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Abstract

Deep NLP models have been shown to be brit-
tle to input perturbations. Recent work has
shown that data augmentation using counter-
factuals — i.e. minimally perturbed inputs —
can help ameliorate this weakness. We focus
on the task of creating counterfactuals for ques-
tion answering, which presents unique chal-
lenges related to world knowledge, semantic
diversity, and answerability. To address these
challenges, we develop a Retrieve-Generate-
Filter (RGF) technique to create counterfac-
tual evaluation and training data with minimal
human supervision. Using an open-domain
QA framework and question generation model
trained on original task data, we create coun-
terfactuals that are fluent, semantically diverse,
and automatically labeled. Data augmenta-
tion with RGF counterfactuals improves per-
formance on out-of-domain and challenging
evaluation sets over and above existing meth-
ods, in both the reading comprehension and
open-domain QA settings. Moreover, we find
that RGF data leads to significant improve-
ments to robustness to local perturbations.1

1 Introduction

Models for natural language understanding (NLU)
may outperform humans on standard benchmarks,
yet still often perform poorly under a multitude of
distributional shifts (Jia and Liang (2017); Naik
et al. (2018); McCoy et al. (2019), inter alia) due
to over-reliance on spurious correlations or dataset
artifacts. This behavior can be probed using coun-
terfactual data (Kaushik et al., 2020; Gardner et al.,
2020) designed to simulate interventions on spe-
cific attributes: for example, perturbing the movie
review “A real stinker, one out of ten!" to “A real
classic, ten out of ten!" allows us to discern the

∗Work performed during an internship at Google.
1Code at https://github.com/

google-research/language/tree/master/
language/qa_counterfactuals
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Wikipedia

Who is the captain of the Richmond Football Club? 

List of Richmond Football Club
captains >> Jeff Hogg 1994 -- 1996
... Current Captain:  
Trent Cotchin  

The ...  Richmond Football club ran a
women's team and ... Jess
Kennedy was named the team ' s
captain 

Who captained Richmond Football Club's women's team? 

Who won the inaugural best in VFL 2018 season? 

Who captained Richmond Football Club's women's team? 

Figure 1: Retrieve-Generate-Filter to generate coun-
terfactual queries for Natural Question (Kwiatkowski
et al., 2019) using an open-domain retrieval system,
question generation and post-hoc filtering.

effect of adjective polarity on the model’s predic-
tion. Many recent works (Kaushik et al., 2020,
2021; Wu et al., 2021a; Geva et al., 2021, inter
alia) have shown that training augmented with this
counterfactual data (CDA) improves out-of-domain
generalization and robustness against spurious cor-
relations. Consequently, several techniques have
been proposed for the automatic generation of coun-
terfactual data for several downstream tasks (Wu
et al., 2021a; Ross et al., 2021b,a; Bitton et al.,
2021; Geva et al., 2021; Asai and Hajishirzi, 2020;
Mille et al., 2021).

In this paper, we focus on counterfactual data for
question answering, in both the reading compre-
hension and open-domain settings (e.g. Rajpurkar
et al., 2016; Kwiatkowski et al., 2019). Model in-
puts consist of a question and optionally a context
passage, and the target a is a short answer span.
Counterfactuals are often considered in the context
of a specific causal model (Miller, 2019; Halpern
and Pearl, 2005), but in this work we follow Wu
et al. (2021a) and Kaushik et al. (2020) and seek a
method to generate counterfactuals that may be use-

1670

https://github.com/google-research/language/tree/master/language/qa_counterfactuals
https://github.com/google-research/language/tree/master/language/qa_counterfactuals
https://github.com/google-research/language/tree/master/language/qa_counterfactuals


ful in many different settings. In QA, the set of pos-
sible causal features is large and difficult to specify
a priori; relevant factors are often instance-specific
and exploring them may require world knowledge.
For example, going from “Who is the captain of
the Richmond Football Club” to a perturbed ques-
tion “Who captained Richmond’s women’s team?”
as in Figure 1 requires knowledge about the club’s
alternate teams, and the perturbation “Who was
the captain of RFC in 1998?” requires knowledge
about the time-sensitive nature of the original ques-
tion. In the absence of such knowledge, otherwise
reasonable edits — such as “Who captained the
club in 2050?” — can result in false premises or
unanswerable questions.

We develop a simple yet effective technique to
address these challenges: Retrieve, Generate, and
Filter (RGF; Figure 1). We use the near-misses
of a retrieve-and-read QA model to propose alter-
nate contexts and answers which are closely related
to — but semantically distinct from — the origi-
nal question. We then use a sequence-to-sequence
question generation model (Alberti et al., 2019) to
generate corresponding questions to these passages
and answers. This results in fully-labeled examples,
which can be used directly to augment training data
or filtered post-hoc for analysis.

While our method requires no supervised inputs
besides the original task training data, it is able
to generate highly diverse counterfactuals cover-
ing a range of semantic phenomena (§4), including
many transformation types which existing meth-
ods generate through heuristics (Dua et al., 2021),
meaning representations (Ross et al., 2021b; Geva
et al., 2021) or human generation (Bartolo et al.,
2020; Gardner et al., 2020). Compared to alterna-
tive sources of synthetic data (§5.1), training aug-
mented with RGF data improves performance on
a variety of settings (§5.2, §5.3), including out-of-
domain (Fisch et al., 2019) and contrast evaluation
sets (Bartolo et al., 2020; Gardner et al., 2020),
while maintaining in-domain accuracy. Addition-
ally, we introduce a measure of pairwise consis-
tency, and show that RGF significantly improves
robustness to a range of local perturbations (§6).

2 Related Work

2.1 Counterfactual Generation

There has been considerable interest in developing
challenge sets for NLU that evaluate models on a
wide variety of counterfactual scenarios. Gardner

et al. (2020); Khashabi et al. (2020); Kaushik et al.
(2020); Ribeiro et al. (2020) use humans to create
these perturbations, optionally in an adversarial
setting against a particular model (Bartolo et al.,
2020). However, these methods can be expensive
and difficult to scale.

