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Abstract

While aggregate performance metrics can gen-
erate valuable insights at a large scale, their
dominance means more complex and nuanced
language phenomena, such as vagueness, may
be overlooked. Focusing on vague terms (e.g.
sunny, cloudy, young, etc.) we inspect the be-
havior of visually grounded and text-only mod-
els, finding systematic divergences from hu-
man judgments even when a model’s overall
performance is high. To help explain this dis-
parity, we identify two assumptions made by
the datasets and models examined and, guided
by the philosophy of vagueness, isolate cases
where they do not hold.

1 Introduction

Part of the power of language as a medium for com-
munication is rooted in having a reliable mapping
between language and the world: we typically ex-
pect language to be used in a consistent fashion, i.e.
the word “dog” refers to a relatively invariant group
of animals, and not to a different set of items each
time we use it. This view of language dovetails
with the supervised learning paradigm, where we
assume that an approximation of such a mapping
can be learned from labeled examples—often col-
lected via manual annotation by crowdworkers. In
natural language processing (NLP), this learning
typically takes place by treating tasks as classifica-
tion problems which optimize for log-likelihood.
While this paradigm has been extensively and suc-
cessfully applied in NLP, it is not without both
practical and theoretical shortcomings. Guided by
notions from the philosophy of language, we pro-
pose that borderline cases of vague terms, where
the mapping between inputs and outputs is unclear,
represent an edge case for the assumptions made by
the supervised paradigm, and result in systematic
divergences between human and model behavior.

“Is the sky cloudy?”

“Is the sky cloudy?”

“Is it cloudy?”

Figure 1: Given a binary question involving a vague
term (in this case, cloudy) humans hedge between “yes”
and “no,” following a sigmoid curve with borderline ex-
amples falling in the middle. Standard error (grey band)
shows that annotator agree even in borderline regions.
In contrast, model predictions remain at extreme ends.

To demonstrate this, we begin by identifying
a set of canonically vague terms in the binary
question subset of the Visual Question Answer-
ing (VQA) and GQA datasets (Antol et al., 2015;
Goyal et al., 2017; Hudson and Manning, 2019)
and isolating a subset of images, questions, and an-
swers from these datasets centered around these
terms. Using this subset, we show that while
the accuracy of LXMERT (Tan and Bansal, 2019)
on non-borderline cases is very high, its perfor-
mance drops—sometimes dramatically—on bor-
derline cases. We then compare the behavior of the
model against that of human annotators, finding
that while humans display behavior which aligns
with theories of meaning for vague terms, model
behavior is less predictable.

We extend our analysis of visually-grounded
terms to a text-only case, re-framing the catego-
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rization of statements into true statements and false
ones as a task involving vagueness. Controlling for
world knowledge, we find that while probes over
contextualized encoders can classify statements sig-
nificantly better than random, their output distri-
butions are strikingly similar to those observed in
the visually-grounded case. When contrasted with
scalar annotations collected from crowdworkers,
these results support the notion that analytic truth
itself admits of borderline cases and poses prob-
lems for supervised systems.

In § 2, we provide a more thorough definition
of terms used, the motivation for exploring vague-
ness, and the underlying assumptions of supervised
learning that are violated by vague terms.

2 Motivation and Background

Vague terms, broadly speaking, are ones that admit
of borderline cases; for example: cloudy is vague
because, while there are clearly cloudy and not
cloudy days, there are also cases where the best
response to the question “is it cloudy?” might be
“somewhat” rather than a definitive “yes” or “no.”
Given this definition, we can see that a large portion
of the predicates we use in every-day speech are
vague. This even encompasses predicates such as
is true and is false, as we might have statements
that are true or false to varying degrees.

Vague predicates in particular have been a focus
of the philosophy of language, as they represent
an interesting edge case for theories of meaning.
Take, for example, a canonical example of a vague
predicate from philosophy: is a heap. There are
things that are undeniable heaps, and others that are
clearly not. In the extreme case, we can imagine
starting with a heap of sand (say, N grains) and re-
moving a single grain of sand from it. Clearly, the
resulting mass would still be a heap. This is, how-
ever, a dangerous precedent; we can now remove
N − 2 grains on sand until we have a single grain
remaining, whose heap-ness is hard to justify, but
which, by induction, is still a heap. This raises im-
portant questions: how is it that speakers avoid this
paradox and are able to use and understand vague
terms, even in borderline cases? Is there a defini-
tive point at which a heap becomes a non-heap?
The answers to these questions should influence
how we annotate the data from which we aim to
learn meaning representations of vague terms.

