
Proceedings of the Sixth Arabic Natural Language Processing Workshop, pages 53–59
Kyiv, Ukraine (Virtual), April 19, 2021.

53

Arabic Compact Language Modelling for Resource Limited Devices

Zaid Alyafeai

KFUPM, Dhahran, Saudi Arabia

g201080740@kfupm.edu.sa

Irfan Ahmad

KFUPM, Dhahran, Saudi Arabia

irfan.ahmad@kfupm.edu.sa

Abstract

Natural language modelling has gained a lot
of interest recently. The current state-of-the-
art results are achieved by first training a very
large language model and then fine-tuning it
on multiple tasks. However, there is little work
on smaller more compact language models for
resource-limited devices or applications. Not
to mention, how to efficiently train such mod-
els for a low-resource language like Arabic.
In this paper, we investigate how such mod-
els can be trained in a compact way for Ara-
bic. We also show how distillation and quan-
tization can be applied to create even smaller
models. Our experiments show that our largest
model which is 2x smaller than the baseline
can achieve better results on multiple tasks
with 2x less data for pretraining.

1 Introduction

Language Modelling refers to the process of design-
ing a model that can mimic language understanding
in humans. The trained models can then be fine-
tuned on multiple tasks by using them as feature ex-
tractors by adding extra layers at thend of such mod-
els. This is a difficult task since, language under-
standing and comprehension require huge amounts
of data. Recently, advances in machine learning
and particularly deep learning is proving significant
in different tasks like text classification, sentiment
analysis, question answering, summarization and
language inference using transformer-based archi-
tectures (Devlin et al., 2018). This approach re-
quires training a deep architecture that models the
language using unsupervised techniques on unla-
belled data. The outcome of this method is a large
model that has a huge memory footprint. This lim-
its the deployment of such models on resource-
limited devices because of memory constraints.
Furthermore, the model needs to be retrained to
make it useful for other more interesting tasks. Re-

cently, a lot of approaches have emerged in making
these deep architectures more practical using meth-
ods like distillation (Sun et al., 2020) and quanti-
zation (Zafrir et al., 2019). Unfortunately, most
of the work that is available in the literature tar-
gets English language because of the availability
of data and research development tools. In this
work we train a compact Arabic language model
that can be fine-tuned on different tasks. Moreover,
we make the model efficient for embedded devices
with relatively a small loss in accuracy.

The paper is organized as follows: In section 2,
we revise the literature for related work. In section
3, we describe our methodology where we discuss
the pretraining dataset, the tasks used for evalu-
ation and our training procedure for the teacher
and student models. Finally, we summarize the
experiments and discuss the results.

2 Related Work

Deep architectures like GPT (Radford et al., 2018),
BERT (Devlin et al., 2018) and T5 (Raffel et al.,
2019) require a huge amount of data and compu-
tation. Moreover, such language models are very
large and cannot be deployed on embedded devices
due to memory constraints. Recently, many ap-
proaches have been applied in order to make such
models smaller and more practical. Mainly, the
literature focuses on two main approaches which
are quantization and distillation.

Quantization is defined as reducing the memory
footprint by mapping parameters to low dimen-
sional spaces. For instance, we can map float32
to int16. This is usually done at the deploy-
ment phase where the model is already trained.
Many studies have been published that adopt this
approach. Zafrir et al. applied this approach to
BERT in order to create a quantized 8 bit model
(Q8bert) (Zafrir et al., 2019). More recently, a more



54

advanced approach called Hessian-based ultra low
precision quantization has been applied to BERT
(Q-BERT) (Shen et al., 2020). In another work, the
authors designed an architecture called GOBO that
targets quantizing attention-based models for lan-
guage understanding (Zadeh and Moshovos, 2020).

