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Abstract

The task of Emotion-Cause Pair Extraction
(ECPE) aims to extract all potential clause-
pairs of emotions and their corresponding
causes in a document. Unlike the more well-
studied task of Emotion Cause Extraction
(ECE), ECPE does not require the emotion
clauses to be provided as annotations. Pre-
vious works on ECPE have either followed a
multi-stage approach where emotion extraction,
cause extraction, and pairing are done indepen-
dently or use complex architectures to resolve
its limitations. In this paper, we propose an
end-to-end model for the ECPE task. Due to
the unavailability of an English language ECPE
corpus, we adapt the NTCIR-13 ECE corpus
and establish a baseline for the ECPE task on
this dataset. On this dataset, the proposed
method produces significant performance im-
provements (∼ 6.5% increase in F1 score) over
the multi-stage approach and achieves compara-
ble performance to the state of the art methods.

1 Introduction
There have been several works on emotions pre-
diction from the text (Alswaidan and Menai, 2020;
Witon et al., 2018) as well as generating emotion
oriented texts (Ghosh et al., 2017; Colombo et al.,
2019; Modi et al., 2020; Goswamy et al., 2020).
However, recently the focus has also shifted to
finding out the underlying cause(s) that lead to the
emotion expressed in the text. In this respect, Gui
et al. (2016) proposed the Emotion Cause Extrac-
tion (ECE), a task aimed at detecting the cause
behind a given emotion annotation. The task is de-
fined as a clause level classification problem. The
text is divided at the clause level and the task is
to detect the clause containing the cause, given
the clause containing the emotion. However, the
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applicability of models solving the ECE problem
is limited by the fact that emotion annotations
are required at test time. More recently, Xia and
Ding (2019) introduced the Emotion-Cause Pair
Extraction (ECPE) task i.e. extracting all possible
emotion-cause clause pairs in a document with no
emotion annotations. Thus, ECPE opens up av-
enues for applications of real-time sentiment-cause
analysis in tweets and product reviews. ECPE
builds on the existing and well studied ECE task.
Figure 1 shows an example with ground truth an-
notations.

Xia and Ding (2019) use a two-stage architecture
to extract potential emotion-cause clauses. In Stage
1, the model extracts a set of emotion clauses and a
set of cause clauses (not mutually exclusive) from
the document. In Stage 2, it performs emotion-
cause pairing and filtering, i.e. eliminating pairs
that the model predicts as an invalid emotion-cause
pair. However, this fails to fully capture the mutual
dependence between emotion and cause clauses
since clause extraction happens in isolation from
the pairing step. Thus, the model is never opti-
mized using the overall task as the objective. Also,
certain emotion clauses are likely not to be detected
without the corresponding cause clauses as the con-
text for that emotion. Recent methods such as Ding
et al. (2020a) and Ding et al. (2020b) use complex
encoder and classifier architectures to resolve these
limitations of the multi-stage method.

In this paper, we propose an end-to-end model
to explicitly demonstrate the effectiveness of joint
training on the ECPE task. The proposed model
attempts to take into account the mutual interdepen-
dence between emotion and cause clauses. Based
on the benchmark English-language corpus used in
the ECE task of the NTCIR-13 workshop (Gao
et al., 2017), we evaluate our approach on this
dataset after adapting it for the ECPE task. We
demonstrate that the proposed approach works sig-
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Clause 1: Adele arrived at her apartment late in the afternoon after a long day of work.
Clause 2: She was still furious with her husband for not remembering her 40th birthday.
Clause 3: As soon as she unlocked the door, she gasped with surprise;
Clause 4: Mikhael and Harriet had organized a huge party for her.

Figure 1: An example document. The above example contains two emotion-cause pairs. Clause 2 is an emotion
clause (furious) and is also the corresponding cause clause (for not remembering her 40th birthday). Clause 3 is an
emotion clause (surprise) and Clause 4 is its corresponding cause clause (organized a huge party for her).

nificantly better than the multi-stage method and
achieves comparable performance to the state of
the art methods. We also show that when used for
the ECE task by providing ground truth emotion
annotations, our model beats the state of the art per-
formance of ECE models on the introduced corpus.
We provide the dataset and implementations of our
models via GitHub1.

2 Related Work
The problem of Emotion Cause Extraction (ECE)
has been studied extensively over the past decade.
ECE was initially proposed as a word-level se-
quence detection problem in Lee et al. (2010). At-
tempts to solve this task focused on either classical
machine learning techniques (Ghazi et al., 2015), or
on rule-based methods (Neviarouskaya and Aono,
2013; Gao et al., 2015). Subsequently, the problem
was reframed as a clause-level classification prob-
lem (Chen et al., 2010) and the Chinese-language
dataset introduced by Gui et al. (2016) has since
become the benchmark dataset for ECE and the
task has been an active area of research (Xia et al.,
2019; Gui et al., 2017; Yu et al., 2019; Li et al.,
2018, 2019; Fan et al., 2019).

