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Abstract
Neural machine translation (NMT) is sensi-
tive to domain shift. In this paper, we ad-
dress this problem in an active learning set-
ting where we can spend a given budget on
translating in-domain data, and gradually fine-
tune a pre-trained out-of-domain NMT model
on the newly translated data. Existing active
learning methods for NMT usually select sen-
tences based on uncertainty scores, but these
methods require costly translation of full sen-
tences even when only one or two key phrases
within the sentence are informative. To ad-
dress this limitation, we re-examine previous
work from the phrase-based machine transla-
tion (PBMT) era that selected not full sen-
tences, but rather individual phrases. However,
while incorporating these phrases into PBMT
systems was relatively simple, it is less trivial
for NMT systems, which need to be trained on
full sequences to capture larger structural prop-
erties of sentences unique to the new domain.
To overcome these hurdles, we propose to se-
lect both full sentences and individual phrases
from unlabelled data in the new domain for
routing to human translators. In a German-
English translation task, our active learning ap-
proach achieves consistent improvements over
uncertainty-based sentence selection methods,
improving up to 1.2 BLEU score over strong
active learning baselines.1

1 Introduction

Machine translation (MT) models are very sensi-
tive to domain shift (Koehn and Knowles, 2017;
Chu and Wang, 2018), and one typical way to ad-
dress this problem is adding in-domain data to the
MT training process (Luong and Manning, 2015;
Chu et al., 2017). However, this data may not be
available a priori, and hiring professional transla-
tors with knowledge of specific domains (such as
medicine or law) is usually costly.

∗Work done at Carnegie Mellon University
1Code/data is released at https://github.com/

JunjieHu/phrase-al-nmt.
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Figure 1: Overview of the active learning process

As a result, active learning approaches (Gangad-
haraiah et al., 2009; Haffari et al., 2009; Blood-
good and Callison-Burch, 2010) have been widely
adopted to reduce the annotation cost by translat-
ing a smaller representative subset of the in-domain
data, with the hope that models trained on this trans-
lated subset approximate those trained on a much
larger labeled set. In general, active learning (AL)
approaches iterate between two steps: data selec-
tion/annotation, and model update. With regards to
data selection for machine translation, most exist-
ing works (Haffari et al., 2009; Peris and Casacu-
berta, 2018; Zeng et al., 2019) focus on selecting
sentences that are most useful for training either
phrase-based machine translation (PBMT) or neu-
ral machine translation (NMT) models.

However, even the most informative sentences
inevitably involve segments that the MT system
can already translate well, and asking the trans-
lator to also translate these segments is not cost-
effective. There have been a few works used in
conjunction with older PBMT models that amelio-
rate this problem through phrase-based selection
techniques (Bloodgood and Callison-Burch, 2010;
Daumé III and Jagarlamudi, 2011; Miura et al.,

https://github.com/JunjieHu/phrase-al-nmt
https://github.com/JunjieHu/phrase-al-nmt
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2016), which select only individual phrases, maxi-
mizing information gain. However, while these
translated phrases can be easily integrated into
PBMT by adding them to the existing phrase table,
incorporating them into NMT models is less simple
because NMT has no concept of a “phrase table”
and must be trained on full sentences similar to
those that must be translated.

In this paper, we propose a method for incor-
porating phrase-based active learning into NMT.
Specifically, we first describe sentence-based and
phrase-based selection strategies, then propose a
hybrid strategy that combines both methods. We
also describe several ways to incorporate this trans-
lated data into the training of NMT systems. We
conduct experiments on German-English transla-
tion by adapting NMT models trained on WMT par-
allel data to the medicine and IT domains. Experi-
mental results show that the hybrid selection strat-
egy obtains more stable translation performance
than either phrase-based or sentence-based selec-
tion strategy.

2 Problem Definition

In the setting of active learning for domain adapta-
tion, we are given an out-of-domain labelled cor-
pus (x, y) ∈ L and an in-domain unlabelled corpus
x ∈ U . We define a phrase as a contiguous se-
quence of words up to some length limit N , and
denote a set of possible phrases in a sentence x
by ∪n∈[1,N ]n-gram(x), where we set N = 4 in
all experiments below. To obtain translations of
unlabelled data, we assume access to professional
translators O(·) who can translate source-side sen-
tences S and/or phrases P selected from U , i.e.,
O(x) ∀x ∈ S ⊂ U , and O(p) ∀p ∈ P ⊂ PU =
∪x∈U ∪n∈[1,N ] n-gram(x). We assume that trans-
lating sentences or phrases requires cost c(·), and
annotation must be performed within a fixed bud-
get B =

∑
x∈S c(x) +

∑
p∈P c(p). This active

learning procedure consists of two main steps: se-
lection/translation (§3) and fine-tuning (§4).

3 Active Selection Strategies

3.1 Sentence Selection Strategies
Existing sentence-based active learning methods
usually define a sentence-level scoring function
φ(x, ·), and select sentences with the top scores.
Following Zeng et al. (2019), we categorize these
methods into two classes: data-driven and model-
driven methods. Data-driven methods only rely on

the unlabeled data U and the labeled data L, i.e.,
φ(x,U ,L), and usually score sentences based on
the trade-off between the density and diversity of
the selected sentences. In contrast, model-driven
approaches usually estimate the prediction uncer-
tainty of a source sentence given the current MT
model θ, i.e., φ(x, θ,U ,L), and select sentences
with high uncertainty for training the model. Be-
fore getting to our proposed phrase-based strategies
in §3.2 we highlight several existing sentence se-
lection strategies.

Random Sampling: One easy strategy is ran-
domly sampling sentences from the unlabeled data
U for annotation. Although it is simple, this method
is an unbiased approximation of the data distribu-
tion in U . Therefore, this method remains a strong
baseline in the active learning literature (Gangad-
haraiah et al., 2009; Miura et al., 2016; Zeng et al.,
2019) if the annotation budget is sufficiently large.