This has led to an increased interest in creating
automatic counterfactual data for evaluating out-
of-distribution generalization (Bowman and Dahl,
2021) and for counterfactual data augmentation
(Geva et al., 2021; Longpre et al., 2021). Some
work focuses on using heuristics like swapping su-
perlatives and nouns (Dua et al., 2021), changing
gendered words (Webster et al., 2020), or target-
ing specific data splits (Finegan-Dollak and Verma,
2020). More recent work has focused on using
meaning representation frameworks and structured
control codes (Wu et al., 2021a), including gram-
mar formalisms (Li et al., 2020), semantic role
labeling (Ross et al., 2021b), structured image rep-
resentations like scene graphs (Bitton et al., 2021),
and query decompositions in multi-hop reasoning
datasets (Geva et al., 2021). Ye et al. (2021) and
Longpre et al. (2021) perturb contexts instead of
questions by swapping out all mentions of a named
entity. The change in label can be derived heuristi-
cally or requires a round of human re-labeling of
the data. These may also be difficult to apply to
tasks like Natural Questions (Kwiatkowski et al.,
2019), where pre-defined schemas can have diffi-
culty covering the range of semantic perturbations
that may be of interest.

2.2 Data Augmentation

Non-counterfactual data augmentation methods for
QA, where the synthetic examples are not paired
with the original data, have shown only weak im-
provements to robustness and out-of-domain gener-
alization (Bartolo et al., 2021; Lewis et al., 2021).
Counterfactual data augmentation is hypothesized
to perform better, as exposing the model to mini-
mal pairs should reduce spurious correlations and
make the model more likely to learn the correct,
causal features (Kaushik et al., 2020). However,
Joshi and He (2021) find that methods that limit
the structural and semantic space of perturbations
can potentially hurt generalization to other types
of transformations. This problem is exacerbated in
the question answering scenario where there can be
multiple semantic dimensions to edit. Our method
attempts to address this by targeting a broad range
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of semantic phenomena, thus reducing the chance
for the augmented model to overfit.

3 RGF: Counterfactuals for
Information-seeking Queries

We define a counterfactual example as an alter-
native input x′ which differs in some meaningful,
controlled way from the original x, which in turn
allows us to reason – or teach the model – about
changes in the label (the outcome). For question-
answering, we take as input triples (q, c, a) consist-
ing of the question, context passage, and short an-
swer, and produce counterfactual triples (q′, c′, a′)
where a′ 6= a. This setting poses some unique
challenges, such as the need for background knowl-
edge to identify relevant semantic variables to alter,
ensuring sufficient semantic diversity in question
edits, and avoiding questions with false premises
or no viable answers. Ensuring (or characteriz-
ing) minimality can also be a challenge, as small
changes to surface form can lead to significant se-
mantic changes, and vice-versa. We introduce a
general paradigm for data generation — Retrieve,
Generate and Filter — to tackle these challenges.

3.1 Overview of RGF

An outline of the RGF method is given in Figure 1.
Given an input example x = (q, c, a) consisting
of a question, a context paragraph, and the cor-
responding answer, RGF generates a set of new
examples N(x) = {(q′1, c′1, a′1), (q′2, c′2, a′2), . . . }
from the local neighborhood around x. We first
use an open-domain retrieve-and-read model to re-
trieve alternate contexts c′ and answers a′ where
a 6= a′. As near-misses for a task model, these
candidates (c′, a′) are closely related to the origi-
nal target (c, a) but often differ along interesting,
latent semantic dimensions (Figure 2) in their rela-
tion to the original question, context, and answer.
We then use a sequence-to-sequence model to gen-
erate new questions q′ from the context and answer
candidates (c′, a′). This yields triples (q′, c′, a′)
which are fully labeled, avoiding the problem of
unanswerable or false-premise questions.

Compared to methods that rely on a curated set
of minimal edits (e.g. Wu et al., 2021b; Ross et al.,
2021b), our method admits the use of alternative
contexts2 c′ 6= c, and we do not explicitly constrain

2An alternative approach would be to make direct, targeted
edits to the original context c. However, beyond a limited
space of local substitutions (Longpre et al., 2021; Ye et al.,

our triples to be minimal perturbations during the
generation step. Instead, we use post-hoc filtering
to reduce noise, select minimal candidates, or se-
lect for specific semantic phenomena based on the
relation between q and q′. This allows us to explore
a significantly more diverse set of counterfactual
questions q′ (§C.1), capturing relations that may
not be represented in the original context c.

We describe each component of RGF below;
additional implementation details are provided in
Appendix A.

3.2 Retrieval
We use REALM retrieve-and-read model of (Guu
et al., 2020). REALM consists of a BERT-
based bi-encoder for dense retrieval, a dense
index of Wikipedia passages, and a BERT-
based answer-span extraction model for reading
comprehension, all fine-tuned on Natural Ques-
tions (NQ; Kwiatkowski et al., 2019). Given
a question q, REALM outputs a ranked list
of contexts and answers within those contexts:
{(c′1, a′1), (c′2, a′2), . . . (c′k, a′k)}. These alternate
contexts and answers provide relevant yet diverse
background information to construct counterfac-
tual questions. For instance, in Figure 1, the ques-
tion “Who is the captain of the Richmond Football
Club" with answer “Trent Cotchin" also returns
other contexts with alternate answers like “Jeff
Hogg" (q′ =“Who captained the team in 1994"),
and “Steve Morris" (q′ =“Who captained the re-
serve team in the VFL league"). Retrieved con-
texts can also capture information about closely re-
lated or ambiguous entities. For instance, the ques-
tion “who wrote the treasure of the sierra madre"
retrieves passages about the original book Sierra
Madre, its movie adaptation, and a battle fought
in the Sierra de las Cruces mountains. This back-
ground knowledge allows us to perform contextual-
ized counterfactual generation, without needing to
specify a priori the type of perturbation or semantic
dimension. To focus on label-transforming coun-
terfactuals, we retain all (c′i, a

′
i) where a′i does not

match any of the gold answers a from the original
NQ example.

