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Abstract

Deep learning (DL) techniques involving fine-
tuning large numbers of model parameters have
delivered impressive performance on the task
of discriminating between language produced
by cognitively healthy individuals, and those
with Alzheimer’s disease (AD). However, ques-
tions remain about their ability to generalize
beyond the small reference sets that are pub-
licly available for research. As an alternative
to fitting model parameters directly, we pro-
pose a novel method by which a Transformer
DL model (GPT-2) pre-trained on general En-
glish text is paired with an artificially degraded
version of itself (GPT-D), to compute the ratio
between these two models’ perplexities on lan-
guage from cognitively healthy and impaired in-
dividuals. This technique approaches state-of-
the-art performance on text data from a widely
used "Cookie Theft" picture description task,
and unlike established alternatives also gener-
alizes well to spontaneous conversations. Fur-
thermore, GPT-D generates text with character-
istics known to be associated with AD, demon-
strating the induction of dementia-related lin-
guistic anomalies. Our study is a step toward
better understanding of the relationships be-
tween the inner workings of generative neural
language models, the language that they pro-
duce, and the deleterious effects of dementia
on human speech and language characteristics.

1 Introduction

Alzheimer’s disease (AD) dementia affects every
aspect of cognition, including language use. Over
50 million people are currently diagnosed with AD
dementia, and this number is expected to triple by
2050 (Organization et al., 2017; Patterson, 2018;
Prince et al., 2016). Furthermore, over half of the
individuals living with dementia are undiagnosed
(Lang et al., 2017). While AD has no known cure,
timely diagnosis can prevent or alleviate adverse

outcomes ranging from anxiety over unexplained
symptoms to family discord and catastrophic events
(Stokes et al., 2015; Boise et al., 1999; Bond et al.,
2005). However, diagnosis of AD dementia is
time-consuming and challenging for patients and
physicians alike, and currently relies on patient and
caregiver reports, extensive neuropsychological ex-
aminations, and invasive imaging and diagnostic
procedures (Patterson, 2018). Automated analysis
of spoken language can potentially provide accu-
rate, easy-to-use, safe and cost-effective tools for
monitoring AD-related cognitive markers. In par-
ticular, studies have demonstrated that supervised
machine learning methods can learn to differenti-
ate accurately between patients with dementia and
healthy controls (Fraser et al., 2016; Orimaye et al.,
2017), with particularly strong performance from
recent deep learning (DL) models (Balagopalan
et al., 2020; Roshanzamir et al., 2021). However,
the large number of parameters employed in DL
presents a danger of overfitting to the small datasets
concerned, and hinders interpretability of model
predictions - both critical concerns for clinical artifi-
cial intelligence applications (Graham et al., 2020).

As an alternative to fitting model parameters di-
rectly, we propose a novel method by which a pre-
trained Transformer (Vaswani et al., 2017) model,
GPT-2 (Radford et al., 2019) is paired with an arti-
ficially degraded version of itself (GPT-D), to com-
pute the ratio of model perplexities on language
from cognitively healthy and impaired individuals.
We anticipate that semantic information lost with
dementia progression may be localized to particu-
lar layers of a neural language model, and that one
can simulate this information loss by systematically
modifying parameters in these layers. Specifically,
we hypothesize that impairing certain layers of a
DL model can result in linguistic deficits that are
also observed in dementia. We further hypothesize
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that unlike prior work fitting model parameters to
labeled “Cooke Theft” transcripts, this approach
will detect task-agnostic linguistic anomalies, per-
mitting evaluation of language from casual conver-
sations. We evaluate these hypotheses by targeting
individual layers for induction of dementia-related
linguistic anomalies, resulting in a degraded model
– GPT-D. We then assess the ability of a paired per-
plexity approach combining GPT-2 with GPT-D
to identify transcripts from participants with de-
mentia. In addition, we assess generalization per-
formance, and consider the extent to which the
best-performing degraded model reflects linguis-
tic anomalies known to occur in AD dementia:
usage of higher frequency words, and repetitive-
ness. The contributions of this work can be summa-
rized as follows: a) we develop a novel method for
automated detection of dementia-related linguis-
tic anomalies, involving deliberate degradation of
a pre-trained Transformer model; b) this method
exhibits state-of-the-art (SOTA) within-set perfor-
mance for models trained on text alone, and is dis-
tinguished by its ability to generalize from cogni-
tive tasks to conversational data; c) the degradation
process induces linguistic anomalies observed in
dementia in language generated by GPT-D1.

