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Abstract

Fine-grained Entity Typing (FET) has made
great progress based on distant supervision but
still suffers from label noise. Existing FET
noise learning methods rely on prediction dis-
tributions in an instance-independent manner,
which causes the problem of confirmation bias.
In this work, we propose a clustering-based loss
correction framework named Feature Cluster
Loss Correction (FCLC), to address these two
problems. FCLC first train a coarse backbone
model as a feature extractor and noise estimator.
Loss correction is then applied to each feature
cluster, learning directly from the noisy labels.
Experimental results on three public datasets
show that FCLC achieves the best performance
over existing competitive systems. Auxiliary
experiments further demonstrate that FCLC is
stable to hyperparameters and it does help miti-
gate confirmation bias. We also find that in the
extreme case of no clean data, the FCLC frame-
work still achieves competitive performance.

1 Introduction

Fine-grained entity typing (FET) is the task of clas-
sifying named entity mentions in a sentence over
the given class set (typically a hierarchical class
structure as shown in Fig. 1. FET serves as an
important component in many down-stream NLP
applications, e.g., relation extraction (Liu et al.,
2014), entity linking (Raiman and Raiman, 2018)
and question answering (Dong et al., 2015). FET
task has a more wide range of entity types (usu-
ally over 100 classes) compared to entity typing,
and hence neural-based FET systems require large-
scale annotated training corpus.

Recent studies apply distant supervision to label
the corpora automatically by linking mentions to
knowledge base entities and using all entity types

†These authors contributed equally to this work and should
be considered co-first authors.

‡Corresponding author: Ting Wang.

Figure 1: An Example of noisy labels and feature space
illustration in FET task.

as the ground-truth labels. Although large-scale
annotated data is provided, it brings about label
noises in training. To overcome the problem of
noisy label, some works directly pruned noisy in-
stances (Gillick et al., 2014; Onoe and Durrett,
2019a). The others retain noisy training data but
further improve by choosing (Ren et al., 2016a; Xu
and Barbosa, 2018), weighting (Wu et al., 2019),
and relabeling (Zhang et al., 2020) noisy labels
using the prediction distribution.

However, these noise combating methods have
two major limitations. 1) They rely on the predic-
tion distribution. As a result, they ought to cope
with instance-agnostic noise better. The previous
works expirically show (Zheng and Yang, 2021)
that the prediction distribution is more likely to be
affected by noisy instances and suffer from confir-
mation bias. This bias problem is also verified in
our Sec. 3.5. The limitation leads to the intriguing
question: Besides prediction distribution and en-
tropy, what other information can we use to model
label noise?

2) They mostly aim to modify each instance iso-
latedly and only use instance-level information.
Meanwhile, typical anti-noise machine learning
(Patrini et al., 2017; Hendrycks et al., 2018) uses
instance-agnostic global statistics. The latter is

1997



more robust to noise but might be too general. Lo-
cal information is potentially more informative. For
example, when the distant supervision introduces
similar noise in some instances, these noises form
a locality in feature space. The noisy instances are
near to each other and are separate from instances
with the same but true labels. Our experiment result
is similar to Fig. 1, even when the feature extractor
is trained to fit noisy labels, they are still easily
separable due to underlying semantic differences.

These two limitations are inter-related, causing
noise-learning-based FET methods to still suffer
from distantly supervised noise. To alleviate the
label noise and avert these limitations, we propose
a novel framework FCLC for noisy label learn-
ing inspired by weighted training and loss correc-
tion (Hendrycks et al., 2018) in machine learning.
Our method utilizes feature representations from
the model and learns global (local) information, i.e.
a cluster-level label confusion matrix. Firstly, we
use a backbone learner on noisy data. It serves as a
feature extractor and a noise estimator. Secondly,
all training data, including noisy data and a small
portion of clean data are clustered. The clean data
serve as anchors in the feature space to estimate
label corruption and sample quality of each clus-
ter. Finally, label corruption and sample quality are
used for label correction.

