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Abstract

Authorship attribution is the task of identifying
the author of a given text. The key is finding
representations that can differentiate between
authors. Existing approaches typically use man-
ually designed features that capture a dataset’s
content and style, but these approaches are
dataset-dependent and yield inconsistent perfor-
mance across corpora. In this work, we propose
learning author-specific representations by fine-
tuning pre-trained generic language represen-
tations with a contrastive objective (Contra-X).
We show that Contra-X learns representations
that form highly separable clusters for different
authors. It advances the state-of-the-art on mul-
tiple human and machine authorship attribution
benchmarks, enabling improvements of up to
6.8% over cross-entropy fine-tuning. However,
we find that Contra-X improves overall accu-
racy at the cost of sacrificing performance for
some authors. Resolving this tension will be an
important direction for future work. To the best
of our knowledge, we are the first to integrate
contrastive learning with pre-trained language
model fine-tuning for authorship attribution.

1 Introduction

Authorship attribution (AA) is the task of identify-
ing the author of a given text. AA systems are com-
monly used to identify the authors of anonymous
email threats (Iqbal et al., 2010) and historical texts
(Mendenhall, 1887), and to detect plagiarism (Gol-
lub et al., 2013). With the rise of neural text gener-
ators that are able to create highly believable fake
news (Zellers et al., 2019), AA systems are also
increasingly employed in machine-generated-text
detection (Jawahar et al., 2020). When performed
on texts generated by human and machine writers,
AA can also act as a type of Turing Test for Natural
Language Generation (Uchendu et al., 2021, 2020).

∗Work done at the National University of Singapore.
Implementation and datasets are available at https://

github.com/BoAi01/Contra-X.git

(a) BERT (b) Contra-BERT

Figure 1: t-SNE visualization of the fine-tuned rep-
resentations (a: baseline; b: Contra-X). Each color
denotes one author in the Blog10 dataset. Our con-
trastive method effectively creates a tighter represen-
tation spread for each author and increased separation
between authors. Best viewed in color.

Traditional AA methods design features that
characterize texts based on their content or writ-
ing style (Jafariakinabad and Hua, 2019; Zhang
et al., 2018; Sapkota et al., 2015b; Sari et al., 2018).
However, the features useful for distinguishing au-
thors are often dataset-specific, yielding inconsis-
tent performance under varying conditions (Sari
et al., 2018). In contrast, learning features from
large corpora of data aims to produce general pre-
trained models (Devlin et al., 2018) that improve
performance on many core natural language pro-
cessing (NLP) tasks, including AA (Fabien et al.,
2020). However, it is unclear if basic fine-tuning
makes full use of the information in the training
data. We seek to augment the learning process.

Contrastive learning is a technique that pulls sim-
ilar samples close and pushes dissimilar samples
apart in the representation space (Gao et al., 2021).
It has proven useful in tasks that require distinguish-
ing subtle differences (Tian et al., 2020; Kawakami
et al., 2020). This makes it highly suited to en-
couraging the learning of distinct author subspaces.
However, no prior work has investigated its rele-
vance to the AA task. To this end, we seek to under-

https://github.com/BoAi01/Contra-X.git
https://github.com/BoAi01/Contra-X.git
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stand its impact on the learning of author-specific
features under the supervised learning paradigm.

To achieve this, we integrate CONTRAstive
learning with CROSS-entropy fine-tuning
(Contra-X) and demonstrate its efficacy via
evaluation on multiple AA datasets. Unlike
previous AA work, we evaluate the proposed
approach not only on human writing corpora
but also on machine-generated texts. There are
three major reasons. First, this can show that
our approach is generic to writer identity and
dataset composition. Second, performing AA on
human and machine authors reflects the increased
importance of identifying machine-generated text
sources. Third, this potentially reveals information
about how differently machines write compared
to humans. In addition, we study the performance
of our method under different data regimes. We
find Contra-X to consistently improve model
performance and yield distinct author subspaces.
Finally, we analyze the performance gains vis-à-vis
a number of AA-specific stylometric features.
To the best of our knowledge, we are the first to
incorporate contrastive learning into large language
model fine-tuning for authorship attribution.

2 Related Work

Authorship attribution. AA techniques fall un-
der two broad categories: feature-based and
learning-based approaches. The former involves
hand-crafting features relevant for identifying au-
thors (Sari et al., 2018); the latter exploits large-
scale pretraining to learn text representations.

We note that feature-based approaches are in-
vestigated in two streams of work. One stream
benchmarks on public datasets such as IMDb62
(Seroussi et al., 2014) and Blog (Schler et al.,
2006). The various features proposed include term
frequency-inverse document frequency (TF-IDF)
(Rahgouy et al., 2019a), letter and digit frequency
(Sari et al., 2018), and character n-grams (Sapkota
et al., 2015a). The other stream is the PAN shared
task of authorship identification. These methods
typically use multiple features such as n-grams
(Kestemont et al., 2019; Rahgouy et al., 2019b;
Bacciu et al., 2019; Gągała, 2018; Custódio and
Paraboni, 2018) in an ensemble. The two streams
share similar technical ideas and developments.