On the other hand, another approach is called dis-
tillation which mimics the task of a teacher and stu-
dent for training smaller language models (Alkhu-
laifi et al., 2020). These methods have been devel-
oped in computer vision but they were recently ex-
tended to language modelling. The teacher model,
usually a large model, is a pretrained model that
can be used to distil the knowledge to a smaller
model called the student model. The student model
is a much smaller architecture. The distillation
process has been applied in many fields in ma-
chine learning and takes many forms like teacher-
student optimization (Yang et al., 2019), teacher
assistant (Mirzadeh et al., 2019), contrastive repre-
sentation distillation (Tian et al., 2019) and patient
knowledge distillation (Sun et al., 2019). Other
approaches make the process task-agnostic like the
work by Sun et al. in their architecture called mo-
bileBERT (Sun et al., 2020).

From the research perspective, Arabic language
modelling is under-represented in the literature let
alone implementing compression techniques. No-
ticeably, there were a few main attempts to adapt
deep models for Arabic like Hulmuna (ElJundi
et al., 2019) which retrains ELMo (Peters et al.,
2018) for Arabic and fine-tunes it on different tasks.
Moreover, we have AraBERT which retrains BERT
for Arabic (Antoun et al., 2020). More recently,
other larger variants have been introduced namely
ARBERT and MARBERT (Abdul-Mageed et al.,
2020). These models are comparatively very large
and are trained with a huge amount of data usu-
ally larger than 20 GB of text and the models are
typically more than 100 million parameters in size.
Arabic poses its own challenges when considered
for natural language processing tasks. Arabic is a
morphologically rich language where words can
take different representations by connecting dif-
ferent prefixes, infixes and suffixes. Hence words
need better representations in order to tackle the
out-of-vocabulary problem (Gerz et al., 2018) by
applying different preprocessing approaches. For
instance, segmentation slightly achieves a better
performance compared to direct tokenization (An-
toun et al., 2020). Not to mention applying prepro-

cessing to deal the linguistic parts like diacritics,
normalization, cleaning, mixed foreign characters,
etc.

In this work we consider applying distillation
and quantization on Arabic language models for
resource-limited devices. Up to our knowledge,
there is no previous work that applies compression
directly on Arabic. There are some related work
that applies distillation on a cross-lingual level (Cui
et al., 2017) but it is evident from the literature that
monolingual models are more powerful (Antoun
et al., 2020), (Martin et al., 2019).

3 Experimentation

In this section we explain in details our approach
that we take for training compact language models
for Arabic. First we train a large teacher model in
an unsupervised fashion on a large corpus. Then
we distil the knowledge from the teacher model to
the student model and evaluate it by fine-tuning on
different tasks. Finally, we use quantization as a
final step for reducing the memory footprint of our
distilled student models. For the comparison we
use the first version of AraBERT as the baseline
for evaluating our models.

3.1 Pretraining Dateset

We collected a wide variety of datasets in order
to cover as many tasks as possible. We used four
different datasets for pretraining. Mainly, we col-
lected 10 GB from the 1.5 billion words corpus
(El-Khair, 2016), 1.5 GB from wikipedia, 1 GB
books from Alshamila (shamela, 2005) and around
500 MB from Twitter. We clean all the datasets
by removing diacritics and applying normalization
(mapping different forms of a character to a sin-
gle character). We then converted the dataset to
tfrecords for faster training. In Table 1, we
present the total number of tokens for each dataset.
We use the WordPiece algorithm (Devlin et al.,
2018) for tokenization with a fixed sequence length
of 512. We fixed the max sequence length to 512
with max predictions per sequence as 20. The
masked tokens probability is set to 15 % with a
duplication factor of size 5.

3.2 Tasks

We evaluate the models on a variety of datasets and
tasks from the literature. Some datasets are not
split by the authors so we split them randomly into
training and testing sets. In all the experiments we



55

Table 1: Number of tokens in each dataset. B:billions
and M:millions.

Dataset Number of Tokens

Billion Words Corpus 1.3 B

Wikipedia 148 M

Alshamila 112 M

Twitter 68 M

use the same split to test the models.

1. Hard: Named the Arabic Reviews Dataset
(Elnagar et al., 2018), The dataset consists of
93,700 reviews in total where we have 46,850
reviews for each positive and negative senti-
ments.

2. ASTD: called the Arabic Sentiment Tweets
Dataset which contains 10,000 tweets written
in both MSA and Egyptian dialect (Nabil et al.,
2015). We used the balanced dataset on binary
sentiment classification.