Our main contributions are three-fold: (i) This
study provides fresh insight into instance depen-
dent label noise in FET. We pointed out a novel
training method to further exploit feature space and
global information. (ii) We designed a framework
with feature clustering, estimating cluster-level con-
fusion matrix, and loss correction. (iii) We exper-
imented the proposed method on three datasets.
Results show that we made significant improve-
ments over previous state-of-the-art, thus proving
the effectiveness of our model. Ablation studies
further prove the robustness and wide applicability
of our framework.

2 Framework

2.1 Definition

Given a finite set of types, T = {t1, t2, ..., t|T |},
where |T | denotes the number of candidate types.
The task is to assign appropriate types to each men-
tion under context. Formally, an instance is a triplet,
(m, c,y). c = {w1, w2, ..., wn} is the context ofm,
usually the original sentence. m = {wp1 , ..., wpl}
is the mention. obviously, m is a continuous sub-

sequence of c.
Y ⊆ T denotes appropriate types for (m, c). For

convenience, denote Y ’s vector form y ∈ {0, 1}|T |,
yj = 1 means tj ∈ Y .

When the instance is produced with crowd-
sourcing or distant supervision, annotated labels
might contain so-called noise. We denote labels
with noise ỹ. The instance is thus (m, c, ỹ). De-
note the corpus with noisy instances D̃, the corpus
with trusted instances Dt.* The two corpus form
the whole training corpus D.

The task is to predict the appropriate types for
given (m, c).

2.2 Training Procedure
As shown in Fig. 2, the FCLC framework consists
of the following steps :

Step 1. (Phase 1) Train the backbone model with
noisy data D̃ for e1 epochs and get M1. It serves
as a feature extractor and a noise estimator. (Sec.
2.3)

Step 2. Cluster all training samples D with the
feature extracted byE1, and estimate confusion ma-
trix for each cluster with predictions of M1. (Sec.
2.4)

Step 3. (Phase 2) The calculated clustering-
aware confusion matrix and FCLC loss are used to
continue training the backbone model. (Sec. 2.5)

2.3 Backbone
For fair comparison, the backbone of our model
has the same structure as NFETC (Xu and Barbosa,
2018).

For an instance (m, c,y), for each word wi in c,
word embedding is ewi ∈ Rdw looked up in word
embedding matrix W ∈ Rdw×|V |.

A position embedding epi ∈ Rdp is used to
model the context word position i and mention
position (p1, pl) by looking up relative position in
position embedding matrix P ∈ Rdp×2N . The final
embedding is the concatenation ei = [ewi , e

p
i ].

Context Representation A Bi-LSTM (Hochre-
iter and Schmidhuber, 1997) is used to model the
context representation. Feeding the embedding of
c i.e. {e1, e2, ..., en} into BiLSTM gets the two
directional hidden states

−→
hi and

←−
hi for each word

wi. Word level attention weighted sum following
(Zhou et al., 2016) is applied on hi = [

−→
hi⊕

←−
hi], re-

sulting in the final context representation rc ∈ Rdc ,

*Normally |Dt| ≪ |D̃|, as in all the datasets we reported
in this paper.
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Figure 2: Model architecture.

where ⊕ means element-wise sum and dc is the
hidden size of the BiLSTM and the dimension of
the context embedding.

Mention Representation The average encoder
of a mention takes word embeddings of the mention
{ep1 , ep2 , ..., epl} and takes the average: rw =
1
l

∑l
k=1 epk . The LSTM encoder of a mention

takes an extended mention with one more token
before and after the original mention and produces
hidden state features {hp1−1, ...,hpl+1}. Take
the last output hpl+1 as rl. The final representa-
tion of the mention is rm = [rw, rl]

Classification Softmax classifier and cross-
entropy are used based on the feature rm,c =
[rc, rm] of x:

s(x) = Wrm,c + b (1)

p̂(y|x) = softmax(s(x)) (2)

ℓ(x,y; θ) = −log(p̂(y|x)) (3)

With a given dataset D, the model is trained
with all samples (x,y) in D. For baseline, D = D.
For FCLC step 1, D = D̃:

Lbase(θ) =
1

|D|
∑

(x,y)∈D

ℓ(x,y; θ) (4)

2.4 Feature Clustering

We make the assumption that the noise (y, ỹ)forms
locality in the feature space, especially when the
feature is calculated from the original mention and

context(m, c), (m, c) determines y, and the feature
is trained with ỹ.