Margin-based Ratio Score (MRS): Zhang et al.
(2018) propose to measure the distance between
sentence embeddings. This method takes each un-
labeled sentence, estimates its distance in embed-
ding space from the labeled sentences in the out-
of-domain corpus, and iteratively selects sentences
that are more distant from sentences in the labeled
data. In our instantiation of this method, we lever-
age the pre-trained mBERT model (Devlin et al.,
2019) to extract sentence representation ex of a
particular sentence x.2 Instead of using a cosine
similarity function, we measure a ratio-based score
which is the ratio between the cosine similarity
of (ex, ex′) and the average cosine similarity with
their k nearest neighbors in Eq. (1), because the
margin-based ratio score has been shown effec-
tive in sentence retrieval in (Artetxe and Schwenk,
2019).

ratio(ex, ex′) (1)

=
cos (ex, ex′)∑

z∈NNk(x)

cos (ex,ez)
2k +

∑
z∈NNk(x′)

cos (ex′ ,ez)
2k

,

where k is the number of nearest neighbors.
We then compute the distance between each

in-domain sentence and its nearest out-of-domain

2We average the word representations from the 7th layer
of the mBERT model as the sentence embedding, because the
middle-layer representations have proven effective in cross-
lingual retrieval tasks (Pires et al., 2019; Hu et al., 2020).
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neighbor within a randomly sampled subset of la-
beled sentences L′:

φ(x, ·) = dist(x,L′) = 1− max
x′∈L′

ratio(ex, ex′).

We approximate the distance between x and
out-of-domain corpus L using a subset L′ for effi-
ciency purposes, because the out-of-domain L is
usually large. Next we use the distance dist(x,L′)
as our scoring function φ(x, ·), and select the unla-
beled sentence with the largest distance from (sub-
sampled) sentences in the out-of-domain corpus.

Round Trip Translation Likelihood (RTTL):
One model-driven method is based on a method
referred to as “round trip translation” (Haffari et al.,
2009; Zeng et al., 2019). The labeled data L is used
to train two MT models θsrc-tgt, θtgt-src that translate
between the source and target languages in two di-
rections. Each unlabeled source sentence x ∈ U is
first translated to ŷ in the target language by θsrc-tgt,
and then ŷ is translated to x̂ by θtgt-src. This method
assumes that if this round-trip translation process
fails to recover some of the content on the source
side then this is an indication that the sentence may
be difficult for the current model and is a good can-
didate for human annotation. Haffari et al. (2009)
use a scoring function that computes the similar-
ity between the original sentence x and x̂ using
the sentence-level BLEU score (Chen and Cherry,
2014), while Zeng et al. (2019) estimate the likeli-
hood of the original source sentence x given ŷ by
the reverse MT model θtgt-src.

ŷ ≈ argmax
y

Pθsrc-tgt(y|x) (2)

φ(x, ·) = logPθtgt-src(x|ŷ) (3)

3.2 Phrase Selection Strategies

A few existing phrase-based active learning meth-
ods (Bloodgood and Callison-Burch, 2010; Miura
et al., 2016) have been proposed to improve PBMT
systems. These methods first determine the pos-
sible set of phrases in a sentence, select phrases
to be translated according to a scoring metric, and
incorporate these in the training of the PBMT sys-
tem. In the following paragraphs, we introduce
two phrase-based selection strategies, and discuss
how to integrate this data into NMT in §4. Simi-
lar to the sentence selection strategies, we define
a phrase-level scoring function φ(p, ·) and select
phrases with the top scores.

n-gram Frequency (NGF) (Bloodgood and
Callison-Burch, 2010): The most straightforward
phrase selection strategy is to select the most
frequent phrases in the unlabelled data that do
not appear in the already labeled data. First we
extract two sets of possible n-grams (n ≤ 4)
from sentences in U and L, which are defined
as PU = ∪x∈U ∪n∈[1,N ] n-gram(x), and PL =
∪(x,y)∈L ∪n∈[1,N ] n-gram(x). We then score each
phrase as follows:

φ(p, ·) =

{
occ(p,U), if p ∈ PU , p /∈ PL
0, otherwise

(4)

where occ(p) counts the occurrences of p in U . We
then select the top frequent phrases until we use up
the budget for annotating phrases.

Semi-Maximal Phrases (NGF-SMP): The two
phrase sets PU ,PL extracted by the n-gram Fre-
quency method contain many substrings that also
occur in some longer strings. For example, p =
“eines der” always co-occurs with the longer p′ =
“eines der besten” in the WMT14 German-English
dataset. To identify the longer strings, Miura et al.
(2016) proposed the following semi-order relation,
which defines the relation between a phrase p′ and
its sub-string p satisfying the condition that p′ oc-
curs at least half the time of p in the corpus U .

p�∗p′ ⇔ ∃α, β : αpβ = p′ (5)

∧ occ(p,U)
2

< occ(p′,U)

A phrase p is called a semi-maximal phrase if
there does not exist a phrase p′ in U such that p�∗p′.
Therefore, a compact subset of phrases P ′U can
be constructed by containing only semi-maximal
phrases in the phrase set PU in U :

P ′U = {p|@p′ ∈ PU , p�
∗
p′ ∧ p ∈ PU}. (6)

By using semi-maximal phrases in P ′U rather
than all phrases in PU , we remove a large number
of phrases that are included in a longer phrase more
than half the time, and reduce the redundancy of
the selected phrases. Next we can select phrases
similarly using Eq. (4) by replacing the original
phrase set PU with the sub-set P ′U .

Notably, we select representative phrases by
their occurrences instead of using a similarity func-
tion between phrase embeddings. Because it is easy
to count the phrase occurrences by extract string-
match while it is infeasible to do so for sentences.
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As for sentence selection, measuring a similarity be-
tween sentence embeddings (e.g., MRS) provides
an alternative way of matching sentences.

3.3 Hybrid Selection Strategy

Phrase-based selection has its benefits, such as effi-
cient annotation of core vocabulary from the target
domain. However, at the same time it lacks the abil-
ity to identify larger sentence structure that may
nonetheless be unique to the target domain. Model-
ing this structure is particularly important for NMT
(in constrast to PBMT), as NMT directly learns
both lexical and syntactic transformations within
the same model.

Because of this, we propose a simple yet novel
hybrid selection strategy that leverages the benefits
of both sentence-based and phrase-based selection
strategies. Specifically, we allocate our budget in
a way to annotate sentences with Bs words from
our set of sentences and Bp words from our set
of phrases. Depending on the specific sentence-
based and phrase-based selection strategies chosen
in the hybrid selection strategy, it is non-trivial to
determine which selection strategy improves the
in-domain translation performance more than the
other one before actual finetuning. Therefore, in
our implementation, we assume that we have no
prior knowledge about which selection strategies
will be most effective, and simply evenly distribute
the annotation budget into the sentence-based and
phrase-based strategies. We leave more sophisti-
cated allocation strategies as future work, and we
discuss some potential avenues briefly in §7.