3.3 Question Generation
This component generates questions q′ that cor-
respond to the answer-context pairs (c′, a′). We
use a T5 (Raffel et al., 2020) model fine-tuned

2021; Ross et al., 2021a) this is very difficult due to the need
to model complex discourse and knowledge relations.
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on (q, c, a) triples from Natural Questions, using
context passages as input with the answer marked
with special tokens. We use the trained model to
generate questions (q′1, q

′
2, . . . q

′
k) for each of the

the retrieved set of alternate contexts and answers,
((c′1, a

′
1), (c

′
2, a
′
2), . . . (c

′
k, a
′
k)). For each (c′i, a

′
i),

we use beam decoding to generate 15 different
questions q′. We measure the fluency and correct-
ness of generated questions in §4.

3.4 Filtering for Data Augmentation

Noise Filtering The question generation model
can be noisy, resulting in a question that cannot be
answered given c′ or for which a′ is an incorrect an-
swer. Round-trip consistency (Alberti et al., 2019;
Fang et al., 2020) uses an existing QA model to
answer the generated questions, ensuring that the
predicted answer is consistent with the target an-
swer provided to the question generator. We use an
ensemble of six T5-based reading-comprehension
((q, c)→ a) models, trained on NQ using different
random seeds (Appendix A), and keep any gen-
erated (q′, c′, a′) triples where at least 5 of the 6
models agree on the answer. This discards about
5% of the generated data, although some noise still
remains; see §4 for further discussion.

Filtering for Minimality Unlike prior work on
generating counterfactual perturbations, we do not
explicitly control for the type of semantic shift or
perturbation in the generated questions. Instead,
we use post-hoc filtering over generated questions
q′ to encourage minimality of perturbation. We
define a filtering function f(q, q′) that categorizes
the semantic shift or perturbation in q′ with respect
to q. One simple version of f is the word-level
edit (Levenshtein) distance between q and q′. Af-
ter noise filtering, for each original (q, c, a) triple
we select the generated (q′, c′, a′) with the smallest
non-zero word-edit distance between q and q′ such
that a 6= a′. We use this simple heuristic to create
large-scale counterfactual training data for aug-
mentation experiments (§5). Over-generating po-
tential counterfactuals based on latent dimensions
identified in retrieval and using a simple filtering
heuristic avoids biasing the model toward a narrow
set of perturbation types (Joshi and He, 2021).

3.5 Semantic Filtering for Evaluation

To better understand the types of counterfactuals
generated by RGF, we can apply additional filters
based on question meaning representations to cat-

Question from NQ
Original: who is the captain of richmond football club?
Predicate: who is the captain of X?

Reference Change
CF1: who is the captain of richmond’s vfl reserve team?
Predicate: who is the captain of X?

Predicate Change
CF2: who wears number 9 for richmond football club?
Predicate: who wears Y for X?

Predicate and Reference Change
CF3: who did graham negate in the grand final last year?
Predicate: who did X negate in Y last year?

Table 1: Categorization of generated questions based
on QED decomposition. The original reference “Rich-
mond football Club" changes in CF1 and CF3. Predi-
cate “Who is the captain" changes in CF2 and CF3.

egorize counterfactual (q, q′) pairs for evaluation.
Meaning representations provide a way to decom-
pose a question into semantic units and categorize
(q, q′) based on which of these units are perturbed.
In this work, we employ the QED formalism for
explanations in question answering (Lamm et al.,
2021). QED decompositions segment the question
into a predicate template and a set of reference
phrases. For example, the question “Who is cap-
tain of richmond football club" decomposes into
one question reference “richmond football club"
and the predicate “Who is captain of X". A few
example questions and their QED decompositions
are illustrated in Table 1.

We use these question decompositions to identify
the relation between a counterfactual pair (q, q′).
Concretely, we fine-tune a T5-based model on the
QED dataset to perform explanation generation
following the recipe of Lamm et al. (2021), and
use this to identify predicates and references for
the question from each (q, c, a) triple. We use ex-
act match between strings to identify reference
changes. As predicates can often differ slightly
in phrasing (who captained vs. who is captain), we
take a predicate match to be a prefix matching with
more than 10 characters. For instance, “Who is the
captain of Richmond’s first ever women’s team?",

“Who is the captain of the Richmond Football Club"
have same predicates. We filter generated ques-
tions into three perturbation categories — reference
change, predicate change, or both.

4 Intrinsic Evaluation

Following desiderata from Wu et al. (2021a) and
Ross et al. (2021b), we evaluate our RGF data
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Player Specific

Game outcome

Who has won the women's
single winbledon tennis

tournament in 2018

Who won the women's singles
Australian Open?

Who won the women's doubles at
Wimbledon 2015 

How many games in Wimbledon final set tie
break?

Who won the Wimbledon women's
singles title in 2016

Who won the runner's up in the
women's singles at Wimbledon

in 2018

Who did Serena Williams best
in the Wimbledon finals 2015

Game
Type

Misc.

Tournament
Name

Tournament
year

Locative

Country

what's the population
of walnut grove

minnesota?

what's the population of 
walnut grove washington? what is the population of apple 

valley minnesota ?

how many students at walnut grove 
secondary school ?

how long has the walnut twig beetle 
been in california ?

where is walnut grove 
located in minnesota ?

what is the population of 
walnut grove bc ? Town

Name

Population  
based

State
Name

Misc

Who won the men's singles at wimbledon? 

Who is the patron of Wimbledon tennis club?

Who did Osaka beat at the
finals of Indian Wells

what percentage of walnut grove 
is below the poverty line ?

Where was the nursing home that caught 
on fire ?

Figure 2: Context-specific semantic diversity of perturbations achieved by RGF on questions from NQ. The multi-
ple latent semantic dimensions identified (arrows in the diagram) emerge from our retrieval-guided approach.

Semantic Change Example (Original, Counterfactual)

Reference Change O: when did lebron_james join
TAILOR the Miami_Heat? C: When did
(Ross et al., 2021b) lebron_james come into the league?

Predicate Change O: Who won the war between india
AmbigQA and pakistan C: Who started
(Min et al., 2020b) the war between india and pakistan

Disambiguation O: When does walking dead season
AmbigQA 8 start? C: When does walking
(Min et al., 2020b) dead season 8 second half start?

