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Abstract

We develop a novel robust hate speech detec-
tion model that can defend against both word-
and character-level adversarial attacks. We
identify the essential factor that vanilla detec-
tion models are vulnerable to adversarial at-
tacks is the spurious correlation between cer-
tain target words in the text and the prediction
label. To mitigate such spurious correlation, we
describe the process of hate speech detection
by a causal graph. Then, we employ the causal
strength to quantify the spurious correlation
and formulate a regularized entropy loss func-
tion. We show that our method generalizes the
backdoor adjustment technique in causal infer-
ence. Finally, the empirical evaluation shows
the efficacy of our method. 1,

1 Introduction

Online social media bring people together and en-
courage people to share their thoughts freely. How-
ever, it also allows some users to misuse the plat-
forms to promote the hateful language. As a result,
hate speech, which “expresses hate or encourages
violence towards a person or group based on char-
acteristics such as race, religion, sex, or sexual ori-
entation”2, unfortunately becomes a common phe-
nomenon on online social media. As a result, many
online social media platforms such as Facebook
and Twitter have policies prohibiting hate speech
on their platforms. In order to prevent the spread
of hate speech, programs have been deployed to
automatically filter out hateful contents. However,
in response to these programs, malicious users de-
velop various approaches to evade detection, mak-
ing hate speech very difficult to be detected by
vanilla machine learning approaches. One of the
common strategy is to deliberately revising texts,
especially misspelling hate words, while preserving

1Code is available at: https://github.com/zthsk/CEBERT
2https://dictionary.cambridge.org/dictionary/english/

hate-speech

the intended meaning, such as typing the f-word as
“fxxk”. Some malicious users also replace racial
slurs with other names, such as technology brands
or products, to evade detection. Such strategy can
be treated as the evasion attacks in the field of the
adversarial attacks, where the adversary aims to
evade detection by revising the malicious samples
(Sun et al., 2020).

Research on defending against adversarial at-
tacks in the text domain has been received signifi-
cant attention in recent years (Wang et al., 2021a;
Xu et al., 2020). However, how to make the hate
speech detection model robust to malicious users
is still under studied. Many existing adversarial
defense methods assume that attackers replace the
words in the original text by their synonyms in or-
der to preserve semantic similarity (e.g., (Si et al.,
2020; Ye et al., 2020)). However, in practice the
malicious users may use the words with different se-
mantic meanings for the word substitutions. For ex-
ample, in the coded hate speech, the word “Google”
may be used to represent “African-American” and
“Skittles” may be used to indicate Muslim (Magu
et al., 2017; Xu et al., 2022).

In this paper, we develop a novel robust hate
speech detection model. We target the situation
where a group of target words could be replaced
with any words even with entire different seman-
tic meanings. We identify the essential factor to
defend such attacks as to capture the causation be-
tween the semantic meaning of input text and the
label and remove the spurious correlation between
them. To this end, we use causal graphs (Pearl,
2009) to describe the causal relationship among the
semantic meaning of input text, the target words,
and the label. The impact of the adversarial attack
is modeled as the causal strength of the arrow be-
tween the target words and the label in the graph.
We then formulate the learning problem by integrat-
ing the causal strength into a regularized entropy
loss. Finally, we analyze the objective function and

https://github.com/zthsk/CEBERT
https://dictionary.cambridge.org/dictionary/english/hate-speech
https://dictionary.cambridge.org/dictionary/english/hate-speech
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show that it generalizes the backdoor adjustment
which is a technique widely used for removing spu-
rious correlation in machine learning. The empir-
ical evaluation shows that our method can defend
against both word- and character-level attacks.
Related Work. Hate speech detection as a super-
vised text classification task has attracted a lot of at-
tention in the natural language processing commu-
nity (Badjatiya et al., 2017; Schmidt and Wiegand,
2017; Fortuna and Nunes, 2018; Rajamanickam
et al., 2020; Tran et al., 2020; Mou et al., 2020).
Vanilla hate speech detection techniques are vul-
nerable to adversarial attacks. Thus, several frame-
works are proposed to achieve robustness on vari-
ous adversarial attacks (Wang et al., 2021b) such
as adversarial data augmentation (Si et al., 2020;
Jin et al., 2020), adversarial training (Li and Qiu,
2020; Morris et al., 2020), and certified defenses
(Ye et al., 2020; Zeng et al., 2021). Different from
above works, we propose a causal graph-guided
models and employ the causal strength to measure
the impact of adversarial attacks. To the best of
our knowledge, this is the first work that leverage
causal modeling to tackle the challenge of adver-
sarial attacks on hate speech detection.