However, feature-based approaches require
dataset-specific engineering (Sari et al., 2018) and
their performance does not scale with more data

In contrast, learning-based approaches learn repre-
sentations completely from data. BertAA (Fabien
et al., 2020) shows that a simple fine-tuning of pre-
trained language models can outperform classical
approaches by a clear margin. However, purely
cross-entropy fine-tuning may not directly address
the challenge of learning distinctive representations
for different authors. Thus, we propose to incorpo-
rate contrastive learning, which explicitly enforces
distance constraints in the representation space.

Contrastive learning. Contrastive learning aims
to learn discriminative features by pulling semanti-
cally similar samples close and pushing dissimilar
samples apart. This encourages the learning of
highly separable features that can be easily oper-
ated on by a downstream classifier. Unsupervised
contrastive learning has been used to improve the
robustness and transferability of speech recogni-
tion (Kawakami et al., 2020) and to learn semanti-
cally meaningful sentence embeddings (Gao et al.,
2021). It has also been combined with supervised
learning for intent detection (Zhang et al., 2021),
punctuation restoration (Huang et al., 2021), ma-
chine translation (Gunel et al., 2021), and dialogue
summarization (Tang et al., 2021). However, to the
best of our knowledge, we are the first to study its
efficacy and limitations on authorship attribution.

Detection of machine-generated text. Modern
natural language generation (NLG) models can gen-
erate texts indistinguishable from human writings
(Brown et al., 2020; Zellers et al., 2019). With the
potential for malicious use such as creating fake
news (Solaiman et al., 2019), detecting machine-
generated text is increasingly important. This bi-
nary classification task can be extended to a multi-
class AA task including both humans and NLG
authors. This task can therefore identify not just
machine text but also its particular source. Further,
Uchendu et al. (2021) proposes that this serves as
a Turing Test to assess the quality of NLG models.
Hence, we evaluate our approach on both human
corpora and the human-machine dataset Turing-
Bench, and show that our approach is generic to
author identity and dataset composition.

3 Methodology

3.1 Problem formulation

Authorship attribution is a classification task where
the input is some text, t, and the target is the author,
a. Formally, given a corpus D, where each sample
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is a text-author pair ⟨t, a⟩, we aim to learn a pre-
dictor, p, that maximizes the prediction accuracy:

Acc = E
⟨t,a⟩∈D

1argmax(p(t))=a (1)

Conventionally, this is achieved by optimizing
a surrogate cross-entropy loss function via mini-
batch gradient descent. Assuming we have a mini-
batch containing N texts {ti}i=1:N and correspond-
ing authors {ai}i=1:N , the loss function is:

LCE = −
∑
i

ai log(p(t)ai) (2)

However, we hypothesize that LCE does not ade-
quately reflect the key challenge of the task, which
is to learn highly discriminative representations for
the input texts such that authorship can be clearly
identified. Thus, we propose to augment the loss
with a contrastive learning objective.

3.2 Contra-X for Authorship Attribution
We conjecture that the key to the authorship attri-
bution task is to learn highly author-specific repre-
sentations that capture each author’s characteristics.
Specifically, this requires representations to be sim-
ilar for samples from the same authors, but distinct
for samples from different authors. We adopt two
specific strategies to achieve this goal:

• Unlike most previous work that hand-crafts fea-
tures and then learns a predictor p from scratch,
we fine-tune the general representations acquired
from the large-scale unsupervised pre-training.
Specifically, we decompose p as p = ϕ◦h where
ϕ is the pre-trained language model and h is a
classifier layer. As shown by BertAA (Fabien
et al., 2020), the learned representation is a de-
cent starting point for the task.

• However, different from BertAA that fine-tunes
the model p = ϕ ◦ h with cross-entropy, we use
an additional contrastive objective to encourage
ϕ to capture the idiosyncrasies of each author.
We conjecture that this can better exploit the
information in the training data.

Intuitively, the contrastive loss encourages the
model to maximize the representational similarity
of texts written by the same author, i.e., positive
pairs, and minimize the representational similarity
of texts written by different authors, i.e., negative
pairs. Formally, given a mini-batch containing N
texts {ti}i=1:N and their authors {ai}i=1:N , we

feed them into a pre-trained language model ϕ to
obtain a batch of embeddings {ei}i=1:N , where
ei = ϕ(ti). Embeddings of two samples by the
same author ⟨ei, ej⟩ai=aj are a positive pair, and
embeddings of two samples by different authors
⟨ei, ej⟩ai ̸=aj are a negative pair. We construct a
similarity matrix S in which the entry (i, j) denotes
the pairwise similarity between ei and ej . Formally,

Si,j = cos(ei, ej) =
ei · ej

∥ei∥∥ej∥
(3)

To encourage the abovementioned pairwise con-
straints, we define the contrastive objective as:

LCL =−
∑
i

log(

∑
ai=aj

exp(cos(ei, ej)/τ)∑
k exp(cos(ei, ek)/τ)

)

=−
∑
i

log(

∑
ai=aj

exp(Si,j/τ)∑
k exp(Si,k/τ))

), (4)

where τ is the temperature. The loss could be
viewed as applied on a softmax distribution to max-
imize the probability that ei and ej come from a
positive pair, given ai = aj . However, it is differ-
ent from LCE in that it explicitly enforces pairwise
constraints in the representation space ϕ(·). During
training, we jointly optimize LCE and LCL:

L = LCE + λ · LCL, (5)

where λ is a balancing coefficient. This joint opti-
mization, Contra-X, improves upon LCE by min-
ing richer knowledge in the training data via encour-
aging meaningful pairwise relations in the repre-
sentation space ϕ(·). We conjecture that the model
learns discriminative features in alignment with the
classification objective. The effectiveness will be
empirically examined (Section 4 and Section 5)
and qualitatively analyzed (Section 6.2).

3.3 Implementation Details
We implement ϕ with two pre-trained transformer
encoders, BERT (Devlin et al., 2018) and De-
BERTa (He et al., 2021). BERT is a com-
monly used text classification baseline and De-
BERTa, its more recent counterpart. We use
the bert-base-cased and deberta-base
checkpoints from the transformers library
(Wolf et al., 2019). For all datasets, the input length
is set to 256 and the embedding length per token is
768. The transformer generates embeddings which
are then passed to the classifier h.
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Model Blog10 Blog50 IMDb62

Token SVM (Seroussi et al., 2014) - - 92.5
Char-CNN (Ruder et al., 2016) 61.2 49.4 91.7

Continuous N-gram (Sari et al., 2017) 61.3 52.8 95.1
N-gram CNN (Shrestha et al., 2017) 63.7 53.1 95.2

Syntax CNN (Zhang et al., 2018) 64.1 56.7 96.2
BertAA (Fabien et al., 2020) 65.4 59.7 93.0

BERT (our baseline) 60.4 55.2 97.2
Contra-BERT 66.3 (5.9↑) 62.0 (6.8↑) 97.9 (0.7↑)

DeBERTa (our baseline) 69.1 64.7 98.1
Contra-DeBERTa 69.7 (0.6↑) 68.4 (3.7↑) 98.2 (0.1↑)

Table 1: Results on human AA datasets, measured in accuracy.1 Results in top section are from their respective
papers. Improvements over the baselines are indicated in parentheses. The best model for each dataset is bolded.

We implement the classifier h as a 2-layer Multi-
Layer Perceptron (MLP) with a dropout of 0.35.
As described in Section 3.2, the final model p is a
composition of the pre-trained language model and
the MLP classifier, i.e., p = ϕ ◦ h.

In all experiments, we use the AdamW optimizer
(Loshchilov and Hutter, 2019) with an initial learn-
ing rate of 2e− 5 and a cosine learning rate sched-
ule (Loshchilov and Hutter, 2017). We train for 8
epochs with a batch size of 24. We set λ to 1.0 and
τ to 0.1. Training takes 2-12 hours depending on
the dataset size with 4 × RTX2080Ti. No model-
or dataset-specific tuning was done for fair compar-
ison and to show the robustness of the approach.

4 Human Authorship Attribution

We first investigate the impact of contrastive learn-
ing on models for human authorship attribution.

4.1 Experiment setup
Models. We experiment with four different mod-
els: two baselines BERT and DeBERTa, fine-tuned
with cross-entropy, and their Contra-X versions,
where X is the model name. These baselines allow
us to isolate the effect of the proposed contrastive
learning objective LCL.

Datasets. Following prior work (Ruder et al.,
2016; Zhang et al., 2018; Fabien et al., 2020),
we use the Blog (Schler et al., 2006) and IMDb
(Seroussi et al., 2014) corpora for evaluation. For
Blog, we take the top 10 and 50 authors with
the most entries to form the Blog10 and Blog50
datasets respectively. For IMDb, we take a stan-
dard subset of 62 authors (Seroussi et al., 2014)
(IMDb62). More details are in Appendix A.

Evaluation. Following standard evaluation proto-
col, we divide each dataset into train/validation/test
splits with an 8:1:1 ratio, and report the test split
results here. Hyperparameter tuning, if any, is per-
formed on the validation set. For easy comparison,
we also present results on the 8:2 train/test splits
used by Fabien et al. (2020) in Appendix B. We do
not observe any significant differences.

4.2 Results

From Table 1, we observe that the inclusion of con-
trastive learning improves the baseline performance
across the board, allowing us to beat the previous
state-of-the-art on all human AA datasets. We ob-
serve that the largest performance improvements
come from Blog10 and Blog50 datasets where there
is substantial room for progress, i.e., up to 6.8%
for BERT and 3.7% for DeBERTa. In contrast, the
performance gains on IMDb62 are marginal due
to diminishing returns, with the baseline models
already achieving close to 100% accuracy. These
results suggest that contrastive learning is empir-
ically useful for fine-tuning pre-trained language
models on the authorship attribution task, when
the baseline performance is not approaching an
asymptotic maximum.

