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Abstract

Though some recent works focus on inject-
ing sentiment knowledge into pre-trained lan-
guage models, they usually design mask and
reconstruction tasks in the post-training phase.
This paper aims to integrate sentiment knowl-
edge in the fine-tuning stage. To achieve this
goal, we propose two sentiment-aware aux-
iliary tasks named sentiment word selection
and conditional sentiment prediction and, cor-
respondingly, integrate them into the objec-
tive of the downstream task. The first task
learns to select the correct sentiment words
from the given options. The second task pre-
dicts the overall sentiment polarity, with the
sentiment polarity of the word given as prior
knowledge. In addition, two label combina-
tion methods are investigated to unify multiple
types of labels in each auxiliary task. Experi-
mental results demonstrate that our approach
consistently outperforms baselines (achieving
a new state-of-the-art) and is complementary
to existing sentiment-enhanced post-trained
models. The codes are released at https:
//github.com/lshowway/KESA.

1 Introduction

Sentence-level sentiment analysis aims to classify
the overall sentiment of a sentence, which has re-
ceived considerable attention in natural language
processing (Liu, 2012; Zhang et al., 2018, 2022b).
Recently, pre-trained language models (PLMs)
have achieved state-of-the-art (SOTA) performance
on many natural language processing (NLP) tasks,
including sentiment analysis. However, it is still
challenging to integrate external knowledge into
PLMs (Lei et al., 2018; Xu et al., 2019a; Liu et al.,
2020b; Wei et al., 2021; Yang et al., 2021; Cui et al.,
2021; Zhang et al., 2022a).

Recently, sentiment dictionary, a commonly
used sentiment knowledge, has been injected into
PLMs (Wu et al., 2022). A common practice is
to post-train (Xu et al., 2019b), i.e., continue pre-
training, self-designed tasks on domain-specific
corpora. These tasks include sentiment word pre-
diction task, word sentiment prediction task, or
aspect-sentiment pairs prediction (Xu et al., 2019a;

Tian et al., 2020; Ke et al., 2020; Gururangan et al.,
2020; Gu et al., 2020; Tian et al., 2021; Li et al.,
2021), just to name a few. Specifically, they are
usually designed according to the paradigm of the
mask language model (MLM), where sentiment
words are first masked and then recovered (includ-
ing their polarities) in the output layer. Though ef-
fective, we argue that these methods can be further
boosted by directly injecting sentiment knowledge,
e.g., sentiment polarity, into the output layer when
fine-tuning the downstream tasks.

In this paper, we aim to inject sentiment knowl-
edge into the fine-tuning phase directly, making it
complementary to existing methods. For this aim,
we propose two novel auxiliary tasks. The first task
is sentiment word selection (SWS), aiming to select
the sentiment words that belong to the input from
the given options, which comprises of K + 1 op-
tions (i.e., one ground-truth and K negative words).
The second task is conditional sentiment predic-
tion (CSP), which pushes the model to predict the
sentence polarity (i.e., sentiment), with the word
(within the sentence) polarity given as prior infor-
mation. It can be seen as a simplified main task
(i.e., sentence-level sentiment analysis). Different
from existing sentiment polarity prediction task,
CSP treats the word sentiment (extracted from the
sentiment dictionary) as prior information at the
input end instead of as the ground-truth label at
the output end. Intuitively, this transformation can
reduce the dependency on the quality of the senti-
ment dictionary. Otherwise, though effective, its
interpretability will be impaired. Besides, since
more than one type of label (e.g., sentence/word
polarity label) is included, two label combination
methods, i.e., the joint combination and the condi-
tional combination, are therefore investigated. We
are the first (earlier than (Zhang et al., 2022a))
to inject sentiment knowledge in the fine-tuning
stage. Our method starts by building the sentiment
dictionary out of public resources and recognizing
all the sentiment words in the input sentence. Next,
each auxiliary task is added to the task-specific (i.e.,
output) layer. Finally, the auxiliary loss is added to
the main loss to achieve the total loss.

https://github.com/lshowway/KESA
https://github.com/lshowway/KESA
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Model Pre/Post-training Tasks
BERT MLM and NSP
ALBERT sentence order prediction
ERNIE knowledge mask

sentence reordering
BART token mask/deletion

sentence permutation
SKEP sentiment word prediction

word polarity prediction
aspect-sentiment pair prediction

SentiLARE sentiment word prediction
word polarity prediction
POS label prediction
joint prediction

SentiX sentiment word prediction
word polarity prediction
emotion prediction
rating prediction

KESA sentiment word selection
conditional sentiment prediction

Table 1: An overview of tasks. The first block is
pre-training tasks, and the second block is knowledge-
related tasks. NSP refers to the next sentence prediction.

We conduct experiments to demonstrate the fur-
ther effectiveness of our proposed approach, and
run ablation studies to verify the effectiveness of
each auxiliary task. Analysis studies are also per-
formed to compare the impacts of hyper-parameters
or modules. With KESA, the performance further
outperforms the state-of-the-art by (0.76%, 0.75%)
accuracy on MR and SST5, respectively.

2 Related Work

Pre-training Language Models. Pre-trained lan-
guage models have achieved remarkable improve-
ments in many NLP tasks, and many variants of
PLMs have been proposed. For example, GPT,
GPT-2 and GPT-3 (Radford et al., 2018, 2019;
Brown et al., 2020), BERT (Devlin et al., 2019),
XLNet (Yang et al., 2019) and ALBERT (Lan et al.,
2019), ERNIE (Sun et al., 2020), BART (Lewis
et al., 2020) and RoBERTa (Liu et al., 2019b). Most
PLMs are pre-trained on large-scale unlabeled gen-
eral corpora by pre-training tasks, pushing mod-
els to pay attention to deeper semantic informa-
tion. Currently, PLMs are the fundamental models
across NLP tasks, and the pre-training tasks men-
tioned above are summarized in Table 1.

Knowledge Enhanced Post-trained Language
Models. External knowledge, including linguistic
knowledge (e.g., part-of-speech, hyponym and syn-

onym), factual knowledge (including items from
Wikidata (Vrandecic, 2012), ConceptNet (Speer
et al., 2016) and Wikipedia) or domain-specific
knowledge (e.g., sentiment polarity), can boost the
generalization abilities of PLMs (Yin et al., 2022).
Several works have recently attempted injecting
knowledge into PLMs, where the input format or
model structure is modified, and knowledge-aware
tasks are designed (Zhang et al., 2019; Sun et al.,
2021; Liu et al., 2020a; Su et al., 2021; Cui et al.,
2021; Yu et al., 2022b,a). For example, ERNIE
3.0 (Sun et al., 2021) appends triples, e.g., (Ander-
sen, Write, Nightingale), ahead of the original input
sentence, and designs tasks to predict the relation
"Write" in the triple. K-BERT (Liu et al., 2020b)
appends triples as branches to each entity (when
fine-tuning downstream tasks) involved in the input
sentence to form a sentence tree. K-Adapter (Wang
et al., 2021) designs adapters and regards them as
a plug-in with knowledge representations. These
adapters are decoupled from the backbone PLMs
and pre-trained from scratch by self-designed tasks,
e.g., predicting relations in triples and labels of
dependency parser. (Cui et al., 2021) also consid-
ers adding two auxiliary training objectives when
fine-tuning the dialogue generation task, includ-
ing conjecturing the meaning of the masked entity
and predicting its hypernym. Different from ours,
it is also designed according to the paradigm of
MLM (i.e., masking entities and predicting their
associated attributes in the knowledge base).

Knowledge Enhanced Post-trained Language
Models for Sentiment Analysis. Some domain-
specific knowledge (including sentiment dictio-
nary) is used for the sentiment analysis task.
Generally, these methods inject sentiment-related
information into PLMs by designing sentiment-
aware tasks and then post-train them on large-scale
domain-specific corpora (Tian et al., 2020; Ke et al.,
2020; Zhou et al., 2020; Tian et al., 2021). For ex-
ample, SKEP (Tian et al., 2020) designs sentiment
word prediction, word polarity prediction, and
aspect-sentiment pair prediction task to enhance
PLMs with sentiment words. SentiLARE (Ke et al.,
2020) also designs sentiment word prediction, word
polarity prediction, and joint prediction tasks. Sen-
tiX (Zhou et al., 2020) designs sentiment word
prediction, word polarity prediction, emoticon and
rating prediction tasks. Table 1 summarizes the
tasks mentioned above. Like MLM, they mask sen-
timent words in the input and then recover their
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S: It’s tough to watch, it’s a fantastic movie

Tokens 
Embedding

Pre/Post-trained Language Model
Sentiment 
Word 
Embedding

A: (pos) 
fantastic
B:(neg) 
fear

SWS
A: √    B: ×

CSP
S: pos

S: pos

Figure 1: Overview of KESA. Firstly, at the bottom of this figure, the sentence S is tokenized into subwords and
input into PLMs to obtain context representation h[CLS]. Meanwhile, sentiment word fantastic and its sentiment
positive are recognized by external sentiment dictionary and a sentiment word fear is randomly selected from
the sentiment dictionary. Secondly, for the sentiment word selection task, fantastic and fear are treated as
options. For the conditional sentiment prediction task, only the ground-truth sentiment word fantastic and its
corresponding sentiment positive are considered.

related sentiment information in the output. (Tian
et al., 2021) associates each aspect term with its
corresponding dependency relation types as knowl-
edge to enhance aspect-level sentiment analysis.
(Li et al., 2021) enhances aspects and opinions with
sentiment knowledge enhanced prompts. Besides,
(Zhang et al., 2022a)1 also injects sentiment knowl-
edge in the fine-tuning phase, it incorporates and
updates a lightweight dynamic reweighting adapter
when fine-tuning the downstream tasks (we are
earlier than this). Our work is different from the
above. We propose two novel auxiliary objectives
and integrate them with the main objective when
fine-tuning the downstream tasks. Furthermore, in-
stead of treating word polarity as a ground-truth
label, we treat it as prior knowledge to assist in pre-
dicting the overall sentiment. We also investigate
two label combination methods to consider several
types of labels simultaneously.

3 Methodology

Figure 1 illustrates the framework of KESA. In or-
der to integrate sentiment-related information when
fine-tuning the downstream tasks, we propose two
straightforward auxiliary tasks. The subsequent
subsections will detail the two proposed auxiliary
tasks (Section 3.2 and 3.3), two label combination
methods (including joint and conditional combi-
nation, Section 3.4) and a weighted loss function
(Section 3.5) . For convenience, we first give some

1We do not take it as a baseline as it is designed for aspect-
base sentiment analysis task.

notations used in the following subsections.
Formally, L = {l1, l2, · · · , lM} denotes the sen-

timent dictionary with the size of M (i.e., including
M sentiment words), and S = {w1, w2, · · · , wN}
denotes an input sentence of length N . PS ∈ C
and Pw ∈ Z denote the polarity of the sentence
S and the word w, respectively, where C is the
sentence sentiment polarity label set, and Z is the
word sentiment label set. Y ∈ {0, 1} denotes the
ascription relationship label set between the word
and the sentence, e.g., Yw,S = 1 means that the
sentiment word w belongs to the sentence S. d is
the dimension of embeddings.

3.1 Main Task
The main task, i.e., sentence-level sentiment anal-
ysis, is to predict the sentiment label PS given the
input sentence S. Firstly, the input S is passed
through PLMs to get the context representation
h[CLS]. Then the context representation is fed
into a linear layer and a Softmax layer to get
the probability P̂S over sentiment label set, i.e.,
P̂S = Softmax(W1h[CLS] + b1), where W1 and b1
are the model parameters.

3.2 Task A: Sentiment Word Selection
Existing sentiment word prediction tasks usually
randomly mask some identified sentiment words
in the input, and then predict them in the output
layer (in the pre/post-training phase) by computing
the probability distribution over the vocabulary of
sentiment words. Compared with the number of
classes (|C|) of the downstream task, the sentiment
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a stirring , funny and finally transporting re-imagining of 
beauty and the beast and 1930s horror films

stirring (positive)
fear  (negative)

PTM
E
Ep

p(stirring=1|S)=0.8
p(fear=1|S)=0.2

Figure 2: A demonstration of auxiliary task A. The
sentence is sampled from SST2 dataset, σ refers to the
Softmax layer. It shows that given sentence S, two senti-
ment word options (i.e., “stirring” and “fear”) and their
associated sentiment polarities (“positive” and “nega-
tive”), “stirring” has more probability of being in S.

word vocabulary size is much larger and directly
transferring the above method to the fine-tuning
stage may push PLMs to focus on more complex
tasks, i.e., the auxiliary tasks. To avoid this issue,
we design the sentiment word selection (SWS) task
to require PLMs to select the ground-truth senti-
ment word from given options.

Given a training sample (S, PS), we first rec-
ognize all the sentiment words in S according to
the sentiment dictionary L by exact word match.
Then, we randomly choose one sentiment word
wi (i.e., positive option) from them and record its
sentiment polarity as Pwi . Meanwhile, we ran-
domly sample one sentiment word from L as wj

(i.e., negative option) and record its sentiment po-
larity as Pwj (wj ̸= wi). Next, we tokenize S into
a subwords sequence, add “[CLS]” ahead of the
sequence, lookup each subword embedding and
input them into PLMs. The first token represen-
tation (h[CLS]) of the last layer of PLMs is treated
as the context representation (from the view of the
representations of sentiment word options).

Meanwhile, we extract the embeddings of the
sentiment word options wi, wj as ei and ej , and
the embeddings of its sentiment polarity pwi , pwj

as e′i and e′j , respectively. For each option, we add
the context representation, word and its polarity
embedding together, and then input them into a
linear layer and a Softmax layer to compute the
probability ÔA = {ôi, ôj} over the given options,

ôx = Softmax(Wx(h[CLS] + ex + e′x)), x ∈ {i, j}
(1)

bx is omitted in Eq. 1, and Wx, x ∈ {i, j} refers to
model parameters.

Figure 2 gives an example of the procedure of
SWS. In this example, “stirring”, “funny”, “beauty”
and “horror” are first recognized as sentiment
words. “stirring” is then randomly selected as
the positive option, and “fear” is randomly sam-
pled as a negative option. The sentence S is in-

(stirring, positive)

a stirring , funny and finally transporting re-imagining 
of beauty and the beast and 1930s horror films

PTM

E
Ep

p(s=neg|horror=neg)=0.1

p(s=pos|horror=neg)=0.9

Figure 3: A demonstration of auxiliary task B. This
sample shows that the sentiment word, i.e., “horror” and
its polarity (“negative”) is given as prior knowledge.

put into PLMs to get the context representation
h[CLS]. Meanwhile, the word embeddings of “stir-
ring” and “fear” are lookup from the sentiment
word embedding table E ∈ R|V1|×d, where V1

refers to sentiment word vocabulary. Correspond-
ingly, their polarity embeddings are looked up from
polarity embedding table Ep ∈ R|Z|×d. E and
Ep can be initialized from scratch and updated
during the training, or cached pre-trained embed-
dings and frozen during the training. Subsequently,
h[CLS] is added to the word and polarity embed-
dings of the positive (or negative) option, to pro-
duce sentiment-enhanced (or polluted) context rep-
resentation, which is then used to compute the prob-
ability of being the ground-truth.

3.3 Task B: Conditional Sentiment Prediction

Existing word polarity prediction tasks usually re-
place sentiment words with “[MASK]” in the in-
put, and recover their sentiment labels in the output
layer (in the post-training stage). In this process,
sentiment words and their sentiment labels are ex-
tracted by sentiment dictionary or statistical meth-
ods, which may be inaccurate. Though effective,
we argue there are still challenges in interpretabil-
ity, since it is hard to discriminate which (domain
corpus or sentiment-aware tasks) boosts the perfor-
mance. To avoid the negative impacts of inaccurate
polarity of sentiment words, we design the condi-
tional sentiment prediction task, which treats the
polarity of sentiment words as prior information
instead of the ground-truth label.

More specifically, given a training sample
(S, PS), similar to SWS, we first choose one senti-
ment word wi (i.e., positive option detailed in Sec-
tion 3.2) from all recognized sentiment words in
S, meanwhile recording its sentiment polarity Pwi ,
sentiment word embedding ei and its polarity em-
bedding e′i. Next the sentence S is fed into PLMs to
get the context representation h[CLS]. Afterwards,
we add ei and e′i to h[CLS] to create sentiment-
enhanced context representation, then passing them
through a linear layer and a Softmax layer to predict
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the probability distribution over sentence sentiment
label set C, i.e.,

ÔB = Softmax(W3(h[CLS] + ei + e′i) + b3) (2)

where W3, b3 are model parameters. CSP learns
the influence of a word polarity on the polarity of
its assigned sentence. In a broader sense, how local
information affects global information. Figure 3
gives an example of the auxiliary task B.

3.4 Label Combination

For each auxiliary task, we need to unify all kinds
of labels. To be specific, for the SWS task, in addi-
tion to the sentence polarity label PS , we also need
to consider the word ascription label Y . Corre-
spondingly, for the CSP task, sentence polarity PS

and word polarity Pw are both involved. Intuitively,
multiple kinds of labels can describe the input sen-
tence from different perspectives, and encourage
the model to leverage different helpful information
simultaneously (Caruana, 1997). To treat the in-
volved label types in a unified manner, we explore
two types of combination methods. The first one
is joint combination, which models the joint prob-
ability distribution of the multiple kinds of labels.
This method treats all kinds of labels as a single
label defined on the Cartesian product of different
labels. The second way is a conditional combina-
tion motivated by Lee et al. (2020), which models
the conditional probability distribution of multiple
kinds of labels, predicting one kind of label with
other kinds of labels as prior conditions.

Joint combination. For task A (SWS), given
the overall logits ÔA, we need to predict the
joint probability distribution of the word ascrip-
tion label and the sentence polarity label. That
is, p(Y, PS |ÔA) ∈ R|Y |×|C|, where |Y | means the
size of label set Y ({0, 1}) and |C| means the size
of label set PS . For task B (CSP), given the overall
logits ÔB in Eq. 2. We predict the joint distribu-
tion of the word polarity label and the sentence
polarity label. That is, p(Pw, PS |ÔB) ∈ R|Z|×|C|,
where |Z| means the number of Pw’s labels (i.e.,
{positive, negative} in our experiment).

Conditional combination. For task A, given the
overall logits ÔA, we predict the probability to sen-
tence polarity under the condition that the word as-
cription label is known, i.e., p(PS |ÔA, Y ) ∈ R|C|.
To get this, we simply choose the according logits
indexed by Y from ÔA followed by normalization.
Similarly, For task B, given the overall logits ÔB in

Eq. 2, the conditional probability of sentence senti-
ment polarity given the word sentiment polarity is
p(PS |ÔB, Pw) ∈ R|C|. For that, we just select the
according logits indexed by Pw from ÔB .

3.5 Loss Function

We take cross-entropy loss as our loss function.
The loss function is defined as the cross-entropy
between the predicted probability (e.g., P̂S , ÔA

and ÔB) and the ground-truth label PS .
The loss function of the main task is:

Lmain = − 1

|C|
∑
i∈C

PS · log(P̂S) (3)

The loss function of the auxiliary tasks Laux

has the same formulation as Eq. 3, except that the
predicted probability is a weighted sum of ÔA, ÔB:

W4(p(PS |ÔA, Y ) || p(PS |ÔB, Pw)) ∈ RC (4)

where W4 ∈ R2×1 is model parameters, || refers
to concatenation, Note that, we omit the bias b4 in
Eq. 4. The final loss is a weighted sum,

L = Lmain + γLaux (5)

where γ is loss balance weight and γ ∈ (0.0, 1.0).
Notably, the weight of Lmain is set to 1.0. We set
γ > 0.0 to ensure that the parameters of the aux-
iliary tasks can be optimized by backpropagation,
and set γ < 1.0 to prevent the final loss is domi-
nated by the auxiliary task loss and diminishing the
performance of the main task (Liu et al., 2019a).

4 Experimental Setup

4.1 Datasets

Four commonly used public sentence-level senti-
ment analysis datasets are used for the experiment,
as shown in Table 2. The datasets include Movie
Review (MR) (Pang and Lee, 2005), Stanford Sen-
timent Treebank (SST2 and SST5) (Socher et al.,
2013) and IMDB. For MR and IMDB, we adopt the
data split in SentiLARE (Ke et al., 2020), due to the
lack of test data in the original dataset. We evaluate
the model performance in terms of accuracy.

4.2 Comparison Methods

To demonstrate the further effectiveness of the pro-
posed method, we test the proposed auxiliary tasks
on two types of competitive baselines, including
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Dataset #Train/Valid/Test #W #C
MR 8,534/1,078/1,050 22 2
SST2 6,920/872/1,821 20 2
SST5 8,544/1,101/2,210 20 5
IMDB 22,500/2,500/25,000 280 2

Table 2: Datasets statistics. The columns are the amount
of training/validation/test sets, the average sentence
length, and the number of classes, respectively.

popular vanilla pre-trained models (PLMs) and sen-
timent knowledge enhanced post-trained models.

Vanilla Pre-trained Language Models. We
use the base version of vanilla BERT (Devlin
et al., 2019), XLNet (Yang et al., 2019) and
RoBERTa (Liu et al., 2019b) as our baselines,
which are the most popular PLMs.

Sentiment Knowledge Enhanced Post-trained
Language Models. We also use two methods
focusing on leveraging sentiment knowledge as
baselines, i.e., SentiLARE (Ke et al., 2020) and
SentiX (Zhou et al., 2020). They introduce sen-
timent knowledge in the pre-training stage by de-
signing sentiment-related tasks (including senti-
ment word prediction and word polarity prediction
task). They continue pre-training vanilla PLMs on
million scale domain-specific corpora, i.e., Yelp
Dataset Challenge 2019 (6.6 million) for Senti-
LARE, Yelp Dataset Challenge 2019 and Ama-
zon review dataset (240 million in total) for Sen-
tiX. In terms of PLMs, SentiLARE is post-trained
on RoBERTa-base version while SentiX is post-
trained on BERT-base version.

KESA (Ours). We also utilize the external sen-
timent knowledge to enhance PLMs when fine-
tuning the downstream tasks by designing two aux-
iliary tasks (i.e., SWS and CSP). KESA is a com-
plementary method to existing models (including
vanilla and knowledge-enhanced PLMs).

4.3 Sentiment Dictionary

To build sentiment dictionary, we extract word sen-
timent (i.e., polarity) from SentiWordNet 3.0 (Bac-
cianella et al., 2010). Since each word in Senti-
WordNet 3.0 has several usage frequency levels
and is linked with different semantic and sentiment
scores, we set the sentiment polarity of a word ac-
cording to its most vital scores (i.e., positive or
negative sentiment scores). Take “thirsty” for ex-
ample, the polarity of the most common usage is
“positive” (with a score of 0.25), while the polarity
of the third common usage is “negative” (with a

Model MR SST2 SST5 IMDB
BERT∗ 86.62 91.38 53.52 93.45
XLNet∗ 88.83 92.75 54.95 94.99
RoBERTa∗ 89.84 94.00 57.09 95.13
SentiX# − 93.30 55.57 94.78
SentiX∗ 86.81 92.23 55.59 94.62
SentiLARE# 90.82 − 58.59 95.71
SentiLARE∗ 90.50 94.58 58.54 95.73
KESA 91.26‡ 94.98‡ 59.26∗∗ 95.83∗∗

Table 3: Overall accuracy (joint combination is adopted
here). The marker # denotes the original reported re-
sults while − means not available. The marker ∗ refers
to our re-implementation. ∗∗ and ‡ indicate that our
model significantly outperforms the best baselines with
t-test, p-value < 0.01 and 0.05, respectively.

score of -0.375). We, therefore, set the polarity of
“thirsty” to “negative”, considering it has a larger
weight of “negative”. We adopt this strategy con-
sidering a lower sentiment score often means less
likely to be a sentiment word.

4.4 Implementation Details

We implement our model using HuggingFace’s
Transformers. The batch size is set to 16 and 32 for
IMDB and other datasets, respectively. The learn-
ing rate is set to 2e-5 for XLNet, RoBERTa and
SentiLARE, and 5e-5 for BERT and SentiX. The
input and output formats are consistent with each
corresponding PLM. In the meantime, the input
sequence length is set to 50, 512, and 128 for MR,
IMDB, and other datasets, respectively, to ensure
that more than 90% of the samples are covered.
Other hyper-parameters are kept by default. We
fine-tune each model for three epochs, and the best
checkpoints on the development set are used for
inference. As for each dataset, we run four times
with different random seeds with a reproducible im-
plementation, and the average results are reported.
Moreover, to make a fair comparison, all methods
use the same seeds for the same dataset. To ex-
plore the influence of auxiliary tasks on the main
task, we search the loss balance weight γ from
{0.01, 0.1, 0.5, 1.0}. The source code will be re-
leased when the paper is accepted.

5 Experimental Results

In this section, we will detail the overall results,
and the analysis of loss balance weight, label com-
bination and introduced extra parameters.
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Model MR SST2 SST5 IMDB
XLNet∗ 88.83 92.75 54.95 94.99
∆+SWS 0.22 0.72 0.56 0.04
∆+CSP 0.48 0.04 0.50 -0.02
∆+KESA 0.27 0.26 0.99 0.01
BERT∗ 86.62 91.38 53.52 93.45
∆+SWS -0.32 0.08 0.69 0.14
∆+CSP -0.17 0.32 0.86 0.06
∆+KESA -0.33 0.18 0.61 0.06
SentiX∗ 86.81 92.23 55.59 94.62
∆SentiX∗ 0.19 0.85 2.07 1.17
∆+SWS 0.50 -0.03 0.15 0.09
∆+CSP 0.54 0.01 0.24 -0.01
∆+KESA 0.55 0.29 0.19 -0.05
RoBERTa∗ 89.84 94.00 57.09 95.13
∆+SWS -0.03 0.22 0.13 0.27
∆+CSP 0.02 0.17 0.15 0.31
∆+KESA 0.23 0.40 0.09 0.33
SentiLARE∗ 90.50 94.58 58.54 95.73
∆SentiLARE∗ 0.66 0.58 1.45 0.60
∆+SWS 0.24 0.14 0.75 0.07
∆+CSP 0.60 0.33 0.05 0.07
∆+KESA 0.76 0.40 0.72 0.10

Table 4: Ablation studies of each task. "+SWS" and
"+CSP" refer to that we fine-tune the models with SWS
and CSP solely, respectively. "+KESA" represents that
both auxiliary tasks are adopted. The marker ∗ refers to
our re-implementation.

5.1 Overall Results

Table 3 reports the results w.r.t. the accuracy. Note
that, we only report the results of KESA fine-tuned
on the checkpoints released by SentiLARE, since it
performs best (others will be detailed next section).
We find that through post-training on 240 million
samples, SentiX (based on BERT-base) shows im-
provements of (0.19%, 0.85%, 2.07%, 1.17%) ac-
curacy, respectively. Similarly, post-training on 6.6
million samples, SentiLARE (RoBERTa-base) out-
performs the comparad method by (0.66%, 0.58%,
1.45%, 0.60%), respectively. Based on these im-
provements, KESA can further improve the accu-
racy by (0.76%, 0.40%, 0.75%, 0.10%), demon-
strating that KESA is complementary to existing
sentiment-enhanced post-trained methods.

5.2 Ablation Results

To demonstrate the individual benefits of the two
auxiliary tasks to each baseline PLMs, we perform
ablation experiments and tabulate the results in Ta-
ble 4. Overall, KESA achieves consistent improve-
ments over both vanilla and sentiment-enhanced
PLMs. Adding SWS to the baseline PLMs im-

proves accuracy by a maximum of 0.75%, and fur-
ther pushes the overall accuracy to 59.29% (SST5),
exceeding the previous sentiment-enhanced best
of 58.54%. The results verify that the word as-
cription label pushes the model to focus more on
the interactions between the sentiments of word
and sentence, and this kind of interactions between
sentence sentiment (can be seen as global infor-
mation) and word sentiment (treated as local in-
formation) can promote the main task. With the
addition of CSP, the test set accuracy jumped 0.86%
from 53.52% to 54.38% (SST5), even improving
over the previous best sentiment-enhanced result by
0.60% (MR). The results demonstrate that explic-
itly adding the sentiment of a word brings more in-
formation and lowers the difficulty of the main task.
Besides, we can see that integrating KESA with
sentiment-enhanced PLMs obtains more gains than
that with vanilla PLMs, we attribute this to that the
former can achieve better semantic representation
of sentiment words. Furthermore, combining the
two auxiliary tasks is not necessarily superior to
sole use. It is presumably because multiple tasks
may promote or compete with each other (negative
learning) (Bingel and Søgaard, 2017). Above all,
these results remind us that the combinations of
multiple tasks need to be carefully analyzed. Even
so, KESA still gets further improvements on all
evaluated datasets in most cases.

5.3 Analysis on Loss Balance Weight

There are many alternatives to Equation 5 for com-
bining the losses. Previous work on multiple losses
used only the sum (Ke et al., 2020). The choice
of the loss balance weight γ is also important, as
large values such as γ = 1.0 effectively reduce the
weighting function to a simple sum over the losses,
while smaller values (e.g., γ = 0.01) allow the loss
weights to vary. Therefore, we search the loss bal-
ance weight γ from {0.01, 0.1, 0.5, 1.0} consider-
ing the following detailed considerations. First, we
argue that higher auxiliary task weights may dom-
inate the total loss, while smaller weights should
be better, and 0.01 is selected. Second, the weights
in (0.0, 1.0] should be tested evenly. Figure 4 com-
pares these alternatives, including auxiliary task
SWS and CSP, and KESA. It can be observed that,
lower loss balance weight generally achieves better
performance across most cases. Taking IMDB as
an example, as there are more training samples and
longer sequence length (512), making it less sen-
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Figure 4: Impacts of loss balance weights, from left to right, are the results of MR, SST2, SST5 and IMDB,
respectively. A and B refer that auxiliary tasks A and B are tested solely. “Our” refers to KESA.

Model MR SST2 IMDB SST5
SentiXA+JC 87.31 92.20 94.70 55.74
SentiXA+CC 87.35 92.26 94.71 55.81
SentiXB+JC 87.35 92.24 94.59 55.83
SentiXB+CC 87.38 92.59 94.61 55.74
SentiLAREA+JC 90.69 94.72 95.80 59.29
SentiLAREA+CC 90.74 94.91 95.83 59.21
SentiLAREB+JC 90.88 94.91 95.80 58.59
SentiLAREB+CC 91.10 94.99 95.84 58.97

Table 5: Comparison of joint combination (JC) and
conditional combination (CC) in task A and B.

sitive to seeds, with the decrease of loss balance
weight, the advantages gradually increase, indicat-
ing that the weight of auxiliary tasks should be a
small value to avoid undue impacts on the main
task. Although for MR, a dataset with a smaller
training set, the results are sensitive to γ, a small γ
is also preferred in most cases.

5.4 Analysis on Label Combination
In addition to the auxiliary tasks, KESA also con-
tains a label combination method unifying two
different categories of labels (e.g., word/sentence
sentiment label). To analyze the relative contribu-
tion of the conditional combination method com-
pared to the joint combination method, we run ad-
ditional comparison experiments that replace the
joint combination with just the conditional combi-
nation method. Table 5 summarizes the results for
all evaluated datasets (SentiX and SentiLARE are
selected, as they perform better). Replacing the
joint combination with the conditional combina-
tion gives a slight improvement for datasets MR,
SST2 and IMDB. For dataset SST5, the conditional
combination is better than joint combination in
some cases (e.g., from 58.59 accuracy to 58.97 for
SST5 on the auxiliary task B). Overall the improve-
ments are small compared to the full KESA model.

Joint combination is adopted by default in our ex-
periments, as it is slightly easier to implement.

5.5 Introduced Parameters

For SWS, the number of increased parameters
is W{i,j} ∈ R|Y |d×|C||Y |, b{i,j} ∈ R|C||Y | (Sec-
tion 3.2), sentiment word embedding table E ∈
R|V1|×d and polarity embedding table Ep ∈ R|Z|×d.
For CSP, the number of extra parameters is W3 ∈
Rd×|Z||C|, b3 ∈ R|Z||C|, sentiment word embed-
ding table E ∈ R|V1|×d and polarity embedding
table Ep ∈ R|Z|×d. The number of increased
parameters induced by combining the two tasks
is W4 ∈ R2×1, b4 ∈ R. Therefore, the to-
tal number of parameters induced by KESA is
Wi,Wj ,W3,W4, bi, bj , b3, b4 and E,Ep, where
E,Ep is optional since it can be cached (just like
GloVe (Pennington et al., 2014)) and kept frozen to
avoid introducing much parameters when the senti-
ment word vocabulary is large. In our experiments,
|C| ≤ 5, |Y | = |Z| = 2, d = 768, V1 = 25, 158.

6 Conclusion

In this paper, we directly integrate sentiment knowl-
edge into the fine-tuning phase. We design two
sentiment-aware auxiliary tasks, SWS and CSP.
SWS needs to select the correct sentiment words
from the given options, while CSP predicts the
overall sentiment with the word sentiment given
as prior knowledge. Further, we propose joint and
conditional label combination methods to unify
considered multiple kinds of labels into a single
label. Though straightforward and conceptually
simple, experiments demonstrate that KESA still
further improves over solid baselines, verifying
that KESA is complementary to existing sentiment-
enhanced PLMs.
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