other languages using the SPMRL 2013/2014
shared tasks, establishing the best reported results
on three rich resource languages. We release our
code and models at https://github.com/
RingoS/nfc-parser.

2 Related Work

Constituency Parsing. There are mainly two
lines of approaches for constituency parsing.
Transition-based methods process the input words
sequentially and construct the output constituency
tree incrementally by predicting a series of local
transition actions (Zhang and Clark, 2009; Cross
and Huang, 2016; Liu and Zhang, 2017). For
these methods, the sequence of transition actions
make traversal over a constituent tree. Although

transition-based methods directly model partial tree
structures, their local decision nature may lead
to error propagation (Goldberg and Nivre, 2013)
and worse performance compared with methods
that model long-term dependencies (McDonald and
Nivre, 2011; Zhang and Nivre, 2012). Similar to
transition-based methods, NFC also directly mod-
els partial tree structures. The difference is that
we inject tree structure information using two addi-
tional loss functions. Thus, our integration of non-
local constituent features is implicit in the encoder,
rather than explicit in the decoding process. While
the relative effectiveness is empirical, it could po-
tentially alleviate error propagation.

Chart-based methods score each span indepen-
dently and perform global search over all possible
trees to find the highest-score tree given a sentence.
Durrett and Klein (2015) represented nonlinear fea-
tures to a traditional CRF parser computed with a
feed-forward neural network. Stern et al. (2017b)
first used LSTM to represent span features. Kitaev
and Klein (2018) adopted a self-attentive encoder
instead of the LSTM encoder to boost parser perfor-
mance. Mrini et al. (2020) proposed label attention
layers to replace self-attention layers. Zhou and
Zhao (2019) integrated constituency and depen-
dency structures into head-driven phrase structure
grammar. Tian et al. (2020) used span attention
to produce span representation to replace the sub-
traction of the hidden states at the span boundaries.
Despite their success, above work mainly focuses
on how to better encode features over the input sen-
tence. In contrast, we take the encoder of Kitaev
and Klein (2018) intact, being the first to explore
new ways to introduce non-local training signal
into the local neural chart-based parsers.

Modeling Label Dependency. There is a line of
work focusing on modeling non-local output depen-
dencies. Zhang and Zhang (2010) used a Bayesian
network to encode the label dependency in multi-
label learning. For neural sequence labeling, Zhou
and Xu (2015) and Ma and Hovy (2016) built a
CRF layer on top of neural encoders to capture
label transition patterns. Pislar and Rei (2020) in-
troduced a sentence-level constraint to encourage
the model to generate coherent NER predictions.
Cui and Zhang (2019) investigated label attention
network to model the label dependency by produc-
ing label distribution in sequence labeling tasks.
Gui et al. (2020) proposed a two-stage label de-
coding framework based on Bayesian network to

2066

https://github.com/RingoS/nfc-parser
https://github.com/RingoS/nfc-parser


model long-term label dependencies. For syntac-
tic parsing, Zhang et al. (2020b) demonstrated that
structured Tree CRF can boost parsing performance
over graph-based dependency parser. Our work is
in line with these in the sense that we consider
non-local structure information for neural struc-
ture prediction. To our knowledge, we are the first
to inject sub-tree structure into neural chart-based
encoders for constituency parsing.

3 Baseline

Our baseline is adopted from the parsing model of
Kitaev and Klein (2018) and Kitaev et al. (2019).
Given a sentence X = {x1, ..., xn}, its correspond-
ing constituency parse tree T is composed by a set
of labeled spans

T = {(it, jt, lct )}|
|T |
t=1 (1)

where it and jt represent the t-th constituent
span’s fencepost positions and lct represents the
constituent label. The model assigns a score s(T )
to tree T , which can be decomposed as

s(T ) =
∑

(i,j,l)∈T

s(i, j, lc) (2)

Following Kitaev et al. (2019), we use BERT
with a self-attentive encoder as the scoring function
s(i, j, ·), and a chart decoder to perform a global-
optimal search over all possible trees to find the
highest-scoring tree given the sentence. In particu-
lar, given an input sentence X = {x1, ..., xn}, a list
of hidden representations Hn

1 = {h1,h2, . . . ,hn}
is produced by the encoder, where hi is a hidden
representation of the input token xi. Following pre-
vious work, the representation of a span (i, j) is
constructed by:

vi,j = hj − hi (3)

Finally, vi,j is fed into an MLP to produce real-
valued scores s(i, j, ·) for all constituency labels:

s(i, j, ·) = Wc
2RELU(Wc

1vi,j + bc
1) + bc

2 (4)

where Wc
1, Wc

2, bc
1 and bc

2 are trainable parame-
ters, Wc

2 ∈ R|H|×|Lc| can be considered as the con-
stituency label embedding matrix (Cui and Zhang,
2019), where each column in Wc

2 corresponds to
the embedding of a particular constituent label. |H|
represents the hidden dimension and |Lc| is the size
of the constituency label set.