2 Background

Building on a rich body of evidence that machine
learning methods can learn to distinguish between
language from healthy controls and dementia pa-
tients (for a review, see Lyu (2018); Petti et al.
(2020)), recent work leveraging pre-trained Trans-
former models has demonstrated improvements in
performance over prior approaches. Balagopalan
et al. (2020) fine-tuned the BERT (Devlin et al.,
2019) model on the training set of the AD Recogni-
tion through Spontaneous Speech (ADReSS) Chal-
lenge (Luz et al., 2020), which was developed, in
part, to address the lack of standardized train/test
splits and subset definitions in prior work using
DementiaBank (Becker et al., 1994) (DB). Bal-
agopalan et al. (2020) report an accuracy of 83.3%
on the test set, an improvement over machine learn-
ing models with expert-defined features. Perfor-
mance can also be further boosted by introducing
more data from the same picture description task
(Guo et al., 2021). These findings suggest a promis-
ing direction, as models can be developed without

1Our code is available at https://github.com/
LinguisticAnomalies/hammer-nets

extensive feature engineering. However, additional
task-specific data are not always available. DL
models with millions of parameters are vulnerable
to overfitting with small data sets, which may be
difficult to detect as they are hard to interpret.

However, some DL models can be distilled into a
single interpretable feature: language model (LM)
perplexity (PPL). PPL is a measurement of how
well a language sample fits a trained LM. Intu-
itively, a model trained on language from cogni-
tively healthy participants should be “surprised” by
language from participants with dementia, and the
opposite should also be true. Accordingly, the dif-
ference between the paired perplexities from “cog-
nitively healthy” and “dementia” language models
produces SOTA results on the task of identifying
transcripts from participants with dementia (Fritsch
et al., 2019; Cohen and Pakhomov, 2020), effec-
tively condensing neural network parameters to a
single diagnostically useful feature. Contemporary
deep LMs such as GPT-2 are already trained on
large amounts of text, that has presumably been
authored predominantly by cognitively healthy in-
dividuals. The difficulty with leveraging these mod-
els within the paired perplexity paradigm arises
from the lack of a correspondingly large set of text
from participants with dementia. We negotiate this
difficulty by deliberately degrading a Transformer
model to limit its semantic processing capabilities,
obviating the need for large amounts of dementia-
specific training data. We show that the resulting
models can effectively identify transcripts from par-
ticipants with dementia, generalize across language
samples and tasks, and generate text with linguistic
characteristics of this condition.

3 Methods

3.1 Data

We used three publicly available datasets2: DB,
ADReSS, and the Carolinas Conversation Collec-
tion (CCC) (Pope and Davis, 2011). Dataset char-
acteristics are provided in Table 1. DB is a publicly
available compendium of manually transcribed au-
dio recordings of neuropsychological tests admin-
istered to healthy participants and patients with
dementia. A detailed description is available in
Becker et al. (1994). In brief, the tests include a

2While the data used in this paper are publicly available,
we are not able to redistribute any of these data as per Data
Use agreement with Dementia Bank and the Carolinas Con-
versation Collection.
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Dataset Dementia Healthy Controls
N

participants
MMSE

Mean (SD)
Transcript

length
Mean (SD)

N
participants

MMSE
Mean (SD)

Transcript
length

Mean (SD)

ADReSS
train 54 17.1 (5.5) 104 (63) 54 29.1 (1.9) 114 (49)
test 24 19.5 (5.4) 95 (47) 24 28.8 (1.5) 120 (72)
all 78 17.8 (5.5) 101 (58) 78 29 (1.2) 116 (56)

DB 169 20.2 (4.6) 959 (534) 99 29.1 (1.1) 1085 (556)
CCC 234 NA 1213 (943) 48 NA 714 (308)

Table 1: Basic characteristics of datasets

picture description task from the Boston Diagnos-
tic Aphasia Examination (Goodglass and Kaplan,
1983), a widely-used diagnostic test for language
abnormality detection. In this task, the participants
are presented with a “Cookie Theft” picture stimu-
lus (see Figure 4 in Appendix), and are asked to de-
scribe everything they see occurring in the picture.
In other words, DB data are from tasks that were
explicitly designed to detect language abnormali-
ties in dementia patients. We restricted the original
set of 194 participants with any AD diagnosis only
to those that were assessed as having probable AD,
resulting in a set of 169 patients and 99 controls.
The ADReSS set is a subset of DB, which the con-
trols and dementia participants were matched age
and gender, resulting in a balanced dataset consist-
ing of a total of 156 samples (78 with dementia
and 78 controls) split into training and testing por-
tions. Unlike the two preceding datasets derived
from picture description tasks, CCC is a collec-
tion of 646 transcribed recordings of interviews
of 48 elderly cognitively normal individuals with
non-dementia related chronic conditions, and 234
individuals with a diagnosis of dementia. Interview
topics vary considerably, and include discussions
of the participant’s health.