However, the main limitation of ECE remains
that it requires emotion annotations even during
test time, which severely limits the applicability of
ECE models. To address this, Xia and Ding (2019)
introduced a new task called emotion-cause pair ex-
traction (ECPE), which extracts both emotion and
its cause without requiring the emotion annotation.
They demonstrated the results of their two-stage
architecture on the benchmark Chinese language
ECE corpus (Gui et al., 2016). Following their
work, several works have been proposed to address
the limitations of the two-stage architecture (Ding
et al. (2020a), Ding et al. (2020b), Fan et al. (2020),
Yuan et al. (2020), Cheng et al. (2020), Chen et al.
(2020)) . In order to explore the corpus further and
to encourage future work from a broader commu-

1https://github.com/Aaditya-Singh/
E2E-ECPE

nity, we use an English language ECE corpus. (see
section 5).

3 Task Definition

Formally, a document consists of text that is
segmented into an ordered set of clauses D =
[c1, c2, ..., cd] and the ECPE task aims to extract
a set of emotion-cause pairs P = {..., (ci, cj), ...}
(ci, cj ∈ D), where ci is an emotion clause and
cj is the corresponding cause clause. In the ECE
task, we are additionally given the annotations of
emotion clauses and the goal is to detect (one or
more) clauses containing the cause for each emo-
tion clause.

4 Approach

We propose an end-to-end emotion cause pairs ex-
traction model (Figure 2), henceforth referred to
as E2E-PExtE (refer to section 6 for the naming
convention). The model takes an entire document
as its input and computes, for each ordered pair of
clauses (ci, cj), the probability of being a poten-
tial emotion-cause pair. To facilitate the learning
of suitable clause representations required for this
primary task, we train the model on two other aux-
iliary tasks: Emotion Detection and Cause Detec-
tion.

We propose a hierarchical architecture. Word
level representations are used to obtain clausal rep-
resentations (vi BiLSTM) and clause level repre-
sentations are further contextualized using another
BiLSTM network. The resulting contextualized
clause representations are then used for the classifi-
cation task. Let wj

i represent the vector representa-
tion of the jth word in the ith clause. Each clause ci
in the document d is passed through a word-level
encoder (BiLSTM + Attention (Bahdanau et al.,
2015)) to obtain the clause representation si. The
clause embeddings are then fed into two separate
clause-level encoders (Emotion-Encoder and
Cause-Encoder) each of which corresponds,
respectively, to the two auxiliary tasks. The pur-
pose of the clause-level encoders is to help learn

https://github.com/Aaditya-Singh/E2E-ECPE
https://github.com/Aaditya-Singh/E2E-ECPE
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Figure 2: End-to-End network (E2E-PExtE)

contextualized clause representations by incorpo-
rating context from the neighboring clauses in the
document. For each clause ci, we obtain its con-
textualized representations rei and rci by passing it
through a BiLSTM network.

For the clause ci, its contextual representations
rei and rci are then used to predict whether the
clause is an emotion-clause and a cause-clause re-
spectively, i.e.,

ŷe
i = softmax(We ∗ rei + be); (1)

ŷc
i = softmax(Wc ∗ rci + bc) (2)

As observed by Xia and Ding (2019), we also
noticed that performance on the two auxiliary
tasks could be improved if done in an interac-
tive manner rather than independently. Hence, the
Cause-Encoder also makes use of the corre-
sponding emotion-detection prediction ye

i , when
generating rci (Figure 2).

For the primary task, every ordered pair (ci, cj)
is represented by concatenating rei , r

c
j and peij ,

wherein peij is the positional embedding vec-
tor representing the relative positioning between
the two clauses i, j in the document (Shaw et al.,
2018).

The primary task is solved by passing this pair-
representation through a fully-connected neural net-
work to get the pair-predictions.

rpij = [rei ⊕ rcj ⊕ peij ]; (3)

hp
ij = ReLU(Wp1 ∗ rpij + bp1); (4)

ŷp
ij = softmax(Wp2 ∗ hp

ij + bp2) (5)

To train the end-to-end model, loss function
is set as the weighted sum of loss on the pri-
mary task as well as the two auxiliary tasks i.e.

Ltotal = λc ∗ Lc + λe ∗ Le + λp ∗ Lp, where Le,
Lc, and Lp are cross-entropy errors for emotion,
cause and pair predictions respectively. Further,
Lp = Lpos + loss weight ∗Lneg, where Lpos and
Lneg are the errors attributed to positive and nega-
tive examples respectively. We use hyperparameter
loss weight to scale down Lneg, since there are
far more negative examples than positive ones in
the primary pairing task.