4 Training with Sentences and Phrases

After data selection, we fine-tune the base NMT
model on the newly translated data. This is es-
sentially an extreme form of domain adaptation
where we adapt a base NMT model trained on out-
of-domain data to a new domain. Specifically, we
adapt a strategy of mixed fine-tuning (Luong and
Manning, 2015), which continues training a pre-
trained out-of-domain model on both in-domain
data and a certain amount of out-of-domain data
to prevent overfitting to relatively small in-domain
data. Compared to the standard domain adapta-
tion setting where we have only a small number of
in-domain sentences, our phrase-level active learn-
ing setting has the additional difficulty of having
to use short translations of individual phrases. In
the following, we describe both methods to choose

which data to use in mixed fine-tuning, and how to
incorporate phrasal translations.

4.1 Data Mixing
For data mixing, we sample a subset Lr of data
directly from the labeled set L′, and concatenate
Lr with the newly annotated sentences Ls and
phrases Lp for mixed fine-tuning (Line 8 in Al-
gorithm 1). Specifically, we define a distribu-
tion function ψ over L′, and either sample by
(x, y) ∼ ψ or greedily take the most likely data
by (x, y) = argmax(x,y)∈L′ ψ(x, y) iteratively for
M times to obtain the subset Lr of M parallel data.

Random Sampling: The most simple way to
select out-of-domain data is to randomly sample
sentences from the out-of-domain corpus L′, i.e.,
(x, y) ∼ Uniform(L′). Although it is simple, this
has been popularly used in the literature of domain
adaption for NMT (Chu and Wang, 2018).

Retrieve Similar Sentences: Recently, Aharoni
and Goldberg (2020) showed that pre-trained lan-
guage models implicitly learn sentence embed-
dings that cluster by domains, and proposed a data
selection method that has proven more effective
than methods based on the likelihood of an in-
domain language model (Moore and Lewis, 2010).
Since our base NMT model is pre-trained on out-
of-domain corpus, we need to adapt the model to
the domain of the unlabeled data. Instead of ran-
dom sampling, we adopt the selection method in
Aharoni and Goldberg (2020) to retrieve parallel
sentences from L′ that are close to the in-domain
sentences in U . To do so, we leverage the contex-
tualized sentence representations, and measure the
distance of a source sentence in L′ w.r.t. the unla-
beled corpus U by ratio(x,U), ∀x ∈ L′. Next, we
iteratively retrieve labeled data from L′ that have
the smallest distance scores to their nearest neigh-
bors, i.e., (x, y) = argmax(x,y)∈L′ ratio(x,U).

4.2 Incorporating Phrasal Translations
In addition to obtaining real parallel data from L′
for mixed fine-tuning, we create synthetic parallel
data (x̂, ŷ) by incorporating phrasal translations
into existing context from L′. Specifically, for an
unlabeled sentence x ∈ U containing a newly an-
notated phrase px, we retrieve the most similar
sentence pair (x∗, y∗) from L′ by

(x∗, y∗) = argmax
(x′,y′)∈L′

ratio(ex, ex′) (7)
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We then alter (x∗, y∗) with the newly annotated
phrase pair (px, py) to create synthetic sentence
pair (x̂, ŷ). Similar to data mixing, we concate-
nate the set of synthetic data with the annotated
sentences Ls and phrases Lp for mixed fine-tuning.

Switch Phrases: Inspired by existing data aug-
mentation methods (Fadaee et al., 2017), we exam-
ine a data augmentation method that switches out
phrases in the out-of-domain sentence pairs in L′
by the newly annotated phrase pairs from U . First,
we define the following operation Switch(x, p, i)
that returns a new sentence by substituting the
phrase at the i-th position in x∗ by px.

Switch(x∗, px, i) = [x∗<i; px;x
∗
≥i+|px|] (8)

Next, we enumerate all possible positions in x∗

for switching phrases, and then apply the in-domain
language model trained on U to select the most
probably synthetic sentence by

x̂ = argmax
x′=Switch(x∗,px,i)
∀0≤i<|x∗|−|px|,

px∈∪n∈[1,N ]n-gram(x)

PLM(x′), (9)

where px is a phrase in the unlabeled sentence x.
Notably, we use a 4-gram language model imple-
mented in KenLM3. Since sentences are usually
short (average length of 10-25 words), creating a
synthetic sentence takes O(|x∗||x|) scoring opera-
tions by the language model.

To synthesize the corresponding ŷ from the re-
trieved target sentence y∗, we apply a word align-
ment model trained on L to find the index j for the
translation of the replaced phrase x∗i:i+|px| in y∗,
and substitute the phrase at the j-th position in y∗

by py to obtain ŷ = Switch(y∗, py, j).

Contextualized Phrases: The other idea is to
augment the context of a newly annotated phrase
pair (px, py), since a phrase px lacks larger sen-
tence structure. Specifically, we define the contex-
tualized operation that augments a phrase px in x
by appending it to the retrieved sentence x∗.

Contextualize(x∗, px) = [x∗, px] (10)

We then enumerate all annotated phrases in x,
and apply an in-domain language model to find
the most probable annotated phrase pair (px, py)

3https://github.com/kpu/kenlm

that synthesizes x̂. The corresponding ŷ can be
obtained by Contextualize(y∗, py).

x̂ = argmax
x′=[x∗,px]

∀px∈∪n∈[1,N ]n-gram(x)

PLM(x′) (11)

5 Experiments

5.1 Experimental Setting

We use the WMT14 German-English data as the
out-of-domain labeled data for training our base
NMT model, and take the source sentences of
two parallel corpora in the medicine and IT do-
mains (Koehn and Knowles, 2017) as the unlabeled
data. More details can be found in Appendix B.1.