3. ArSenTD-Lev: The Arabic Sentiment Twit-
ter Dataset for Levantine dialect (ArSenTD-
LEV) (Baly et al., 2018) contains 4,000 tweets
written in Arabic and equally collected from
Lebanon, Jordan, Syria. and Palestine.

4. LABR: The Large-scale Arabic Book Re-
views dataset (Aly and Atiya, 2013). It con-
tains over 63,000 book reviews that were col-
lected from the website Goodreads during the
month of March 2013. Each book review
comes with the rating (1 to 5) and the text
of the review. The ratings 1 and 2 are con-
sidered negative while 4 and 5 are considered
positive.

5. AJGT: The Arabic Jordanian General Tweets
dataset (Alomari et al., 2017) consists of 1,800
tweets written in Jordanian dialect and mod-
ern standard Arabic (MSA). The tweets were
manually annotated as either positive or nega-
tive to be used for sentiment analysis tasks.

6. TEAD: A large-scale dataset of tweets gath-
ered in 2017. The dataset was annotated using
emojis and sentiment lexicons. We only use a
small subset of the dataset that contains 2000
positive and 2000 negative labels.

7. ARCD: The Arabic Reading Comprehen-
sion Dataset (ARCD) is composed of 1,395
questions annotated by crowd workers on
Wikipedia articles (Mozannar et al., 2019).
The authors also published a translated ver-
sion of the English SQuAD called the Arabic-
SQuAD. The question answering tasks are
usually reported using F1 score and exact
match (EM) score in literature.

8. PADT treebank is based on the Prague Ara-
bic Dependency Treebank (PADT) (Zeman,
2015). We use this dataset for the part-of-
speech tagging (PoS) tasks. The treebank
is composed of 7,664 sentences (282,384 to-
kens) and its domain is mainly news. The
results are reported using precision, recall and
F1.

3.3 Pretraining Models

We train the teacher and student models on TPUv3-
8 which distributes the batch size over 8 nodes.
Furthermore, TensorFlow 1.15 is used as the main
library for training all the models. For the pretrain-
ing we use Google Cloud and for fine-tuning we
use Google Colab notebooks.

3.3.1 Teacher Model

We follow the same approach as in (Sun et al.,
2020) where the teacher model has the same depth
as BERTLARGE, i.e., 24 blocks each one containing
a multi-head attention and feed-forward network
with a normalization layer after each one. How-
ever, in order to reduce the number of parameters,
a linear transformation is applied to modify the
input and the output size to 512 (i.e., bottleneck).
The linear transformations are applied after the em-
beddings and after the end of the fully connected
layers of each block. The output size of each layer
in each block is named inner block-neck size and it
was set to 1024 in the original architecture. How-
ever, we train with smaller inner block-neck of size
256 instead of 1024 in order to reduce the model
size. Also we train different models with vocabu-
lary sizes of 30K and 50K with hidden sizes 512
and 256, respectively. The number of layers is 24
and the number of attention heads is 4. We use
the lamb optimizer (You et al., 2019) with a learn-
ing rate 0.0015. We train the model for around 2
million steps with a batch size of 256.



56

3.3.2 Student Model

For the student model we train two types of mod-
els: the first one has 4 feed-forward layers and the
smaller model has 1 per each block. The number of
layers and attention heads is the same as the teacher
model. The model is first trained using knowledge
transfer as a combination of attention transfer and
feature map transfer. Attention transfer LAT maps
the attention weights from the teacher model to
the student model. While the feature map transfer
LFMT maps the weights from each block in the
teacher to each block in the student. We train each
model for 500K steps for attention transfer and 2
million steps for pretraining distillation. The pre-
training distillation objective is defined as combi-
nation of BERT training objectives and knowledge
distillation objectives

LPD = αLMLM + (1− α)LKD + LNSP

Masked language model (MLM) is the objective
for predicting the masked word in the corpus. Next
sentence prediction (NSP) optimizes the probabil-
ity of predicting next sentence. Knowledge distilla-
tion (KD) is a mixture of training on current corpus
and teacher labels. Similar to the teacher model,
We use the lamb optimizer, a learning rate 0.0015
and batch size 256. In Table 2, we summarize the
hyper-parameters for training during the distillation
process. The beta and gamma distillation factors
measure the difference between the mean and the
variances between the teacher and student models.
The hidden distillation factor is used for weighted
layer wise distillation and the distillation ground
truth parameter is used for the mixed label training.