2 Method

A hate speech detection model can be defined as a
functional mapping from T to Y , where t ∈ T is a
set of input texts and y ∈ Y is the target label set.
In general, the output of the detection model is the
softmax probability of predicting each class k, i.e.,
fk(t; θ) = P (Y = yk|t), where θ is the parame-
ters of the model. We presume a given group of
target words (usually hateful or sentiment words)
denoted by H , and use X to indicate the remaining
text excluding the words in H , i.e., T = ⟨X,H⟩.
Adversarial examples are inputs to detection mod-
els with perturbations on H that purposely cause
the model make mistakes.

2.1 Causal Graph for Hate Speech Detection

Causal graphs are widely used for representing
causal relationships among variables (Pearl, 2009).
A causal graph is a directed acyclic graph (DAG)
G = {V, E}, where V denotes a set of variables,
and E indicates causal relationships.

We propose a causal graph for modeling the hate
speech detection shown in Fig. 1. In this graph, in
addition to X,H, Y , we also use I to indicate the
hate intent from a user. As we cannot know the real

Figure 1: The causal graph for hate speech detection.

intent of the user, we treat I as a hidden variable
indicated by the dash circle. The causal graph can
be explained as follows: if the user tends to share
hateful content, he/she chooses the target words
(which may be perturbed later) while expressing
the hateful meaning in the rest part of the text. As a
result, I is the parent of H and X , which are in turn
the parents of Y . For example, given a text T , e.g.,
“We don’t want more [religious group] in this coun-
try. Enough is enough with those MAGGOTS.”, H
is the word “MAGGOTS" while X indicates the
remaining text.

Based on the causal graph, we identify one major
reason that vanilla detection models are not robust
to adversarial attacks: the detection models make
predictions based on both the semantic meanings
of texts and the spurious correlation between X
and Y via H (i.e., X ← I → H → Y ) that signifi-
cantly relates to the occurrence of the target words.
When the target works, like the f-word, are strongly
correlated with the hate label in the training dataset,
the model trained on such data may easily make
predictions based on the occurrence of the target
words without considering the meanings of entire
texts. Therefore, once the adversarial attacks that
remove such correlations are conducted, the detec-
tion model is easy to be fooled.

2.2 Causal Strength for Measuring Spurious
Correlation

In order to make the detection model robust to any
perturbation, one needs to prevent the model from
learning the spurious correlation. To this end, we
propose to penalize the causal influence of H on Y
during the training so that the spurious correlation
can be blocked. Inferring causal influences of in-
put on predictions is a challenging task in machine
learning. In this paper, we advocate the use of the
causal strength proposed in (Janzing et al., 2013),
the idea of which is to measure the impact of an in-
tervention that removes certain arrows in the causal
graph. This definition naturally aligns with our
context where we want to measure the impact of
removing the correlation between the target words
and the hate labels by modifying the target words,
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i.e., the causal strength of the arrow H → Y .
Symbolically, denote the causal strength of H →

Y by CH→Y . Quantifying CH→Y requires to con-
sider the conditional distribution of Y should we
cut the arrow H → Y . This distribution, which
is referred to as the “post-cutting” distribution in
(Janzing et al., 2013), is given by

PH→Y (y|x) =
∑
h′∈H

P (y|x, h′)P (h′). (1)

Denote by P and PH→Y the factual joint distribu-
tion and the “post-cutting” joint distribution respec-
tively. Then, the causal strength CH→Y is given
by the Kullback–Leibler divergence D[P ||PH→Y ],
i.e., CH→Y =

D[P ||PH→Y ] = D[P (Y |X,H)||PH→Y (Y |X)]

=
∑
x,h,y

P (x, h, y) log
P (y|x, h)∑

h′ P (y|x, h′)P (h′)
,

(2)

where the second equality is due to factorization.

2.3 Problem Formulation
Since the causal strength measures the influence of
the word substitution, our problem becomes to pe-
nalize the causal strength in the training. In order to
integrate the causal strength into the objective func-
tion, we rewrite Eq. (2) according to the quotient
rule for logarithms as follows.

CH→Y =
∑
x,h,y

P (x, h, y) logP (y|x, h)

−
∑
x,h,y

P (x, h, y) log
∑
h′

P (y|x, h′)P (h′).
(3)

For the first term of Eq. (3), note that if we replace
P (y|x, h) with the parameterized function of the
detection model and estimate P (x, h, y) with the
empirical distribution from the data, it can be refor-
mulated as the same form as the cross-entropy loss
with the reversed sign. We denote it by −LCE , i.e.,

−LCE =
1

N

∑
j

∑
k

y
(j)
k log fk(t

(j)),

where N is the number of text in the data, j indi-
cates the j-th text, and k is the class index. We
similarly reformulate the second term of Eq. (3),
denoted by LI , i.e.,

LI = − 1

N

∑
j

∑
k

y
(j)
k log

∑
h′

fk(t
(j))P (h′).