5 Synthetic Text Authorship Attribution

We investigate our proposed models on AA datasets
with machine-generated text. This is to show how
our method performs consistently across different
dataset qualities and writers. Performing AA on
human and machine authors together also reflects
the increased importance of identifying machine-
generated text sources.
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5.1 Experimental Setup
Models. We test the same four models from
Section 4: BERT, Contra-BERT, DeBERTa, and
Contra-DeBERTa.

Dataset. We use the TuringBench dataset
(Uchendu et al., 2021). This corpus contains
200,000 news articles from 20 authors, i.e., one
human and 19 neural language generators (NLGs).
The same set of article prompts is used for all au-
thors to eliminate topical differences. The task
objective is to attribute each text to one of the 20
writers. Note that this task implicitly encompasses
the simpler binary classification task of machine
text detection, where the 19 NLGs are treated as
one machine writer. Additional dataset statistics
are available in Appendix A.

Evaluation. We use the 7:1:2 train/validation/test
splits provided by Uchendu et al. (2021) and report
the results on the test set.

5.2 Results
Table 2 shows the results of the synthetic author-
ship attribution benchmark.2 Contrastive learning
provides a small improvement in accuracy over
the baseline models, in particular allowing Contra-
DeBERTa to set a new state-of-art. These results
suggest that the use of general language represen-
tations and contrastive learning is generalizable to
synthetic authorship attribution.

6 Discussion

In this section, we study the following questions:

• How does data availability affect the perfor-
mance with and without contrastive learning?

• How does contrastive learning qualitatively af-
fect the representations learned?

• When does Contra-X succeed and fail?

6.1 Performance vs. Dataset Size
Due to the often-adversarial nature of real-world
AA problems, the availability of appropriate data is
a concern. Therefore, it is important to examine the
impact of data availability on potential AA systems.
To do this, we construct 4 subsets of the Blog10,
Blog50, and TuringBench datasets with stratified

2Results of previous methods are from TuringBench
(Uchendu et al., 2021). For consistency, we report results
to 2 decimal places. For full results for other metrics, i.e.,
precision, recall, and F1-score, see Appendix F.

Model TuringBench

Random Forest 61.47
SVM (3-grams) 72.99
WriteprintsRFC 49.43
OpenAI Detector 78.73

Syntax CNN 66.13
N-gram CNN 69.14

N-gram LSTM-LSTM 68.98
BertAA 78.12
BERT 80.78

RoBERTa 81.73

BERT (our baseline) 79.46
Contra-BERT 80.59 (1.13↑)

DeBERTa (our baseline) 82.00
Contra-DeBERTa 82.53 (0.53↑)

Table 2: Results on human and machine authorship at-
tribution (accuracy). Results in the top section are from
Uchendu et al. (2021). Improvements over baselines are
indicated in parentheses. Best model is bolded.

Figure 2: Comparison of performance between BERT
and Contra-BERT under different data regimes.

sampling by author. Each subset is 25%, 50%,
75%, and 100% the size of the original dataset. We
use the same setup as in Section 4.1 to train BERT
and Contra-BERT on each subset.

Figure 2 plots accuracy vs. dataset size to illus-
trate the performance under different dataset sizes.
On Blog10, Contra-BERT maintains a surprisingly
consistent level of accuracy while BERT suffers
significant degradation in performance as data de-
creases. On Blog50, Contra-BERT shows more
substantial performance gains compared to BERT
as the dataset size increases. We hypothesize that
the task is intrinsically harder due to the larger
number of authors, requiring a larger amount of
data to learn well. Even so, Contra-X improves
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the performance of both BERT and DeBERTa by
6.8% and 3.7%, respectively, on the full dataset.
On TuringBench, the difference in accuracy is less
obvious, although Contra-BERT maintains the ad-
vantage. A possible explanation is that even the
smaller subsets are sufficiently large.

From the above statistics, we notice consistent
improvements across different data regimes. A pos-
sible explanation is that the contrastive objective
explicitly encourages the model to focus on inter-
author differences as opposed to irrelevant features.

6.2 Qualitative Representational Differences

Next, we visualize the learned representations to
understand the qualitative effect of the contrastive
learning objective. We embed the test samples from
the Blog50 dataset and visualize the result using
t-SNE (van der Maaten and Hinton, 2008).

Qualitatively, it is clear that Contra-BERT pro-
duces more distinct and tighter clusters compared
to BERT (Figure 1). Since LCL is the only inde-
pendent variable in the experiment, differences in
representation can be attributed to the contrastive
objective. The improvement is expected, because
the objective LCL explicitly encourages the repre-
sentation to be similar for intra-author samples (i.e.,
tight clusters) and different for inter-author sam-
ples (i.e., larger distance between clusters). This
supports our conjecture in Section 3.2.