While the unequivocal instances of heaps fit well
into the current paradigm of supervised learning

with categorical labels, borderline heaps do present
a problem. Recall that the first assumption by su-
pervised learning which we have pointed out is
that the ideal mapping between the input (in this
case, questions and images) and the the label set
(answers) is largely fixed. For example, given the
question “Is this a dog?” we assume that the set
of things in the world which we call “dog”, also
known as the extension of “dog”, remains constant.
In that case, the annotator’s response to the ques-
tion corresponds to whether what the image depicts
could be plausibly considered as part of the exten-
sion of “dog.” While we might easily be able to
determine the set membership of poodles and terri-
ers, we may have a harder time with Jack London’s
White Fang: half wolf, half dog. Thus it is clear
that the borderline cases of vague terms demand a
more nuanced account than merely a forced choice
between two extremes. The range of such accounts
fall broadly into three classes:

Contextualist theories (Kamp, 1981; Raffman,
1994; Graff, 2000; Shapiro, 2006, i.a.) broadly
hold that the interpretation of vague predicates de-
pend on contextual and pragmatic information such
as on the speaker’s previous commitments, their
perceived goals, and the psychological state of the
interpreter. This view could in most cases be recon-
ciled with the supervised learning paradigm, pro-
vided that the data upon which the interpretation
of the vague predicate hinges (i.e. speaker com-
mitments, etc.) is available as input. Past work
in modeling the meaning of vague terms has often
focused on these accounts (c.f. § 6).

Epistemic accounts (Sorensen, 2001; Williamson,
1994, i.a.) bite the proverbial bullet, allowing for
a hard boundary between heaps and non-heaps
to exist, but claiming that its location is unknow-
able. This is in contrast to the supervised paradigm,
where the boundary is treated as known.

Logic-based approaches tackle the paradox in-
duced by vagueness, either by claiming that bor-
derline examples do not admit of truth values (su-
pervaluationism), or by adapting logic to permit
more granular classifications (many-valued logic;
Sorensen, 2018). The latter approach can some-
times accommodate the supervised paradigm.1

1It may still be incompatible with log-likelihood. Treating
ordinal many-valued logic as a k-way classification problem
requires that all values be equidistant, i.e. predicting a value
of 1/5 when the true value is 4/5 is as bad as rating it 3/5.



45

Ambiguity and Under-specification It is im-
portant to distinguish vagueness from under-
specification (imprecision in the input making the
output difficult to recover) and ambiguity (the pres-
ence of multiple valid answers), both alternative
explanations for annotator disagreement. Indeed,
Bhattacharya et al. (2019) include both in their tax-
onomy of VQA images-question pairs with high
annotator disagreement. While they are major chal-
lenges in any language-based task, both are often
defeasible in nature: we can provide additional in-
formation that would reveal the “correct” answer to
an annotator, i.e. we could provide a better, sharper
version of the image, or more contextual informa-
tion. Vagueness is non-defeasible: even if one were
to know the exact number of grains of sand, the
predicate “is a heap” would remain vague.

3 Visually Grounded Vagueness

The interpretation of vague terms as described in § 1
typically occurs in a grounded setting; the question
“Is this a dog?” is only meaningful in the context
of some state of affairs (or depiction thereof). We
focus on binary questions about images, taking ex-
amples from VQA and GQA; this ensures that the
vague term is the question’s focus, excluding open-
ended queries like “What is the old man doing?”
which only implicitly involve vagueness.

Data collection We begin by isolating a number
of vague descriptors (sunny, cloudy, adult, young,
new, old) in the VQA and GQA datasets. We then
use high-recall regular expressions to match ques-
tions from these descriptors in the development
sets of both datasets, manually filtering the results
to obtain high-precision examples. Here, we make
the simplifying assumption that a group of predi-
cates involving these terms, such as “is x”, “seems
x” and “looks x” are approximately equivalent and
used interchangeably.

This process results in a variable number of ques-
tions per descriptor, with sunny and cloudy typi-
cally having far more representation. Given the
size of the whole development sets, and the fact
that the data presented is being used merely for
analysis rather than for training models, we anno-
tate between 32 and 264 examples, depending on
the data availability for each predicate.2

While the VQA development data contains 10
annotations per example, GQA does not, and thus,

2Note that for some predicates (e.g. sunny and cloudy,
more data was available.

in order to verify the quality of the VQA anno-
tations and to collect annotations for GQA, we
solicited 10-way redundant annotations from Me-
chanical Turk, presenting annotators with a ques-
tion and its corresponding image from the vision-
and-language dataset (e.g. “Is it sunny?”).3 Rather
than providing categorical labels (e.g. “yes”, “no”)
workers were asked to use a slider bar ranging
from “no” to “yes”, whose values range from 0 to
100, using an interface inspired by Sakaguchi and
Van Durme (2018). Examples were provided in
groups of 8.4 The resulting annotations are nor-
malized per annotator by the following formula
x′ = (x−xmin)/xmax where xmin and xmax are the
annotators minimum and maximum scores. This ac-
counts for differences in slider bar usage by differ-
ent annotators. Inter-annotator agreement is mea-
sured via majority voting, where an annotator is
said to agree with others when their judgement
falls on the same side of the slider bar scale (i.e.
> 50, < 50). Using this metric, we exclude anno-
tators with < 75% agreement. After exclusion, all
predicates had > 90% average agreement.5.