Table 2: Hyper-parameters for training the student mod-
els.

Parameter Value

Beta distillation factor 500

Gamma distillation factor 5

Hidden distillation factor 100

Distillation ground truth 0.5

4 Evaluation

We use fine-tuning on down-stream tasks as the
main approach for evaluating our models. In all of
our experiments, we follow the same procedure for
the teacher and the student models. Note that in
order to make the comparison fair to AraBERT, we
don’t do any preprocessing to our datasets. This
is in order to avoid any bias towards our models.
This might cause our models to preform worse than
expected because some characters in the datasets
might cause unknown tokens to show up. Mainly,
we train for 5 epochs and we use a learning rate
of 3 × 10−5 for the text classification and ques-
tion answering tasks while we use a learning rate
of 2 × 10−3 for the PoS tagging task. In Figure
1, we compare inverted-block BERT for Arabic
(IBERTA) for two different vocabulary sizes. To
make the comparison fair, we decrease the hidden
size to 256 for the model with vocabulary size 50K.
We see as the number of iterations increases, the
accuracy increases for both models. However, the
model with vocabulary size 50K achieve better re-
sults across the different iterations compared to
the vocabulary size 30K. This is due to the fact
that Arabic is morphologically rich language with
a huge and sparse vocabulary. We use the model
with the vocabulary size 50K as the teacher model
and we refer to it as (IBERTA).

Figure 1: Comparison between the teacher models
when fine-tuned in the AJGT task.

In Table 3, we compare IBERTA to AraBERT
for different datasets and tasks. We can notice that
our teacher model achieves better results on most
of the text classification tasks. In tasks that require
more token information like question answering



57

Table 3: Comparing IBERTA with 50K vocabulary size, MBERTA, MBERTA II and AraBERT for multiple tasks.

Dataset Metric IBERTA AraBERT MBERTA MBERTA II

AJGT Accuracy 93.3 89.7 90.8 89.1

HARD Accuracy 95.7 95.4 95.5 95.4

ArSenTD Accuracy 55.8 55.3 55.1 53.6

LABR Accuracy 87.5 89.3 86.7 87.6

TEAD Accuracy 68.5 65.4 66.9 66.6

ASTD Accuracy 86.2 84.6 83.6 81.8

PADT Precision 85.2 84.4 85.2 82.4

Recall 78.1 83.0 79.0 79.9

F1 78.8 83.8 80.5 80.9

ARCD Exact Match 26.1 29.6 21.5 21.1

F1 58.4 62.2 49.9 51.3

and PoS tagging, our models perform worse. We
believe that our model fails in token-based tasks
because AraBERT was trained on a much larger
dataset and has larger vocabulary size; more by
around 14K tokens compared to our vocabulary
size. Note that we only consider AraBERT without
any pre-segmentation. On the right side of Table 3,
we show the results for the distilled student models.
The larger model (MBERTA) uses 4 feed-forward
networks while the smaller model (MBERTA II)
uses only 1. We notice that it achieves compara-
ble results for Hard, ArsenTD and LABR. It also
shows better results in terms of precision for the
PoS tagging task. However, it achieves much worse
results on question answering task. We believe that
the reason behind that is the complexity of the task
and the quality of the dataset which has some au-
tomatically created translations. In Table 4, we
compare all the models in terms of the number
of parameters, on-disk space and quantized mod-
els. We observe that our teacher model is around
half of the size of AraBERT but achieves compara-
ble results. We also notice that we can reduce the
model size further by applying quantization using
the tflite library. This has a big impact espe-
cially for resource limited devices. The models can
be compressed into even smaller sizes depending
on the memory/storage constraints. Of course, fur-
ther compression will lead to some deterioration in
accuracy and other performance measures.