However, we observe that some clusters still
overlap and are inseparable by t-SNE. This sug-
gests that the model still faces some difficulty in
distinguishing between specific authors.

6.3 When Does Contra-X Succeed and Fail?

To understand the conditions in which Contra-X
succeeds and fails, we follow Sari et al. (2018)
and extract 4 stylometric features from the dataset:
topic, style, content, and hybrid features. Detailed
descriptions for each feature are in Appendix C.
For this set of features, F , the corresponding fea-
ture extractors are ϕf , f ∈ F . We can then rep-
resent each author, Ai, with a feature. Given an
author Ai with N documents {ti}i=1:N , we define
the representation of Ai to be the mean of the vec-
tor representations of the N documents:

vfAi
=

1

N

N∑
i=1

ϕf (ti). (6)

We analyze the relationship between model per-
formance and dataset characteristics below. We

exclude IMDb62 from this analysis since the max-
imum margin for improvement on the dataset is
too small (< 3%). Performing analysis on these
datasets may introduce confounding factors.

Dataset-level analysis. Here, we wish to quan-
tify the difficulty of distinguishing any two au-
thors in each dataset and compare them against
performance improvements. We define the inter-
author dissimilarity of a dataset D in a feature space
f ∈ F to be the mean pairwise difference across
all author pairs ⟨Ai, Aj⟩ measured by the feature
f :

vfD =
1

|A|2
∑

Ai,Aj∈D
d(vfAi

, vfAj
), (7)

where d is a distance metric for a pair of vectors:

d(vfAi
, vfAj

) =

{
JSD(vfAi

, vfAj
) iff = topic

1− cos(vfAi
, vfAj

) otherwise.
(8)

where JSD is the Jenson-Shannon Divergence
(Nathanson, 2013) and cos is the cosine similarity.
The lower the value, the harder it is to distinguish
the authors in a dataset in the corresponding feature
space, on average.

From Table 3, we observe that Blog50 has
both the highest degree of topical similarity and
the largest improvement from contrastive learning,
while TuringBench has the least topical similar-
ity and also the least improvement. This suggests
that Contra-X is robust to authors of similar topics.
On the other hand, the opposite is true for content
similarity: TuringBench has the highest content
similarity and yet the least improvement.

Inadequacy of NLG models? We also note the
high topical dissimilarity of TuringBench. This
is unexpected since this corpus is generated by
querying each NLG model with the same set of
titles as prompts (Section 5.1). Following Sari et al.
(2018), we model topical similarity using Latent
Dirichlet Allocation (LDA; Blei et al., 2003). LDA
represents a text as a distribution over latent topics,
where each topic is represented as a distribution
over words. This observation suggests that some
NLG models may struggle to write on topic.3

Author-level analysis. Next, we analyze how au-
thor characteristics affect the model performance

3See Appendix D for a brief analysis.



1148

Feature Type Performance Improvement (Acc.)
Dataset Content Style Hybrid Topic BERT DeBERTa

Blog10 0.82472 0.33766 0.59218 0.85465 5.9 0.6
Blog50 1.0000 1.0000 1.0000 0.81145 6.8 3.7

TuringBench 0.60842 0.56926 0.91988 1.0000 1.13 0.53

Table 3: Inter-author difference on different feature metrics (improvements from each contrastive model listed for
reference). The smaller the value, the higher the similarity measured by that feature. For consistency, each column
is linearly scaled such that the maximum is 1. The smallest value for each feature is bolded.

on these authors. Specifically, we examine the cor-
relation between the similarity of specific authors
and how well the models distinguish between them.
We define the distance between two authors to be
the mean distance across all representation spaces:

PD(Ai, Aj) =
1

|F|
∑
f∈F

1

Cf
d(vfAi

, vfAj
), (9)

where Cf is a normalization term, defined as

Cf = max
Ai,Aj∈D

d(vfAi
, vfAj

). (10)

We plot the similarity matrix for selected Blog50
authors in Figure 3a. The authors are selected such
that they form pairs that are highly indistinguish-
able by the above metrics. The cells numbered
1-4 represent the most similar author pairs (i.e.,
darker-colored cells). Performance-wise, on each
of these pairs, Contra-BERT shows significant im-
provements in overall class-level accuracy over
BERT.4 This is consistent with the intuition that
contrastive learning is more useful for distinguish-
ing author pairs that are more similar.

Increased bias. The pairwise improvement men-
tioned above shows a curious property of being
biased towards one of the authors in the pair. To
visualize this, we subtract the confusion matrix of
BERT from that of Contra-BERT and name the re-
sult the relative confusion matrix (Figure 3b). Each
cell in the matrix indicates the increase in the prob-
ability that an author Ai is classified as Aj from
BERT to Contra-BERT. For example, the blue cell
at (12, 43) shows that Contra-BERT confused A12

as A43 less than BERT, while the orange cell at
(43, 12) shows that Contra-BERT confused A43 as
A12 more frequently.