Additionally, we used a set of six synthetic
“Cookie Theft” picture description narratives cre-
ated by Bird et al. (2000) to study the impact of
semantic dementia on verb and noun use in pic-
ture description tasks. The transcripts were created
to manipulate lexical frequency (which is also rel-
evant in AD dementia, where words with higher
lexical frequency tend to feature prominently (Al-
mor et al., 1999)) by first compiling a composite
baseline narrative from samples by healthy sub-
jects, and then removing and/or replacing nouns
and verbs in that baseline with words of higher
lexical frequency (e.g., “mother” vs. “woman” vs.
“she”). Lexical frequency was calculated using the
Celex Lexical Database (LDC96L14) and words

were aggregated into groups based on four log fre-
quency bands (0.5 - 1.0, 1.0 - 1.5, 1.5 - 2.0, 2.5
- 3.0: e.g., words in the 0.5 - 1.0 band occur in
Celex more than 10 times per million). We used
these synthetic data to help with interpretation of
the effects resulting from artificially impairing the
GPT-2 model.

We performed basic pre-processing of transcripts
in each dataset by which we removed speech ar-
tifact descriptions and converted non-ASCII char-
acters to plain text. We also excluded portions
of transcripts that represented speech that did not
belong to the participant.

3.2 Modeling and Evaluation

We evaluated models for classification performance
using the standard ADDReSS train/test splits. We
then performed cross-validation of GPT-D models
to assess the stability of the best-performing con-
figurations across folds. For generalization perfor-
mance, we evaluated how well models trained on
one corpus performed on others. We also assessed
differences in text generation between GPT-2 and
GPT-D, by estimating repetitiveness and lexical
frequency, as well as through salience-based visu-
alization.

3.2.1 Artificial Impairment: Locations
We experimented with impairing the GPT-2 (small)
model in two locations as illustrated in Figure 1
with various portions. We found that impairing
50% of values in the corresponding location result-
ing in generally better performance, among 25%,
50%, 75% and 100% impairment. The embedding
layer (see (1) in Figure 1) is a 50,257×768 matrix
where each row represents a token in the model’s
vocabulary. The embedding layer was impaired
by randomly masking 50% of the rows of of the
embedding matrix. The self-attention mechanism
(denoted (2) in Figure 1) was impaired by masking
the first 50% of columns in the Value matrix of
the concatenated Query-Key-Value matrices. We
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Figure 1: Impairment locations within the GPT-2 (small) model.

found that masking random columns resulted in
worse performance in preliminary experiments.

The self-attention mechanism multiplies vectors
representing an input sequence by three identically-
sized matrices, namely Query (Q), Key (K) and
Value (V) each with dimension (d) of 768×768.
Q generates a representation of the current token
which is compared with token representations de-
rived from K, to calculate each token’s influence
on the contextual representation of the current one.
Multiplying by V generates a semantic representa-
tion of each token, which is added to the outgoing
representation of the current token in accordance
with this influence. The attention weights are cal-
culated by Equation 1, and the parameters of the
matrices are updated during the training process.

attention(Q,K, V ) = softmax(
QKT

√
d

V ) (1)

The GPT-2 model’s attention mechanism in each of
the 12 decoder layers contains 12 attention heads
that are represented as vectors of 64 parameters.
We impaired 50% of those parameters of V in var-
ious combinations of attention heads in each de-
coder layer by masking them as zeroes. We only
did this in V matrices, as their parameters directly
determine the content of the vectors that are passed
on to the subsequent feed-forward layer, while the
Q and K matrices determine how this content is
weighted when generating the representations to be
propagated as weighted sums of vectors that have
been transformed by the Value matrix.

3.2.2 Artificial Impairment: Patterns
We also experimented with three ways of introduc-
ing artificial impairment into the attention mecha-
nism in single and multiple decoder layers: individ-
ual, cumulative, and combination. The individual
approach was to simply impair all 12 layers one
at a time. The cumulative approach consisted of
impairing decoder layers sequentially starting with
the bottom decoder layer (layer 0) and adding im-
pairment to layers above it one at a time up to

layer 11, resulting in total of 12 combinations of
impairments. The combination approach consisted
of impairing all possible combinations of layers,
one combination at a time, resulting in 4096 com-
binations. The degraded models were subsequently
used in combination with the original GPT-2 model
to calculate the difference and ratio of PPLs be-
tween these two models on each input transcript.