We adopt clustering to utilize local statistics as
smaller-grained feature information. To be specific,
we perform k-means with rm,c on the whole train-
ing set D, and separate D into K clusters. Denote
the k-th cluster C̄k, Ct−k = C̄k ∩ Dt, C̃k = C̄k ∩ D̃.

We mainly utilize the two following statistics:

τk =
|Ct−k|
|Dk|

(5)

τk estimates the quality of the cluster k. It acts as a
soft cluster sieving.

Ĉijk =
1

|Aik|
∑

(x,y)∈Aik

p̂(yj = 1|x) (6)

where Aik = {(x,y)|(x,y) ∈ Ct−k and yi =
1}, Ĉijk estimates the probability in cluster k to
annotate noise j for true label i.

2.5 Loss Correction
The idea of forward loss correction is proposed by
Patrini et al. (2017). The basic idea is to modify the
loss with the noise transition matrix T . Such that
the minimizer under the new loss with noisy labels
is the same as the minimizer of the original loss
under clean labels. The modification relies on the
assumption that the label noise is independent from
instances, i.e. ỹ ⊥ x | y. Hendrycks et al. (2018)
proposed to estimate T with a small set of clean
labels, under the assumption that ỹ ⊥ y | x. While
these assumptions do not hold globally for distantly
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supervised FET, they hold better in clusters. We
introduce the cluster-wise loss correction in the
following sections.

Transition Matrix Estimation Assuming the
backbone model is well trained, i.e. p̂(ỹj = 1|x)
is close enough to p(ỹj = 1|x). We use the pre-
dicted probability on trusted instances in cluster-k
to estimate the transition probability.

Cijk = p(ỹj = 1 | yi = 1, x ∈ C̃k)
≈ p(ỹj = 1 | yi = 1, x ∈ Ct−k)

≈ 1

|Aik|
∑

(x,y)∈Aik

p̂(ỹj = 1|x)

= Ĉijk

(7)

Forward Loss Correction Cross-entropy is com-
posite (Reid and Williamson, 2010),denote it as ℓψ,
its inverse link function ψ−1 is softmax.

Notice Cijk can bridge the loss with noisy label
ỹ, (x ∈ C̃k, ỹi = 1), to predictions for the true
label:

−log(p̂(ỹ|x)) ≈ − log
c∑
j=1

Cjikp̂(yj = 1 | x)

(8)
Let Tk = C∗∗k, define the forward loss as:

ℓ→ψ (s(x)) = ℓψ(T
⊤
k s(x)) (9)

The property holds on each cluster similar as in
(Patrini et al., 2017), with all x ∈ C̃k, training with
noisy label ỹ on ℓ→ψ is the same as with true label
y on the original loss ℓψ :

argmin
s

Ex,ỹℓ
→
ψ (s(x)) = argmin

s
Ex,yℓψ(s(x))

(10)
Different from global forward loss correction,

the parameters that minimize the loss in each clus-
ter are not the same. We balance the clusters with
τk. The trusted samples (x, y) ∈ Dt are also used.
The loss of the full model is:

LFCLC =
∑

(x,y)∈Dt
ℓψ(s(x))

+β
∑K

k=1 τk
∑

(x,ỹ)∈C̃k ℓ
→
ψ (s(x)))

+(1− β)
∑K

k=1 τk
∑

(x,ỹ)∈C̃k ℓψ(s(x))) (11)

Where β is the hyperparameter to balance FCLC
loss and the original loss.