5 Corpus/Data Description

We adapt an existing Emotion-Cause Extraction
(ECE) (Fan et al., 2019; Li et al., 2019) corpus
for evaluating our proposed models (as well as
the architectures proposed in previous work). The
corpus was introduced in the NTCIR-13 Workshop
(Gao et al., 2017) for the ECE challenge.

The corpus consists of 2843 documents taken
from several English novels. Each document is an-
notated with the following information: i) emotion-
cause pairs present in the document, that is, the set
of emotion clauses and their corresponding cause
clauses; ii) emotion category of each clause; and
iii) the keyword within the clause denoting the la-
beled emotion. We do not use the emotion category
or the keyword during training of either ECE or
ECPE tasks only the emotion-cause pairs are used.
At test time, none of the annotations are used for
the ECPE task. For ECE task, emotion annota-
tion is provided at test time and the model predicts
the corresponding cause clauses. 80%-10%-10%
splits are used for training, validation and testing.
10 such randomly generated splits are used to get
statistically significant results, and the average re-
sults are reported.
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Emotion Extraction Cause Extraction Pair Extraction

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

ECPE 2-stage (Xia and Ding, 2019) 67.41 71.60 69.40 60.39 47.34 53.01 46.94 41.02 43.67
ECPE-2D(BERT) (Ding et al., 2020a) 74.35 69.68 71.89 64.91 53.53 58.55 60.49 43.84 50.73
ECPE-MLL(ISML-6) (Ding et al., 2020b) 75.46 69.96 72.55 63.50 59.19 61.10 59.26 45.30 51.21
E2E-PExtE (Ours) 71.63 67.49 69.43 66.36 43.75 52.26 51.34 49.29 50.17

RHNN (Fan et al., 2019) - - - - - - 69.01 52.67 59.75
E2E-CExt (Ours) - - - - - - 65.21 66.18 65.63

Table 1: Experimental results comparing our models with the already existing benchmarks. The top half compares our model
for ECPE (E2E-PExtE) against the existing benchmarks. The bottom half compares existing ECE benchmark on this dataset
against our model (E2E-CExt). Note that the Pair Extraction task in ECPE with true-emotion provided reduces to the Cause
Extraction task of ECE. The results on RHNN and E2E-CExt are only for the primary task, since in the ECE setting, there are
no auxiliary tasks. The evaluation metrics are same as the ones used in previous works.

6 Experiments and Results

Naming Scheme for Model Variants:
E2E: End to End.
PExt/CExt/EExt: Pair Extraction/ Cause Ex-
traction/ Emotion Extraction.
Subscript E/C: represents how the auxiliary tasks
are solved interactively (emotion predictions used
for cause detection or vice versa).

For the purpose of evaluation on our dataset,
we reproduced the two-stage model: ECPE
2-stage (Xia and Ding, 2019). We also adapted
two models that achieve state of the art perfor-
mance on the ECPE task: ECPE-2D(BERT)
(Ding et al., 2020a) and ECPE-MLL(ISML-6)
(Ding et al., 2020b) and compared them against
our model: E2E-PExtE. The model is trained for
15 epochs using Adam optimizer (Kingma and Ba,
2014). The learning rate and batch size were set
to 0.005 and 32 respectively. Model weights and
biases were initialized by sampling from a uniform
distribution U(−0.10, 0.10). GloVe word embed-
dings (Pennington et al., 2014) of 200 dimension
are used. For regularization, we set the dropout
rate to 0.8 for word embeddings and L2 weight
decay of 1e-5 over softmax parameters. We set
λc : λe : λp = 1 : 1 : 2.5. The values chosen
through grid search on the hyperparameter space
reflect the higher importance of the primary pair
detection task compared to the auxiliary tasks. To
obtain better positional embeddings which encode
the relative positioning between clauses, we trained
randomly initialized embeddings after setting the
clipping distance (Shaw et al., 2018) to 10 all
clauses that have a distance of 10 or more between
them have the same positional embedding.

We use the same evaluation metrics (precision,
recall and F1-score), as used in the past work on
ECE and ECPE tasks. Following Xia and Ding

(2019), the metric definitions are defined as:

P =
#correct pairs

#proposed pairs

R =
#correct pairs

#annotated pairs

F1 =
2 ∗ P ∗R
P +R

where,

#proposed pairs = no. of emotion-cause

pairs predicted by model

#correct pairs = number of emotion-cause

pairs predicted correctly

by the model

#annotated pairs = total number of actual

emotion-cause pairs in

the data

P,R, F1 for the two auxiliary classification
tasks (emotion-detection and cause-detection) have
the usual definition (see Gui et al. (2016)).