3.3 Interpretation of Neural Model Behavior

Classification Performance: For the paired per-
plexity approach, we estimated the ratio of model
PPLs ( PPLGPT-2

PPLGPT-D
) for each transcript. These PPLs

were averaged for participants with multiple tran-
scripts. All validation methods commenced with
calculating the area under the receiver-operator
characteristic (ROC) curve (AUC). From this, ac-
curacy (ACC) was determined at equal error rate
(EER), a threshold where the false acceptance rate
and false rejection rate from an ROC curves is
equal. We also calculated Pearson correlation be-
tween the ratio in perplexities of the GPT-2 and
GPT-D models and the MMSE scores where avail-
able (CORR).We used the original fixed single split
between training and testing data provided by the
creators of the dataset to compare our results to
those published by others on ADReSS.

Cross-validation Performance: For all datasets
(including ADReSS), we performed standard cross-
validation by which we split each dataset into dis-
joint folds and first determined which combination
of GPT-D attention layers results in best perfor-
mance on the training portion of each fold and then
tested that combination on the test portion of the
fold averaging the AUC, ACC and CORR values
(if available) across the folds. We selected 5-fold
cross-validation due to the relatively small size of
the ADReSS, DB, and CCC datasets. To ensure
reproducibility across runs, data folds for cross-
validation were extracted using the KFold method
from the scikit-learn library (Pedregosa et al., 2011)
with shuffling and a fixed random seed.

Generalization Performance: We tested gen-
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eralizability of the paired perplexity approach by
evaluating its performance across datasets. We first
determined the best-performing pattern of impair-
ment based on the highest AUC obtained on each
dataset, and then applied the model impaired with
that pattern to the remaining datasets.

Baseline Models: We compared our model per-
formance on transcript classification with the pre-
vious text-only SOTA (Balagopalan et al., 2020),
which was obtained with a 12-layer BERT model
fine-tuned on the ADReSS training set, and evalu-
ated on the test set. To evaluate the generalization
performance, we followed this work’s hyperparam-
eter choices and fine-tuned BERT and DistilBERT
(Sanh et al., 2019)3, a distilled BERT base model
that is compact and more efficient. We fine-tuned
these models on the entire ADReSS, DB and CCC
datasets separately, then evaluate the three resulting
models on every other set.

Language Generation: To prompt the GPT-2
and GPT-D models to generate text we utilized
Bird et al.’s synthetic “Cookie Theft” picture de-
scription narrative that represents a composite of
narratives produced by healthy controls. Table 5 (in
Appendix) illustrates the text generated by GPT-2
and GPT-D in response to prompt sentences taken
from the synthetic narrative. Both GPT-2 and GPT-
D models were induced to generate at least 20
additional tokens with a beam search (Wiseman
and Rush, 2016) that keeps the top n hypotheses
(n = 5 in this case) at each time step and eventually
returns the sequence of hypotheses that achieved
the highest probability after reaching the end-of-
sequence token. Beam search also works well when
the length of output is not predictable, which fits
the nature of the language tasks represented by
the corpora we tested. However, one of the chal-
lenges of using beam search for text generation is
that it tends to generate repeated words. We added
a penalty for generating repetitive unigrams and
implemented the top-p algorithm (Welleck et al.,
2019) to keep the set of potential words as small as
possible while the cumulative probability of this set
is greater than the specific probability p (p = 0.9
in our case). The penalty was applied equally to
GPT-2 and GPT-D to avoid potentially biasing one
of these models to produce more repetitions. Af-
ter the models generated five best predictions for
each prompt, we chose the first non-empty pair of

3Available on Huggingface https://huggingface.
co/transformers/index.html

outputs from both the GPT-2 and GPT-D models
as the final result.

Lexical frequency and repetitiveness: Previ-
ous work (Cohen and Pakhomov, 2020) suggests
that neural language models are sensitive to lex-
ical frequency. We investigated whether GPT-D
generates content of higher lexical frequency than
the GPT-2 model. To compute lexical frequency,
we split each generated output into tokens with the
help of the NLTK4. We did not stem the tokens to
avoid increasing lexical frequency by artificially
merging different tokens with the same stem. In
addition to the stopwords provided by NLTK, we
treated tokens with following part-of-speech tags
a) PRP (personal pronoun), b) PRP$ (possessive
pronoun), c) WP$ (possessive wh-pronoun), and
d) EX (existential there) as stopwrods. We also
added the n´ t token and tokens starting with ´ to
the list of stopwords. Log lexical frequency of each
qualified generated token was calculated based on
occurrence in the SUBTLEXus corpus (Brysbaert
and New, 2009). Tokens that do not appear in
SUBTLEXus, were removed as out-of-vocabulary
(OOV) items. To asses the degree of repetition
present in the generated text, we calculated the
type-to-token ratio (TTR) as the number of word
types divided by the number of word instances.