5 Conclusion

In this paper we trained compact Arabic language
models through pretraining, distillation and quan-
tization. We showed that such compact language
models can achieve comparable results to state-of-
the-art models even though they have significantly
a fewer number of parameters and while trained
on smaller datasets. We benchmark the models
on six different classification datasets, one part-of-
speech tagging dataset and one question answer-
ing dataset. We believe such smaller models can
be very practical because they enable deploying
such models on resource-limited devices like mo-
bile phones and embedded devices. Moreover, we
showed that using smaller datasets with smaller
vocabulary, we can achieve reasonable results com-
pared to other models in the literature. This shows
that carefully curated datasets with high diversity
even if smaller can get some good results. We be-
lieve that we can achieve better results by applying
some hyper-parameter tuning through approaches
like grid search. It is also interesting to look at how
the parameters of mobileBERT distillation affect
the training process and if changing some of them
from the original model can achieve better results
for Arabic. Also, a closer look at the distillation
process can give us some estimate about the bias
towards a certain linguistic phenomenon (Hooker
et al., 2020).



58

Table 4: Memory consumption and size on disk for the fine-tuned and quantized models. M:millions,
MB:Megabyte, GB:Gigabyte.

AraBERT IBERTA MBERTA MBERTA II

Base model number of parameters 135.2 M 66.7 M 23.7 M 14.2 M

Fine-tuned model’s size on disk 1.6 GB 763 MB 272 MB 163 MB

Fine-tuned quantized model’s size on disk 516 MB 255 MB 91 MB 55 MB

Acknowledgements

We would like to thank Zhiqing Sun (author of mo-
bileBERT paper) for his suggestions and insights
to train the models for Arabic. Also, we would like
to thank Paige Bailey and Zak Stone for providing
the TPU access as part of the TensorFlow Research
Cloud (TFRC) program to train our models.

References
Abdul-Mageed, M., Elmadany, A., and Nagoudi, E.

M. B. (2020). Arbert & marbert: Deep bidi-
rectional transformers for arabic. arXiv preprint
arXiv:2101.01785.

Abid, A., Ali, W., Farooq, M. S., Farooq, U., Sabir, N.,
and Abid, K. (2020). Semi-automatic classification
and duplicate detection from human loss news cor-
pus. IEEE Access.

Alkhulaifi, A., Alsahli, F., and Ahmad, I. (2020).
Knowledge distillation in deep learning and its ap-
plications. arXiv preprint arXiv:2007.09029.

Alomari, K. M., ElSherif, H. M., and Shaalan, K.
(2017). Arabic tweets sentimental analysis us-
ing machine learning. In International Confer-
ence on Industrial, Engineering and Other Applica-
tions of Applied Intelligent Systems, pages 602–610.
Springer.

Aly, M. and Atiya, A. (2013). Labr: A large scale
arabic book reviews dataset. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
494–498.

Antoun, W., Baly, F., and Hajj, H. (2020). Arabert:
Transformer-based model for arabic language under-
standing. arXiv preprint arXiv:2003.00104.

Baly, R., Khaddaj, A., Hajj, H., El-Hajj, W., and
Bashir Shaban, K. (2018). Arsentd-lev: A multi-
topic corpus for target-based sentiment analysis in
arabic levantine tweets. OSACT3.

Cui, J., Kingsbury, B., Ramabhadran, B., Saon, G.,
Sercu, T., Audhkhasi, K., Sethy, A., Nussbaum-
Thom, M., and Rosenberg, A. (2017). Knowledge

distillation across ensembles of multilingual models
for low-resource languages. In 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4825–4829. IEEE.

Devlin, J. et al. (2018). Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. preprint, arXiv.

El-Khair, I. A. (2016). 1.5 billion words arabic corpus.
arXiv preprint arXiv:1611.04033.

ElJundi, O., Antoun, W., El Droubi, N., Hajj, H., El-
Hajj, W., and Shaban, K. (2019). hulmona: The
universal language model in arabic. In Proceedings
of the Fourth Arabic Natural Language Processing
Workshop, pages 68–77.