50

100
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total non-borderline borderline

sunny cloudy new old adult young
50

100

G
Q

A

Figure 2: Accuracy of LXMERT on VQA and GQA
Yes/No questions per predicate is highest for non-
borderline examples, but drops in “borderline” regions.

Vagueness and accuracy We begin by demon-
strating that vagueness is not merely a theoretical
problem: Fig. 2 shows that while the total accuracy
of LXMERT (Tan and Bansal, 2019) is fairly high,
it drops on all descriptors (except for “old” for
GQA) when looking only at accuracy in the border-
line regions. For VQA, we take advantage of the

3Since we were merely verifying the data quality for VQA,
we only ran two descriptors: “sunny” and “cloudy”.

4c.f. Appendix A for more on the collection protocol.
5All data is available at website.com
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existing 10-way redundant annotations, defining
borderline examples as those for which there was
any disagreement between annotators, i.e. even if 9
annotators responded “yes” and one responded “no”
for a given example, it is considered borderline.
This results in 49.24% borderline cases. We find
that for GQA, defining borderline examples as hav-
ing mean normalized scores ∈ [15.0, 85.0] yields
roughly the same percentage (47.20% borderline).

The contrast between borderline and non-
borderline regions is especially dramatic for VQA,
with the minimum non-borderline accuracy being
99.67% for “sunny,” while the accuracy in the bor-
derline region drops to 69.78%. Though the results
are less dramatic for GQA, they generally trend in
the same direction. We argue that, given that these
borderline examples account for roughly half of the
data examined, the relatively high aggregate perfor-
mance obtained by models on binary questions in
VQA and GQA may be partially attributed to an ab-
sence of vague terms rather than to the strength of
the model. Conversely, given a shifted evaluation
dataset with more vague terms, the performance
would likely drop dramatically.

Vagueness in detail Having demonstrated that
model performance is diminished on borderline
cases, we seek to further explore the divergence in
model and human behavior.

Fig. 1 plots the mean human scores in the top
plot, with examples ordered by their mean human
rating. The bottom plot shows LXMERT output
scores for the same examples. The human scores
display a sigmoid shape, while the model scores are
saturated at either 0 or 1. For the sake of space, the
remaining plots are reported in Appendix B, and
we constrain ourselves to a quantitative analysis to
demonstrate that a similar trend holds across the
remaining descriptors.

Following Item Response Theory (Reise et al.,
2005; Lalor et al., 2016) – a modeling paradigm for
psychological tests premised on variability among
respondents – we posit a 2-parameter sigmoid re-
sponse function given by

(
1 + exp

(
− k ∗ (x −

x0)
))−1 where k and x0 are scale and shift parame-

ters, respectively. This parameterization reflects the
intuition that non-borderline examples are found
near the spectrum’s ends (0 and 100) while border-
line examples form a curve in the spectrum’s center.
In other words, it defines an “ideal” curve in the sig-
moid family that fits the data collected from annota-
tors. In some cases, this curve is stretched, nearing

a line, while in others it is more pronounced.
We fit three separate logistic regressions: one

to the mean of the annotator responses, one to
the model response obtained from LXMERT, and
a baseline fit against data drawn from a uniform
distribution. The quality of the fit, measured by
root mean squared error (RMSE) on 10% held-out
data, repeated across 10 folds of cross-validation,
is given in Fig. 3. For both datasets, sigmoid func-
tions fit to model predictions have an RMSE com-
parable to those fit to uniformly random data, while
the functions fit to human data have errors an order
of magnitude lower.

0.00

0.35

V
Q

A

human model random

sunny cloudy new old adult young
0.00

0.35
G

Q
A

Figure 3: Mean RMSE from sigmoid fit to VQA and
GQA data using 10-fold cross-validation. Human pre-
dictions result in a far better sigmoid fit, while model
predictions have similar fit to data ∼ U(0, 1).