Salience Visualization: We used the
gradient×input saliency proposed in Denil
et al. (2014), as implemented with the ecco5

Python package for visualization. Saliency is
defined as || ▽xi fc(x1:n) · xi||2, which is the
L2 normalized back-propagated gradient with
respect to a) the dot product of the embedding
vector of all previous input tokens (x1:n), and b)
the model output of token xi (fc(x1:n)), where c
is the predicted token at time-step i. A previous
study (Serrano and Smith, 2019) found that raw
attention weights were not interpretable for any
intermediate representation of a language model.
Instead, Bastings and Filippova (2020) argued that
saliency is the preferred method for interpretability
as it takes the entire input into account and reveals
the relevance of each input token to the next
predicted token in the sequence.

To make the visualizations comparable for the
two models, we repeatedly prompted both mod-
els with the same input until both models gener-
ated the same token as the prediction. It is worth

4https://www.nltk.org/
5https://github.com/jalammar/ecco
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Figure 2: Effects of artificial impairment on model perplexity in synthetic picture description narratives. Higher
values on the x axis indicate transcripts simulating more advanced disease.

Dataset Combination Impairment Pattern Cumulative Impairment Pattern
AUC (SD) ACC (SD) r with MMSE (SD) AUC (SD) ACC (SD) r with MMSE (SD)

ADReSS 0.80 (0.06) 0.71 (0.07) -0.52 (0.08) 0.79 (0.02) 0.68 (0.03) -0.51 (0.05)
DB 0.81 (0.07) 0.76 (0.04) -0.45 (0.06) 0.83 (0.02) 0.73 (0.02) -0.41 (0.14)
CCC 0.77 (0.04) 0.71 (0.04) – 0.72 (0.04) 0.64 (0.09) –

Table 2: Five-fold cross-validation results of all possible combination of impairment pattern (masking 50% of value
matrix as zeroes) for cumulative and combination methods on ADReSS, DB, and CCC.

noting that ecco for visualization supports lim-
ited text generation arguments compared to the
transformers package, which we used for lan-
guage generation task. Consequently, we only used
the top-p algorithm currently supported by ecco
for our visualizations.

4 Results

Impairment Location: The contrast in the ef-
fects of artificial impairment on the embedding
and attention layers (locations 1 and 2 in Figure 1,
respectively) is illustrated in Figure 2. Impair-
ing embeddings results in a distribution of per-
plexity values over the range of impairment in
the synthetic narratives very similar to that of
the GPT-2 model. Impairing attention, however,
results in a sharp decrease in PPL on the more
perturbed narratives (those narratives simulating
more impairment), which yields a monotonically
increasing step-like function over PPLGPT-2

PPLGPT-D
that

lends itself well to thresholding for categoriza-
tion. These results were confirmed by testing on
available corpora the discriminative ability of the
paired perplexity approach by artificially impair-
ing only the embedding layer, which resulted in
near-random AUCs (close to 0.5 - data not shown).
Consequently, in subsequent results we will show
attention-based models only.

Classification Performance: For comparison
with previous work using the ADReSS dataset, the

best training set performance was obtained by im-
pairing 50% of each attention head in layers 0-5,
6, and 8-9. This pattern achieved an AUC of 0.88
(ACC = 0.75, CORR = -0.55) on the test split. The
cumulative impairment method performed slightly
better. Impairing 50% of each attention head in the
first 9 layers resulted in best performance on the
training set, and AUC of 0.89 (ACC = 0.85, CORR
= -0.64) on the test split. We note that this accuracy
exceeds the average result reported by Balagopalan
et al. (2020), and approaches the performance of
their best run.