Elnagar, A., Khalifa, Y. S., and Einea, A. (2018). Ho-
tel arabic-reviews dataset construction for sentiment
analysis applications. In Intelligent Natural Lan-
guage Processing: Trends and Applications, pages
35–52. Springer.

Gerz, D., Vulić, I., Ponti, E., Naradowsky, J., Reichart,
R., and Korhonen, A. (2018). Language model-
ing for morphologically rich languages: Character-
aware modeling for word-level prediction. Transac-
tions of the Association for Computational Linguis-
tics, 6:451–465.

Hooker, S., Moorosi, N., Clark, G., Bengio, S., and
Denton, E. (2020). Characterising bias in com-
pressed models. arXiv preprint arXiv:2010.03058.

Kudo, T. and Richardson, J. (2018). Sentencepiece: A
simple and language independent subword tokenizer
and detokenizer for neural text processing. arXiv
preprint arXiv:1808.06226.

Martin, L., Muller, B., Suárez, P. J. O., Dupont, Y., Ro-
mary, L., de la Clergerie, É. V., Seddah, D., and
Sagot, B. (2019). Camembert: a tasty french lan-
guage model. arXiv preprint arXiv:1911.03894.

Mirzadeh, S.-I., Farajtabar, M., Li, A., Levine, N.,
Matsukawa, A., and Ghasemzadeh, H. (2019). Im-
proved knowledge distillation via teacher assistant.
arXiv preprint arXiv:1902.03393.

Mozannar, H., Hajal, K. E., Maamary, E., and Hajj, H.
(2019). Neural arabic question answering. arXiv
preprint arXiv:1906.05394.



59

Nabil, M., Aly, M., and Atiya, A. (2015). Astd: Ara-
bic sentiment tweets dataset. In Proceedings of the
2015 conference on empirical methods in natural
language processing, pages 2515–2519.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M.,
Clark, C., Lee, K., and Zettlemoyer, L. (2018). Deep
contextualized word representations. arXiv preprint
arXiv:1802.05365.

Radford, A. et al. (2018). Improving language under-
standing by generative pre-training. URL under-
standing paper. pdf.

Raffel, C. et al. (2019). Exploring the limits of trans-
fer learning with a unified text-to-text transformer.
preprint, arXiv.

shamela (2005). shamela.

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami,
A., Mahoney, M. W., and Keutzer, K. (2020). Q-
bert: Hessian based ultra low precision quantization
of bert. In AAAI, pages 8815–8821.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. (2019). Patient
knowledge distillation for bert model compression.
arXiv preprint arXiv:1908.09355.

Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., and Zhou,
D. (2020). Mobilebert: a compact task-agnostic
bert for resource-limited devices. arXiv preprint
arXiv:2004.02984.

Tian, Y., Krishnan, D., and Isola, P. (2019). Con-
trastive representation distillation. arXiv preprint
arXiv:1910.10699.

Yang, C., Xie, L., Su, C., and Yuille, A. L. (2019).
Snapshot distillation: Teacher-student optimization
in one generation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 2859–2868.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bho-
janapalli, S., Song, X., Demmel, J., Keutzer, K., and
Hsieh, C.-J. (2019). Large batch optimization for
deep learning: Training bert in 76 minutes. arXiv
preprint arXiv:1904.00962.

Zadeh, A. H. and Moshovos, A. (2020). Gobo:
Quantizing attention-based nlp models for low la-
tency and energy efficient inference. arXiv preprint
arXiv:2005.03842.

Zafrir, O., Boudoukh, G., Izsak, P., and Wasserblat, M.
(2019). Q8bert: Quantized 8bit bert. arXiv preprint
arXiv:1910.06188.

Zeman, D. (2015). Universal dependencies. https:
//github.com/UniversalDependencies/UD_
Arabic-PADT.

https://github.com/UniversalDependencies/UD_Arabic-PADT
https://github.com/UniversalDependencies/UD_Arabic-PADT
https://github.com/UniversalDependencies/UD_Arabic-PADT