Sequence Encoder
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Figure 2: The three training objectives in NFC.

Training. The model is trained to satisfy the
margin-based constraints

s(T ∗) ≥ s(T ) + ∆(T, T ∗) (5)

where T ∗ denotes the gold parse tree, and ∆ is
Hamming loss. The hinge loss can be written as

Lcons = max
(
0, max

T 6=T∗
[s(T ) + ∆(T, T ∗)]− s(T ∗)

)
(6)

During inference time, the most-optimal tree

T̂ = argmax
T

s(T ) (7)

is obtained using a CKY-like algorithm.

4 Additional Training Objectives

We propose two auxiliary training objectives to
inject non-local features into the encoder, which
rely only on the annotations in the constituency
treebank, but not external resources.

4.1 Instance-level Pattern Loss
We define n-gram constituents, which shares the
same parent node, as a pattern. We use a triplet
(ip, jp, lp) to denote a pattern span beginning from
the ip-th word and ending at jp-th word. lp is the
corresponding pattern label. Given a constituency
parse tree in Figure 1, (3, 11, {VBD NP PP}) is a
3-gram pattern.

Similar to Eq 4, an MLP is used for transforming
span representations to pattern prediction probabil-
ities:

p̂i,j = Softmax
(
Wp

2RELU(Wp
1vi,j + bp

1) + bp
2

)
(8)

where Wp
1 , Wp

2 , bp
1 and bp

2 are trainable param-
eters, Wp

2 ∈ R|H|×|Lp| can be considered as the
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pattern label embedding matrix, where each col-
umn in Wp

2 corresponds to the embedding of a
particular pattern label. |Lp| represents the size of
the pattern label set. For each instance, the cross-
entropy loss between the predicted patterns and the
gold patterns are calculated as

Lpat = −
n∑

i=1

n∑
j=1

pi,j log p̂i,j (9)

We use the span-level cross-entropy loss for pat-
terns (Eq 9) instead of the margin loss in Eq 6,
because our pattern-prediction objective aims to
augment span representations via greedily classify-
ing each pattern span, rather than to reconstruct the
constituency parse tree through dynamic program-
ming.

4.2 Corpus-level Consistency Loss

Constituency scores and pattern probabilities are
produced based on a shared span representation;
however, the two are subsequently separately pre-
dicted. Therefore, although the span representa-
tions contain both constituent and pattern infor-
mation, the dependencies between constituent and
pattern predictions are not explicitly modeled. Intu-
itively, constituents are distributed non-uniformly
in patterns, and such correlation can be obtained
in the corpus-level statistic. We propose a consis-
tency loss, which explicitly models the non-local
dependencies among constituents that belong to the
same pattern. As mentioned in the introduction, we
regard all constituent spans within a pattern span
as being consistent with the pattern span. Take 2-
gram patterns for example, which represents two
neighboring subtrees covering a text span. The con-
stituents that belong to the two subtrees, including
the top constituent and internal sub constituents,
are considered as being consistent. We consider
only the constituent labels but not their correspond-
ing span locations for this task.

This loss can be understood first at the instance
level. In particular, if a constituent span (it, jt, l

c
t )

is a subtree of a pattern span (it′ , jt′ , l
p
t′), i.e. it >=

it′ and jt <= jt′ , where lct = Lc[a] (the a-th con-
stituent label in Lc) and lpt′ = Lp[b] (the b-th pattern
label in Lp), we define Lc[a] and Lp[b] to be con-
sistent (denoted as ya,b = 1). Otherwise we con-
sider it to be non-consistent (denoted as ya,b = 0).
This yields a consistency matrix Y ∈ R|Lc|×|Lp|

for each instance. The gold consistency matrix Y

provides information regarding non-local depen-
dencies among constituents and patterns.