Negation O: what religion observes the
Polyjuice sabbath day C: what religion does
(Wu et al., 2021a) not keep the sabbath day

Table 2: Patterns of semantic change between original
queries (O) and RGF counterfactuals (C), correspond-
ing to patterns explored by related works.

along three measures: fluency, correctness, and
directionality.

Fluency Fluency measures whether the gener-
ated text is grammatically correct and semantically
meaningful. Fluency is very high from RGF, as the
generation step leverages a high-quality pretrained
langauge model (T5). We manually annotate a sub-
set of 100 generated questions, and find that 96%
of these are fluent.

Correctness Correctness measures if the gener-
ated question q′ and context, alternate answer pairs
(c′, a′) are aligned, i.e. the question is answerable
given context c′ and a′ is that answer. We quantify
correctness in the generated dataset by manually
annotating a samples of 100 (q′, c′, a′) triples (see
Appendix B). The proportion of noise varies from
30% before noise filtering and 25% after noise fil-
tering using an ensemble of models (§3.4).

Directionality/Semantic Diversity In Table 2,
we show examples of semantic changes that occur
in our data, including reference changes (50% of
changes), predicate changes (30%), negations (1%),
question expansions, disambiguations, and contrac-
tions (13%). These cover many of the transforma-
tions found in prior work (Gardner et al., 2020;
Ross et al., 2021b; Min et al., 2020b), but RGF is
able to achieve these without the use of heuristic
transformations or structured meaning representa-
tions. As shown in Figure 2, the types of relations
are semantically rich and cover attributes relevant
to each particular instance that would be difficult
to capture with a globally-specified schema. Addi-
tional examples are shown in Figure 6.
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Exact Match (RC) Train Size NQ SQuAD TriviaQA HotpotQA BioASQ AQA AmbigQA

Original NQ 90K 70.91 80.26 13.67 50.57 35.90 27.00 46.81
Ensemble 90K 71.29 80.50 13.86 50.57 36.90 27.80 46.90

Gold Agen-Qgen 90K + 90K 70.80 67.71 10.83 42.69 30.63 19.40 41.95
Rand. Agen-Qgen 90K + 90K 71.06 74.31 12.88 45.52 32.58 23.30 42.48

RGF (REALM-Qgen) 90K + 90K 70.22 79.87 15.39 53.36 42.89 28.90 46.81

Table 3: Exact Match results for the reading comprehension task for in-domain NQ development set, out-of-
domain datasets from MRQA 2019 Challenge (Fisch et al., 2019), Adversarial QA (Bartolo et al., 2020) and
AmbigQA (Min et al., 2020b). RGF improves out-of-domain and challenge-set performance compared to other
data augmentation baselines.

5 Data Augmentation
Unlike many counterfactual generation methods,
RGF natively creates fully-labeled (q′, c′, a′) exam-
ples which can be used directly for counterfactual
data augmentation (CDA). We augment the origi-
nal NQ training set with additional examples from
RGF, shuffling all examples in training. We explore
two experimental settings, reading comprehension
(§5.2) and open-domain QA (§5.3), and compare
RGF-augmented models to those trained only on
NQ, as well as to alternative baselines for synthetic
data generation. As described in Section 3.4, we
use edit-distance based filtering to choose one gen-
erated (q′, c′, a′) triple to augment for every origi-
nal example, (q, c, a).3 Additional training details
for all models and baselines are included in Ap-
pendix A.

5.1 Baselines

In the abstract, our model for generating counterfac-
tuals specifies a way of selecting contexts c′ from
original questions, and answers a′ within those
contexts, and a way of a generating questions q′

from them. RGF uses a retrieval model to identify
relevant contexts; here we experiment with two
baselines that use alternate ways to select c′. We
also compare to the ensemble of six reading com-
prehension models described in 3.4, with answers
selected by majority vote.

Random Passage (Rand. Agen-Qgen) Here, c′

is a randomly chosen paragraph from the Wikipedia
index, with no explicit relation with the original
question. This setting simulates generation from
the original data distribution of Natural Questions.
To ensure that the random sampling of Wikipedia
paragraphs has a similar distribution, we employ
the learned passage selection model from Lewis

3We don’t see significant gains from adding more data
beyond this; see Appendix C.3

et al. (2021),4. This baseline corresponds to the
model of Bartolo et al. (2021), which was applied
to the SQuAD dataset (Rajpurkar et al., 2016); our
version is trained on NQ and omits AdversarialQA.

Gold Context (Gold Agen-Qgen) Here, c′ is the
passage c containing the original short answer a
from the NQ training set. This baseline specifically
ablates the retrieval component of RGF, testing
whether the use of alternate passages leads to more
diversity in the resulting counterfactual questions.

Answer Generation for Baselines For both the
above baselines for context selection, we select
spans in the new passage that are likely to be an-
swers for a potential counterfactual question. We
use a T5 (Raffel et al., 2020) model fine-tuned for
question-independent answer selection c → a on
NQ, and select the top 15 candidates from beam
search. To avoid simply repeating the original ques-
tion, we only retain answer candidates a′ which do
not match the original NQ answers a for that exam-
ple. These alternate generated answer candidates
and associated passages are then used for ques-
tion generation and filtering as in RGF (§3.3). For
the Gold Agen-Qgen case, we select based on the
longest edit distance between (q, q′), which gave
significantly better performance than random selec-
tion or the shortest edit distance used for RGF.

5.2 Reading Comprehension (RC)
In the reading comprehension (RC) setting, the in-
put consists of the question and context and the task
is to identify an answer span in the context. Thus,
we augment training with full triples (q′, c′, a′) con-
sisting of the retrieved passage c′, generated and
filtered question q′, and alternate answer a′.

Experimental Setting We finetune a T5 (Raf-
fel et al., 2020) model for reading comprehension,

4https://github.com/facebookresearch/
PAQ
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with input consisting of the question prepended to
the context. We evaluate domain generalisation of
our RC models on three evaluation sets from the
MRQA 2019 Challenge (Fisch et al., 2019). We
also measure performance on evaluation sets con-
sisting of counterfactual or perturbed versions of
RC datasets on Wikipedia, including SQuAD (Ra-
jpurkar et al., 2016), AQA (adversarially-generated
SQuAD questions; Bartolo et al., 2020), and human
authored counterfactual examples (contrast sets;
Gardner et al., 2020) from the QUOREF dataset
(Dasigi et al., 2019). We also evaluate on the set
of disambiguated queries in AmbigQA (Min et al.,
2020b), which by construction are minimal edits to
queries from the original NQ.

