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Abstract

Machine learning systems have shown impres-
sive performance across a range of natural lan-
guage tasks. However, it has been hypothesized
that these systems are prone to learning spuri-
ous correlations that may be present in the train-
ing data. Though these correlations will not im-
pact in-domain performance, they are unlikely
to generalize well to out-of-domain data, limit-
ing the applicability of systems. This work ex-
amines this phenomenon on text classification
tasks. Rather than artificially injecting features
into the data, we demonstrate that real spurious
correlations can be exploited by current state-
of-the-art deep-learning systems. Specifically,
we show that even when only ‘stop’ words are
available at the input stage, it is possible to pre-
dict the class significantly better than random.
Though it is shown that these stop words are
not required for good in-domain performance,
they can degrade the ability of the system to
generalize well to out-of-domain data 1.

1 Introduction

Machine learning systems have shown impressive
performance across a wide range of natural lan-
guage processing (NLP) tasks such as question-
answering, sentiment classification and summariza-
tion (Zhang et al., 2021; Sun et al., 2019; Agha-
janyan et al., 2020). Often these systems reach
or even exceed human performance (Bajaj et al.,
2022), which has led to increasing deployment
of these automatic systems in real-world applica-
tions. There is, however, a caveat to the superhu-
man claim: standard benchmarks (Rajpurkar et al.,
2016; Wang et al., 2018) often assume that the
training and evaluation data are drawn indepen-
dently and identically from the same underlying
distribution, an assumption that is rarely valid in

1GitHub Repository: https://github.com/
adianliusie/stopword-bias

the real world due to different deployment envi-
ronments and constantly evolving evaluation dis-
tributions (Quiñonero-Candela et al., 2008). High
performance on the in-domain test set demonstrates
that the system goes beyond memorization to suc-
cessfully handle unseen examples. However this
may only be true for a restricted domain, and hence
the model may not generalize well to examples out-
side the training domain (Hendrycks and Dietterich,
2019).

An obstacle for generalization of machine learn-
ing systems is caused by the presence of spurious
correlations. For example, in sentiment classifica-
tion there may be a bias in the training data such
that positive examples are longer than negative ex-
amples. In such scenarios, a model may use length
as a significant feature to classify, which is problem-
atic since length is ‘a spurious feature’ and should
not provide sentiment information. Although the
model may still have good performance on the in-
domain test set (where this bias holds), reliance
on this spurious feature may cost generalizability
for real world out-of-domain (OOD) settings as
it distracts the system from learning the true un-
derlying ‘core’ features of the task (Lapuschkin
et al., 2019). Biases have been studied in literature,
where the focus is primarily on ensuring models
don’t use sensitive properties such as gender and
race (Blodgett et al., 2020). In this work we are in-
stead concerned with biases to other less sensitive
spurious correlations.

Spurious correlations have been explored in
NLP (Eisenstein, 2022). Many ‘shortcuts’ (spu-
rious features with high in-domian correlation,
Geirhos et al. (2020)) have been found for many
NLP tasks: Lovering et al. (2021) show that NLP
models are prone to relying on spurious features
provided they are easy to extract, Cai et al. (2017)
show that neural models are able to complete sto-

https://github.com/adianliusie/stopword-bias
https://github.com/adianliusie/stopword-bias
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ries using only the final sentence, while Gururan-
gan et al. (2018) show that clues left in the hy-
pothesis are alone sufficient to achieve reasonable
natural language inference performance. It is fur-
ther shown that when such models are evaluated
on adversarial data sets where the spurious corre-
lations are eliminated (Zellers et al., 2019; Bhaga-
vatula et al., 2019; Hendrycks et al., 2021), model
performance drops drastically.

This work diverges from the standard setup, and
instead examines the susceptibility of models learn-
ing biases from innocuous, unimportant features.
In particular, we explore the predictive abilities
of ‘stop’ words such as ‘and’, ‘of’ and ‘the’ for a
range of varying text classification tasks. We fur-
ther explore whether models rely on such spurious
correlations and make biased decisions in OOD
settings.