Our introduced framework has several advan-
tages: 1) Lightweight. This method does not in-
clude extra trainable parameters to the backbone

model. 2) Stable. The framework involves two
hyperparameters, β and phase-1 train epochs e1
and we empirically find them stable. 3) Flexibility.
Our improvement is orthogonal to the backbone
model. It only requires that the backbone model
is sufficiently expressive and uses an appropriate
composite loss (Reid and Williamson, 2010). Thus,
it is pluggable to a large number of FET models.

3 Experiments

We evaluate the proposed model on three different
FET datasets and compare it to several state-of-
the-art models. In addition, to support our claims
we also conduct several subsidiary experiments to
analyze the impacts of our proposed module in
detail.

Wiki OntoNotes BBN
types 113 89 47
hierarchy depth 2 3 2
mentions-train 2009898 253241 86078
⊢mentions-train-trusted 9999 2202 642
⊢mentions-train-noisy 1999899 251039 85436
mentions-test 563 8963 12845
one label train data (%) 64.46 73.13 75.92
one label test data (%) 88.28 94.00 100

Table 1: Fine-Grained Entity Typing datasets Statistics.

3.1 Datasets

The datasets are described below, we use ex-
actly the same train/dev/test split with previous
works (Ren et al., 2016a; Chen et al., 2019).
Detailed statistics of the three datasets are also
shown in Table 1. BBN It contains sentences
extracted from the Wall Street Journal and dis-
tantly labeled by DBpedia Spotlight (Weischedel
and Brunstein, 2005). OntoNotes It was con-
structed using sentences in the OntoNotes cor-
pus and distantly supervised by DBpedia Spot-
light (Weischedel et al., 2013). Wiki/FIGER It
was derived from Wikipedia articles and news re-
ports, entities of the training samples are distantly
annotated using Freebase (Ling and Weld, 2012).

3.2 Evaluation Metrics

We follow prior work and use the strict accuracy
(Acc), Macro F1 (Ma-F1), and Micro F1 (Mi-F1)
scores. During the experiment, all these metrics
are calculated by running the model five times and
computing the mean and standard deviation values.
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Hyper-parameters Wiki OntoNotes BBN
Learning Rate 0.0002 0.0006 0.0007
Batch Size 512 512 512
LSTM Layer 0 2 1
hidden Size (ds) - 700 560
Word Emb Size (dw) 300 300 300
Pos Emb Size (dp) 85 70 20
Phase 1 Epochs (e1) 5 14 20
#Clusters (k) 116 104 42
LC Loss Weight (β) 0.25 0.35 0.95

Table 2: Hyper-parameters chosen for the three datasets.

3.3 Baselines

We consider the following competitive FET sys-
tems as our baselines: (1) AFET (Ren et al.,
2016a); (2) Attentive (Shimaoka et al., 2016);
(3) NFETC/NFETChier (Xu and Barbosa, 2018);
(4) CLSC/CLSChier (Chen et al., 2019); (5)
NFETC-AR/NFETC-ARhier (Zhang et al., 2020);
(6) NFETC-VAT/CLSC-VAT (Shi et al., 2020); (7)
Multi Level Learning to Rank (ML-L2R) (Chen
et al., 2020); (8) Box (Onoe et al., 2021).

These baselines are compared with several vari-
ants of our proposed model: (1) FCLC: proposed
model without the hierarchical loss; (2) FCLChier

proposed model with the hierarchical loss; (3)
FCLC(without τk) our proposed model trained
without cluster quality estimation, i.e. τ = 1 for
all clusters; (4) FCLC(without loss correction) our
proposed model without loss correction, only clus-
ter quality estimation working; (5)FCLC(without
cluster) our proposed model without clustering, i.e.
calculated a globally-uniform confusion matrix; (6)
FCLC(with reinit): our proposed model with fresh
parameters before the start of step 3 as suggested
by Patrini et al. (2017). (3)-(6) are implemented
based on and should be compared with the best con-
figuration between FCLC and FCLChier on each
dataset, that is, compared with FCLC on BBN and
compared with FCLChier on Wiki and OntoNotes.