An intuitive method to predict the consistency
matrix Y is to make use of the constituency label
embedding matrix Wp

2 (see Eq 4 for definition),
the pattern label embedding matrix Wc

2 (see Eq 8
for definition) and the span representations V (see
Eq 3 for definition):

Ŷ = Sigmoid
(
(Wc

2
TU1V)(VTU2W

p
2)
)

(10)

where U1,U2 ∈ R|H|×|H| are trainable parame-
ters.

Intuitively, the left term, Wc
2
TU1V, integrates

the representations of the pattern span and all pos-
sible constituent label embeddings. The second
term, VTU2W

p
2 , integrates features of the span

and all pattern embeddings. Each binary element
in the resulting Ŷ ∈ R|Lc|×|Lp| denotes whether
a particular constituent label is consistent with a
particular pattern in the given span context. Eq 10
can be predicted on the instance-level for ensur-
ing consistency between patterns and constituent.
However, this naive method is difficult for training,
and computationally infeasible, because the span
representation matrix V ∈ R|H|×n2

is composed
of n2 span representations vi,j ∈ R|H| and the
asymptotic complexity is:

O
(

(|Lp|+ |Lc|)(|H|2 + n2|H|) + |Lp||Lc|n2
)

(11)
for a single training instance.

We instead use a corpus-level constraint on the
non-local dependencies among constituents and
patterns. In this way, Eq 10 is reduced to be inde-
pendent of individual span representations:

Ŷ = Sigmoid
(
Wc

2UWp
2
T) (12)

where U ∈ R|H|×|H| is trainable.
This trick decreases the asymptotic complexity

to O(|Lc||H|2 + |Lp||Lc||H|). The cross-entropy
loss between the predicted consistency matrix and
gold consistency labels is used to optimize the
model:

Lreg = −
|Lc|∑
a=1

|Lp|∑
b=1

ya,b log ŷa,b (13)

The corpus-level constraint can be considered
as a prior linguistic knowledge statistic from the
treebank, which forces the encoder to understand
the grammar rules.
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Data Lang / Domain # Train # Dev # Test
PTB English 39,832 1,700 2,416
CTB Chinese 17,544 352 348

SPMRL French 14,759 1,235 2,541
SPMRL German 40,472 5,000 5,000
SPMRL Korean 23,010 2,066 2,287
SPMRL Basque 7,577 948 946
SPMRL Polish 6,578 821 822
SPMRL Hungarian 8,146 1,051 1,009
MCTB Dialogue - - 1,000
MCTB Forum - - 1,000
MCTB Law - - 1,000
MCTB Literature - - 1,000
MCTB Review - - 1,000

Table 1: Dataset statistics. # - number of sentences.

4.3 Training

Given a constituency tree, we minimize the sum of
the three objectives to optimize the parser:

L = Lcons + Lpat + Lreg (14)

4.4 Computational Cost

The number of training parameters increased by
NFC is Wp

1 ∈ R|H|×|H|, Wp
2 ∈ R|H|×|Lp| , bp

1 ∈
R|H| and bp

2 ∈ R|Lp| in Eq 8 and U ∈ R|H|×|H|
in Eq 12. Taking training model on PTB as an
example, NFC adds less than 0.7M parameters
to 342M parameters baseline model (Kitaev and
Klein, 2018) based on BERT-large-uncased dur-
ing training. NFC is identical to our baseline self-
attentive parser (Kitaev and Klein, 2018) during
inference.

5 Experiments

We empirically compare NFC with the baseline
parser in different settings, including in-domain,
cross-domain and multilingual benchmarks.

5.1 Dataset

Table 1 shows the detailed statistic of our datasets.

In-domain. We conduct experiments on both En-
glish and Chinese, using the Penn Treebank (Mar-
cus et al., 1993) as our English dataset, with stan-
dard splits of section 02-21 for training, section 22
for development and section 23 for testing. For Chi-
nese, we split the Penn Chinese Treebank (CTB)
5.1 (Xue et al., 2005), taking articles 001-270 and
440-1151 as training set, articles 301-325 as devel-
opment set and articles 271-300 as test set.