This indicates that the remaining GQA and VQA
predicates follow a similar pattern to the one seen
in Fig. 1. While model predictions often fall on
the correct side of the middle threshold, as exam-
ples become borderline, some predictions become
erratic while others are confidently misclassified.
Note that this is doubly problematic: firstly, the
model only makes use of a small region of the la-
bel space. While the output vocabulary includes
entries such as “partly cloudy” and “overcast,” for
all examples tested, the model assigns > 98% of
its probability mass to “yes” and “no.”

Even within this constrained assignment, the
model has the possibility of hedging using the out-
put logits (e.g. p(yes|x) = 0.40 etc.). Prima facie
we might hope that, given a large categorically-
labeled dataset, the model would learn the correct
output distribution, as Pavlick and Kwiatkowski
(2019) put it, “for free.” We do not find this to be
the case: the prediction generally heavily favors
one label alone, posing problems for any down-
stream task as well as active learning setups using
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uncertainty sampling (Lewis and Catlett, 1994).
In contrast, annotators display hedging between

the labels, reliably using the slider-bar interface to
equivocate between extremes in borderline cases.
These results suggest that the first assumption de-
scribed in § 2, namely that images can be identified
as being in the extension of a descriptor or not
(e.g. in the set of scenes described as “cloudy”),
holds only at the ends of the example range, and
is not warranted in the borderline region. In con-
trast, the training data which LXMERT sees makes
the assumption that the descriptor either applies
(examples with a “yes” label) or does not apply
(examples labelled “no”) in all regions; we see that
this is perhaps too strong of an assumption when
trying to capture the nuances of vague terms.

Note also that the annotators’ standard error
(grey band) is generally fairly low even in the cen-
tral region, where we would expect greater dis-
agreement. This trend holds across descriptors,
and perhaps implies that the second assumption,
that annotators can reliably recover the mapping
between inputs and outputs, does to hold as long as
the annotators are provided the proper interface for
expressing their intuitions.

4 Text-only Vagueness

§ 3 explored predicates grounded in another repre-
sentation of the world, namely images. However,
much of NLP deals with text in isolation, with-
out grounding to some external modality. In an
ungrounded setting, it is unproductive to evaluate
models on external knowledge that they would not
have access to—thus, we cannot evaluate a text-
only model’s performance on vague predicates the
same way as a grounded model’s performance. In
other words, we need to develop a paradigm which
does not rely on knowledge about a state of the
world, but rather on linguistic knowledge. This
is precisely the analytic-synthetic distinction, with
analytic truths being truths by virtue of meaning
alone (e.g. “a bachelor is an unmarried man”) and
synthetic truths being those which require verifi-
cation against a state of affairs (e.g. “Garfield is a
bachelor”). To avoid evaluating our text-only mod-
els on their ability to reason against a world which
they are not privy to, we restrict our analysis to
analytic truths and falsehoods, which we construct
by pairing words either with their true definition or
with a distractor definition, creating statements that
are analytically true and false. Recall from § 2 that

Sentence T/F Mark
journalism is newspapers and
magazines collectively

T

T-shirt is an archaic term for
clothing

F

T-shirt is a close-fitting
pullover shirt

T

a teammate is someone who
is under suspicion

F

Table 1: Example sentences, with their label in the cre-
ated dataset and corresponding color in Fig. 4.

Figure 4: Top: mean truth score given by humans on
96 statements. False statements colored red, true blue;
statements from Table 1 overlaid. Bottom: P (true) as-
signed by the best probing classifier (XLNet + [CLS]).

even the predicates is true and is false may be seen
as vague; there are statements which are only par-
tially true or false, and we can speak meaningfully
of some statements being truer than others.

Following Ettinger et al. (2018), these state-
ments are created artificially, mitigating annotator
bias. Definitions of the 2542 most frequent English
nouns6 are then obtained from WordNet (Miller,
1995; Fellbaum, 1998) using the NLTK interface
(Bird, 2006). By pairing a “trigger” word with its
definition, we create an analytically true statement
(c.f. row 3 in Table 1). In order to create analyti-
cally false statements, we pair the same word with
a definition for a related but distinct term. A set
of candidate terms is created recursively taking the
hypernym of the trigger word’s top wordsense7 for
three levels (i.e. the hyper-hyper-hypernym) and
adding all its hyponyms, excluding the trigger’s
siblings. The best distractor candidate is chosen
using lexical overlap, where the candidate with the
lowest overlap with the true definition is chosen.
Note that as a simplifying assumption we ignore
polysemy here; it is possible that via polysemy the

6https://www.wordfrequency.info
7Based on pilot evaluations, we exclude chemistry-related

wordsenses, as their definitions often contain low-frequency
technical terms.