3.4 Implementation Details

To make an equal comparison, following (Xu and
Barbosa, 2018; Chen et al., 2019; Zhang et al.,
2020), we use exactly the same pre-trained 300-
dimensional GloVe word embeddings (Pennington
et al., 2014) and fix the embedding vectors during
training. The model parameters are optimized us-
ing the Adam (Kingma and Ba, 2014) optimizer.
All of our models are implemented in Tensorflow. †

†The implementation of our model can be cound at
https://github.com/Los-Phoenix/NFETC-FCLC.

As NFETC and NFETChier are our backbone mod-
els, we follow the hyper-parameters of the back-
bone except for our introduced hyper-parameters
β and e1. The detailed hyper-parameter settings
on the three datasets are shown in Table 2, we also
report hyper-parameter impact curves in Fig. 3.

3.5 Results and Analysis

Main Result Table 3 shows the results of our
proposed approach (FCLC) and several compet-
itive FET systems. We highlight the statistically
significant best scores of each metric in bold. Ac-
cording to the experimental results, we make two
main observations:

(1) The performances of our proposed model sur-
pass the backbone NFETC model by a remarkable
large margin (improving Micro F1 by 2.1%, 3.8%,
and 7.8% separately), demonstrating the benefits of
the proposed two-phase FCLC module. The rela-
tive performance improvements are consistent with
or without the hierarchy loss (compared FCLC and
FCLChier to the corresponding baselines).

(2) Compared to other noisy learning methods
such as CLSC, NFETC-AR, and VAT, our model
still achieves considerable improvements under
most metrics when using the same backbone and
very similar hyper-parameter settings. For exam-
ple, compared to NFETC-AR, our model improves
Micro-F1 by 1.25% to 6.38% on three datasets. It
indicates that, by utilizing both the feature space
representations and the global and local statistical
information, the model can reduce the impact of
noisy labels more effectively.

Ablation Study To study the detail of our mod-
els, we explore the performances of three main
model variants, shown in the last several rows of
Table 3. We find that the cluster quality τk, the loss
correction module and the feature cluster process
are all critical to model performances in some sit-
uations. Specifically, as shown in FCLC (without
cluster), feature clustering has minor impacts on
Wiki and Ontonotes. This is probably because the
noisy distribution on these two datasets is relatively
simple and the global confusion matrix is sufficient.
Moreover, we observe that the re-initialization be-
fore Step 3 has a great impact on all metrics. Star-
ing Step 3 with a fresh re-initialized FET model
degrades the accuracy by 3.2% on Ontonotes. It
denotes that the learner trained in the first phase is
beneficial for the noisy robust learning process, by
providing optimal parameters initialization.
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Model Wiki OntoNotes BBN
Strict Acc Macro F1 Micro F1 Strict Acc Macro F1 Micro F1 Strict Acc Macro F1 Micro F1

AFET(2016a) 53.3 69.3 66.4 55.3 71.2 64.6 68.3 74.4 74.7
Attentive(2016) 59.7 80.0 75.4 51.7 71.0 64.91 48.4 73.2 72.4
NFETC(2018) 56.2±1.0 77.2±0.9 74.3±1.1 54.8±0.4 71.8±0.4 65.0±0.4 73.8±0.6 78.4±0.6 78.9±0.6

w/ hier 68.9±0.6 81.9±0.7 79.0±0.7 60.2±0.2 76.4±0.1 70.2±0.2 73.9±1.2 78.8±1.2 79.4±1.1
CLSC(2019) - - - 59.6±0.3 75.5±0.4 69.3±0.4 74.7±0.3 80.7±0.2 80.5±0.2