Cross Validation: The results of within-set
cross-validation are summarized in Table 2. Both
combination and cumulative methods had small
standard deviations (∼ 0.1) with over or near 0.7
mean AUC on all sets. Estimates from the paired
perplexity approach for both methods were neg-
atively correlated with MMSE on the ADReSS (-
0.52, -0.51) and DB (-0.45, -0.41) sets, respectively.
The best performance obtained with the individual
approach resulted in AUC of 0.66 (ACC: 0.64) with
impairment of layer 8 on the DB dataset; AUC of
0.70 (ACC: 0.66) with impairment of layer 8 on the
ADReSS dataset; and AUC of 0.71 (ACC: 0.63)
with impairment in layer 7 on CCC.

Generalization: The results of generalization
evaluation are shown in Table 3. Both cumulative
and combination methods yielded similar perfor-
mance on CCC, where both AUC and ACC were
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Testing dataset
Training method ADReSS DB CCC
(Best pattern:AUC) AUC/ACC AUC/ACC AUC/ACC
Cumulative Impairment Pattern
ADReSS (0-8:0.80) – – 0.77/0.72
DB (0-4:0.82) – – 0.69/0.68
CCC (0-2:0.72) 0.70/0.63 0.74/0.63 –
Combination Impairment Pattern
ADReSS
(0-6,8:0.80)

– – 0.76/0.71

DB (0-6,8:0.80) – – 0.76/0.71
CCC
(1-3,5,7,9-11:0.79)

0.69/0.61 0.72/0.67 –

Fine-tuned BERT
ADReSS – – 0.64/0.63
DB – – 0.67/0.6
CCC 0.71/0.66 0.7/0.65 –
Fine-tuned DistilBERT
ADReSS – – 0.67/0.57
DB – – 0.67/0.6
CCC 0.65/0.62 0.47/0.45 –

Table 3: Generalizability of GPT-2/GPT-D approach
compared to fine-tuning on BERT and DistilBERT. All
evaluation metrics are calculated at EER rate. The best-
performing pattern and its performance are indicated
with parentheses and separated by colon.

close to or exceeded 0.7. In contrast, fine-tuning
BERT and DistilBERT resulted in near-random
classification performance on the corresponding
validation dataset. While fine-tuning BERT on con-
versational discourse samples in CCC and applying
it to the picture descriptions in ADReSS and DB
generalized well as compared to the paired perplex-
ity approach, it did not generalize in the opposite
direction when BERT was fine-tuned on ADReSS
and DB picture descriptions and applied to conver-
sations in CCC.

Language Generation: Table 4 reports mean
lexical frequency estimates for words contained
in the text generated by GPT-2 and GPT-D mod-
els. The GPT-D model was induced by using the
best-performing patterns of impaired layers deter-

mined from cumulative and combination methods
for pattern selection on the available datasets. Both
GPT-2 and GPT-D generate ∼ 1 OOV token on
average for each prompt. In general, the resulting
GPT-D model generated text consisting of words
with higher lexical frequency than words in the text
generated by the GPT-2 model across all datasets
and methods, even though some of the differences
failed to reach statistical significance. All GPT-D
models also generated more repetitions, evident as
lower TTRs .

Dataset
(Pattern)

LF TTR

GPT-2 GPT-D GPT-2 GPT-D
Cumulative
ADReSS (0-8) 9.48 9.82* 72% 50%
DB (0-4) 9.49 9.83* 72% 49%
CCC (0-2) 9.48 9.54 72% 51%
Combination
ADReSS/DB
(0-6,8)

9.5 9.41 72% 55%

CCC
(1-3,5,7,9-11)

9.45 9.92** 73% 64%

Table 4: Mean log lexical frequency (LF) and type-
to-token ratio (TTR) of the generated text. The best-
performing pattern is indicated with parentheses. * in-
dicates p-value < 0.05 and ** indicates p-value < 0.01.
P-values were obtained with two-sided Welch’s t-test

Salience Visualization: Figure 3 shows the
magnitude of the contribution for each token in
the prompt used to initiate text generation to the
model’s prediction of the same token ’the’. The
weight of the contribution of each token is shown as
a percentage that can be interpreted as the amount
of contribution the model derives from it. We
observe in Figure 3 that impairing GPT-2’s at-
tention heads leads to the redistribution of the
model’s contribution to the words in the prompt
when making the prediction of the next word.
For the GPT-2 model, tokens ’boy’, ’climbed’,