2 Spurious correlations

Spurious features have no causal relationship with
the labels, but have strong correlations with the
labels within a specific domain. More precisely,
for input x and its corresponding label y, a model
M aims to approximate the underlying distribution
p(y|x) for all (x, y) ∈ D, where D is the entire
input-output space of the task. Typically, data is
sampled from a restricted domain, Da ⊂ D. Let
fs(·) denote a spurious feature extractor. Spurious
features can be used effectively for prediction in the
restricted domain Da (Equation 1), but they have
no causal link to the label in the general domain
(Equation 2) and so are ineffective for prediction.

p(y|fs(x)) ≈ p(y|x), (x, y) ∈ Da (1)

p(y|fs(x)) ≈ p(y), (x, y) ∈ D (2)

We focus on identifying real spurious features in
NLP tasks with significant correlations with the la-
bels. These spurious correlations will consequently
lead to biases in trained models, which though valid
in-domain, may compromise OOD performance
where the spurious correlations do not hold.

2.1 Shuffled stop words
We investigate the influence of stop words as real
spurious features. Stop words were chosen because
they mainly play a syntactic role in text and have
low information content, and so are unlikely to be
essential for text classification tasks. Also, due to
the high frequency of stop words in language, mod-
els are prone to picking up distributional biases.

Figure 1: Corruption process on an example.

We introduce the shuffled stop words (SSW)
evaluation setup where inputs are altered so that
systems are forced to make predictions using only
the stop words. Figure 1 outlines this process where
first the input text is filtered to only retain the stop
words2 and the remaining words are then randomly
shuffled to eliminate positional information. Hence,
from the human perspective, this representation
should have no causal relationship with the output
label and any predictive bias must be solely due to
the spurious features associated with the distribu-
tion of stop words.

2.2 Measuring stop word bias

We use the likelihood ratio as a statistical method
to identify the degree of stop word bias present in
a given binary classification corpus (where each
example is either positive or negative). Let S be
the set of all stop words. The distributions P (x)
and Q(x) each assign every stop word x ∈ S a
probability score proportional to the occurrences
of x in all the samples for the positive and neg-
ative classes respectively. For input text x with
words (x1, x2, . . . , xn), the log of the likelihood
likelihood ratio (Equation 3) can be used as a hand-
crafted feature f

(sw)
s (x) that is a proxy to measure

whether x uses stop words more associated with
the positive class than with the negative class.

f (sw)
s (x) = log

∏
i I(xi ∈ S)P (xi)∏
i I(xi ∈ S)Q(xi)

(3)

For a given dataset, to visualize the extent of a bias
for a defined feature, we propose using retention
plots. To generate retention plots, the feature score
for each example is first calculated (i.e. f (sw)

s (x))
and the examples are then sorted based on the score.
For a retention fraction of r, the plot displays the
fraction of total positive examples found when only
(100·r)% of examples with the lowest feature score

2Stop words are taken from NLTK: https://gist.
github.com/sebleier/554280.

https://gist.github.com/sebleier/554280
https://gist.github.com/sebleier/554280
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are retained. Therefore, if the defined feature is
completely independent of the labels, one would
expect the retention plot to be the straight line y =
r (no bias line). However if the chosen feature
orders the examples such that the two classes are
perfectly separable at a given threshold, then for a
balanced dataset there will be a flat line up to r=0.5
(as there are no positive examples), followed by a
steep increment since all the following examples
are positive (full bias line) e.g. Figure 2.

3 Experiments

3.1 Data

Data imdb rt twitter sst yelp boolq

train 20k 8530 16k 6920 448k 9426
val 5k 1066 2k 872 112k 3270
test 25k 1840 2k 1820 38k 3270

Table 1: Dataset splits’ sizes

We consider several binary text classification
tasks. IMDB (Maas et al., 2011), Rotten Tomatoes
(RT) (Pang and Lee, 2005) and the Stanford Sen-
timent Treebank v2 dataset (SST) (Socher et al.,
2013) are movie review datasets (positive/negative),
which are sourced from different movie review plat-
forms. Twitter’s Emotion dataset (Saravia et al.,
2018) categorizes tweets into one of six emotions,
which are mapped to either positive (love, joy and
surprise) or negative (fear, sadness and anger) to
ensure the task is binary. The Yelp dataset (Zhang
et al., 2015) consists of reviews from the Yelp plat-
form, where the scores of 1-5 stars are split into
positive (4,5) and negative (1,2) reviews. Finally,
BoolQ (Clark et al., 2019) is a reading compre-
hension dataset where each example is a triplet of
question, passage and answer (yes/no). Although
most datasets are naturally balanced, if necessary
the different dataset splits are filtered to be per-
fectly balanced. Table 1 gives the sizes of the train
and test splits of all the datasets after processing.