Note first the intuitive link between the similarity
and confusion matrices: similar authors are more

4See Appendix E.1 for exact values. This trend also holds
for Contra-DeBERTa and DeBERTa; see Appendix E.2.

(a) Feature dissimilarity matrix. Darker is more similar.

(b) Relative confusion matrix. This is obtained by subtracting
the confusion matrix of BERT from that of Contra-BERT.

Figure 3: Feature similarity matrix and relative confu-
sion matrix between BERT and Contra-BERT on se-
lected authors. In both figures, (i, j) denotes the cell at
the i-indexed row and j-indexed column. In (a), (i, j)
denotes d(Ai, Aj), the feature dissimilarity between the
two authors. In (b), a lower value (blue) of (i, j) indi-
cates Contra-BERT confused Ai for Aj less than BERT.

likely to be confused by one of the models for each
other. Observe also that the pairs in the confusion
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matrix are always present in light-dark pairs. In
other words, if BERT misclassifies more samples
from Ai as Aj (e.g., A12 as A43), then Contra-
BERT mislabels more samples from Aj as Ai (i.e.,
A43 as A12). This suggests that as Contra-BERT
learns to classify samples from Ai better, it sacri-
fices the ability to identify Aj samples. Note that
although this sometimes stems from training on an
imbalanced dataset, in our case, Ai and Aj contain
similar numbers of samples.5 Thus, the observation
is unlikely to be due to class imbalance.

Nevertheless, the cumulative accuracy across Ai

and Aj is always higher for Contra-BERT com-
pared to the baseline, e.g., 33.6% vs 23.1% for A12

and A43 combined, leading to an overall perfor-
mance improvement on the whole dataset. This
shows that the model implicitly learns to make
trade-offs to optimize the contrastive objective, i.e.,
it chooses to learn specialized representations that
are particularly biased against some authors but
improve the average performance over all authors.
This shows that Contra-X captures certain features
that enable the model to distinguish a subset of the
authors. However, to obtain consistent improve-
ment, we need a deeper understanding of the dif-
ference between easily-confused authors and in-
corporate that insight into the contrastive learning
algorithm (Wolpert and Macready, 1997). This can
be potentially achieved by constructing more mean-
ingful negative samples. However, this is beyond
the scope of our paper and is left to future work.

6.4 Potential Ethical Concerns
In this subsection, we discuss potential ethical con-
cerns related to the previous discussion on the in-
creased bias in author-level performance.

Decreased fairness? With classification models,
fairness in predictions across classes is an impor-
tant consideration. We want to, for instance, avoid
demographic bias (Hardt et al., 2016), which may
manifest as systematic misclassifications of authors
with specific sociolinguistic backgrounds.

Having observed increased bias against certain
authors, we seek to find out if this trend holds
across the entire dataset. We quantitatively eval-
uate this by computing the variance in class-level
accuracy across all authors. The results show that
the improvements from our contrastive learning ob-
jective appear to incur a penalty in between-author
fairness. Contra-BERT on Blog10 and Blog50,

5See Appendix E.1 for exact sample counts.

and Contra-DeBERTa on Blog50 achieve substan-
tial gains in accuracy, and also produce notably
higher variance than their baseline counterparts.6

In contrast, for models where the improvements are
marginal, the differences in variance are insignif-
icant. A potential direction for future work is in-
vestigating whether the use of contrastive learning
consistently exacerbates variances in class-level ac-
curacy. Studying the characteristics of the classes
that the model is biased against may boost not just
overall performance, but also predictive fairness.

7 Conclusion

Successful authorship attribution necessitates the
modeling of author-specific characteristics and id-
iosyncrasies. In this work, we made the first at-
tempt to integrate contrastive learning with pre-
trained language model fine-tuning on the author-
ship attribution task. We jointly optimized the
contrastive objective and the cross-entropy loss,
demonstrating improvements in performance on
both human-written and machine-generated texts.
We also showed our method is robust to dataset
sizes and consistently improves upon cross-entropy
fine-tuning under different data regimes. Critically,
we contributed analyses of how and when Contra-
X works in the context of the AA task. At the
dataset level, we showed qualitatively that Contra-
X creates a tighter representation spread of each
author and increased separation between authors.
Within each dataset, at the author level, we found
that Contra-X is able to distinguish between highly
similar author pairs at the cost of hurting its perfor-
mance on other authors. This points to a potential
direction for future work, as resolving it would
lead to better overall improvement and increased
fairness of the final representation.
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A Dataset Statistics

Table 4 presents statistics of the Blog10, Blog50,
IMDb62, and Enron100 datasets.

B Human Authorship Attribution Results
with 8:2 Split

Following Fabien et al. (2020), we divide the
datasets into train-test splits at an 8:2 ratio for
Blog10, Blog50, and IMDb62 and follow the de-
fault split for TuringBench. We show the results on
the test set in Table 5.