Results We report exact-match scores in Table 3;
F1 scores follow a similar trend. We observe
only limited improvements on the in-domain NQ
development set, but we see significant improve-
ments from CDA with RGF data in out-of-domain
and challenge-set evaluations compared both to
the original NQ model and the Gold and Random
baselines. RGF improves by 1-2 EM points on
most challenge sets, and up to 7 EM points on
the BioASQ set compared to training on NQ only,
while baselines often underperform the NQ-only
model on these sets. Note that all three augmen-
tation methods have similar proportion of noise
(Appendix B), so CDA’s benefits may be attributed
to improving model’s ability to learn more robust
features for the task of reading comprehension. Us-
ing an ensemble of RC models improves slightly
on some tasks, but does not improve on OOD per-
formance as much as RGF. RGF’s superior perfor-
mance compared to the Gold Agen-Qgen baseline
is especially interesting, since the latter also gen-
erates topically related questions. We observe that
RGF counterfactuals are more closely related to the
original question compared to this baseline (Fig-
ure 5 in Appendix C), since q′ is derived from a
near-miss candidate (c′, a′) to answer the original
q (S3.1).

5.3 Open-Domain Question Answering (OD)

In the open-domain (OD) setting, only the question
is provided as input. The pair (q′, a′), consisting
of generated and filtered question q′ and alternate
answer a′, is used for augmentation. Compared to
the RC setting where passages change as well, here
the edit distance filtering of §3.4 ensures the aug-
mentation data represents minimal perturbations.

Experimental Setting We use the method and
implementation from Guu et al. (2020) to finetune
REALM on (q, a) pairs from NQ. End-to-end train-
ing of REALM updates both the reader model and
the query-document encoders of the retriever mod-
ule. We evaluate domain generalization on pop-
ular open-domain benchmarks: TriviaQA (Joshi
et al., 2017), SQuAD (Rajpurkar et al., 2016), Cu-
rated TREC dataset (Min et al., 2021), and dis-
ambiguated queries from AmbigQA (Min et al.,
2020b).

Results In the open-domain setting (Table 4), we
observe an improvement of 2 EM points over the
original model even in-domain on Natural Ques-
tions, while also improving significantly when com-
pared to other data augmentation techniques. RGF
improves over the next best baseline — Random
Agen-Qgen — by up to 6 EM points (on TriviaQA).
We hypothesize that data augmentation has more
benefit in this setting, as the open-domain task is
more difficult than reading comprehension, and
counterfactual queries may help the model learn
better query and document representations to im-
prove retrieval.

6 Analysis

To better understand how CDA improves the model,
we introduce a measure of local consistency (§6.1)
to measure model robustness, and perform a strat-
ified analysis (§6.2) to show the benefits of the
semantic diversity available from RGF.

6.1 Local Robustness
Compared to synthetic data methods such as PAQ
(Lewis et al., 2021), RGF generates counterfactual
examples that are paired with the original inputs
and concentrated in local neighborhoods around
them (Figure 2). As such, we hypothesize that
augmentation with this data should specifically im-
prove local consistency, i.e. how the model behaves
under small perturbations of the input.

Experimental Setting We explicitly measure
how well a model’s local behavior respects per-
turbations to input. Specifically, if a model f :
(q, c) → a correctly answers q, how often does
it also correctly answer q′? We define pairwise
consistency as accuracy over the counterfactuals
(q′, a′, c′), conditioned on correct predictions for
the original examples:

C(D) = ED[f(q′, c′) = a′ | f(q, c) = a]
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Exact Match (OD) Train Size NQ TriviaQA AmbigQA SQuAD v1.0 TREC

Original 90K 37.65 26.75 22.43 14.25 31.93
Gold Agen-Qgen 90K + 90K 37.86 27.02 23.65 15.01 32.94
Rand. Agen-Qgen 90K + 90K 37.45 29.87 24.13 14.55 26.89

RGF (REALM-Qgen) 90K + 90K 39.11 32.32 26.98 16.94 33.61

Table 4: Exact Match results on open-domain QA datasets (TriviaQA, AmbigQA, SQuAD and TREC) for data
augmentation with RGF counterfactuals and baselines. Open-domain improvements are larger than in the RC
setting, perhaps as the more difficult task benefits more from additional data.

Consistency (RC) Train Size AQA AmbigQA QUOREF-C RGF (∆ Ref) RGF (∆ Pred)

Original NQ 90K 63.22 51.72 44.86 64.65 52.93
Ensemble 90K 63.87 48.33 46.02 65.21 55.21

Gold Agen-Qgen 90K + 90K 50.25 42.86 40.66 55.63 43.08
Rand. Agen-Qgen 90K + 90K 56.07 48.08 44.79 60.06 48.34

RGF (REALM-Qgen) 90K + 90K 64.46 55.93 48.94 76.17 66.12

RGF ∆ Ref. 90K + 52K 58.8 56.9 40.54 77.61 59.56
RGF ∆ Pred. 90K + 52K 63.64 49.15 43.13 73.29 63.09

Table 5: Results for pairwise consistency (§6.1) on reading comprehension, measured for datasets containing pairs
of very similar questions. QUOREF-C refers to the QUOREF contrast set from (Gardner et al., 2020). RGF leads
to better consistency in RC and open-domain settings (Appendix C.2). Results on effect of perturbation type during
training (∆ Ref. and ∆ Pred.) suggest that perturbation-bias does not degrade consistency over the original model.

To measure consistency, we construct val-
idation sets consisting of paired examples
(q, c, a), (q′, c′, a′): one original, and one counter-
factual. We use QED to categorize our data, as
described in §3.5. Specifically, we create two types
of pairs: (a) a change in reference where question
predicate remains fixed, and (b) a change in predi-
cate, where the original reference(s) are preserved.5

We create a clean evaluation set by first selecting
RGF examples for predicate or reference change,
then manually filtering the data to discard incorrect
triples (§4) until we have 1000 evaluation pairs of
each type (see Appendix B).