Cross-domain. To test the robustness of our
methods across difference domains, we further an-
notate five test set in dialogue, forum, law, literature
and review domains. For the dialogue domain, we
randomly sample dialogue utterances from Wiz-
ard of Wikipedia (Dinan et al., 2019), which is a
chit-chat dialogue benchmark produced by humans.
For the forum domain, we use users’ communi-
cation records from Reddit, crawled and released
by Völske et al. (2017). For the law domain, we
sample text from European Court of Human Rights
Database (Stiansen and Voeten, 2019), which in-
cludes detailing judicial decision patterns. For the
literature domain, we download literary fictions
from Project Gutenberg2. For the review domain,
we use plain text across a variety of product genres,
released by SNAP Amazon Review Dataset (He
and McAuley, 2016). After obtaining the plain text,
we ask annotators whose majors are linguistics to
annotate constituency parse tree by following the
PTB guideline. We name our dataset as Multi-
domain Constituency Treebank (MCTB). More
details of the dataset are documented in Yang et al.
(2022).

Multi-lingual. For the multilingual testing, we
select three rich resource language from the
SPMRL 2013-2014 shared task (Seddah et al.,
2013): French, German and Korean, which include
at least 10,000 training instances, and three low-
resource language: Hungarian, Basque and Polish.

5.2 Setup

Our code is based on the open-sourced code
of Kitaev and Klein (2018)3. The training pro-
cess gets terminated if no improvement on de-
velopment F1 is obtained in the last 60 epochs.
We evaluate the models which have the best F1
on the development set. For fair comparison,
all reported results and baselines are augmented
with BERT. We adopt BERT-large-uncased
for English, BERT-base for Chinese and
BERT-multi-lingual-uncased for other
languages. Most of our hyper-parameters are
adopted from Kitaev and Klein (2018) and Fried
et al. (2019). For scales of the two additional losses,
we set the scale of pattern loss to 1.0 and the scale
of consistency loss to 5.0 for all experiments.

To reduce the model size, we filter out those non-

2https://www.gutenberg.org/
3Available at https://github.com/nikitakit/

self-attentive-parser.
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Model LR LP F1
Liu and Zhang (2017) � - - 95.71
Kitaev and Klein (2018) 95.46 95.73 95.59
Zhou and Zhao (2019) 95.51 95.93 95.72
Zhou and Zhao (2019) * 95.70 95.98 95.84
Zhang et al. (2020b) 95.53 95.85 95.69
Nguyen et al. (2020) - - 95.48
Tian et al. (2020) 95.58 96.11 95.85

This work
Kitaev and Klein (2018) † 95.56 95.89 95.72
NFC w/o Lreg 95.49 96.07 95.78
NFC 95.70 96.14 95.92

Table 2: Performance (w/ BERT) on the test set of
PTB. † indicates our reproduced results, which is also
the baseline that our method is built upon. * indicates
training with extra supervision from dependency pars-
ing data. � indicates that the results are reported by the
re-implementation of Fried et al. (2019).

Model LR LP F1
Liu and Zhang (2017) � - - 91.81
Kitaev and Klein (2018) 91.55 91.96 91.75
Zhang et al. (2020b) 92.04 92.51 92.27
Zhou and Zhao (2019) 91.14 93.09 92.10
Tian et al. (2020) 92.14 92.25 92.20

This work
Kitaev and Klein (2018) † 91.80 92.23 91.98
NFC w/o Lreg 91.87 92.40 92.13
NFC 92.17 92.45 92.31

w/ External Dependency Supervision
Zhou and Zhao (2019) * 92.03 92.33 92.18
Mrini et al. (2020)* 91.85 93.45 92.64

Table 3: Constituency parsing performance (w/ BERT)
on the test set of CTB 5.1. The symbols (†, * and �) are
explained in Table 2.

local pattern features that appear less than 5 times
in the PTB training set and those that account for
less than 0.5% of all pattern occurrences in the CTB
training set. The out-of-vocabulary patterns are
set as < UNK >. This results in moderate pattern
vocabulary sizes of 841 for PTB and 514 for CTB.
For evaluation on PTB, CTB and cross-domain
dataset, we use the EVALB script for evaluation.
For the SPMRL datasets, we follow the same setup
in EVALB as Kitaev and Klein (2018).

5.3 In-domain Experiments

We report the performance of our method on the
test sets of PTB and CTB in Table 2 and 3, respec-
tively. Compared with the baseline parser (Kitaev
and Klein, 2018), our method obtains an absolute

improvement of 0.20% F1 on PTB (p<0.01) and
0.33% F1 on CTB (p<0.01), which verifies the
effectiveness of injecting non-local features into
neural local span-based constituency parsers. Note
that the proposed method adds less than 0.7M pa-
rameters to the 342M parameter baseline model
using BERT-large.