C Similarity Metrics

Following Sari et al. (2018), we use four key met-
rics to analyze the characteristics of individual
datasets (i.e., samples written by a particular au-
thor, or all samples in a corpus). We describe these
metrics in detail below:

Content. We measure the frequencies of the
most common word unigrams, bigrams, and tri-
grams to produce a feature vector that represents an
author’s content preferences over each document.

Style. We combine multiple stylometric features,
i.e., average word length, number of short words,
percentage of digits, percentage of upper-case let-
ters, letter frequency, digit frequency, vocabulary
richness, and frequencies of function words and
punctuation, into a feature vector representing an
author’s writing style in a given document.

Hybrid. We measure the frequencies of the most
common character bigrams and trigrams, to capture
both content and style preferences of the author
(Sapkota et al., 2015a) in a given document.

Topic. We use Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) to generate a probability
distribution over an author’s possible topics. We
run LDA with 20 topics, as in Sari et al. (2018),
and fit the data over 500 iterations.

D TuringBench Dataset Analysis

Closer examination of the TuringBench dataset re-
veals that some models appear to produce fairly
incoherent text. Table 6 contains snippets from var-
ious models. Qualitatively, it is difficult to identify
what the topic of each text is supposed to be; there
appear to be multiple topics referenced in each text.
This suggests that some of these models do not
write on-topic, and consequently may explain why
LDA reflects a high degree of topical dissimilarity
between models.

On the other hand, at the phrase level, these mod-
els largely put out sensible phrases, e.g., “strong
economic growth”, “stunning game”, “suspicious
clicks”. We hypothesize that this is why the content
similarity on TuringBench is comparatively higher,
since the content metric measures word n-gram
frequencies.

E Analysis of Similar Author Pairs

E.1 BERT and Contra-BERT
Figure 4 shows the individual similarity matrices
for the four feature types. The general pattern of
the highlighted pairs being darker (i.e., more simi-
lar) than their surrounding cells can be seen across
all the matrices. Table 8 shows the exact predic-
tion accuracies for the four highlighted pairs. As
noted previously, Contra-BERT always achieves a
higher total accuracy (defined as total correct pre-
dictions over total samples) over both authors in a
pair compared to BERT.

E.2 DeBERTa and Contra-DeBERTa
Figure 5 shows the feature similarity matrices and
the relative confusion matrix for selected authors
for DeBERTa and Contra-DeBERTa. Note that
some of the author pairs are the same as those
shown for BERT (i.e., 6 & 44, 38 & 39) while
other pairs are different. Similar to Figure 3(b),
the colour of a given cell (i, j), i ̸= j, indicates
whether Contra-DeBERTa confused Ai for Aj

more or less often than DeBERTa. For instance, the
blue-coloured (1, 15) shows that Contra-DeBERTa
confused A1 as A15 less than DeBERTa, while the
orange (15, 1) shows that Contra-DeBERTa con-
fused A15 as A1 more times.

Table 9 shows the exact prediction accuracies
for the highlighted pairs. As with Contra-BERT,
Contra-DeBERTa achieves a higher total accuracy
on each pair than DeBERTa.

F Full TuringBench results

Table 7 shows the precision, recall, F1, and accu-
racy scores on TuringBench.

G Class-Level Accuracy Variance

Table 10 shows the exact class-level accuracy vari-
ances for our four models on Blog10, Blog50, and
TuringBench.
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Blog10 Blog50 IMDb62 TuringBench

# authors 10 50 62 20
# total documents 23498 73275 61973 149561

avg char / doc (no whitespace) 407 439 1401 1063
avg words / doc 118 124 341 188

Table 4: Statistics of the four datasets used in our experiments.

Model Blog10 Blog50 IMDb62

Token SVM (Seroussi et al., 2014) - - 92.5
Char-CNN (Ruder et al., 2016) 61.2 49.4 91.7

Continuous N-gram (Sari et al., 2017) 61.3 52.8 95.1
N-gram CNN (Shrestha et al., 2017) 63.7 53.1 95.2

Syntax CNN (Zhang et al., 2018) 64.1 56.7 96.2
BertAA (Fabien et al., 2020) 65.4 59.7 93.0

BERT 60.3 55.6 97.2
Contra-BERT 66.0 (5.7↑) 62.2(6.6↑) 97.7(0.5↑)

DeBERTa 68.0 65.0 98.1
Contra-DeBERTa 69.9(1.9↑) 69.7(4.7↑) 98.2(0.1↑)

Table 5: Results of human authorship attribution - 8:2 train/test split

Model Text

CTRL “apple gives tim cook $384 million stock grant... steve jobs is set to receive
an additional $1.4 billion in cash... recovery needs but it also requires p le
with skills not just on paper or through education training but, crucially,
real work experience. those are two things which can only come if we
have strong economic growth...”