We also construct paired versions of AQA, Am-
bigQA, and the QUOREF contrast set. For Am-
bigQA, we pair two disambiguated questions and
for QUOREF, we pair original and human-authored
counterfactuals. AQA consists of human-authored
adversarial questions q′ which are not explicitly
paired with original questions; we create pairs by
randomly selecting an original question q and a
generated question q′ from the same passage.

5We require that the new reference set is a superset of
the original, since predicate changes can introduce additional
reference slots (see CF2 in Table 1).

Results Training with RGF data improves con-
sistency by 12-14 points on the QED-filtered slices
of RGF data, and 5-7 points on AQA, AmbigQA
and QUOREF contrast (Table 5). The Gold Agen-
Qgen baseline (which contains topically related
queries about the same passage) also improves con-
sistency over the original model compared to the
Random Agen-Qgen baseline or to the ensemble
model, though not by as much as RGF. Consistency
improvements on AQA, AmbigQA and QUOREF
are especially noteworthy, since they suggest an im-
provement in robustness to local perturbations that
is independent of other confounding distributional
similarities between training and evaluation data.

6.2 Effect of Perturbation Type

QED-based decomposition of queries allows for the
creation of label-changing counterfactuals along
orthogonal dimensions — a change of reference or
predicate. We investigate whether training towards
one type of change induces generalization bias, a
detrimental effect which has been observed in tasks
such as NLI (Joshi and He, 2021).

Experimental Setting We shard training exam-
ples into two categories based on whether q and q′
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have the same reference (predicate change) or same
predicate (reference change), as defined in §3.5.
We over-generate by starting with 20 (q′, c′, a′) for
each original training example to ensure that we
find at least one q′ that matches the criterion. We
also evaluate on paired evaluation sets from §6.1.

Results Results are shown for QED-filtered train-
ing in Table 5. Counterfactual perturbation of a
specific kind (a predicate or a reference change)
during augmentation does not hurt performance on
another perturbation type compared to the base-
line NQ model, which differs from the observa-
tions of Joshi and He (2021) on NLI. Further-
more, similar to the observations of Min et al.
(2020a), augmenting with one type of perturba-
tion has orthogonal benefits that improve model
generalization on another perturbation type: aug-
menting with RGF (∆ Pred.) leads to significant
improvement on RGF (∆ Ref.), and vice-versa.
Compared to reference-change examples, augment-
ing with predicate-change examples leads to greater
improvements in local consistency, except for on
RGF (∆ Ref.) and on AmbigQA – which contains
many reference-change pairs. Predicate-change ex-
amples may also be more informative to the model,
as reference changes can be modeled more easily
by lexical matching within common context pat-
terns.

6.3 Effect of Training data size
Joshi and He (2021) show CDA to be most effective
in the low-resource regime. To better understand
the role that dataset size plays in CDA in the read-
ing comprehension setting, we evaluate RGF in a
cross-domain setting where only a small amount of
training data is available.

Experimental Setting Since our approach de-
pends on using an open-domain QA model and
a question generation model trained on all Natural
Questions data, we instead experiment with a low-
resource transfer setting on the BioASQ domain,
which consists of questions on the biomedical do-
main. We use the domain-targeted retrieval model
from Ma et al. (2021), where synthetic question-
passage relevance pairs generated over the PubMed
corpus are used to train domain-specific retrieval
without any gold supervised data. We fine-tune our
question-generation model on (limited) in-domain
data, generate RGF data for augmentation, and then
use this along with (limited) in-domain data to fur-
ther fine-tune an RC model, using the NQ-trained

weights for initialization. Further training details
are provided in Appendix A.

Training Data Train Size BioASQ (Dev)
F1 EM

Original 1000 42.93 23.67
Orig. + RGF 500 + 500 41.72 23.01

Original 2000 45.88 25.80
Orig. + RGF 1000 + 1000 44.64 26.80

Table 6: Results on the reading comprehension task
for Low Resource Transfer setting on BioASQ 2019
dataset. A model trained on 1000 gold BioASQ plus
1000 RGF examples performs nearly as well as a model
trained on 2000 gold examples.

Results We observe significant improvements
over the baseline model in the low resource setting
for in-domain data (< 2000 examples), as shown in
Table 6. Compared with the limited gains we see
on the relatively high-resource NQ reading compre-
hension task, we find that on BioASQ, CDA with
1000 examples improves performance by 2% F1
and 3% exact match, performing nearly as well as
a model trained on 2000 gold examples. These re-
sults suggest that using counterfactual data in lieu
of collecting additional training data is especially
useful in the low-resource setting.

7 Conclusion

Retrieve-Generate-Filter (RGF) creates counterfac-
tual examples for QA which are semantically di-
verse, using knowledge from the passage context
and a retrieval model to capture semantic changes
that would be difficult to specify a priori with a
global schema. The resulting examples are fully-
labeled, and can be used directly for training or
filtered using meaning representations for analy-
sis. We show that training with this data leads to
improvements on open-domain QA, as well as on
challenge sets, and leads to significant improve-
ments in local robustness. While we focus on ques-
tion answering, for which retrieval components are
readily available, we note that the RGF paradigm
is quite general and could potentially be applied to
other tasks with a suitable retrieval system.
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A Model Training and Implementation
Details

Below, we describe the details of different models
trained in the RGF pipeline. Unless specified oth-
erwise, we use the T5X library6 and pre-trained
checkpoints from Raffel et al. (2020)7.

Question Generation We use a T5-3B model
fine-tuned on Natural Questions (NQ) dataset. We
only train on the portion of the dataset that consists
of gold short answers and an accompanying long
answer evidence paragraph from Wikipedia. The
input consists of the title of the Wikipedia article
the passage is taken from, a separator (‘»’) and
the passage. The short answer is enclosed in the
passage using character sequences ‘« answer =’
and ‘»’ on left and right respectively. The output
is the original NQ question. The input and output
sequence lengths are restricted to be 640 and 256
respectively. We train the model for 20k steps with
a learning rate of 2 · 10−5, dropout 0.1, and batch
size of 128. We decode with a beam size of 15, and
take the top candidate as our generated question q′.