As our NMT model, we use a 6-layer 512-unit
Transformer (Vaswani et al., 2017) implemented
in Fairseq,4 and use a subword vocabulary of
50,000 for both languages constructed by Byte Pair
Encoding (Sennrich et al., 2016). We train the base
model with Adam for 10 epochs with 4K warmup
steps and a peak learning rate of 1e-3, and decay
the learning rate based on the inverse square root of
the number of update steps (Vaswani et al., 2017).

For active learning, we set our annotation bud-
gets by number of words translated (following the
prevailing translation market practice to charge for
jobs by the word), and investigate the budgets from
2.5K words up to 40K words.5 After data selection
(§3), we obtain a set Lr of M parallel sentences
(§4), and set the size M = |Lp| where Lp is se-
lected by NGF-SMP. We then fix Lr for mixed fine-
tuning in all experiments, and continue fine-tuning
the base model on a mixture of the newly-translated
data and Lr for 5 more epochs.

5.2 Word-level Translation Accuracy

Since our selection and mixed fine-tuning methods
focus on leveraging phrasal translations for domain
adaptation, we perform a fine-grained analysis on
the word-level translation accuracy of the NMT
systems due to the domain shift. A source word is
defined as an unseen in-domain word when it never
appears in the out-of-domain corpus. If phrase se-
lection strategies select more in-domain words, we
would expect a higher translation accuracy of such
in-domain words by the adapted NMT systems us-
ing phrase selection. As a result, we compare the

4https://github.com/pytorch/fairseq
5At current market rates, this would cost from 491 to 7,092

USD for German-English translation by professional transla-
tors at https://translated.com/.

https://github.com/kpu/kenlm
https://github.com/pytorch/fairseq
https://translated.com/
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Figure 2: Average BLEU score over 3 runs for adapting a base NMT to the Medicine and IT domains.

translation accuracy of in-domain words by the
NMT models using different selection strategies
in Figure 3. As shown in the figure, NGF-SMP
significantly improves the translation accuracy of
the in-domain words with a small annotation bud-
get. In contrast, MRS falls short of the other com-
pared methods when the annotation budget is less
than 80K words. Moreover, we find that the hy-
brid selection strategy of NGF-SMP and MRS can
combine the merits of both methods, and obtain an
even higher accuracy when the budget is greater
than 40K annotated words. Qualitatively, the exam-
ple in Table 1 shows the translations for a source
sentence with all words appearing in the medical
domain. The NMT model adapted by MRS trans-
lates the first half of the source sentence by pick-
ing the correct word “exercised”, while the NMT
model adapted by NGF-SMP generates the correc-
tion translation “somnolence” in the second half
of the output. The NMT model using the hybrid
of NGF-SMP and MRS strategies translates both
words correctly (more examples in Appendix B.2).

5.3 How Does Each Selection Strategy Help?

We examine the question of which selection strat-
egy (§3) best improves accuracy on in-domain test
data. For mixed fine-tuning, in this section we use
the retrieved out-of-domain parallel data for a fair
comparison among all active selection strategies.
Figure 2 shows the average BLEU score and the
standard deviation of the adapted MT systems to
two new domains over 3 independent runs.6

6To obtain a stable result, we independently run the active
learning procedure with different selection strategies 3 times,
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Figure 3: Translation accuracy of in-domain words in
the test set from the medicine domain

Comparing among sentence selection strategies
in Figure 2, MRS performs slightly better than the
random sentence selection baseline on adapting the
NMT model to the IT domain with smaller stan-
dard deviation values, and performs comparably
on adapting to the medicine domain. However, we
observe that RTTL performs worst, and we conjec-
ture that this is due to the usage of the base NMT
models that are trained on the out-of-domain paral-
lel data in both directions. The errors accumulated
from the round trip translation process lead to an
inaccurate estimation of the uncertainty score for a
source sentence. Table 2 shows the top 5 sentences
selected by RTTL. The selected sentences in the
medicine domain are short phrases rather than com-
plete sentences, and those selected in the IT domain
contain duplicate phrases such as “bewerten mitâ”.

collect new translation data, and concatenate them with the
same data retrieved from out-of-domain labeled data
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Output S-BLEU

Source
Jedoch ist Vorsicht geboten, da Berichten zufolge Verwirrung und Somnolenz während der Behandlung
auftreten können.

Reference However, caution should be exercised as confusion and somnolence have been reported.
NGF-SMP However, caution is required, as there are reports of confusion and somnolence during the treatment. 15.71
MRS However, caution should be exercised, as confusion and drowsiness may occur during the treatment. 15.62
NGF-SMP+MRS However, caution should be exercised as confusion and somnolence may occur during the treatment. 15.71

Table 1: Translations generated by NMT models using different selection strategies. The last column shows the
sentence BLEU score of the translations. Translation errors are highlighted in red.

MED

Portugal Lundbeck Portugal Lda Quinta da Fonte Edifício D.
Bronchitis
Gastrointestinaltrakt :
Neugebore
139 B.

IT

Eigenschaften des Stichwortes â % 1â
bewerten mitâ Drei Sternenâ
keine Speicherplatzinformation aufâ procfsâ
bewerten mitâ Einem Sternâ
neue und einzelne auswÃ Â hlen

Table 2: Top 5 sentences selected by RTTL

For phrase-based selection methods, NGF-SMP
significantly outperforms the random phrase selec-
tion strategy. Further, NGF-SMP even outperforms
sentence selection methods when the annotation
budget is small (less than 20k words) for adaption
to the medicine domain. As we increase the annota-
tion budget to 40K annotated words, sentence selec-
tion strategies outperform phrase selection strate-
gies. This indicates that if we keep training NMT
systems on shorter phrase pairs when the annota-
tion budget is sufficient, the NMT systems would
be limited by lack of longer sentence structures. In
Figure 2b, we also find that NMT models trained
with phrasal translations fall short of those trained
with sentence translations when adapting to the IT
domain. It is hard to train the NMT systems to
translate certain phrases correctly without the sen-
tence context. For example, “Persönlichen Ordner”
in the IT domain is translated to “home directory”
rather than “personal folder” in the sentence “jedes
Skript dieses Dialogs hat Schreib-Zugriff auf Ihren
Persönlichen Ordner ”.