Finally, by adding the causal strength as a regular-
ization term into the cross-entropy loss, we obtain
the regularized cross-entropy loss as follows.

L = LCE + λCH→Y = (1− λ)LCE + λLI , (4)

where λ ∈ [0, 1] is the coefficient for balancing the
model utility and the model robustness.

2.4 Connection to Backdoor Adjustment
We further analyze the meaning of the term LI
in Eq. (4). As mentioned earlier, the reason that
causes the traditional detection model to be vulnera-
ble to adversarial attacks is the spurious correlation
between X and Y . The backdoor adjustment is a
classic technique for removing the spurious corre-
lation (Pearl, 2009). It has been applied to various
tasks like image captioning (Yang et al., 2021) and
question answering (Qi et al., 2020) to improve the
model robustness. In our context, this idea means
to use the interventional distribution P (Y |do(X))
instead of the actual distributions P (Y |X,H) or
P (Y |X) for predicting the label, where do(·) is
the do-operator (Pearl, 2009) in Pearl’s structural
causal model that performs an intervention on the
input variable (i.e., X in our case).

By applying the backdoor adjustment based on
the causal graph Fig. 1, the interventional distribu-
tion P (Y |do(X)) is computed as

P (y|do(x)) =
∑
h′,i

P (i)P (h′|i)P (y|x, h′)

=
∑
h′

P (h′)P (y|x, h′).
(5)

Comparing Eqs. (1) and (5), we see an expected
coincidence in the two formulas. This is because
both the “arrow cutting” and the backdoor adjust-
ment break the path X ← I → H → Y . The is-
sue of directly using the interventional distribution
P (Y |do(X)) for the prediction is that the model
utility depends on how close P (Y |do(X)) is to the
actual distribution, which cannot be controlled by
the user. Thus, our loss formulation Eq. (4) can
be considered as a generalization to the backdoor
adjustment-based approaches, which is grounded
on the causal strength theorem.

2.5 Practical Considerations
In Eq. (1), there is a summation over all the pos-
sible target words. Since target words are usually
sentiment words, in this paper we propose to build
a sentiment lexicon that includes the commonly
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Model Clean Dataset
Accuracy Precision Recall Pos. Class F1 Macro F1

BERT Base 0.909±0.002 0.945±0.002 0.944±0.003 0.945±0.001 0.840±0.000
hateBERT 0.910±0.001 0.948±0.001 0.942±0.001 0.945±0.001 0.846±0.005

RANMASK 0.908±0.006 0.923±0.046 0.945±0.011 0.944±0.003 0.840±0.016
TAVAT 0.916±0.002 0.966±0.006 0.931±0.007 0.948±0.001 0.864±0.005

MIXADA 0.912±0.003 0.954±0.009 0.939±0.008 0.946±0.002 0.854±0.009
CEBERT 0.876±0.002 0.915±0.002 0.936±0.002 0.925±0.001 0.774±0.005

Table 1: Results on the clean test dataset.

Model Replaced Dataset
Accuracy Precision Recall Pos. Class F1 Macro F1

BERT Base 0.696±0.004 0.887±0.004 0.723±0.007 0.797±0.003 0.596±0.005
hateBERT 0.703±0.009 0.895±0.004 0.724±0.010 0.801±0.007 0.606±0.011

RANMASK 0.698±0.027 0.882±0.011 0.733±0.047 0.800±0.025 0.592±0.016
TAVAT 0.676±0.038 0.902±0.007 0.682±0.057 0.775±0.036 0.594±0.024

MIXADA 0.696±0.022 0.895±0.007 0.716±0.035 0.795±0.020 0.604±0.015
CEBERT 0.859±0.002 0.909±0.001 0.922±0.002 0.915±0.001 0.750±0.000

Table 2: Results on the replaced test dataset.