Answer Generation We use a T5-3B model
trained on the same subset of Natural Questions
(NQ) as question generation with same set of hyper-
parameters and model size described above. The
input consists of the title of the Wikipedia article
the passage is taken from, a separator (‘»’) and
the passage, while the output sequence is the short
answer from NQ.

Reading Comprehension Model We model the
task of span selection-based reading comprehen-
sion, i.e. identifying an answer span given question
and passage, as a sequence-to-sequence problem.
Input consists of the question, separator (‘»’), and
title of Wikipedia article, separator (‘»’) and pas-
sage. The answer format is simply one of the gold
answer strings. The reading comprehension model
is a T5-large model trained with batch size of 512
and learning rate 2 · 10−4 for 20K steps.

Open-domain Question Answering model
The open domain QA model is based on the
implementation from Lee et al. (2019), and
initialized with the REALM checkpoint from Guu

6https://github.com/google-research/
t5x

7https://github.com/google-research/
text-to-text-transfer-transformer#
released-model-checkpoints

et al. (2020)8. Both the retriever and reader are
initialized from the BERT-base-uncased model.
The query and document representations are 128
dimensional vectors. When finetuning, we use a
learning rate of 10−5 and a batch size of 1 on a
single Nvidia V100 GPU. We perform 2 epochs of
fine-tuning for Natural Questions.

Noise Filtering We train 6 reading comprehen-
sion models based on the configurations above
with different seed values for randomizing train-
ing dataset shuffling and optimizer initialization.
We retain examples where more than 5 out of 6
models have the same answer for a question.

QED Training We use a T5-large model fine-
tuned on the Natural Questions subset with QED
annotations (Lamm et al., 2021).9 We refer the
reader to the QED paper for details on the lineariza-
tion of explanations and inputs in the T5 model.
Our model is fine-tuned with batch size of 512 and
learning rate 2 · 10−4 for 20k steps.

Experimental Variability Unless otherwise
stated, results are reported from single runs.
However, we used the six RC models discussed in
Section 3.4 to estimate cross-run variation. Using
the procedure and code of Sellam et al. (2021), we
find variation of about 0.5 points (F1). As such, we
do not find differences smaller than this significant,
and in our results focus only on larger effects.

Computational Budget and Environmental Im-
pact We fine-tune all T5 models on Cloud TPU
v3 hardware; each takes approximately 4 hours
on 16 TPUs in pod configuration. Total compute
time is approximately 96 TPU-hours and 192 GPU-
hours, which we estimate as 43 kg CO2e using the
method of Luccioni et al. (2019)10.

B Evaluation of Fluency and Noise

The authors sampled 300 examples of generated
questions. To annotate for fluency, authors use
the following rubric: Is the generated question
grammatically well-formed barring non-standard
spelling and capitalization of named entities. This
noise annotation was done for RGF, as well as Gold
Agen-Qgen and Random Agen-Qgen.

8https://github.com/google-research/
language/tree/master/language/realm

9https://github.com/
google-research-datasets/QED

10https://mlco2.github.io/impact/#co2eq
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Creation of paired data for counterfactual eval-
uation Once again, authors annotate for cor-
rectness of counterfactual RGF instances that are
paired by reference or predicate, as described in
§3.5. Filtering is done until 1000 examples are
available under each category.

Data Unfiltered Filtered

RGF 29.8% 25.3%
Gold Agen-Qgen 27.9% 20.7%

Random Agen-Qgen 30.7% 28.3%

Table 7: Fraction of noise (incorrect (q′, c′, a′)) in gen-
erated data, from 300 examples manually annotated by
the authors.

C Additional Experiments

C.1 Intrinsic Evaluation

Figure 3: Distribution of edit distance between origi-
nal q and counterfactual q′ for RGF and other baselines
for context selection. Note: For Random Wiki Pass-
sage, original and generated questions bear no relation
to each other and are randomly paired.

In Figure 3, we compare distributions of the
edit distance between the original and generated
questions for questions generated by our approach,
those generated with the gold evidence passage
(Gold Agen-Qgen baseline), and those generated
from a random Wikipedia passage (§5) (Random
Agen-Qgen baseline). We find that RGF counter-
factuals undergo minimal perturbations from the
original question compared to questions that are
generated from random Wikipedia paragraph. This
pattern also holds when compared to questions gen-
erated from gold NQ passages. We hypothesize that

the set of alternate answers retrieved in our pipeline
approach are semantically similar to the gold an-
swer — same entity type, for instance. Random
answer spans chosen from the gold NQ passage
can result in significant semantic shifts in gener-
ated questions.

Figure 4: Plot of average edit distance between q, q′

vs. retrieval rank r, where q′ is generated from rth pas-
sage, showing that edit distance and retrieval rank are
monotonically related.

In Figure 4, we measure the relation between re-
trieval rank and edit-distance for RGF. For retrieval
rank i, we plot average edit distance between the
original question and counterfactual question that
was generated using the ith passage and answer.
We observe a monotonic relation between retrieval
rank and edit distance (which we use for filtering
our training data). We also measure changes in
the distribution of question type and predicate type
between original NQ data and the generated RGF
data.
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Figure 5: Distribution of top 20 question types for orig-
inal NQ data, RGF counterfactuals and questions gen-
erated from random Wikipedia passage, indicating bias
towards popular question types.

Figure 5 indicates that counterfactual data ex-
acerbates question-type bias. However, this bias
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Consistency (OD) Train Size AQA AmbigQA RGF ∆ Ref. RGF ∆ Pred.

Original NQ 90K 16.58 13.33 25.12 11.23
Random Agen-Qgen 90K + 90K 15.80 20.00 27.94 17.16

RGF (REALM-Qgen) 90K + 90K 17.66 28.57 31.77 19.81

Table 8: Consistency Results for Open-domain QA.