w/ hier - - - 62.8±0.3 77.8±0.3 72.0±0.4 73.0±0.3 79.8±0.4 79.5±0.3
NFETC-AR(2020) 58.1±1.1 79.0±0.4 76.1±0.4 62.8±0.4 77.8±0.4 71.8±0.5 76.7±0.2 81.4±0.3 81.5±0.3

w/ hier 70.1±0.9 83.2±0.7 80.1±0.6 64.0±0.3 78.8±0.3 73.0±0.3 74.9±0.6 80.4±0.6 80.3±0.6
NFETC-VAT(2020) - - - 63.8 78.7 73.0 76.7 80.7 80.9
CLSC-VAT(2020) - - - 63.9 78.6 73.1 76.9 81.2 81.4
ML-L2R(2020) 69.1 82.6 80.8 58.7 73.0 68.1 75.2 79.7 80.5
Box(2021) - 81.6 77.0 - 77.3 70.9 - 78.7 78.0
FCLC 58.0±1.7 77.8±0.8 76.2±0.8 62.7±1.1 77.5±0.7 71.4±0.7 82.0±0.8 86.2±0.7 86.7±0.7
FCLChier 71.3±1.1 82.2±0.7 81.1±0.6 65.3±0.2 79.6±0.3 74.0±0.3 79.0±0.5 84.2±0.5 84.8±0.5
w/o τk 70.9±1.6 81.8±1.0 80.7±1.1 64.6±0.2 78.8±0.2 73.1±0.3 81.6±0.4 85.9±0.4 86.5±0.4
w/o loss correction 70.4±1.4 81.6±1.0 80.5±0.9 64.2±0.3 78.4±0.3 72.6±0.5 76.5±0.5 81.0±0.4 81.2±0.4
w/o cluster 71.3±0.4 82.0±0.6 80.9±0.5 64.6±0.3 79.2±0.3 73.4±0.2 79.2±0.6 83.2±0.5 83.7±0.6
w/ reinit 69.7±2.4 81.2±1.2 80.1±1.3 62.4±0.3 77.8±0.7 71.7±0.7 79.9±0.9 84.2±0.9 84.6±0.6

Table 3: Performance results on three benchmark datasets.
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Figure 3: Performance change with respect to β and e1
on the Ontonotes (sub-figure a, c) and BBN (sub-figure
b, d) dataset. The horizontal lines hereinafter denotes
for previous SOTA performances and our reported per-
formances.

Sensitivity of the introduced hyper-parameters
Using the same setting for model training, Fig. 3
analyses the sensitivity of FCLC to the introduced
hyper-parameters: the FCLC objective weight β,
the Step-1 training epochs e1 . Fig. 3(a, b) shows
the performance trend on the Ontonotes and BBN
datasets when changing β. While selecting a proper
ratio between loss-correction loss and the original
loss is important, the performance near optimum
β is stable and steadily outperforms the baseline.
Fig. 3(c, d) analyses the sensitivity with respect
to e1. the Micro-F1 improves as e1 increases but
stops improving and become unstable when e1 is
large enough, since the model starts to overfit noise.
It is also reasonable that the optimal range of β and

e1 in BBN and Ontonotes are different as they have
different training set sizes and different distance
supervision noise distribution.
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Figure 4: Performance curves with different trusted
instance set Dt sizes on three datasets.

Will cluster number affect performance? We
investigate how much the FCLC model benefits
from different values of feature cluster number k.
Fig. 5 demonstrates that under a reasonable feature
cluster range (near |T |), the model can achieve
competitive and similar performances.

