@inproceedings{ansell-etal-2022-composable,
title = "Composable Sparse Fine-Tuning for Cross-Lingual Transfer",
author = "Ansell, Alan and
Ponti, Edoardo and
Korhonen, Anna and
Vuli{\'c}, Ivan",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2022.acl-long.125/",
doi = "10.18653/v1/2022.acl-long.125",
pages = "1778--1796",
abstract = "Fine-tuning the entire set of parameters of a large pretrained model has become the mainstream approach for transfer learning. To increase its efficiency and prevent catastrophic forgetting and interference, techniques like adapters and sparse fine-tuning have been developed. Adapters are modular, as they can be combined to adapt a model towards different facets of knowledge (e.g., dedicated language and/or task adapters). Sparse fine-tuning is expressive, as it controls the behavior of all model components. In this work, we introduce a new fine-tuning method with both these desirable properties. In particular, we learn sparse, real-valued masks based on a simple variant of the Lottery Ticket Hypothesis. Task-specific masks are obtained from annotated data in a source language, and language-specific masks from masked language modeling in a target language. Both these masks can then be composed with the pretrained model. Unlike adapter-based fine-tuning, this method neither increases the number of parameters at inference time nor alters the original model architecture. Most importantly, it outperforms adapters in zero-shot cross-lingual transfer by a large margin in a series of multilingual benchmarks, including Universal Dependencies, MasakhaNER, and AmericasNLI. Based on an in-depth analysis, we additionally find that sparsity is crucial to prevent both 1) interference between the fine-tunings to be composed and 2) overfitting. We release the code and models at \url{https://github.com/cambridgeltl/composable-sft}."
}
Markdown (Informal)
[Composable Sparse Fine-Tuning for Cross-Lingual Transfer](https://preview.aclanthology.org/jlcl-multiple-ingestion/2022.acl-long.125/) (Ansell et al., ACL 2022)
ACL
- Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan Vulić. 2022. Composable Sparse Fine-Tuning for Cross-Lingual Transfer. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1778–1796, Dublin, Ireland. Association for Computational Linguistics.