Finally, the hybrid selection of NGF-SMP and
MRS strategies outperforms the individual selec-
tion strategies over every budget in our set of bud-
gets, i.e., 2.5K, 5K, 10K, 20K, 40K annotated
words, improving the best phrase selection strategy
NGF-SMP by 0.49 average BLEU points, and the
best sentence selection strategy MRS by 1.11 aver-
age BLEU points in the medicine domain. Notably,

the phrase-based selection strategy especially helps
in the scenario where the context is not required to
translate domain-specific words, for example, the
name of a medicine or a disease in the medicine
domain (See the first example in Appendix B.2).
For the adaptation scenario that requires a longer
context in some domains such as IT, the hybrid
strategy can also significantly outperforms the best
phrase-based strategy NGF-SMP by 1.2 average
BLEU points, and the best sentence selection strat-
egy MRS by 0.15 BLEU points. Overall, our hy-
brid selection strategy is effective to combine the
merits of both sentence and phrase selection strate-
gies in the domain adaptation setting.

5.4 How Representative Are the Selected
Data?

If the selected data has a significant overlap of
segments with the in-domain test data, we would
expect a better adaptation performance of the NMT
trained on the selected data. Therefore we investi-
gate the n-gram overlap between the selected data
and the test data when we annotate 5K words from
the medicine corpus, and report the average BLEU
score of the adapted NMT models trained on the
selected data in Table 3. Interestingly, we find that
there exists a high correlation (ρ ≈0.8) between
the n-gram overlap and the average BLEU score,
which indicates that the n-gram overlap with the
test set can be used as a good measure of whether
the selected data is useful for improving the NMT
model in the new domain. Compared to the random
phrase selection, NGF-SMP selects phrases with a
high overlap with the test data. We also observe that
sentence selection strategies cover fewer phrases in
the test data than phrase selection strategies. This
also corroborates our assumption that asking trans-
lators to annotate phrases that the MT system can
already translate well is not cost-effective to im-
prove the in-domain translation performance.



1094

Methods uni-gram bi-gram tri-gram 4-gram Avg. BLEU

OoD Data 79.33 32.65 7.30 1.10 34.51
+ Random Sentence 82.81 38.45 11.62 3.73 39.27
+ RTTL 80.70 35.76 9.85 3.04 35.78
+ MRS 82.74 38.83 12.01 4.05 39.27
+ Random Phrase 82.36 35.84 7.98 1.15 38.23
+ NGF 84.45 41.82 14.94 6.17 39.96
+ NGF-SMP 85.80 43.13 16.15 7.11 40.21
+ NGF-SMP + MRS 84.48 41.89 14.98 6.48 40.55
ID Training Data 98.58 87.30 67.61 52.11 57.59

Pearson Correlation 0.90 0.83 0.80 0.78 /

Table 3: Percentage of the n-gram in the test sentences
that are covered by the selected data with 5K words, the
out-of-domain training data and the in-domain training
data. The last row shows the Pearson correlation coef-
ficient between n-gram overlap and avg. BLEU score.

5.5 How Redundant Are the Selected Data?

To answer this question, we first define “in-domain
words” as words that only appear in the in-domain
test set but do not exist in the out-of-domain data.
We report the statistics of the in-domain word types
word counts in the selected data with 10K anno-
tated words in Table 5. We find that phrase selec-
tion strategies select more unique in-domain word
types and counts than the sentence selection strate-
gies. This indicates that phrase selection strategies
leverage the same amount of budget effectively to
annotate more diverse in-domain words than sen-
tence selection strategies.

5.6 How Do Phrasal Translations Help in
Mixed Fine-tuning?

We further investigate the effect of mixed fine-
tuning using the newly annotated in-domain data
and sub-sampled out-of-domain data when com-
paring with fine-tuning only on the newly anno-
tated data. Table 4 shows the average BLEU score
and the standard deviation values over 3 indepen-
dent runs. Compared to fine-tuning on only an-
notated data, adding randomly sampled sentence
pairs from the out-of-domain data helps when the
annotation budget is less than 5K annotated words,
but hurts when we increase the budget. In contrast,
adding sentences retrieved by the similarity in the
sentence embedding space not only outperforms
fine-tuning only on annotated data and mixed fine-
tuning with randomly sampled sentences, but also
achieves smaller standard deviation values. On the
other hand, mixed fine-tuning on synthetic data
by switching phrases performs slightly worse than
the mixed fine-tuning on real retrieved data, but
outperforms the fine-tuning without any out-of-
domain data, especially when the annotation budget

is small, e.g., 5K annotated words. Combining syn-
thetic data by switching phrase and real retrieved
data for mixed fine-tuning also improves the trans-
lation performance over the training only on syn-
thetic data. However, the contextualized method
performs worst among all mixed fine-tuning meth-
ods, which indicates that simply appending existing
sentence context to phrasal translations might po-
tentially introduce noise to the training data.

6 Related Work

Active Learning for Machine Translation Pio-
neering works on active learning for machine trans-
lation focus on selecting sentences that are most
useful for training PBMT. This includes sentence
selection strategies based on maximizing the per-
centage of unseen n-gram (Eck et al., 2005), n-
gram frequency, lexical diversity (Haffari et al.,
2009), or in-domain coverage (Ananthakrishnan
et al., 2010). These sentence selection strategies
have been used in active learning algorithms to deal
with static data in the batch mode (Ananthakrish-
nan et al., 2010), or steaming data in the interac-
tive setting (González-Rubio et al., 2012; Peris and
Casacuberta, 2018; Lam et al., 2019).

For phrase-level annotations, there have been a
few works applying phrase-based selection (Blood-
good and Callison-Burch, 2010; Miura et al., 2016)
to PBMT. While the annotated phrases can be eas-
ily integrated by adding them with estimated trans-
lation probability to the existing phrase table in
PBMT, it it less trivial to integrate these phrase-
level annotations in NMT. Arthur et al. (2016) inte-
grated the word-level translations to NMT by inter-
polating the probability of the NMT decoder with
the estimated lexical probability. However, this ap-
proach requires a modification of the NMT model.
Our paper investigates data-driven approaches that
augment the training data by leveraging annotated
phrases and existing parallel data.

