@inproceedings{emezue-dossou-2021-mmtafrica,
title = "{MMTA}frica: Multilingual Machine Translation for {A}frican Languages",
author = "Emezue, Chris Chinenye and
Dossou, Bonaventure F. P.",
editor = "Barrault, Loic and
Bojar, Ondrej and
Bougares, Fethi and
Chatterjee, Rajen and
Costa-jussa, Marta R. and
Federmann, Christian and
Fishel, Mark and
Fraser, Alexander and
Freitag, Markus and
Graham, Yvette and
Grundkiewicz, Roman and
Guzman, Paco and
Haddow, Barry and
Huck, Matthias and
Yepes, Antonio Jimeno and
Koehn, Philipp and
Kocmi, Tom and
Martins, Andre and
Morishita, Makoto and
Monz, Christof",
booktitle = "Proceedings of the Sixth Conference on Machine Translation",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2021.wmt-1.48/",
pages = "398--411",
abstract = "In this paper, we focus on the task of multilingual machine translation for African languages and describe our contribution in the 2021 WMT Shared Task: Large-Scale Multilingual Machine Translation. We introduce MMTAfrica, the first many-to-many multilingual translation system for six African languages: Fon (fon), Igbo (ibo), Kinyarwanda (kin), Swahili/Kiswahili (swa), Xhosa (xho), and Yoruba (yor) and two non-African languages: English (eng) and French (fra). For multilingual translation concerning African languages, we introduce a novel backtranslation and reconstruction objective, BT{\&}REC, inspired by the random online back translation and T5 modelling framework respectively, to effectively leverage monolingual data. Additionally, we report improvements from MMTAfrica over the FLORES 101 benchmarks (spBLEU gains ranging from +0.58 in Swahili to French to +19.46 in French to Xhosa)."
}