3.2 Setup

Since pre-trained transformers have ubiquitously
shown the best performance in NLP, we consider
the pre-trained BERT model as the baseline (Devlin
et al., 2019). We also consider a randomly initial-
ized transformer (RIT) model with a BERT-based
architecture to determine the impact of pre-training.
All results are reported using ensembles of three

models for each experiment 3.

3.3 Results

Figure 2: Retention plots for stop word bias.

We first investigate whether stop word biases
exist in text classification tasks, and if so, determine
the prevalence of the bias. For each corpora, the
log of the likelihood ratio (Equation 3) is calculated
over the training split, and the retention plots are
then plotted over the unseen test labels. Figure
2 shows the retention plots (described in Section
2.2) for various corpora, where for each corpus
the significant deviations from the no bias line
show that considerable correlations can be found
between stop words and the labels.

To quantify how much information lies in these
spurious features, we fine-tune a BERT model us-
ing only the shuffled stop words of the input text
(and also evaluate it in the SSW setting). We com-
pare this to the baseline, where BERT is fine-tuned
in the standard setting, and also to the log of the
likelihood ratio (LR) 4. The results presented in
Table 2 show that, surprisingly, stop words alone
can be used to achieve reasonable in-domain per-
formance across various text classification tasks.
For all considered tasks, performance of both SSW
and LR is significantly higher than the expected
random value of 50%, with SSW accuracy at even
77% and 69% for yelp and IMDB respectively.

Although we establish significant correlations ex-
ist between the stop words and labels, a more practi-
cal consideration is to determine whether these spu-
rious correlations impact model predictions. For
this, we focus on sentiment classification. To simu-
late distributional shift, we use IMDB as in-domain,

3Training details provided in Appendix A.
4If f (sw)

s (x) > 0 then x positive otherwise negative.
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(a) In-domain (b) Shifted domain (c) Out-of-domain

Figure 3: Ranked by spurious stop word distribution feature retention plots.

imdb rt twitter sst yelp boolq

stndrd 94.2 85.2 98.4 92.4 97.6 66.9
LR 64.3 60.4 58.2 62.4 70.4 57.5
SSW 68.7 60.5 57.8 60.3 77.3 63.1

Table 2: BERT model accuracy (%).

RT as the shifted-domain and Twitter as OOD5.

standard SSW
Model in shift out in shift out

BERT 94.2 82.1 71.2 57.7 53.7 50.0
RIT 88.2 73.7 59.1 60.0 57.3 50.5

Table 3: Accuracy (%), trained on IMDB (standard)
and evaluated in both the standard and SSW settings.

Table 3 displays model performance when
trained on the in-domain data and then evaluated
across the various domains. For standard evalua-
tion, we observe that pre-training leads to a perfor-
mance improvement of 6% and is more robust to
domain changes, with BERT dropping by 12.1% on
the shifted domain and 23.0% on the OOD, while
RIT drops by 14.5% and 29.1% respectively. The
same systems are evaluated using SSW evaluation.
We find that although the models were all trained
with full text inputs, when evaluated on the shuffled
stop words, the models all show 57%+ in-domain
performance, providing evidence that models iden-
tify spurious stop word correlations.

To determine whether models truly rely on spu-
rious features, we again generate retention plots.
The retention plot is computed using the likelihood
ratio (Equation 3) on the in-domain training set
such that, irrespective of the evaluation domain, ex-
amples are sorted based on the IMDB training stop
word distribution. To measure the models’ inherent
bias, we plot the retention curve with respect to the

5Equivalent results for Yelp & SST given in Appendix B.

different models’ predictions. That is, for a model’s
retention plot, an example is considered positive if
the model predicted the example was positive.