How many trusted instances does the model
need? We examine the robustness of the model to
the amount of clean data by comparing the perfor-
mances with 5% to 100% trusted instances. Refer
to Fig. 4, we observe that due to the differences
of the training set, our model achieves comparable
accuracy with 30%, 40%, and 70% Dt samples on

2002



-10 -5 0 5 10 15 20 25 30
(a) Varying # cluster on Ontonotes

73.00

73.25

73.50

73.75

74.00

74.25

74.50
M

icr
o-

F1
 (%

)
Ablation
Reported Best
Previous SOTA

-10 5 20 35 50 65
(b) Varying # cluster on BBN

82

83

84

85

86

87

M
icr

o-
F1

 (%
)

Ablation
Reported Best
Previous SOTA

Figure 5: Performance curves under different feature-
cluster numbers k on the Ontonotes (a) and BBN (b),
#∆cluster represents k − |T |.

Wiki, Ontonotes, and BBN separately. With only a
very small size of trusted instances, e.g. 20% BBN
trusted set, or 128 samples, the model begins to
improve significantly.

What if we did not have any trusted instances?
Although a small number of clean samples is al-
ways practical to obtain or relabel with an expert,
we push the limit to no trusted instances at all.
What performance can our model achieve in such a
situation? We performed the "no clean training set"
experiment to test the robustness of our model. In
Table 4, FCLC (w/o Dt) indicates for the variant
that the trusted instances are not used for phase 2
training but only in feature clustering and confusion
matrix calculation. In that situation, our approach
still has similar performances with previous SOTA
models on most metrics‡.

FCLC (w/ pl) variant means that, during the clus-
tering process, instead of using the trusted instance
set Dt split from the training set, we introduce a
simple and classic pseudo labeling method (Lee
et al., 2013) to generate the labels needed by clus-
tering and training. We find that compared to the
baseline method, FCLC with pseudo labeling still
achieves much better performances.

It is proved by results in Table 4 that FCLC does
not rely on a clean training subset, thus having a
wide range of applications.

Models
Wiki Ontonotes

Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1
Backbone 68.9 81.9 79.0 60.2 76.4 70.2

NFETC-AR 70.1 83.2 80.1 64.0 78.8 73.0
FCLC 71.3 82.2 81.1 65.3 79.6 74.0

w/o Dt in phase 2 70.0 81.3 80.2 64.6 79.0 73.3
w/o Dt & w/ pl 71.3 82.1 81.0 64.2 78.7 72.9

Table 4: The model performances with no trusted in-
stances on phase 2 (w/o Dt) or on the whole training
process (w/ pl).

‡It is worth pointing out that it means our model is trained
with fewer instances than previous SOTA, since Dt is a part
from the training set they use.

Visualization of the representations We ana-
lyze the role of FCLC module by visualizing the
feature vectors.

Fig. 6 illustrates samples in a cluster (circled
in all 4 sub-figures). From Fig. 6(a), we observe
that the backbone model fails to distinguish some
samples of class A (/ORGANIZATION/GOVERN-
MENT, red) and class B (/GPE/COUNTRY, blue),
due to noisy labels. Fig. 6(b) shows that our model
learns to correct these instances. With FCLC
the classifier is corrected to predict the right la-
bel. Meanwhile, in feature space, the boundary be-
tween these samples and the confusing class is also
clearer, which means FCLC also helps to refine
feature extraction with loss correction. Fig. 6(e)
shows the row of ’/GPE/COUNTRY’. Managing
to notice the confusion from ’/GPE/COUNTRY’ to
’/ORGANIZATION/GOVERNMENT’ enables our
model to perform the appropriate correction. Due
to this, FCLC are resistant to the noisy labels.

Quantitative Results of Confirmation Bias To
further verify our claim that our model can alle-
viate the confirmation bias in the noisy FET task,
we analyze the prediction confidence on test set
samples, as shown in Fig. 7. The average confi-
dence of correct and wrong test samples is calcu-
lated after each training epoch. The results show
that, on the Wiki dataset, after phase one the wrong
sample average confidence is 0.700 but the back-
bone model reached 0.833 at the end of the training
(with early stopping). Also, after phase two FCLC
improves the correct sample confidence from back-
bone’s 0.939 to 0.950 on Wiki.

