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Abstract

Code-mixed text generation systems have
found applications in many downstream tasks,
including speech recognition, translation and
dialogue. A paradigm of these generation sys-
tems relies on well-defined grammatical theo-
ries of code-mixing, and there is a lack of com-
parison of these theories. We present a large-
scale human evaluation of two popular gram-
matical theories, Matrix-Embedded Language
(ML) and Equivalence Constraint (EC). We
compare them against three heuristic-based
models and quantitatively demonstrate the ef-
fectiveness of the two grammatical theories.

1 Introduction

Code-mixing is the phenomenon of mixing multi-
ple languages within a single conversation. While
widely observed in spoken language, mixing lan-
guages has also become commonplace in informal
text conversations with the increasing use of so-
cial media (Rijhwani et al., 2017). Prior work
has focused on various code-mixed natural lan-
guage processing (NLP) tasks, including part-of-
speech (POS) tagging (Soto and Hirschberg, 2017;
Singh et al., 2018), sentiment analysis (Patwa et al.,
2020), machine translation (Solorio et al., 2021)
and speech recognition (Lee et al., 2017). Accu-
rately modeling when and how to mix languages is
critical to the above code-mixed NLP tasks.

Research efforts on this front have either relied
on established grammatical theories (Li and Fung,
2012; Bhat et al., 2016) or neural sequence-to-
sequence models (Winata et al., 2019) to generate
realistic code-mixed text. Such models have found
applications in speech recognition (Li and Fung,
2012; Lee et al., 2019), translation (Gupta et al.,
2021) and other downstream NLP tasks (Pratapa
et al., 2018b). These generation techniques have
also been applied in human-machine dialogue (Ahn

† work done at Microsoft Research.

et al., 2020; Bawa et al., 2020) to generate seem-
ingly natural code-mixed responses.

However, current literature lacks a thorough
comparison of different code-mixed text generation
models. Such comparison is necessary to under-
stand the relevance of these generation models to
individual downstream NLP applications. In this
work, we present one such comparison involving
two linguistic theory-based code-mixed text genera-
tion systems, one based on Equivalence Constraint
theory (Poplack, 1980) and the other on Matrix-
Embedded language theory (Myers-Scotton, 1993).
Specifically, we crowdsource human judgments on
the understandability and naturalness of text gen-
erated by the two systems. Our results show that
grammatical models are considerably better than
heuristic counterparts. Additionally, we find the
two grammatical models are equally preferable by
our human judges. We evaluate the importance of
individual constraints in each grammatical theory.
In the following sections, we first briefly describe
the grammatical models (§2.1) and related heuris-
tic models (§2.2). In §3, we describe our human
evaluation setup, and present the results in §4.

2 Generative Models of Code-Mixing

Code-mixed text generation has applications in
NLP tasks of speech recognition, human-machine
dialogue, and translation. Prior work has primar-
ily focused on three grammatical theories, Equiv-
alence Constraint (EC) (Poplack, 1980), Matrix-
Embedded Language (ML) (Myers-Scotton, 1993)
and Functional Head Constraint (FHC) (Belazi
et al., 1994). Each of these theories presents an
account of the grammatical constraints of code-
mixing. Bhat et al. (2016) presented computational
models for EC and ML theories. Such computa-
tional models allow for generation of grammati-
cally correct code-mixed text (Li and Fung, 2012;
Pratapa et al., 2018a; Lee et al., 2019; Tarunesh
et al., 2021). However, the resulting text may or
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A superconductor levitates on a magnetic track

Un superconductor levita sobre una pista magnética

(a) English constituency parse + word-level alignments

1 Un superconductor levita sobre a magnetic track
2 Un superconductor levita sobre una pista magnetic
3 Un superconductor levita sobre a pista magnética
4 A superconductor levitates on a magnetic magnética
5 Levita un superconductor sobre a magnetic track

(b) Candidate code-mixed sentences.

Figure 1: An illustration of outputs from code-mixed text generation models. Figure 1a shows the constituency
parse for an example English sentence, along with its word-aligned Spanish translation. Figure 1b presents 5
example code-mixed sentences generated from the above English-Spanish aligned pair. Sentence #1 is allowed
under all the grammatical and heuristic models, #2 is disallowed by EC model, #3 is disallowed by ML model, #4
is disallowed by EC, ML, aligned and dictionary models, #5 is disallowed under all the grammatical and heuristic
models. Words from embedded language are italicized in each example.

may not be considered natural by bilingual speak-
ers. In this work, we compare the two theories (EC
and ML) for their perceived naturalness. Due to the
unavailability of a computational model for FHC
theory, we leave the comparison of FHC to EC and
ML theories to future work.

There is another line of work involving sequence-
to-sequence models that do not directly rely on
grammatical theories (Winata et al., 2019; Lee and
Li, 2020). While this is an exciting line of research,
we restrict the focus of this work to grammatical
models and leave the comparison with neural mod-
els to future work.

2.1 Grammatical Models

Equivalence Constraint (EC): Proposed by
Poplack (1980), this theory imposes an equivalence
constraint at each switch point between the two
languages in a code-mixed sentence. The two con-
stituent languages are assumed to follow context-
free grammar (CFG). Each non-terminal (and ter-
minal) in one CFG has a counterpart in the other
CFG. In cases where the two language parses are
not identical, we follow prior work (Bhat et al.,
2016; Pratapa et al., 2018a) and perform node col-
lapse to make the grammars equivalent. We follow
the implementation from Pratapa et al. (2018a) to
generate code-mixed sentences for our study.1

Matrix-Embedded Language (ML): Proposed
by Myers-Scotton (1993), this theory allows for
inserting grammatical constituents of an embedded

1See Rizvi et al. (2021) for the implementation.

language into a sentence in matrix language. It dis-
allows for replacing specific constituents relating
to verbs (V), coordinating conjunction (CC), de-
terminer (DT), preposition (IN) as well as nesting
sub-trees (NST).

We refer the readers to Bhat et al. (2016) for
more details on the computational models for EC
and ML theories.

2.2 Heuristic Models

The above described grammatical models impose
linguistic constraints on the process of mixing text
from two languages. To evaluate if these linguistic
constraints are necessary for the output text to be
considered natural, we contrast them against three
simple heuristic-based models. These heuristic
models only rely on parallel sentences, word-level
alignments, or a bilingual dictionary.

Aligned (Haligned): Given parallel sentences with
word-level alignments, we construct a code-mixed
sentence by uniformly sampling a word from one
of the two languages in a given aligned pair. To
generate a sentence, we first sort the alignment
indices in the order of L1 tokens (similarly for L2)
and then iterate through the alignment indices.

Dictionary (Hdict): In this model, we use an ex-
ternal bilingual dictionary that maps words from L1
and L2. We take a monolingual sentence, and for
every word, we uniformly sample one of the words
or its counterpart from the other language (if one
exists in the dictionary). This model only needs a
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pre-built dictionary to synthesize code-mixed sen-
tences from monolingual corpora.

Parallel (Hparallel): In the case of missing word-
level alignments, we can still generate code-mixed
sentences by assuming a linear mapping between
L1 and L2 word order. This assumption might work
well for languages with similar word order, like the
English-Spanish pair used in this study.

Figure 1 illustrates the validity of example
Spanish-English code-mixed sentences under each
grammatical and heuristic model discussed above.

3 Evaluation Setup

To evaluate the effectiveness of the above described
models of code-mixing (§2), we first sample Span-
glish (English-Spanish) sentences using selected
criterion (§3.1), and then collect human judgments
on their understandability and naturalness (§3.2).

3.1 Preparing Data
The generative models of code-mixing take parallel
sentences and their word-level alignments as their
inputs. We follow the same strategy as Pratapa
et al. (2018a) to collect monolingual tweets in En-
glish and Spanish.2 We then translate the tweets to
the other language using Microsoft Translator API.
We use fast_align toolkit (Dyer et al., 2013) to
extract word-level alignments between the source
and target sentences.3 For the grammatical models,
we extract constituent parses using Stanford PCFG
parser (Klein and Manning, 2003). For generating
code-mixed sentences using the grammatical the-
ories, we follow the prior work (Bhat et al., 2016;
Pratapa et al., 2018a). Note that both these sys-
tems follow the grammatical theories exactly and
do not exclude code-mixed sentences based on their
naturalness. For the heuristic models, we follow
the methodologies described in §2.2. Most models
take parallel sentences as input and generate a large
number of code-mixed sentences. For this study,
we sample code-mixed sentences by carefully con-
trolling for specific features. As we describe below,
we identify features relevant to the parallel sen-
tences as well as grammatical constraints.

Sentence length (SL): We compute the average
length (# tokens) for each pair of parallel sentences.

2We use tweets in our study for two reasons, 1. In textual
format, code-mixing is most common in informal conversa-
tions (e.g., social media posts), and 2. it’s easier to collect
tweets over speech transcriptions.

3https://github.com/clab/fast_align

We then group them into the four buckets, {SL1:
(5, 8], SL2: (8, 11], SL3: (11, 15], SL4: (15, 20]}.

Pseudo fuzzy match score (PFMS): As de-
scribed earlier, we rely on a neural machine trans-
lation system to automatically translate monolin-
gual tweets. The translation performance itself
will have an impact on the perceived quality of
generated code-mixed sentences. To evaluate the
translation performance, we compute the normal-
ized edit distance between the source sentence and
its back-translated counterpart. We term this score
as the pseudo fuzzy match score (PFMS) (Equa-
tion 1; Pratapa et al. (2018a)). PFMS lies in [0,1]
and we split the data into four classes based on
PFMS value, {PFMS1: (0, 0.3], PFMS2: (0.3, 0.5],
PFMS3: (0.5, 0.7], PFMS4: (0.7, 1.0]}. Since
tweets themselves are noisy user-generated texts,
their quality will have an impact on the generated
code-mixed texts.

PFMS =
EditDistance(s, s′)
max(|s|, |s′|)

(1)

Alignment complexity score (ACS): Another
factor that impacts the perceived quality of gen-
erated code-mixed text is the complexity of token-
level alignments between the parallel sentences.
To this end, we compute ACS, that captures two
important aspects, 1. order of alignments: mean
distance between aligned pair of tokens (ACS1),
and 2. degree of alignment: average degree of a
token (ACS2). We have grouped the input pair into
the two buckets, (max(0, µ−σ), µ] and [µ, µ+σ),
where µ and σ denote the mean and standard de-
viation of the ACS scores. This resulted in the
intervals [0, 0.39], (0.39, 0.98] and (0.90, 1.06],
(1.06, 1.21] for ACS1 and ACS2 respectively. In
Equation 2, i and j denote the i-th and j-th tokens
in the source (of length l) and target (of length
l
′
) sentences respectively. A(i) denotes the set of

target tokens aligned to the i-th source token. In
Equation 3, di denotes the degree of i-th token in
the sentence.

ACS1 =

l∑
i=1
|i−

∑
j∈A(i)

j

|A(i)| .
l
l′
|

2l
+

l
′∑

j=1
|j −

∑
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l
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∑
l′
dj

2l′
(3)

https://github.com/clab/fast_align
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Understandability

1 No, this tweet doesn’t make sense
2 Not sure, but I can guess the meaning of this tweet
3 Certainly, I get the meaning of this tweet

Naturalness

0 I am not sure
1 unnatural, and I can’t imagine people using this style of Spanglish
2 weird, but who knows, it could be some style of Spanglish
3 quite natural, but I think this style of Spanglish is rare
4 natural, and I think this style of Spanglish is used in real life
5 perfectly natural, and I think this style of Spanglish is very frequently used

Table 1: Dimensions of evaluation.

For each pair of sampled parallel sentences, we
select code-mixed sentences from ML, EC theories
as well as their relaxed variants.

Matrix-Embedding Language (ML): We sam-
ple code-mixed sentences generated by the ML
theory. Additionally, to evaluate the impact of the
individual constraints of this theory, we relax by
allowing mixing of closed-class items (CC, DT, IN,
V) and potential nesting (allowance to switching
back to matrix language in the same sub-tree).

Equivalence constraint (EC): Similar to ML
theory, we sample code-mixed sentences gener-
ated by the EC theory. We also sample from a
relaxed variant where we allow for lexical substitu-
tion (EC[LS]).

Switch point variation (SP): Prior work has
highlighted the importance of controlling for #
switch points (SP) in the automatically generated
sentences.4 To this end, we sample EC-theory-
based code-mixed sentences with a varying num-
ber of switch points. We have grouped SPs into
the buckets, {SP1: {1}, SP2: {2}, SP3: {3,4}, SP4:
{5,6}, SP5: {7... 20}}.

3.2 Human Evaluation

We ask human judges to score each code-mixed
sentence on their understandability and naturalness.
We conducted this study on Amazon Mechanical
Turk,5 and the goal of the study is to understand
the human perception of various linguistic theories
of code-mixing. Both ML and EC theories estab-

4A switch-point denotes a word boundary in a given sen-
tence where the languages of the words on two sides differ.

5https://www.mturk.com/

lish grammatical rules for code-mixing; therefore,
this study helps determine if these rules are neces-
sary for a code-mixed sentence to be considered
intelligible and realistic.

Task Setup: Every Human Intelligence Task
(HIT) consists of 10 sentences, of which 8 are
synthetic Spanglish sentences while 2 are valida-
tion sentences. Turkers rate the sentences on their
understandability and naturalness. Table 1 sum-
marizes the rubrics for understandability (scale of
1-3) and naturalness (scale of 0-5). To ensure that
the judges comprehend and score the sentences
appropriately, we incorporated two control sen-
tences, a real Spanglish tweet, and a non-Spanglish
tweet. The non-Spanglish tweets are code-mixed
sentences taken from other language pairs, French-
English, Dutch-English, and German-English. If a
sentence is incomprehensible to a Spanish-English
bilingual speaker, we ask the human judge to mark
it with low understandability. As a sanity check,
for the first 20 HITs, we ask the judges to provide
English translations to the given code-mixed sen-
tences. The expected time to complete a HIT is less
than 120 seconds based on our pilot study,6 and we
paid $0.25 per assignment per HIT. We collected
three valid assignments per HIT.

Qualification requirements: To ensure that the
judges are Spanish-English bilingual speakers, we
designed a custom qualification test. Our test evalu-
ates their proficiency in English, Spanish and their
ability to comprehend Spanglish text. The qualifi-
cation test consisted of two tasks, 1. word-level lan-
guage identification and 2. naturalness assessment.

6We observed similar response times in the actual HITs

https://www.mturk.com/
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In the language identification task, we ask the par-
ticipants to identify the language of a highlighted
word in the context. In most cases, this word is part
of both the English and Spanish vocabulary; so, the
participant had to disambiguate it using the con-
textual information. We also include a couple of
sentences where the highlighted word is neither En-
glish nor Spanish. In the naturalness task, we ask
the participants to gauge the naturalness of 5 code-
mixed sentences. For this task, we collaborated
with Spanish-English bilingual experts to curate a
mix of perfectly natural and unnatural Spanglish
sentences. In addition to passing the qualification
test, we also added the standard requirements on
HIT acceptance rate (≥97) and # HITs (≥200).7

4 MTurk Results & Discussion

We published a total of 429 HITs and obtained
judgments from 59 unique crowd workers. In our
analysis, we only consider the responses where
the understandability score is strictly greater than
one.8 Before analyzing the human judgments, we
ensure that the human judge has marked the ap-
propriate responses for the control data involving
real-Spanglish and non-Spanglish sentences. The
non-Spanglish sentences are to be scored low on the
understandability scale. Naturalness being a subjec-
tive marker, there is no definite answer; therefore,
we haven’t pruned any of the HITs based on the
judgments on real-Spanglish sentences.

Our main aim in this experiment was to gauge
the importance of various sentence-level features
in the code-mixed sentence generation process. To
this end, we have compared the absolute human
judgment scores across sentence pairs. We have
designed our task as an absolute judgment task
instead of pair-wise comparison for logistical rea-
sons, as it allows for a large scale evaluation. We
construct a matrix (M ) with sentence/tweet pairs
(Ti, Tj) along the rows and annotators (Ak) along
the columns (Equation 4). Ai,k denotes the score
of annotator Ak for the sentence Ti.

M(i,j),k = sgn(Ai,k −Aj,k) (4)

We construct a partial order between Ti and Tj

7see A.1 in Appendix for the questions used in the test.
8We acknowledge that understandability is a requirement

for a code-mixed text generation model. But in the scope of
this work, we focus primarily on the naturalness evaluation.

M1 M2 #(?) #(�) #(') #(≺)

ML ML[CC] 1 16 11 14
ML ML[DT] 2 35 31 28
ML ML[IN] 5 40 30 39
ML ML[V] 11 75 41 48
ML ML[NST] 9 93 56 79
EC EC[LS] 8 48 26 51
ML EC 27 217 164 207

Table 2: Comparison of linguistic theory based models
using common coders (Equation 5).

M1 M2 #(>) #(<)

ML ML[CC] 68 54
ML ML[DT] 162 133
ML ML[IN] 199 155
ML ML[V] 304 212
ML ML[NST] 331 303
EC EC[LS] 203 179
ML EC 962 930

Table 3: Comparison of linguistic theory based models
on all tweet pairs (Equation 6).

using the matrix M as follows,

if ∀k, M(i,j),k = 0, Ti ' Tj
else if ∀k, M(i,j),k > 0, Ti � Tj
else if ∀k, M(i,j),k < 0, Ti ≺ Tj

else, Ti ? Tj

(5)

Here, Ti � Tj means that sentence Ti is pre-
ferred to sentence Tj by all the common annotators
(or coder). In this setting, we only compare sen-
tences that have at least one common coder. We
also consider an alternative approach, where we
directly compare every sentence pair based on their
average judgment scores. Unlike previous order-
ing, this comparison will result in a total order. To
normalize for coders’ variance, we use z-values in
place of absolute scores (Equation 6). This method-
ology allows for analysis over a much larger space
of sentence pairs.

zi,k =
xi,k − µk

σk

Ti > Tj , if
∑
k

zi,k >
∑
k

zj,k
(6)

To measure the inter-coder agreement, we have
used Krippendorff’s α as it allows for missing data
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and multiple coders (Artstein and Poesio, 2008).
With d(x, y) = max(0,−sgn(x ∗ y)) as the dis-
tance metric, i.e., penalizing only if x and y are
of different signs, we observed the α to be 0.59,
indicating moderate to substantial agreement (Lan-
dis and Koch, 1977). We use the partial order in
the sentences to learn a partial order for the feature
variants. When comparing the impact of two fea-
ture variants, we kept the other feature values con-
stant for consistency. Table 2 and Table 3 present a
comparison of original theories (ML and EC) with
their relaxed variants. The results show that the
original ML theory is better than its relaxation(s).
However, we observe no such preference in the EC
theory. Notably, there is no clear winner between
the original ML and EC theories.

Additionally, we analyze the impact of sentence
length (SL), translation quality (PFMS), and #
switch points (SP) on the naturalness. Our observa-
tions are summarized below,

• SL1 � SL2 � SL3 � SL4

• PFMS1 ≺ PFMS2 ≺ PFMS3 ≺ PFMS4

• SP1 � SP2 � SP3 � SP4

Notably, human judges prefer fewer switch
points in the code-mixed texts. This result is in
line with observations from Pratapa et al. (2018a).
They found the fraction of switch points in real
code-mixed tweets to be ∼0.1, indicating speak-
ers typically use few switch points. As expected,
speakers prefer sentences with higher PFMS scores
(i.e., translation quality). Additionally, we find that
speakers prefer shorter sentences, possibly because
longer sentences tend to be noisier.

To better understand the overall impact of the
linguistic-theory-based constraints, we also ran
∼30 HITs consisting of synthetic data generated
using heuristic-based models. For every feature
(SL, ACS, PFMS), we sample one-sentence pair.
We only considered PFMS ∈ PFMS4 for best com-
parison. Since SP value was a crucial factor in de-
termining the quality of the synthetic code-mixed
sentence, we sampled sentences (heuristic-based)
from the same SP brackets as the previous HIT data
(linguistic-theory based). Note that, in the MTurk
analysis, we have only considered those sentences
acceptable under heuristic models but are invalid
according to all the linguistic theories (original and
relaxed) for meaningful comparison. We compared
across all tweet pairs (Equation 6) as the number of

M1 M2 #(>) #(<)

ML Haligned 109 60
ML[V] Haligned 60 47
EC Haligned 162 75
EC[LS] Haligned 31 31

ML Hdict 151 58
ML[V] Hdict 70 49
EC Hdict 215 81
EC[LS] Hdict 43 22

ML Hparallel 126 58
ML[V] Hparallel 65 43
EC Hparallel 188 86
EC[LS] Hparallel 42 19

Table 4: Comparison of heuristic based models Haligned,
Hdict and Hparallel (exclusive) with linguistic models in
the MTurk experiment.

common coders is low. While comparing models
Haligned, Hdict and Hparallel with the linguistic mod-
els, we controlled for SP and other monolingual
sentence-level features.

In general, we found the original linguistic mod-
els to be much better than heuristic models (Ta-
ble 4). While the original EC theory is much better
than the heuristic model Haligned, the relaxed ver-
sion of EC[LS] is as good as the heuristic model.
However, ML theory sentences, even after the re-
laxation of allowing for verb phrase switching, are
better than Haligned. We find all the linguistic theory-
based models to be much better than heuristic mod-
els Hdict and Hparallel.

In Table 5, we compute the overlap in sentences
generated by different models. As expected, both
grammatical models allow fewer code-mixed sen-
tences than heuristic models, with ML being the
most constrained model. EC theory overlaps signif-
icantly with Haligned (54%). The two grammatical
theories only overlap in 22% of the sentences.

5 Conclusion & Future Work

We present a large-scale qualitative comparison of
different code-mixed generation systems. Through
the judgments of Spanish-English bilingual speak-
ers, we analyze the need for each constraint in the
two grammatical theories, Matrix-Embedded, and
Equivalence Constraint. We also contrast against
simpler heuristic systems and found grammatical
systems to be superior. However, we do not ob-
serve a clear winner between the two grammatical
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M1 M2 SM1 − SM2 SM1 ∩ SM2 SM2 − SM1

ML EC 0.07 0.22 0.71
ML ML ∪ML[CC] 0.00 0.88 0.12
ML ML ∪ML[DT] 0.00 0.84 0.16
ML ML ∪ML[IN] 0.00 0.75 0.25
ML ML ∪ML[V] 0.00 0.61 0.39
EC EC ∪ EC[LS] 0.00 0.86 0.14

ML Haligned 0.02 0.16 0.82
EC Haligned 0.05 0.54 0.42
ML ∩ EC Haligned 0.00 0.16 0.84
ML ∪ EC Haligned 0.06 0.54 0.40
ML ∪ML[V] Haligned 0.03 0.25 0.72
EC ∪ EC[LS] Haligned 0.06 0.57 0.38

ML Hdict 0.09 0.03 0.88
EC Hdict 0.25 0.06 0.69
ML ∩ EC Hdict 0.07 0.03 0.90
ML ∪ EC Hdict 0.26 0.06 0.68
ML ∪ML[V] Hdict 0.15 0.04 0.82
EC ∪ EC[LS] Hdict 0.28 0.06 0.66

ML Hparallel 0.06 0.06 0.87
EC Hparallel 0.17 0.16 0.67
ML ∩ EC Hparallel 0.05 0.06 0.89
ML ∪ EC Hparallel 0.18 0.16 0.66
ML ∪ML[V] Hparallel 0.10 0.08 0.81
EC ∪ EC[LS] Hparallel 0.20 0.16 0.64

Table 5: Comparison of sentence counts of original linguistic theories and their relaxed variants. SM1 and SM2
denote the set of sentences from models M1 and M2.
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theories. Potential directions for future work in-
clude 1. extending the naturalness evaluation to
sequence-to-sequence models of code-mixing, 2.
expanding the analysis to other language pairs.
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Table 6 presents the questions used in the MTurk
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Word-level language identification

buenas noches a toda my people
bonne soirée everyone
la declaration no es correcto
não canso de escutar see you again
federer champion por octava time en halle
the best place in the world no hay otro
todo lo que quiero son texts como este
espero que esto no sea verdad
ella siempre toma mis emotions tan seriamente
this is das perfekt moment

Naturalness evaluation

charlie sheen write defiant abierta letter to those que tried chantajearlo (unnatural)
hoy i have one de those days que hate al world entero (unnatural)
literalmente all i do is soñar sobre scenarios imposibles (natural)
merece perder el campeonato because of his attitude (natural)
tú made good música and probably tocaste the vidas of muchos children (unnatural)

Table 6: Qualification test used on Mechanical Turk. In the word-level language identification task, we ask the
crowd workers to identify the language of the highlighted token. In the naturalness evaluation, we ask the workers
to mark the naturalness of the code-mixed sentences.