The parser trained with both the pattern loss
(Section 4.1) and consistency loss (Section 4.2)
outperforms the one trained only with pattern loss
by 0.14% F1 (p<0.01). This suggests that the con-
straints between constituents and non-local pattern
features are crucial for injecting non-local features
into local span-based parsers. One possible expla-
nation for the improvement is that the constraints
may bridge the gap between local and non-local
supervision signals, since these two are originally
separately predicted while merely sharing the same
encoder in the training phase.

We further compare our method with the re-
cent state-of-the-art parsers on PTB and CTB. Liu
and Zhang (2017) propose an in-order transition-
based constituency parser. Kitaev and Klein (2018)
use self-attentive layers instead of LSTM layers
to boost performance. Zhou and Zhao (2019)
jointly optimize constituency parsing and depen-
dency parsing objectives using head-driven phrase
structure grammar. Mrini et al. (2020) extend Zhou
and Zhao (2019) by introducing label attention lay-
ers. Zhang et al. (2020b) integrate a CRF layer to
a chart-based parser for structural training (with-
out non-local features). Tian et al. (2020) use span
attention for better span representation.

Compared with these methods, the proposed
method achieves an F1 of 95.92%, which exceeds
previous best numbers for BERT-based single-
model parsers on the PTB test set. We further
compare experiments for five runs, and find that
NFC significantly outperforms Kitaev and Klein
(2018) (p<0.01). The test score of 92.31% F1 on
CTB significantly outperforms the result (91.98%
F1) of the baseline (p<0.01). Compared with the
CRF parser of Zhang et al. (2020b), our method
gives better scores without global normalization in
training. This shows the effectiveness of integrat-
ing non-local information during training using our
simple regularization. The result is highly competi-
tive with the current best result (Mrini et al., 2020),
which is obtained by using external dependency
parsing data.
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Model In-domain Cross-domain
PTB Bio Dialogue Forum Law Literature Review Avg

Liu and Zhang (2017) 95.65 86.33 85.56 85.42 91.50 84.84 83.53 86.20
Kitaev and Klein (2018) 95.72 86.61 86.30 86.29 92.08 86.10 83.88 86.88

NFC 95.92 86.43 89.85 88.52 95.43 90.75 88.10 89.85

Table 4: Constituency parsing results with BERT (F1 scores) on the cross-domain test set.

Model Rich resource Low Resource AvgFrench German Korean Avg Hungarian Basque Polish Avg
Kitaev and Klein (2018) 87.42 90.20 88.80 88.81 94.90 91.63 96.36 94.30 91.55

Nguyen et al. (2020) 86.69 90.28 88.71 88.56 94.24 92.02 96.14 94.13 91.34
Kitaev and Klein (2018) † 87.38 90.25 88.91 88.85 94.56 91.66 96.14 94.12 91.48

NFC 87.51 90.43 89.07 89.00 94.95 91.73 96.33 94.34 91.67

Table 5: Multilingual Experiment results on SPMRL test-sets. † indicates our reproduced baselines.

5.4 Cross-domain Experiments

We compare the generalization of our methods with
baselines in Table 4. In particular, all the parsers
are trained on PTB training and validated on PTB
development, and are tested on cross-domain test
in the zero-shot setting. As shown in the table, our
model achieves 5 best-reported results among 6
cross-domain test sets with an averaged F1 score
of 89.85%, outperforming our baseline parser by
2.97% points. This shows that structure informa-
tion is useful for improving cross-domain perfor-
mance, which is consistent with findings from pre-
vious work (Fried et al., 2019).

To better understand the benefit of pattern fea-
tures, we calculate Pearson correlation of n-gram
pattern distributions between the PTB training set
and various test sets in Figure 3. First, we find that
the correlation between the PTB training set and
the PTB test set is close to 1.0, which verifies the
effectiveness of the corpus-level pattern knowledge
during inference. Second, the 3-gram pattern corre-
lation of all domains exceeds 0.75, demonstrating
that n-gram pattern knowledge is robust across do-
mains, which supports the strong performance of
NFC in the zero-shot cross-domain setting. Third,
pattern correlation decreases significantly as n in-
creases, which suggests that transferable non-local
information is limited to a certain window size of
n-gram constituents.

5.5 Multilingual Experiments

We compare NFC with Kitaev and Klein (2018)
and Nguyen et al. (2020) on SPMRL. The results
are shown in Table 5. Nguyen et al. (2020) use
pointer network to predict a sequence of pointing
decisions for constituency parsing. As can be seen,

Figure 3: Pearson correlation of n-gram pattern distri-
bution between PTB training set and different test set.