4 Related Work

4.1 Noisy Learning

The usage of datasets collected with distant supervi-
sion often results in so-called noisy labels. Several
studies have investigated deep learning approaches
with noise. Existing noisy learning methods in-
clude designing robust loss functions (Wang et al.,
2019), designing robust architectures by adding
noise adaptation layers (Chen and Gupta, 2015;
Goldberger and Ben-Reuven, 2017), selecting sam-
ples (Onoe and Durrett, 2019b), and adding noise-
robust regularization (Shi et al., 2020). Among
them, Patrini et al. (2017) and Hendrycks et al.
(2018) proposed forward loss correction. It avoided
explicit relabeling and matrix inversion. These
noisy learning methods are mostly restricted to the
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(a) (b)

(c) (d)

(e)

Figure 6: (a, b): the feature representations of backbone
and FCLC model on BBN test set; (c, d): clusters
denoted by colors according to samples in (a, b); (e):
the row of ’/GPE/COUNTRY’ in the circled cluster’s
confusion matrix.

Figure 7: Average prediction confidence over negative
predicted samples on three datasets.

noise that is conditionally independent of the data
features (Frénay and Verleysen, 2014). However,
in real-world applications such as FET, noise distri-
butions are more complex and instance-dependent,
requiring more powerful noisy learning methods.

4.2 Fine-Grained Entity Typing

FET is studied based on the distant supervision
training data (Mintz et al., 2009; Ling and Weld,
2012). Various features (Yogatama et al., 2015;
Xu and Barbosa, 2018), network structures (Dong
et al., 2015; Shimaoka et al., 2016), and feature
space (Ali et al., 2021; Onoe et al., 2021)are ex-
plored to refine the mention and type representa-
tion. Label inter-dependency (Lin and Ji, 2019)
and type hierarchy (Chen et al., 2020) are often
used, added by relations among instances and la-
bels (Ali et al., 2020; Li et al., 2021; Liu et al.,
2021). Label noise is the main problem brought
by distance supervision. Besides common noisy
learning methods discussed in Sec. 4.1 (Onoe and
Durrett, 2019b; Shi et al., 2020; Wu et al., 2019),
FET-specific noise combat methods are proposed.
Ren et al. (2016a,b) utilized partial-label embed-
ding. Xu and Barbosa (2018) modified hierarchical
loss to cope with overly-specific noise. Zhang et al.
(2020) automatically generated pseudo-truth label
distribution for each sample. Additional resource
also help to improve the performance. The resource
include external knowledge base (Xin et al., 2018;
Dai et al., 2019), and with BERT-like pipeline (Pa-
tel and Ferraro, 2020; Ding et al., 2021). Choi et al.
(2018) proposed a way to utilize more distance
supervision and crowd source, followed by Onoe
and Durrett (2019b). Apart from the above, (Chen
et al., 2019) and (Ali et al., 2020) are the closest
to our proposed method. They both select some
instances by feature distance to modify labels or
refine mention representation for noisy instances.
However, their refinement is still explicit and iso-
lated to each instance. Thus the quality relies on the
instances they retrieve for label propagation/men-
tion reference. Different from these studies, we do
not rely on any of these external resources and aim
to impose label noise with only the original data
without explicit sieving or label changing.

5 Conclusion

In this work, in order to tackle the instance-
dependent label noise in fine-grained entity typ-
ing tasks, we present a neural FET noisy learning
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framework that utilizes the feature space informa-
tion and global information jointly. Experimental
results on three publicly available datasets demon-
strate that our proposed model achieves the best per-
formance compared with competitive existing FET
systems. Furthermore, based on extensive auxiliary
experiments, we study the impact of our proposed
noisy learning framework in-depth with qualitative
and quantitative analysis. In the future, the pro-
posed approach can motivate the need for further
understanding of the relationships between dataset
noise distribution estimation and the instance fea-
tures. More work can be done towards this direc-
tion. In addition, performances of the proposed
framework under different backbone models can
be dug to validate the flexibility of the framework.
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