Figure 3: An informal illustration of differences in contributions of input tokens to generating the word “The”, for
GPT-2 (top) and GPT-D (bottom) models. Percentages and color represent the degree of contribution.
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and ’cookies’ contributed more when predicting
’the’. However, for the GPT-D model those word
tokens did not clearly stand out as substantially
contributing to the prediction in either of these
examples. Furthermore, tokens corresponding to
function words (e.g., ’on’, ’a’ and ’from’) con-
tributed little to the predictions generated by the
GPT-2 model; however, these tokens contributed
more for predictions generated by GPT-D model.
As evident in the examples in Figure 3, the salience
of the words in the prompt is much more diffuse
when the GPT-D model is making the prediction
- i.e. the model is uncertain with respect to what
it should consider as important. In contrast, for
the GPT-2 model the key elements of the “Cookie
Theft” scenario - ’cookie’, ’three-legged
stool’, ’boy’ - stand out as highly salient. These
observations, although informal and qualitative,
indicate that the impairment of the self-attention
mechanism in GPT-2 results in a “behavior” resem-
bling that observed in all stages of AD dementia as
a result of impaired selective attention that in turn
reduces one’s ability to encode new information
in episodic memory (see Perry et al. (2000) for a
comprehensive review).

5 Discussion

Our key findings are as follows. First, we show
that the paired perplexity approach using the ratio
between the GPT-2 and GPT-D model perplexi-
ties approaches SOTA performance on ADReSS,
leveraging GPT-2’s extensive pre-training without
requiring a comparably large data set from demen-
tia patients. Second, this approach generalizes
from “Cookie Theft” picture description data to ca-
sual conversation, in contrast to BERT/DistilBERT
fine-tuning. Finally, artificial impairment of GPT-
2’s self-attention induces linguistic anomalies ob-
served in dementia.

The best-performing cumulative pattern for the
ADReSS training set resulted in accuracy of 0.85
in the test set, exceeding the best BERT results re-
ported on this test set (x ACC = 0.833 (Balagopalan
et al., 2020)). However, our approach contrasts
with approaches that train or fine-tune language
models using a specific dataset, and test on held-out
components of the same set. While our approach
does require some labeled data through which to
determine the best-performing layers to impair, our
results demonstrate generalization to other datasets
and populations as well as a different type of dis-

course - spontaneous conversations. GPT-D is re-
liably less perplexed by dementia-related linguis-
tic anomalies across all of these sets than GPT-2.
This facilitates broader application of the paired
perplexity approach than was previously possible,
and suggests our approach is more sensitive to task-
agnostic dementia-related linguistic anomalies than
BERT/DistilBERT fine-tuning.

In contrast to impairing embeddings or individ-
ual attention layers, the maximum discriminating
effect was achieved by impairing multiple atten-
tion layers (either combinatorially or cumulatively),
which is consistent with prior observations that
Transformer layers encode different syntactic and
semantic linguistic features in multiple lower and
middle layers (Jo and Myaeng, 2020; Jawahar et al.,
2019; Lin et al., 2019). Thus, impairing a single
layer may not be enough to achieve the full ef-
fect. Since both syntactic and semantic context
is encoded in the Transformer decoder layers we
expected to find different patterns of artificial im-
pairment to be most effective in vastly different
types of discourse represented by the DB and CCC
datasets; however, we were surprised to find that
only impairing the self-attention layers had the de-
sired effect on the results in contrast to impairing
embeddings or feed-forward network components.

The results presented in Table 4 also align with
previously published findings that both neural net-
works trained on language produced by participants
with dementia, and the lexical-retrieval processes
of patients affected by this condition are sensitive
to lexical frequency effects (Cohen and Pakhomov,
2020; Pekkala et al., 2013). Our results suggest that
impairing the self-attention mechanism in a Trans-
former artificial neural network may induce similar
sensitivity to lexical frequency. By impairing the
attention heads in a GPT-2, we observe significant
differences in lexical frequency and TTR character-
istics of the text generated by the GPT-2 and GPT-
D, with the change in TTR ratio indicating that
GPT-D has a greater tendency to produce repeated
words when generating text, just as participants
with dementia are more prone to repeat words in
picture description tasks (Hier et al., 1985).

In other previous work on the DB and the
ADReSS datasets, the authors attempted to predict
individual MMSE scores in addition to discrimi-
nating between cases and controls (Yancheva et al.,
2015; Luz et al., 2020). We could not perform a
comparable analysis in the current study on account
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of focusing on using the paired perplexity measure
as a single threshold to distinguish between cases
and controls, While predicting MMSE is not the
main focus of our study, we did find negative corre-
lations between the paired perplexity measures and
the MMSE scores, providing additional evidence
that artificially impairing the attention mechanism
of the GPT-2 model simulates cognitive effects of
dementia detectable in language.