Word/Phrase-based Data Augmentation The
other line of research investigates data augmen-
tation methods that leverage word or phrase trans-
lations to create synthetic parallel data for training
MT models. This includes augmentation methods
that replace a word in the existing parallel data with
a low-frequency word sampled from the frequency
distribution of the vocabulary (Xie et al., 2017) or
from the probability of language models in both
directions (Fadaee et al., 2017; Kobayashi, 2018).
Wang et al. (2018) proposed an effective method
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Out-of-domain Data In-domain Data
2.5K 5K 10K 20K 40K

Sampled Retrieved Switched Contextualized NGF-SMP MRS

X 39.39 ± 0.14 39.22 ± 0.00 40.56 ± 0.02 41.19 ± 0.25 44.07 ± 0.33
X 37.94 ± 0.08 38.68 ± 0.54 40.62 ± 0.59 42.62 ± 0.03 45.00 ± 0.11

X X 38.94 ± 0.02 39.60 ± 0.09 41.34 ± 0.12 42.44 ± 0.15 44.90 ± 0.06

X X X 39.46 ± 0.14 40.51 ± 0.23 40.62 ± 0.49 41.82 ± 0.26 43.78 ± 0.57
X X X 39.73 ± 0.16 40.55 ± 0.14 42.30 ± 0.10 43.72 ± 0.04 45.41 ± 0.08

X X X 38.93 ± 0.36 40.59 ± 0.17 41.82 ± 0.29 42.70 ± 0.37 45.33 ± 0.04
X X X 35.36 ± 0.38 37.85 ± 0.68 39.96 ± 0.35 42.83 ± 0.11 44.14 ± 0.15

X X X X 39.61 ± 0.06 40.95 ± 0.06 42.19 ± 0.08 43.42 ± 0.17 45.06 ± 0.19
X X X X 37.88 ± 0.25 39.52 ± 0.32 41.17 ± 0.28 42.80 ± 0.21 44.28 ± 0.13

Table 4: Comparison between mixed fine-tuning methods. Bold indicates highest average BLEU by column.

Methods IDWT WT IDWT
WT IDWC WC IDWC

WC

Random Phrase 787 2206 35.68 860 5003 17.19
NGF 489 1053 46.44 889 5002 17.77
NGF-SMP 796 1492 53.35 1076 5001 21.52

Random Sentence 631 1984 31.80 712 5023 14.17
RTTL 592 1338 44.25 961 5023 19.13
MRS 647 2056 31.47 721 5023 14.35

NGF-SMP + MRS 667 1755 38.01 859 5035 17.06

Table 5: Statistics of the unique in-domain word types
and word counts in the selected data with 10K anno-
tated words.

that randomly replaces words in parallel sentences
with other random words from the in-domain vo-
cabulary. A more recent work on dictionary-based
data augmentation (Peng et al., 2020) proposed
to use an existing high-quality in-domain dictio-
nary, and replaced a source word in the existing
parallel data by the most similar word in the dictio-
nary according to the cosine similarity metric in the
embedding space. In contrast, we select noisy in-
domain phrases using different phrase-based selec-
tion strategies (§3.2) to ensure the selection quality
in an active learning process.

7 Discussion and Future Work

In this paper, we investigate ways to incorporat-
ing phrasal translations into training NMT for do-
main adaptation in the active learning setting. We
find that phrasal translation is particularly useful
in the adaptation scenario where longer sentence
context is not necessarily required to translate in-
domain words correctly. In contrast, NMT sys-
tems can benefit from learning sentence structure
with sentence-based selection strategies. The hy-
brid selection strategies can combine the merits
of both sentence-based and phrase-based selection
strategies. Nonetheless, there are several future
directions. (1) It is worth exploring how different
annotation strategies may result in a difference in
cost or time. (2) Although several findings could
be generalized to other language pairs, testing our

methods on morphologically rich languages is our
next step. (3) Our current hybrid strategy simply
allocates the annotation budget evenly without as-
suming any prior knowledge of the strategies and
the translation performance. Techniques in multi-
armed bandit problems (Gittins et al., 2011) can be
used to learn a good allocation strategy.

References
Roee Aharoni and Yoav Goldberg. 2020. Unsupervised

domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7747–
7763, Online. Association for Computational Lin-
guistics.

Sankaranarayanan Ananthakrishnan, Rohit Prasad,
David Stallard, and Prem Natarajan. 2010. A semi-
supervised batch-mode active learning strategy for
improved statistical machine translation. In Pro-
ceedings of the Fourteenth Conference on Computa-
tional Natural Language Learning, pages 126–134,
Uppsala, Sweden. Association for Computational
Linguistics.

Mikel Artetxe and Holger Schwenk. 2019. Margin-
based parallel corpus mining with multilingual sen-
tence embeddings. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3197–3203, Florence, Italy. Asso-
ciation for Computational Linguistics.

Philip Arthur, Graham Neubig, and Satoshi Nakamura.
2016. Incorporating discrete translation lexicons
into neural machine translation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1557–1567, Austin,
Texas. Association for Computational Linguistics.

Michael Bloodgood and Chris Callison-Burch. 2010.
Bucking the trend: Large-scale cost-focused active
learning for statistical machine translation. In Pro-
ceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 854–
864, Uppsala, Sweden. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://www.aclweb.org/anthology/W10-2916
https://www.aclweb.org/anthology/W10-2916
https://www.aclweb.org/anthology/W10-2916
https://doi.org/10.18653/v1/P19-1309
https://doi.org/10.18653/v1/P19-1309
https://doi.org/10.18653/v1/P19-1309
https://doi.org/10.18653/v1/D16-1162
https://doi.org/10.18653/v1/D16-1162
https://www.aclweb.org/anthology/P10-1088
https://www.aclweb.org/anthology/P10-1088


1096

Boxing Chen and Colin Cherry. 2014. A systematic
comparison of smoothing techniques for sentence-
level BLEU. In Proceedings of the Ninth Workshop
on Statistical Machine Translation, pages 362–367,
Baltimore, Maryland, USA. Association for Compu-
tational Linguistics.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of domain adaptation
methods for neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 385–391, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Chenhui Chu and Rui Wang. 2018. A survey of do-
main adaptation for neural machine translation. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 1304–1319, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Hal Daumé III and Jagadeesh Jagarlamudi. 2011. Do-
main adaptation for machine translation by min-
ing unseen words. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
407–412, Portland, Oregon, USA. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Matthias Eck, Stephan Vogel, and Alex Waibel. 2005.
Low cost portability for statistical machine transla-
tion based on n-gram frequency and tf-idf. In Inter-
national Workshop on Spoken Language Translation
(IWSLT) 2005.