Model Train Size NQ SQuAD TriviaQA HotpotQA BioASQ AQA AmbigQA

RGF (1X) 90K + 90K 70.68 79.88 16.99 53.41 44.88 28.20 47.61
RGF (2X) 90K + 180K 70.78 80.33 17.46 54.09 44.75 28.30 46.73
RGF (3X) 90K + 270K 70.68 80.14 17.14 52.45 44.48 26.60 46.02
RGF (4X) 90K + 360K 70.17 79.97 17.06 51.82 44.35 27.50 46.81

Table 9: Reading comprehension results with varying training data augmentation sizes (exact match). We do not
observe a consistent improvement with additional data. This series of experiments was run using an older version
of T5X, so are not exactly comparable to Table 3.

exists in RGF as well as baselines.

C.2 Consistency for Open-Domain QA

In Table 8, we show results on evaluating consis-
tency on paired datasets in the open-domain results,
similar to the results shown in §6.1 in the Reading
Comprehension setting.

C.3 Augmentation with more data

In Table 9, we show results on augmenting with
more than one RGF counterfactual triple (q′, a′, c′)
for every original example (q, a, c) in NQ. These
experiments were run on an older version of T5X,
so RGF (1X) values are reported differently from
Table 3. We observe that adding more RGF data
(3X or more) for augmentation can hurt perfor-
mance. This may be because of increase in the pro-
portion of noisy to clean examples during training
and exacerbation of biases in the question genera-
tion model (explored in 5), resulting in diminishing
returns. These challenges also occur in the base-
lines, and may be inhererent to augmentation with
generated data.

C.4 Effect of perturbation type

Experimental Setting For edit distance-based
experiments, we shard training examples into three
categories by binning word-level edit distance be-
tween q and q′ into three ranges: 1–4, 5–10, and
> 10. We similarly categorize RGF data gener-
ated for the NQ development set into the same
categories. Evaluation sets for edit-distance experi-
ments based were not manually noise filtered. We
again report consistency on the reading comprehen-
sion model.

Consistency (RC) Val 1-4 Val 5-10 Val > 10

Train 1-4 71.02 67.55 64.78
Train 5-10 68.89 68.98 63.92
Train >10 65.78 66.33 65.33
Train All 72.34 67.82 65.12

Table 10: Results on sharding training data based on
edit distance between (q, q′). Training dataset size for
each bin is 90k NQ + 167k generated. Once again,
training with all RGF data robustly improves consis-
tency across different amounts of perturbations.

Results Similar to the observations for dataset
sharding along QED annotations, when data is
sharded by edit distance, we observe that using
the full RGF data nearly matches the best perfor-
mance from training on that shard, suggesting that
CDA with the highly diverse RGF data can lead to
improved consistency on a broad range of pertur-
bation types.
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D Semantic Diversity

Figure 6 includes more examples from Natural Questions, showing the counterfactual questions generated
for different input questions by RGF.

predicate  
change

Misc

who had the most home
runs in june of 2008 ?

who has the most hits in mets
history ?

who is the highest paid
centerfielder in 2008 ?

who has the most home
runs in one season ?

who has the most home runs in dodgers
history?

who was the last pirate to hit
20 home runs and steal 20

bases in one season ?

who caught the largest
alligator gar in the wild ? Reference 

Change 

Season

type of
play

Team 

Country

Person

who is the law making
body in india?

who gave the recommendation for
the appointment of prime minister ?

who meets in the parliament
building in india ?

who gave the recommendation for
the appointment of prime minister ?

which is the upper law making body in india ?

who is the law making
body in pakistan?

who presides over the joint
session of parliament ? Location

Diff. duty

Different
duty

Misc

origin of mother's day in
u.s.?

when did mother's day become a
holiday?

when was the first mother's day
held?

who is considered the founder of
mother's day

what event was honored at the first recorded
mother's day in the united states?

when did father's day start
in the u.s.

when was mother's day first
celebrated in czech

republic?
Locative

Agent

Status

Misc
Gender

Country

Figure 6: Context-specific semantic diversity of perturbations achieved by RGF on questions from NQ. The multi-
ple latent semantic dimensions identified (arrows in the diagram) fall out of our retrieval-guided approach.
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E Error analysis of generated examples

Table 11 shows examples where the RGF model produced incorrect (q′, a′, c′) triples, selected from the
manually-annotated subset described in Section 4.

Nonsensical Question
Context: The security management process relates to other ITIL - processes . However , in this
particular section the most obvious relations are the relations to the service level management ,
incident management and change management processes . Security management is a continuous
process that can be compared to W . Edwards Deming ’ s Quality Circle ( Plan , Do , Check ,
Act ) . The inputs are requirements from clients . The requirements are translated into security
services and security metrics.
Answer: W . Edwards Deming
Generated Question: the security management process is similar to the itil ?

Incomplete Question
Context: Using Cartesian coordinates , inertial motion is described mathematically as : where
" x " is the position coordinate and " τ " is proper time . ( In Newtonian mechanics , " τ ≡ t "
, the coordinate time ) . In both Newtonian mechanics and special relativity , space and then
spacetime are assumed to be flat , and we can construct a global Cartesian coordinate system .
In general relativity , these restrictions on the shape of spacetime and on the coordinate system
to be used are lost . Therefore , a different definition of inertial motion is required .
Answer: general relativity
Generated Question: which theory states that all motion is a function of ?

Correct Type, but Wrong Entity
Context: Ruth McDevitt Ruth McDevitt ( September 13 , 1895 – May 27 , 1976 ) was an
American stage , film , radio and television actress . She was born Ruth Thane Shoecraft in
Coldwater , Michigan . After attending the American Academy of Dramatic Arts , she married
Patrick McDevitt and decided to devote her time to her marriage . After her husband ’ s death
in 1934 , she returned to acting . She performed on Broadway , in particular understudying and
succeeding Josephine Hull in " Arsenic and Old Lace " and " The Solid Gold Cadillac " . She
also worked as a radio actor . McDevitt was a familiar face on television during the 1950s ,
1960s , and 1970s . She played " Mom Peepers " in the 1950s sitcom " Mister Peepers " . She
was a regular with Ann Sheridan , Douglas Fowley , and Gary Vinson in CBS ’ s " Pistols ’ n ’
Petticoats " , a 1966 - 67 satire of the Old West .
Answer: Ann Sheridan
Generated Question: who played the mother on mr peepers ?

Table 11: Common error classes of RGF-generated (q, c, a) triplets.
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