FAIR_WMT19 “antoine helps real sociedad draw with valladolid... sociedad’s goal in a 1-1
was highlight of stunning game played on night terrorist bombing attack
manchester. tuesday, two bombs exploded central manchester arena during
popular outdoor concert, killing 22 p le and injuring hundreds more..."

GROVER_MEGA “...the messages, which along message some will choose avoid draft, ready
for qualification training are fake, according public affairs. do not respond
spoof, requires suspicious clicks, pictures, or notes function, an official
memo from issued thursday reads...”

TRANSFORMER_XL “carlos ghosn, mum on tokyo escape, unleashes a rambling defense of
the state student-teacher training program in japan... as 2015, three uni-
versities (hiroshima, izumo, kawachi) accept all two degrees; they have
also accepted each other. nevertheless, buddhist monks maintain that
their colleges provide admission hindu traditions rather than admitting any
religious instruction.”

Table 6: Sample text snippets from various NLG models in the TuringBench dataset.
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Model Precision Recall F1 Accuracy

Random Forest 58.93 60.53 58.47 61.47
SVM (3-grams) 71.24 72.23 71.49 72.99
WriteprintsRFC 45.78 48.51 46.51 49.43

OpenAI detector7 78.10 78.12 77.14 78.73
Syntax CNN 65.20 65.44 64.80 66.13
N-gram CNN 69.09 68.32 66.65 69.14

N-gram LSTM-LSTM 6.694 68.24 66.46 68.98
BertAA 77.96 77.50 77.58 78.12
BERT 80.31 80.21 79.96 80.78

RoBERTa 82.14 81.26 81.07 81.73

BERT (our baseline) 78.56 78.81 78.53 79.46
Contra-BERT 80.10 (1.66↑) 79.99 (1.88↑) 79.84 (1.31↑) 80.59 (1.13↑)

DeBERTa (our baseline) 82.16 81.84 81.82 82.00
Contra-DeBERTa 82.84 (0.68↑) 82.04 (0.20↑) 81.98 (0.17↑) 82.53 (0.53↑)

Table 7: Full results across four metrics on human and machine authorship attribution. Results in the top section are
from Uchendu et al. (2021). Improvements over the baselines are indicated in parentheses. Best model is bolded.

Figure 4: (Clockwise from top left) Similarity metrics between authors Ai (i-indexed row) and Aj (j-indexed
column) for content, topic, hybrid, and style features respectively for selected authors on Blog50.
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Author 1 Author 2 Total
Model # Samples Correct # Samples Correct Accuracy (%)
BERT

12 229
2

43 225
47 10.8

Contra-BERT 209 0 46.0
BERT

30 153
8

26 154
92 32.6

Contra-BERT 135 0 44.0
BERT

6 116
35

44 113
18 23.1

Contra-BERT 73 4 33.6
BERT

38 112
48

39 112
8 25.0

Contra-BERT 96 0 42.9

Table 8: Performance of BERT and Contra-BERT on selected author pairs of Blog50. Higher accuracy for each pair
is bolded.

Author 1 Author 2 Total
Model # Samples Correct # Samples Correct Accuracy (%)

DeBERTa
1 109

0
15 103

94 44.3
Contra-DeBERTa 107 0 50.5

DeBERTa
47 105

0
48 104

61 29.2
Contra-DeBERTa 102 4 50.7

DeBERTa
44 113

24
6 116

28 22.7
Contra-DeBERTa 108 3 48.5

DeBERTa
38 112

0
39 112

90 40.2
Contra-DeBERTa 81 12 41.5

Table 9: Performance of DeBERTa and Contra-DeBERTa on selected author pairs of Blog50. Higher accuracy for
each pair is bolded.

Blog10 Blog50 TuringBench

BERT 0.15494 0.10430 0.06747
Contra-BERT 0.17698 (Acc. +5.9) 0.12087 (Acc. +6.8) 0.06772 (Acc. +1.13)

DeBERTa 0.19735 0.13267 0.05191
Contra-DeBERTa 0.20029 (Acc. +0.6) 0.14343 (Acc. +3.7) 0.05126 (Acc. +0.53)

Table 10: Variance in class-level accuracy (accuracy increase by each contrastive model is listed for reference). The
higher the variance, the more the model performance varies between different classes. For each dataset, higher
variance for each baseline/contrastive pair is bolded.
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(a) Feature similarity matrix (left) and relative confusion matrix (right) between DeBERTa and Contra-DeBERTa on selected
authors. For both figures, (i, j) denotes the cell at the i-indexed row and j-indexed column. In the similarity matrix, (i, j)

denotes d(Ai, Aj), the dissimilarity between the two authors (darker = more similar). In the confusion matrix, a lower value of
(i, j) indicates Contra-DeBERTa confused Ai for Aj less than DeBERTa.

(b) (Clockwise from top left) Similarity metrics between authors Ai (i-indexed row) and Aj (j-indexed column) for content,
topic, hybrid, and style features respectively for selected authors on Blog50.

Figure 5: Visualizations for selected author pairs for DeBERTa and Contra-DeBERTa on Blog50.