The results are summarized in Table 1.
Our model E2E-PExtE outperforms ECPE
2-stage on the task of emotion-cause pair ex-
traction by a significant margin of 6.5%. This
explicitly demonstrates that an end-to-end model
works much better since it leverages the mu-
tual dependence between the emotion and cause
clauses. As shown in Table 1, our model achieves
comparable performance to the highly parameter-
ized and complex models ECPE-2D(BERT) and
ECPE-MLL(ISML-6) (which either leverage a
pre-trained BERT (Devlin et al., 2019) and 2D
Transformer (Vaswani et al., 2017) or iterative BiL-
STM encoder). To further demonstrate this point,
we compare the number of trainable parameters
across models in Table 2.
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Method Trainable parameters
E2E-PExtE 790,257
ECPE-2D(BERT) 1,064,886
ECPE-MLL(ISML-6) 6,370,452

Table 2: Comparison of trainable parameters of our
model (E2E-PExtE) with the state-of-the-art models
(ECPE-2D(BERT) and ECPE-MLL(ISML-6)). We
achieve comparable performance with these models
with fewer parameters and simpler architecture.

We also evaluate our model on the ECE task.
For this, we use a variant of E2E-PExtE i.e.
E2E-CExt, so that it utilizes the emotion anno-
tations. Specifically, we incorporate the knowl-
edge of emotion annotations by incorporating
them into the Cause-Encoder as well as the
Pair-Prediction-Module and show that
this improves performance in both the primary pair
prediction task as well as the auxiliary cause de-
tection task (appendix section A). E2E-CExt out-
performs the state of the art model RHNN: (Fan
et al., 2019) on the ECE task. This is indicative
of the generalization capability of our model and
further demonstrates that performance on ECPE
can be enhanced with improvements in the quality
of emotion predictions.

6.1 Ablation Experiments

We analyzed the effect of different components of
the model on performance via ablation experiments.
We present some notable results below. More re-
sults are presented in the Appendix.
Positional Embeddings: For finding the extent
to which positional embeddings affect the perfor-
mance, we train E2E-PExtE without positional
embeddings. This resulted in a slight drop in valida-
tion F1 score from 51.34 to 50.74, which suggests
that the network is robust to withstanding the loss
of distance information at the clause-level.
Loss Weighting: To handle the problem of data
imbalance, we varied loss weight. We observed
(Figure 3) that assigning less weight to the negative
examples leads to more predicted positives, and
hence a better recall but worse precision.

7 Conclusion

In this paper, we demonstrated that a simple end-
to-end model can achieve competitive performance
on the ECPE task by leveraging the inherent cor-
relation between emotions and their causes and
optimizing directly on the overall objective. We
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Figure 3: Precision, Recall and F1 Score as a function
of weight assigned to negative examples.

also showed that a variant of our model which fur-
ther uses emotion annotations, outperforms the pre-
viously best performing model on the ECE task,
thereby showing its applicability to variety of re-
lated tasks involving emotion analysis. In future,
we plan on developing a larger benchmark English-
language dataset for the ECPE task. We plan to
explore other model-architectures which we expect
will help us learn richer representations for causal-
ity detection in clause-pairs.
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Appendix
A Model Variants
We present a variant of E2E-PExtE called
E2E-PExtC (Figure 4). Here, we feed the clause
embeddings si into a clause-level BiLSTM to ob-
tain context-aware clause encodings rci which is
fed into a softmax layer to obtain cause predictions
yc
i . We concatenate the cause predictions with the

clause embeddings, si ⊕ yc
i , and feed them into

another clause-level BiLSTM to obtain emotion
representations rei , which are fed into another soft-
max layer to obtain the emotion predictions ye

i .
The pair prediction network remains the same as
described for E2E-PExtE. For finding the extent

to which emotion labels can help in improving pair
predictions, we present a variant of E2E-PExtE
called E2E-CExt. We use the true emotion la-
bels instead of emotion predictions ye

i to obtain
the context-aware clause encodings rci . We also
concatenate them with the input of pair-prediction
network rei ⊕ rcj ⊕ peij to make full use of the
additional knowledge of emotion labels. Similarly,
the corresponding variant of E2E-PExtC which
utilizes true cause labels is called E2E-EExt. The
results of model variation are shown in Table 3.
Here, the pair prediction network consists of a sin-
gle fully connected layer. After comparing the
performance of E2E-PExtC and E2E-EExt we
conclude that huge improvements in performance
can be achieved if the quality of cause predictions
is improved.
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Figure 4: End-to-End network variant (E2E-PExtC)

Emotion Extraction Cause Extraction Pair Extraction

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

E2E-PExtC 71.70 66.77 69.10 63.75 42.50 50.42 48.88 48.22 48.37
E2E-EExt 81.74 71.95 76.47 100.00 100.00 100.00 74.17 78.63 76.30

Table 3: Results of Model variants using precision, recall, and F1-score on the ECPE task and the two sub-tasks.