Marzieh Fadaee, Arianna Bisazza, and Christof Monz.
2017. Data augmentation for low-resource neural
machine translation. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 567–
573, Vancouver, Canada. Association for Computa-
tional Linguistics.

Rashmi Gangadharaiah, Ralf D. Brown, and Jaime Car-
bonell. 2009. Active learning in example-based
machine translation. In Proceedings of the 17th
Nordic Conference of Computational Linguistics
(NODALIDA 2009), pages 227–230, Odense, Den-
mark. Northern European Association for Language
Technology (NEALT).

John Gittins, Kevin Glazebrook, and Richard Weber.
2011. Multi-armed bandit allocation indices. John
Wiley & Sons.

Jesús González-Rubio, Daniel Ortiz-Martínez, and
Francisco Casacuberta. 2012. Active learning for
interactive machine translation. In Proceedings of
the 13th Conference of the European Chapter of the
Association for Computational Linguistics, pages
245–254, Avignon, France. Association for Compu-
tational Linguistics.

Gholamreza Haffari, Maxim Roy, and Anoop Sarkar.
2009. Active learning for statistical phrase-based
machine translation. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 415–423,
Boulder, Colorado. Association for Computational
Linguistics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham
Neubig, Orhan Firat, and Melvin Johnson. 2020.
Xtreme: A massively multilingual multi-task bench-
mark for evaluating cross-lingual generalisation. In
Proceedings of the International Conference on Ma-
chine Learning 1, pages 7449–7459.

Sosuke Kobayashi. 2018. Contextual augmentation:
Data augmentation by words with paradigmatic re-
lations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 452–457,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation, pages 28–39, Vancouver. Association for
Computational Linguistics.

Tsz Kin Lam, Shigehiko Schamoni, and Stefan Rie-
zler. 2019. Interactive-predictive neural machine
translation through reinforcement and imitation. In
Proceedings of Machine Translation Summit XVII
Volume 1: Research Track, pages 96–106, Dublin,
Ireland. European Association for Machine Transla-
tion.

Minh-Thang Luong and Christopher D. Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domain. In International Workshop on
Spoken Language Translation, Da Nang, Vietnam.

Akiva Miura, Graham Neubig, Michael Paul, and
Satoshi Nakamura. 2016. Selecting syntactic, non-
redundant segments in active learning for machine
translation. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 20–29, San Diego, California.
Association for Computational Linguistics.

Robert C. Moore and William Lewis. 2010. Intelli-
gent selection of language model training data. In

https://doi.org/10.3115/v1/W14-3346
https://doi.org/10.3115/v1/W14-3346
https://doi.org/10.3115/v1/W14-3346
https://doi.org/10.18653/v1/P17-2061
https://doi.org/10.18653/v1/P17-2061
https://www.aclweb.org/anthology/C18-1111
https://www.aclweb.org/anthology/C18-1111
https://www.aclweb.org/anthology/P11-2071
https://www.aclweb.org/anthology/P11-2071
https://www.aclweb.org/anthology/P11-2071
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P17-2090
https://doi.org/10.18653/v1/P17-2090
https://www.aclweb.org/anthology/W09-4633
https://www.aclweb.org/anthology/W09-4633
https://www.aclweb.org/anthology/E12-1025
https://www.aclweb.org/anthology/E12-1025
https://www.aclweb.org/anthology/N09-1047
https://www.aclweb.org/anthology/N09-1047
http://proceedings.mlr.press/v119/hu20b/hu20b.pdf
http://proceedings.mlr.press/v119/hu20b/hu20b.pdf
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://www.aclweb.org/anthology/W19-6610
https://www.aclweb.org/anthology/W19-6610
https://nlp.stanford.edu/pubs/luong-manning-iwslt15.pdf
https://nlp.stanford.edu/pubs/luong-manning-iwslt15.pdf
https://doi.org/10.18653/v1/N16-1003
https://doi.org/10.18653/v1/N16-1003
https://doi.org/10.18653/v1/N16-1003
https://aclanthology.org/P10-2041/
https://aclanthology.org/P10-2041/


1097

Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics (short pa-
pers), Uppsala, Sweden. Association for Computa-
tional Linguistics.

Wei Peng, Chongxuan Huang, Tianhao Li, Yun Chen,
and Qun Liu. 2020. Dictionary-based data augmen-
tation for cross-domain neural machine translation.
arXiv preprint arXiv:2004.02577.

Álvaro Peris and Francisco Casacuberta. 2018. Active
learning for interactive neural machine translation of
data streams. In Proceedings of the 22nd Confer-
ence on Computational Natural Language Learning,
pages 151–160, Brussels, Belgium. Association for
Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996–
5001, Florence, Italy. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham
Neubig. 2018. SwitchOut: an efficient data aug-
mentation algorithm for neural machine translation.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
856–861, Brussels, Belgium. Association for Com-
putational Linguistics.

Ziang Xie, Sida I Wang, Jiwei Li, Daniel Lévy, Aiming
Nie, Dan Jurafsky, and Andrew Y Ng. 2017. Data
noising as smoothing in neural network language
models. In International Conference on Learning
Representations (ICLR), Toulon, France.

Xiangkai Zeng, Sarthak Garg, Rajen Chatterjee, Ud-
hyakumar Nallasamy, and Matthias Paulik. 2019.
Empirical evaluation of active learning techniques
for neural MT. In Proceedings of the 2nd Workshop
on Deep Learning Approaches for Low-Resource
NLP (DeepLo 2019), pages 84–93, Hong Kong,
China. Association for Computational Linguistics.

Pei Zhang, Xueying Xu, and Deyi Xiong. 2018. Active
learning for neural machine translation. In 2018 In-
ternational Conference on Asian Language Process-
ing (IALP), pages 153–158. IEEE.

https://arxiv.org/abs/2004.02577
https://arxiv.org/abs/2004.02577
https://doi.org/10.18653/v1/K18-1015
https://doi.org/10.18653/v1/K18-1015
https://doi.org/10.18653/v1/K18-1015
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/D18-1100
https://doi.org/10.18653/v1/D18-1100
https://arxiv.org/abs/1703.02573
https://arxiv.org/abs/1703.02573
https://arxiv.org/abs/1703.02573
https://doi.org/10.18653/v1/D19-6110
https://doi.org/10.18653/v1/D19-6110
https://ieeexplore.ieee.org/document/8629116
https://ieeexplore.ieee.org/document/8629116


1098

Appendix

A Pseudo code

Algorithm 1 shows the active learning procedure
for machine translation, which consists of two main
steps: selection/translation (§3) and fine-tuning
(§4).