The OOD retention plot shows that models are
susceptible to learning the spurious in-domain stop
word correlations. The significant deviation of RIT
from the true labels shows that the model’s scores
are correlated with the in-domain stop word dis-
tribution, indicating the model has learned a stop
word bias. Note that BERT only shows a mild bias
to the stop words, which provides evidence that
pre-trained models are more robust to relying on
spurious features which may explain their better
OOD generalizability (Hendrycks et al., 2020).

4 Conclusions

This work investigates the influence of spurious
biases in standard text classification tasks. It is
established that the stop word distributions of the
positive and negative classes are substantially dif-
ferent, and this acts as a significant bias for sev-
eral tasks including sentiment classification and
question-answering. In particular, after corrupt-
ing an input example to only retain the shuffled
stop words, a standard transformer-based language
model achieves reasonable performance across
tasks despite no meaningful task-specific infor-
mation. It is further demonstrated that language
models pick up on the training data’s stop word
distribution bias. Though, the spurious bias does
not harm performance, when evaluated in-domain
we observe that a randomly initialized transformer
model maintains the spurious bias in OOD settings
too where the same stop word bias does not hold.
Hence, the learnt stop word bias from in-domain
influences the predictions of the model in OOD,
leading to performance degradation. Future work
will investigate post-processing techniques to miti-
gate such spurious biases in deployed systems.
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6 Limitations

This work reveals that systems tend to be biased to
stop-word distributions and this can contribute to
a lack of generalization in out of domain settings.
Nevertheless, this work is currently restricted to
the task of text classification. It would be useful to
investigate how stop word biases behave in other
tasks, such as entailment, machine reading compre-
hension and grammatical error detection. Future
work will also explore methods to correct for the
stop word bias.

7 Risks and Ethics

There are no known ethical concerns or risks asso-
ciated with the findings of this work.
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Appendix A Training Details

This section details the training regimes and hy-
perparameter tuning process for the BERT and
the randomly initialised transformer (RIT) mod-
els. The BERT pretrained language model is based
on BERT-base-uncased 6 with 110M parameters
per single model. An ensemble of 3 members is
trained for each task. All input samples were trun-
cated to 512 tokens. Grid search was performed
for hyperparamter tuning with the initial setting of
hyperparameter values motivated from the baseline
systems of . Besides the default values for the stan-
dard hyperparamters, grid search was performed
for the learning rate ∈ {1e−5, 2e−5, 5e−5} and the
batch size ∈ {4, 8, 16}. The final hyperparame-
ter settings included training for a maximum of 4
epochs with early-stopping on the validation split
at a learning rate of 1e−5 with a batch size of 8.
Equivalent hyperparamter settings were used for
RIT. Cross-entropy loss was used at training time
with models built using Titan RTX graphical pro-
cessing units with training time under 2 hours for
all datasets (except for Yelp which takes 4 hours).

Appendix B Extra Experiments

Experiments in the main paper, Section 3.3, exam-
ine the impact of stopword bias on models’ trained
in-domain on IMDB data and then evaluated out-
of-domain on the Twitter data. This section repeats
the same set of experiments, but instead uses the
Yelp dataset as in-domain and the SST-2 dataset
as an out of domain test set. Table B.1 presents
the performance of the BERT and RIT systems
evaluated in the standard and SSW settings.

standard SSW
Model in out in out

BERT 97.6 87.8 56.6 51.7
RIT 93.0 71.4 65.0 58.3

Table B.1: Accuracy (%), trained on Yelp (standard)
and evaluated in both the standard and SSW settings,
in-domain and out-of-domain (SST-2).

Next, to establish that performance degradation
out of domain can be attributed to some extent to
the stop word bias learnt by the models in-domain,
Figure B.1 presents the retention plots for the labels
and model predictions in and out of domain, using
the in-domain (Yelp) stop word likelihood feature

6Available at: https://huggingface.co/
bert-base-uncased.

(Equation 3) to rank examples for retention (as in
the main paper). As expected, the label plots show
that a bias exists in-domain but this specific bias no
longer holds out of domain. However, the model
predictions (especially the RIT model) deviate from
the unbiased label plot out of domain (Figure B.1b),
demonstrating that the models are influenced by the
bias they learnt on the in-domain training data.

(a) In-domain

(b) Out-of-domain

Figure B.1: Ranked by spurious stop word distribution
feature retention plots for Yelp in-domain and SST out-
of-domain

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased

