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Abstract

State-of-the-art approaches to spelling error
correction problem include Transformer-based
Seq2Seq models, which require large train-
ing sets and suffer from slow inference time;
and sequence labeling models based on Trans-
former encoders like BERT, which involve
token-level label space and therefore a large
pre-defined vocabulary dictionary. In this pa-
per we present a Hierarchical Character Tagger
model, or HCTagger, for short text spelling er-
ror correction. We use a pre-trained language
model at the character level as a text encoder,
and then predict character-level edits to trans-
form the original text into its error-free form
with a much smaller label space. For decoding,
we propose a hierarchical multi-task approach
to alleviate the issue of long-tail label distri-
bution without introducing extra model param-
eters. Experiments on two public misspelling
correction datasets demonstrate that HCTagger
is an accurate and much faster approach than
many existing models.

1 Introduction

A spelling corrector is an important and universal
tool for a wide range of text-related applications,
such as search engines, machine translation, op-
tical character recognition, medical records, text
processors and essay scoring. Although spelling
error correction is a long-studied problem, it re-
mains a challenging task because words can be
misspelled in a variety of forms, including in-word
errors, cross-word errors, non-word errors and real-
word errors, depending on the subtle contextual
information.

In this paper, we focus on solving the spelling
correction problem in user-generated short text,
such as queries in search engines or tweets on social
media, which has three unique properties compared
to long essays. First, search queries or tweets are
often short and lack context. Second, most short
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text contains pure spelling errors and almost no
grammatical errors. Third, instant spell checkers
used in search engines or social medias have strict
latency requirements.

In general, popular approaches to spelling
correction make use of parallel corpora in
which the source sentence contains spelling
errors and the target sentence is error-free.
Recently, the Transformer-based sequence-to-
sequence (Seq2Seq) model (Vaswani et al., 2017)
has gradually proven to be effective on spelling
correction problems. Unlike neural machine trans-
lation, spelling errors tend to occur locally for a
few characters while the rest of the text is cor-
rect. To cope with this situation, Zhao et al. pro-
pose a scheme to incorporate a copy mechanism
in Seq2Seq. The success of this type of Seq2Seq
model depends on large scale annotated datasets,
which are often generated by constructing text
noise from clean text in previous studies. More-
over, this approach suffers from slower inference
time and lack of interpretability.

Another class of approaches is based on se-
quence labeling. Instead of generating the out-
put sequence in an autoregressive fashion, PIE
(Awasthi et al., 2019) and GECToR (Omelianchuk
et al., 2020) predicts token-level edit operations in
one of {Keep, Delete, Replace, Append} by lever-
aging pre-trained Transformer encoders, such as
BERT (Devlin et al., 2019). Such models can gen-
erate the outputs for all tokens in parallel, and there-
fore significantly reduces the latency of sequential
decoding as in Seq2Seq models while achieving
comparable accuracy. However, the approaches in
both papers predict edit operations at token level.
It can be expected that the Replace and Append
operations are associated with a huge pre-defined
vocabulary dictionary. For real-life usages it is in-
feasible to enumerate all correctly spelled words in
the label space.

To address the aforementioned shortcomings,
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Figure 1: Original and aggregated edit label counts.
The upper plot shows original fine-grained edit label
counts, which are heavily skewed. The lower plot of
aggregated coarse-grained edit label counts has much
less skewness.

considering the unique properties of short text mis-
spelling correction, in this paper, we propose a
new model called Hierarchical Character Tagger,
or HCTagger for short, which uses a pre-trained
language model at the character level as a text en-
coder, and then predicts character-level edits. It is
motivated by the straightforward observation that
spelling errors usually occur at character level. For
the misspelling-correction pair of shies→ shoes,
its character-level edit labels would be [s: Keep,
h: Keep, i: Replace with o, e: Keep, s: Keep],
which is represented in a much smaller label space
compared to [shies: Replace with shoes] at token
level. While most spelling errors occur within 1-
edit distance for each token, for broader coverage

we also include character sequence edit operations
like Replace with oa.

Furthermore, the distribution of edit labels is
long-tailed. As shown in Figure 1, Keep and Delete
are more frequent than labels of Replace/Append
with certain character(s). If these labels are treated
as equivalent, the overall accuracy of the model
will be constrained by the unevenness of the label
distribution. Therefore, for decoding, we aggregate
original fine-grained edit labels into four coarse-
grained labels [Keep, Delete, Append, Replace].
We propose a hierarchical multi-task approach to
learn both the fine-grained and coarse-grained edit
labels at the same time without introducing any
extra model parameters.

Through extensive experiments on two public
datasets, we demonstrate that our proposed HC-
Tagger effectively improves the performance and
latency of short text spelling correction.

2 Approach

We describe our model HCTagger in this section.

2.1 Problem Formulation

Without lack of universality of language types,
for an input text sequence with spelling error,
S = [c1, . . . , cn], our goal is to get the correct
spelling of the corresponding text, denoted as
T = [d1, . . . , dm], where ci and di are character
level input and output. Note that the sequence
lengths n and m are not necessarily equal.

To map the source sequence S to target T ,
a corresponding edit operation sequence O =
[o1, . . . , on] is applied. Note that O has the same
sequence length as S. Each edit operation, oi, falls
into one of the following four categories:

Keep The current character remains unchanged.
This means that the current character is not mis-
spelled.

Delete The current character is deleted.

Append Append a sequence of characters of
length greater than or equal to one after the cur-
rent character. Each distinct appended sequence is
treated as an independent tag type.

Replace Replaces the current character with a
number of characters of length greater than or equal
to 1. Similar to Append, each distinct appended
sequence is treated as an independent tag type.
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Figure 2: Overall architecture of the model. The text encoder is a character-level language model, followed by a
bi-directional LSTM. The edit operations predicted by the feedforward neural network are used to formulate the
corrected text. During training, the output of the feedforward neural network is used to construct the hierarchical
loss function with two explicit terms.

Note that there could be more than one possible
edit operation sequences to transform from source
S to target T . We use Python function Sequence-
Matcher in module difflib to do obtain the unique
edit operation label sequence O. The idea of Se-
quenceMatcher is to find the longest contiguous
matching subsequence. This does not necessarily
yield minimal edit sequences, but does tend to yield
matches that "look right" to humans. For more in-
formation, refer to the doc 1.

Thus, we eventually transform spelling correc-
tion into a sequential labeling problem, i.e., for
a given input S = [c1, . . . , cn], predict the edit
operation oi for each character ci. As a concrete ex-
ample, to map a misspelled input text cassueldress
to its correction casual dress, 3 edit operations are
required, namely (1) deleting the 4th character s,
(2) replacing the 6th character e with a, and (3)
appending a space after the 7th character l, while
keeping other characters unchanged.

2.2 Model

Our proposed model, HCTagger, consists of two
components. First, we encode the text by pre-
training a character-level language model. Second,
the representation obtained by the language model
is encoded by a bi-directional LSTM, which is then
fed to a decoder. This decoder is hierarchical: it
decodes simultaneously four coarse-grained labels

1https://docs.python.org/3/library/
difflib.html

[Keep, Delete, Append, Replace] and all the fine-
grained tags (such as Append with a or Replace
with eo), which could be of potentially up to thou-
sands types. The architecture of the model is shown
in Figure 2.

Character-level Language Model The character-
level language model we use is the pretrained
Flair (Akbik et al., 2018), which has been widely
shown to be effective for word-level sequence
labeling tasks. Specifically, Flair consists of a
character-level embedding layer and a (possibly bi-
directional) LSTM layer. The model predicts the
next character by the preceding or succeeding char-
acter inputs. The authors argue that it can capture
semantic differences in morphological similarities,
as well as contextual information for polysemous
words. Moreover, character-level models better
handle rare and misspelled words as well as model
subword structures such as prefixes and endings.

Though pre-training a character-level language
model, in the original paper Flair focuses on
word-level sequence labeling task (e.g., NER).
Specifically, to obtain word-level embeddings from
character-level language model, Flair uses the out-
put hidden state after the last character in each word
as the representation of the whole word. However,
in our scenario, we use the embedding of current
character to predict its own edit operation, regard-
less of which word it belongs to, even if it is a space
or punctuation.

In addition, when using Flair as the text encoder,

https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html
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# Iteration Short Text # Token-level Errors # Character-level Errors

Original fashien industrie 2 3
1 fashion industry 0 0

Table 1: An illustrative example of iterative inference.

we found that fine-tuning Flair’s language model
parameters along with the sequence labeling task
generally perform better than without fine-tuning.
Therefore, fine-tuning Flair is our default setting
whenever possible.

Hierarchical Multi-Task In a training set of fi-
nite size, the original fine-grained edit labels (a
certain character being appended or replaced with
some characters) form a long-tail distribution, as
shown in Figure 1. This makes some relatively rare
spelling errors more difficult to be corrected.

For decoding, we feed the hidden states of the
bidirectional LSTM into a layer of feedforward
neural network whose output dimension is the size
of label types. For character ci, the probability of
original fine-grained label type k is P (k|ci). To
alleviate the issue of long-tail distribution for k,
we propose to aggregate the probabilities for four
coarse-grained edit labels, denoted as P (v|ci), with
v ∈ {Keep,Delete,Replace,Append}, which are
presumably more balanced than the fine-grained
labels. To achieve this, we use the rule of sum
of probability: as all possible fine-grained Append
(Replace) operations are mutually exclusive, the
sum of their probabilities should equal the coarse-
grained probability of Append (Replace). Formally,

P (A(R)|ci) =
∑

k∈A(R)⊂

P (k|ci), (1)

where A⊂ and R⊂ are the subsets consisting of
fine-grained Append and Replace operations, cor-
respondingly.

Denote the logits for original fine-grained tag
type k as fk, and logits for aggregated coarse-
grained tag type v as lv. Then the probability of
label type k is P (k|ci) = softmax(fk). Similarly
we have P (v|ci) = softmax(lv). Therefore, Equa-
tion (1) can be derived as:

exp (lA(R))∑
m∈{K,D,A,R} exp (lm)

=
∑

k∈A(R)⊂

exp (fk)∑
j exp (fj)

,

(2)
where K,D,A and R are the short forms for Keep,
Delete, Append and Replace, accordingly.

As a result, we obtain the coarse-grained logits
lv by solving Equation (2):

lv =


fk k = Keep
fk k = Delete
log

∑
k∈A⊂ exp (fk) k ∈ A⊂

log
∑

k∈R⊂ exp (fk) k ∈ R⊂

(3)

Finally, HCTagger is trained by using the follow-
ing multi-task loss associated with predicting edit
oi at each character ci:

L = Lfine + Lcoarse

= −
∑
i

logP (f
(i)
k |ci)−

∑
i

logP (l(i)v |ci).

Notice that, in contrast to traditional multi-task
learning, with the relation between lv and fk in
Equation (3), the coarse-grained loss function we
introduce as an auxiliary task does not contain extra
model parameters. The advantage of this design
is that both fine-grained and coarse-grained loss
functions can reach the optimum at the same time
without additional efforts to tune the parameters to
balance the two terms.

Inference Some previous studies (Awasthi et al.,
2019; Omelianchuk et al., 2020) on Grammar Er-
ror Correction (GEC) have shown that a well-
established approach for inference is iterative: use
the modified result obtained by the model in the cur-
rent round as input for next round’s prediction, and
repeat the process several times. These studies find
that due to the dependency among grammatical er-
rors (tense, pronoun, subject-verb, preposition, plu-
rals), the performance of model predictions can be
steadily improved by multiple iterations. However,
iterative inference is confronted with a trade-off
between speed and accuracy.

As spelling errors impose a strong notion of lo-
cality and have weaker dependency on each other
than grammatical errors, the iterative correction
process is less necessary. For example, in the ex-
ample shown in Table 1, the 2 token-level typos,
fashien and industrie, are independent of each other.
To this end, the two errors can be corrected si-
multaneously through a single run in our model.
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Dataset # Train # Dev # Test % Error Rate # Label Types

Twitter 31,172 4,000 4,000 100 66
Webis 44,772 5,000 5,000 17 112

Table 2: Basic statistics of the datasets.

Indeed, from our experiments, we noticed that
having more than one round of inference iteration
only marginally improves the accuracy in our task.
Therefore, we report the results for HCTagger with
only one inference iteration in all experiments.

3 Experiments

In this section, we describe the experiments per-
formed on two public datasets for HCTagger.
Meanwhile, we compare it with several state-of-
the-art baselines.

3.1 Datasets

We conduct experiments on the following two short
text datasets:

Twitter Dataset is proposed in Aramaki (2010),
which includes 39,172 samples in their spell-error
form and error-free form. We adopt the same train /
dev / test split as Ribeiro et al. (2018) and Awasthi
et al. (2019).

Webis Dataset is introduced in Hagen et al.
(2017), which consists of 54,772 queries from AOL
search logs. In contrast to the Twitter Dataset, the
error rate of this dataset is only ∼17%. Since the
original dataset does not provide the train / dev /
test split, we randomly sample 5000 queries as the
dev and test sets, respectively, and use the remain-
ing data as the training set.

The basic statistics of these two datasets and the
corresponding number of label types (calculated
from training data) are listed in the Table 2.

3.2 Baselines and Implementation Details

The following baseline models are used for the
comparison experiments:

Aspell (Atkinson, 2018) works at word level. It
uses a combination of metaphone phonetic algo-
rithm, Ispell’s near miss strategy and a weighted
edit distance metric to score candidate words.

Seq2Seq-LSTM is the standard LSTM-based
Seq2Seq architecture.

Seq2Seq-Transformer (Vaswani et al., 2017) is
the self-attention based Seq2Seq model.

Local Sequence Transduction (Ribeiro et al.,
2018) treats spelling correction as a character-level
local sequence transduction task by first predict-
ing insertion slots, followed by a sequence labeling
task for output tokens or a special operation Delete.

BERT-PIE (Awasthi et al., 2019) or Parallel Iter-
ative Edit model, is a sequence labeling method
which uses BERT as its text encoder.

BERT-Neuspell (Jayanthi et al., 2020) is provided
by the Neuspell toolkit. It regards spelling correc-
tion as a token-level sequence labeling task, where
the output for each token is its error-free form. We
finetune the BERT model on the Webis dataset.

All the models are implemented in PyTorch
(Paszke et al., 2019), and trained with a single
Tesla V100 GPU. For HCTagger, we use the En-
glish Flair embeddings pretrained on the 1-billion
word corpus (Chelba et al., 2014), which are pub-
licly available2. We tune the number of LSTM
hidden states ∈ {512, 1024}, training batch size
∈ {8, 16, 32}, learning rate ∈ {1e−2, 1e−3}, and
optimizer type ∈{Adam (Kingma and Ba, 2015),
LAMB (You et al., 2020)}. In addition, both the
encoder and decoder of Transformer has two self-
attention layers.

3.3 Results

For the Twitter dataset, to align with previous pub-
lications, we report the accuracy in the test set
to compare the performances among all models.
As shown in Table 3, HCTagger improves accu-
racy over all the models except Transformer. In
particular, it is important to note that although
the pretrained language model (Flair) we use is
lightweight compared to BERT, our model still out-
performs BERT-PIE.

Table 3 also reports the performance on the We-
bis dataset. Our HCTagger exceeds all other mod-
els. Transformer model doesn’t perform well on

2https://github.com/flairNLP/flair

https://github.com/flairNLP/flair
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Model Twitter Dataset Accuracy Webis Dataset Accuracy

Aspell 30.1 † 65.8
Seq2Seq (LSTM) 52.2 ∗ 83.5
Seq2Seq (Transformer) 67.6 ∗ 83.7
Ribeiro et al. (2018) 64.6 † -
BERT-PIE (Awasthi et al., 2019) 67.0 ∗ -
BERT-Neuspell (Jayanthi et al., 2020) - 84.0

HCTagger 67.2 86.8

Table 3: Performance on Twitter and Webis dataset. Results with † are from Ribeiro et al. (2018); results with ∗
are from Awasthi et al. (2019).

Model Words per Second

Seq2Seq (Transformer) 36.62
BERT-PIE (Awasthi et al., 2019) 80.43

HCTagger 251.20

Table 4: Inference speed on Twitter dataset.

Model Query per Second

Seq2Seq (LSTM) 83.33
Seq2Seq (Transformer) 40.00
BERT-Neuspell (Jayanthi et al., 2020) 62.50

HCTagger 250.00

Table 5: Inference speed on Webis dataset.

this dataset, probably because the number of mis-
spelled queries is small (17%) and is not enough
to train Transformer well. In contrast, our model
makes more effective use of small training set.

Meanwhile, we also compare the inference speed
of the most accurate models, as shown in Table 4
and Table 5. Indeed, the inference speed of HCTag-
ger is much faster than Seq2Seq (LSTM, Trans-
former), BERT-PIE (Awasthi et al., 2019), and
BERT-Neuspell (Jayanthi et al., 2020).

3.4 Ablation Study

To understand the importance of each part of the
model, we conduct an ablation study on the Twitter
dataset, and report the accuracy in Table 6.

We first take away the pre-trained language
model. At this point, the character-level embedding
is randomly initialized and the rest of the model is
left unchanged. The accuracy decreases by 1.9%.

Subsequently, we preserve the language model
but remove the coarse-grained loss term of the Hi-
erarchical Multi-Task. In this case, the accuracy
decreases by 0.7%.

Accuracy

Full Model 67.2
- w/o Pretrained LM 65.3
- w/o Hierarchical Multi-Task 66.5

Table 6: Ablation study on Twitter dataset.

4 Related Works

Hasan et al. use character-based statistical ma-
chine translation to correct user queries in the e-
commerce domain. They extract training data from
query refinement logs, and evaluate the results on
an internal dataset.

Grammar Error Correction (GEC) is an exten-
sively researched NLP task. This task contains
grammar errors, including spelling, punctuation,
grammatical, and word choice errors. PIE (Awasthi
et al., 2019) and GECToR (Omelianchuk et al.,
2020) are the state-of-the-art models that predict
token-level edit operations {Keep, Delete, Replace,
Insert} by leveraging pre-trained Transformer en-
coders like BERT. However, their models are not
specifically designed for correcting spelling errors,
which most often occur at character level. They
rely on a small (∼1k) pre-defined token-level Re-
place and Insert dictionary. Including all correctly-
spelled tokens in the dictionary will make the label
space too large.

Transformer based Seq2Seq models (Kiyono
et al., 2019; Zhao et al., 2019) prove to be suc-
cessful on grammar error corrections, but heavily
depends on synthetically generated error datasets.
Character based Seq2Seq models (Xie et al., 2016)
are also explored. Such model architectures in-
volve a separate autoregressive decoder and atten-
tion module, which makes the inference time much
slower. In particular for spelling error correction
task, where the misspelling and correction only
differ by one or more characters, Seq2Seq models
seem too heavy.
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Neuspell (Jayanthi et al., 2020) is a spelling cor-
rection toolkit, which implements a wide range of
models like SC-Elmo-LSTM and BERT. They re-
gard spelling correction as a token-level sequence
labeling task, where the output for each token is
its error-free form. For each word in the input text
sequence, models are trained to output a probabil-
ity distribution over a finite vocabulary. Besides
the aforementioned excessive label space problem
at token-level, another shortcoming of this toolkit
is that it assumes the misspelled and correction
sentences have exactly the same number of tokens.
Therefore, cross-word errors such as power point
→ powerpoint or babydoll→ baby doll cannot be
handled properly.

Ribeiro et al. treat spelling correction as a
character-level local sequence transduction task
by first predicting insertion slots in the input us-
ing learned insertion patterns, and then using a
sequence labeling task to output tokens or a special
token Delete. They maintain a dictionary to keep
track of the insertion context. For example, letter a
is inserted frequently after letter s. While our pre-
trained language model layer implicitly encodes
such insertion context without the need of keeping
a dictionary.

5 Conclusions

We presented the Hierarchical Character Tagger
to correct user-generated short text misspellings.
HCTagger predicts character-level edits, which has
smaller label space than token-level edits. Pre-
trained character-level language model embedding
that we use is lightweight and much faster than
BERT-like text encoders in many other state-of-the-
art models, while achieving similar or even higher
accuracy for short text spelling error correction
task. Moreover, our novel Hierarchical Multi-Task
decoding approach can be extended to any scenario
that contains a hierarchical long-tail distributed la-
bel space.
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