Algorithm 1 Active Learning for Domain Adapta-
tion of Machine Translation

1: procedure ACTIVEADAPTATION(U ,L, B)
2: Inputs: the unlabelled set U , the la-

belled set L, and a budget B.
3: Train a MT model θ on L.
4: S,P ← SELECTION(U ,L, B)
5: Translate S by Ls = {(x,O(x))|x ∈ S}
6: Translate P by Lp = {(p,O(p))|p ∈ P}
7: Lr ← Obtain parallel data from L (§4)
8: Fine-tune θ on Ls ∪ Lp ∪ Lr
9: return θ

Algorithm 2 Hybrid Phrase/Sentence Selection

1: procedure SELECTION(U ,L, B)
2: Inputs: the unlabelled set U , the la-

belled set L, and a budget B.
3: Initialize S = {}, P = {}
4: Allocate the budget: Bs, Bp ← B
5: while

∑
x∈S c(x) < Bs do

6: x← argmaxx∈U φ(x, ·)
7: U = U \ {x}
8: S = S ∪ {x}
9: Construct PU ,PL by strategies (§3.2)

10: while
∑

p∈P c(p) < Bp do
11: p← argmaxp∈PU occ(p,U)
12: PU = PU \ {p}
13: P = P ∪ {p}

return S,P

B Experiments

B.1 Experimental Details for Reproducibility

Dataset: As pointed out in Aharoni and Gold-
berg (2020), there is overlap between the training
data and the test data in the original split of the two
corpora provided by Koehn and Knowles (2017),
so we follow them in removing the duplicated sen-
tences in the in-domain data, and re-splitting two
new test sets in order to prevent the model from
memorizing the selected in-domain training data

Data Domain Lang #Sentences #Words Vocab Avg Len

L WMT14
De

4.4M
108.0M 1.9M 24.4

En 114.5M 955.3K 25.8

U Medicine De 227.2K 3.8M 114.3K 16.8
IT De 190.6K 2.1M 114.6K 11.5

Table 6: Data statistics of the out-of-domain labeled
data in WMT14 and the in-domain unlabeled data in
the medicine and IT domains.

that could potentially be included in the test data.
Table 6 shows the data statistics.

Model: As our NMT model, we use a 6-layer
512-unit Transformer (Vaswani et al., 2017) imple-
mented in Fairseq,7 and use a subword vocab-
ulary of 5,000 for both languages constructed by
Byte Pair Encoding (Sennrich et al., 2016). The
model has 45M parameters.

Training: We train the base model with Adam
for 10 epochs with 4K warmup steps and a peak
learning rate of 1e-3, and decay the learning rate
based on the inverse square root of the number of
update steps (Vaswani et al., 2017). We save the last
checkpoint as our base model, and continue fine-
tuning the base model on a mixture of the newly-
translated data and the retrieved out-of-domain data
for 5 more epochs.

Training/Inference Time: We train each model
on one NVIDIA RTX 2080Ti GPU for all our ex-
periments. Training the base NMT model takes
less than 1 days, and fine-tuning the base NMT
model on selected data takes less than 4hours. The
decoding of 2000 sentences can be finished within
5 minutes.

B.2 Qualitative Analysis
In the first example of Table 7, the NMT model
adapted by NGF-SMP can predict most words cor-
rectly while the NMT model adapted by MRS gen-
erate a random sentence.

B.3 Do Phrasal Annotations Bias NMT?
Since phrasal annotations are short and do not con-
tain complex sentence structure, we hypothesis that
NMT systems trained on phrasal annotations would
be biased towards generating shorter sentences or
sentences in different grammatical order w.r.t. the
reference sentence. To understand this question,
we analyze the length ratio between the translation
outputs and the reference sentences in Figure 4.

7https://github.com/pytorch/fairseq

https://github.com/pytorch/fairseq
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Output S-BLEU

Source Schwindel, Parästhesie, Geschmacksstörung
Reference Dizziness, paraesthesiae, taste disorder
NGF-SMP Dizziness, paraesthesia, taste disturbance 23.27
MRS The room was very small and the bathroom was very small. 0.00
NGF-SMP+MRS Dizziness, paraesthesia, taste disturbance 23.27

Source Über Hospitalisierung oder Todesfälle in Verbindung mit Infektionen wurde berichtet.
Reference Hospitalisation or fatal outcomes associated with infections have been reported.
NGF-SMP There have been reports of Hospitalisation or death associated with infections. 29.79
MRS Hospitals or deaths associated with infections have been reported. 54.63
NGF-SMP+MRS There have been reports of Hospitalisation or fatality associated with infections. 29.79

Table 7: Translations generated by NMT models using different selection strategies. The last column shows the
sentence BLEU score of the translations. Translation errors are highlighted in red.

# Annotated Words

Le
ng

th
 R

at
io

0.950

0.975

1.000

1.025

1.050

2.5K 5K 10K 20K 40K 80K

NGF-SMP NGF-SMP + Mixed (Random) NGF-SMP + Mixed (Retrieved)
NGF-SMP + Mixed (Switched) NGF-SMP + Mixed (Contextualized)

NGF-SMP + MRS + Mixed (Retrieved)

Figure 4: Length ratio between the NMT outputs and
the reference sentences.

We find that the NMT model trained only on an-
notated phrases selected by NGF-SMP generates
shorter sentences than reference sentences. In con-
trast, adding sentences randomly sampled from
the labeled corpus L make the NMT model gener-
ate longer sentences than the reference sentences,
while retrieving sentences fromL that are similar to
the sentences in U makes the model produces trans-
lation outputs with closed lengths as the reference
sentences. Qualitatively, we also show the problem
of generating sentences with different structures as
the reference sentences in the third example in Ta-
ble 1. In the third example, the NMT model trained
with NGF-SMP produces a translation in an active
voice, while the reference sentence uses a passive
voice.