Model Misspelled Dataset
Accuracy Precision Recall Pos. Class F1 Macro F1

BERT Base 0.732±0.005 0.924±0.005 0.729±0.019 0.802±0.038 0.654±0.005
hateBERT 0.737±0.031 0.939±0.003 0.728±0.038 0.820±0.026 0.666±0.027

RANMASK 0.723±0.034 0.925±0.019 0.726±0.056 0.811±0.031 0.642±0.023
TAVAT 0.727±0.039 0.948±0.012 0.709±0.060 0.810±0.036 0.660±0.027

MIXADA 0.726±0.007 0.938±0.007 0.716±0.015 0.812±0.007 0.656±0.005
CEBERT 0.860±0.002 0.909±0.002 0.922±0.004 0.916±0.001 0.752±0.004

Table 3: Results on the misspelled test dataset.

used sentiment words. Note that the words in the
lexicon do not need to be synonyms of particular
sentiment words and can include both hate and
non-hate words. In our experiments, we construct
the lexicon based on the hate word vocabulary pro-
vided by Ahn3 and the positive word vocabulary
provided by Parade4.

3 Empirical Evaluation

3.1 Experimental Setting
We first build a list L of target words based on
Ahn and Parade that contains 446 hate words and
126 non-hate words. We then randomly select m
words from the list as our sentiment lexicon H .
The default value of m is 16 in the experiments.

We curate a dataset by combining three dataset
that are frequently used for hate speech detection:
the OLID dataset (Zampieri et al., 2019), the White
Supremacy Forum (De Gibert et al., 2018), and the
AHSD dataset (Davidson et al., 2017). The com-
bined dataset is then pre-processed by removing
texts that do not contain any word in the list L. The
resulting dataset contains 27368 texts among which

3https://www.cs.cmu.edu/~biglou/resources/
4https://parade.com/1241177/marynliles/positive-words/

4818 texts are regular and 22550 texts are hate. It is
then randomly split into training and test set by the
ratio 4:1. Each experiment is repeated five times
using different random seeds.

We consider five baselines in the experiments:
the base BERT and HateBERT (Caselli et al., 2021)
are vanilla detection models; MixADA (Si et al.,
2021) is an adversarial data augmentation method;
TAVAT (Li and Qiu, 2021) is an adversarial train-
ing method; and RanMask (Zeng et al., 2021) is a
certified defense method.

To evaluate the robustness of all models, we
use three different versions of the test dataset: the
clean version, the word-level attack version where
each word from the texts present in the list L is
randomly replaced by one of the words in L, and
the character-level attack version where each word
in L is replaced by a misspelled version.

Our model uses the pre-trained BERT as the
base model which is then fine-tuned by minimizing
Eq. (4) on our training data. By default λ = 0.5.
The prior probability P (h′) for a target word h′ is
calculated by dividing the total occurrence of h′

in the training data by the total occurrence of all
the words in L in the training data. We refer to our

https://www.cs.cmu.edu/~biglou/resources/
https://parade.com/1241177/marynliles/positive-words/


55

Figure 2: Pos. class F1 versus λ in Eq. (4) on different
datasets.

model the CEBERT.

3.2 Experimental Results

Robust Hate Speech Detection. We first eval-
uate the performance of all models on three test
datasets in terms of accuracy, precision, recall and
F1 scores of the positive (i.e., hate) class as well
as the Macro F1. The mean and standard devi-
ation of five runs are shown in Table 1. As can
be seen, the base BERT model produces good ac-
curacy and F1 on the clean data but the worst re-
sults on the misspelled dataset. Other baselines
improve the performance on the perturbed datasets,
but the improvements are limited. CEBERT, on
the other hand, trades of the performance on the
clean data for the robustness and achieves the best
performance on the perturbed datasets with a large
margin compared with baselines.
Sensitivity Analysis. We also evaluate the influ-
ence of λ in Eq. (4) on CEBERT that balances
LCE and LI . We can observe from Fig. 2 that only
using the LI loss (λ = 1) to fine-tune the BERT
model can achieve the best performance on the per-
turbed datasets, but the performance on the clean
dataset becomes slightly worse. On the other hand,
a small value of λ in range between 0.1 and 0.2 can
produce a balanced performance.

4 Conclusions

We developed a robust hate speech detection model
by leveraging the causal inference to mitigate spuri-
ous correlations. The experiment results show that
our model can achieve better performance under
both word- and character-level attacks compared
with other baselines.

Acknowledgement

This work was supported in part by NSF 1946391.

Ethical Considerations

In this paper, we have improved the robustness
of hate speech detection. One limitation of our
proposed method is it assumes that we are given
a list of target words that could be manipulated.
If the list does not contain all target words, then
the performance of our method may be lower than
expected.

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta, and

Vasudeva Varma. 2017. Deep Learning for Hate
Speech Detection in Tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, WWW ’17 Companion, pages 759–760,
Republic and Canton of Geneva, CHE. International
World Wide Web Conferences Steering Committee.

Tommaso Caselli, Valerio Basile, Jelena Mitrović, and
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