Nguyen et al. (2020) do not show obvious advan-
tages over Kitaev and Klein (2018). NFC outper-
forms these two methods on three rich resource
languages. For example, NFC achieves 89.07% F1
on Korean, outperforming Kitaev and Klein (2018)
by 0.27% F1, suggesting that NFC is generally ef-
fective across languages. However, NFC does not
give better results compared with Kitaev and Klein
(2018) on low-resource languages. One possible
explanation is that it is difficult to obtain prior lin-
guistic knowledge from corpus-level statistics by
using a relatively small number of instances.

6 Analysis

6.1 n-gram Pattern Level Performance

Figure 4 shows the pattern-level F1 before and
after introducing the two auxiliary training objec-
tives. In particular, we calculate the pattern-level
F1 by calculating the F1 score for patterns based
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(a) F1 scores measured by 3-gram pattern.

(b) F1 scores measured by 2-gram pattern.

Figure 4: Pattern-level F1 on different English datasets.
Noted that we train NFC based on 3-gram pattern in
English. There is no direct supervision signal for 2-
gram pattern.

on the constituency trees predicted by CKY de-
coding. Although our baseline parser with BERT
achieves 95.76% F1 scores on PTB, the pattern-
level F1 is 80.28% measured by 3-gram. When
testing on the dialogue domain, the result is re-
duced to only 57.47% F1, which indicates that
even a strong neural encoder still has difficulties
capturing constituent dependency from the input
sequence alone. After introducing the pattern and
consistency losses, NFC significantly outperforms
the baseline parser measured by 3-gram pattern
F1. Though there is no direct supervision signal
for 2-gram pattern, NFC also gives better results
on pattern F1 of 2-gram, which are subsumed by
3-gram patterns. This suggests that NFC can effec-
tively represent sub-tree structures.

Figure 5: F1 scores versus minimum constituent span
length on PTB test set. Note that constituent spans
shorter than 30 accounts for approximately 98.5% of
all for the PTB test set.

Figure 6: Exact matching (EM) score across different
domains. EM indicates the percentage of sentences
whose predicted trees are entirely correct.

6.2 F1 against Span Length

We compare the performance of the baseline and
our method on constituent spans with different
word lengths. Figure 5 shows the trends of F1
scores on the PTB test set as the minimum con-
stituent span length increases. Our method shows
a minor improvement at the beginning, but the gap
becomes more evident when the minimum span
length increases, demonstrating its advantage in
capturing more sophisticated constituency label de-
pendency.

6.3 Exact Match

Exact match score represents the percentage of sen-
tences whose predicted trees are entirely the same
as the golden trees. Producing exactly matched
trees could improve user experiences in practical
scenarios and benefit downstream applications on
other tasks (Petrov and Klein, 2007; Kummerfeld
et al., 2012). We compare exact match scores of
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NFC with that of the baseline parser. As shown in
Figure 6, NFC achieves large improvements in ex-
act match score for all domains. For instance, NFC
gets 33.40% exact match score in the review do-
main, outperforming the baseline by 10.2% points.
We assume that this results from the fact that NFC
successfully ensures the output tree structure by
modeling non-local correlation.

6.4 Model Efficiency
As mentioned in Section 4.4, NFC only introduces
a few training parameters to the baseline model (Ki-
taev and Klein, 2018). For PTB, NFC takes about
19 hours to train with a single RTX 2080Ti, while
the baseline takes about 13 hours. For CTB, the
approximate training time is 12 hours for NFC and
7 hours for the baseline. Our inference time is the
same as that of the baseline parser, since no further
computational operations are added to the infer-
ence phase. Both take around 11 seconds to parse
the PTB section 23 (2416 sentences, an average of
23.5 tokens per sentence).

7 Conclusion

We investigated graph-based constituency parsing
with non-local features – both in the sense that fea-
tures are not restricted to one constituent, and in
the sense that they are not restricted to each train-
ing instance. Experimental results verify the effec-
tiveness of injecting non-local features to neural
chart-based constituency parsing. Equipped with
pre-trained BERT, our method achieves 95.92%
F1 on PTB and 92.31% F1 on CTB. We further
demonstrated that the proposed method gives better
or competitive results in multilingual and zero-shot
cross-domain settings.
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