Our findings are also consistent with previous
work indicating that Transformer models are able to
predict neural responses during language compre-
hension and generalize well across various datasets
and brain imaging modalities (Schrimpf et al.,
2021). Thus, our work is another step in the di-
rection of achieving better understanding of the
relationship between the inner workings of gen-
erative artificial neural language models and the
cognitive processes underlying human language
production. Impairing how contextual informa-
tion is stored in the self-attention mechanism in
silico creates similar deficits to what is observed
in dementia. The next important step is perhaps to
investigate how contextual information encoding is
impaired in vivo in AD dementia.

The encouraging results on the CCC dataset
point to the possibility of developing a tool for
analysing patients’ daily spontaneous conversa-
tions in a task-agnostic fashion. Generalizable
across tasks and domains and easy-to-interpret
language-based instruments for detecting anoma-
lies potentially consistent with dementia can be
most useful in clinical situations where the pa-
tient or family member raise a concern about unex-
plained changes in cognition. A simple to adminis-
ter (or self-administer) language-based instrument
for objective confirmatory testing (either at a single
point in time or over a period of time) would be
helpful to a clinician working in an overburdened
and time-constrained clinical environment (e.g., pri-
mary care) to be able to validate or refute those cog-
nitive concerns with added confidence. It is critical,
however, that the instrument used for confirmatory
testing makes as few assumptions as possible re-
garding the person’s linguistic background or com-
municative style, or the type of discourse used for
analysis (i.e., picture description vs. conversation).

The work presented here has several limitations.
The sizes of the datasets are small compared to
those typically encountered in open domain NLP
tasks. In this paper, we did not focus on mild

cognitive impairment but acknowledge that it is
an important and active area of research that has
shown promise in detecting early signs of dementia
(Roark et al., 2011; Satt et al., 2014; Calzà et al.,
2021). Also, all datasets are in American English,
which could limit the applicability of our models
to dementia-related differences in other forms of
English, and would certainly limit their applica-
bility to other languages. In addition, behavioral
characteristics including language anomalies can
arise as a result of deficits in multiple brain mecha-
nisms and, while they can contribute to a diagno-
sis of a neurodegenrative condition as a screening
tool, they cannot be used in isolation to establish a
definitive diagnosis. While GPT-D resembles lan-
guage behaviors commonly observed in dementia
patients, GPT-2 and GPT-D should not be consid-
ered as accurate and comprehensive representations
of human language and cognition, or as models
that capture features specific to various forms of
neurodegeneration. Lastly, we also notice that the
pre-trained LM is heavily gender-biased, a problem
that we hope ongoing efforts to improve the fair-
ness of AI (e.g. (Sheng et al., 2020)) will address
over time.

6 Conclusion

We developed a novel approach to automated de-
tection of linguistic anomalies in AD, involving
deliberately degrading a pre-trained Transformer,
with SOTA performance on the ADReSS test set,
and generalization to language from conversational
interviews. This, and the detection of dementia-
related linguistic characteristics in text generated
by GPT-D, suggests that our method is sensitive
to task-agnostic linguistic anomalies in dementia,
broadening the scope of application of methods for
automated detection of dementia beyond language
from standardized cognitive tasks.
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Appendix

Figure 4: Cookie Theft picture stimulus.

Bird Transcript
Sentence

GPT-2 Model Output GPT-D Model Output

There are two
children and their
mother in the
kitchen.

One of them is a little
girl, but she’s not very
good at math or science
so I don’t really know
what to do with her.

This is not a child, but
they have no one par-
ent’s daughter or son of
sister to father? brother
family home with par-
ents who can’t let me
know that I am sorry
for my mommy baby
daddy if you’re just
love them so much like
it was good old time
when we were talking
about how many times

The little boy has
climbed up, on a
three legged stool
to get some cookies
from the jar in the
cupboard.

I’m so glad you’re
here, he says as we sit
down at his kitchen
table and watch him
play with one of
our favorite treats:
chocolate chip cookie
doughnuts! Oh my
gosh! I say excitedly
before turning back
around for another
bite that will make me
feel good about what’s
been happening this
whole time...

I don’t know how do
you like it’s what is
so good for kids love
me and they’re all i’m
not sure no one day
of year after years ago
when people say ’I’ve
been there was never
ever again were al-
ways will be back then
next time we got into
my mom said she told
her mother would tell
them about their fa-
vorite thing that came
out at nighttime before
school started saying
You can go home now
or maybe even if your
dad says he’ll give him

Table 5: Text generation examples by GPT-2 (small)
compared to GPT-D created by the cumulative method
of impairing the first 50% attention heads of the first 9
layers.
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