https://www.wordfrequency.info
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chosen distractor definition is not strictly analyti-
cally false. However, this result is unlikely given
that human annotators reliably recognized distrac-
tor definitions. We expect that, while the examples
are categorically labeled true and false, annotators
will determine that certain statements fall into a
borderline region between these extremes, corre-
sponding to notions like “partially true” or “mostly
false.”8 Crucially, where in § 3 the vagueness was
present in the question itself (i.e. the task was to de-
termine whether the object in question, e.g. the sky,
in the image fell into the extension of the vague
term e.g. things that are cloudy) here it is in the
label set; the task becomes determining whether
the statement as a whole falls into the set of true
statements. The data is split into 4000 train, 500 de-
velopment, and 536 test sentences. For all triggers,
both statements are found in the same split.

96 sentences were sampled from the develop-
ment set and annotated with 10-way redundancy
by vetted crowdworkers on Mechanical Turk. Us-
ing a similar interface as in § 3, annotators were
presented with sentences and asked to rate the sen-
tence’s truth using a sliding bar (ranging from 0
to 100) from false to true. In addition, an “I don’t
know” checkbox was provided to avoid forcing a
choice. Sentences were presented in groups of 8.
Additional details on the annotation interface can
be found in Appendix A.

4.1 Encoders and Models

While the text-only experiments also focus on ex-
amining vagueness, several important contrasts to
§ 3 must be drawn. In the visual setting, the entire
LXMERT model was separately finetuned on the
whole GQA and VQA train splits, and analysis ex-
amples were sourced from the development data.
In the text-only case, we do not have a pre-made
dataset and construct our own. Due to the smaller
size of our dataset, we have opted to only fine-tune
the classification layer, freezing the weights of the
contextualized encoders, unlike in the visual set-
ting where we trained the entire model. This is far
less computationally expensive, and allows us to
expand our text-only analysis to a range of encoder
types and model architectures. We examine three
different contextualized encoders:

BERT BERT (Devlin et al., 2019) is a
transformer-based model which uses a word’s con-

8Note that this conceptualization of truth diverges from
that of classical logic, but may be more faithful to actual usage.

text to predict its identity; during training, words
in the input are randomly replaced with a [MASK]
token; the model then predicts masked words based
on their contexts—a cloze-style task known as
masked language modeling (MLM). BERT also
uses a next-sentence prediction objective.

RoBERTa RoBERTa (Liu et al., 2019) uses
roughly the same methodology as BERT, but trains
the model for more epochs with larger batch sizes
while removing the next-sentence prediction task.

XLNet While traditional language models only
consider one factorization (in the forwards or the
backwards direction), Yang et al. (2019) maximize
the expected log-likelihood with respect to all fac-
torizations input’s joint probability.

Drawing on the observations of Warstadt et al.
(2019) that probing results can change dramatically
depending on how an encoder is probed, we intro-
duce three probing classifiers:

Mean-pool The mean-pool classifier takes the
average across all dimensions of the encoder output
at each input token, yielding one vector for the
whole sentence. This vector is then passed to a
2-layer multi-layer perceptron (MLP) with ReLU
activations, which produces a classification over
the 2D output space.

Sequence The sequence classifier uses the en-
coder representation at the index of the [CLS]
token, which it then passes to a 2-layer MLP with
twice as many hidden units as input units.

Bilinear This classifier splits the probing prompt
into a trigger word (e.g. “bachelor”) and a defini-
tion (e.g. “an unmarried man”); it encodes both
into vectors, mean-pooling the definition to pro-
duce two vectors, which are projected through two
linear layers. The projected representations xtrig
and xdef are then passed through a bilinear layer,
given by f(xtrig, xdef) = xTtrig A xdef, where A is a
3-dimensional learned parameter.

Control Tasks Following Hewitt and Liang
(2019), we construct control tasks for all of our
models and encoders. A control task is one where
labels and inputs are paired randomly; the purpose
of such a task is to disentangle what portion of the
probing classifier’s performance can be attributed
to the strength of the classifier, and what portion is
present in the representation.9

9All models are trained for 100 epochs with the Adam
optimizer using a learning rate of 0.0001. The best model was
chosen by validation performance.
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5 Results and Analysis

We find that our control classifiers perform ran-
domly, indicating our task has very low sensitivity.
Fig. 5 shows the test accuracies of all (non-control)
models in all settings. We see that all models fall
well below human performance, but well above the
random baseline of 50%. Among the probing meth-
ods, [CLS] pooling slightly outperforms mean-
pooling. The bilinear method consistently under-
performs the pooling methods, suggesting that the
gap between human and model performance is not
due to malformed prompts (e.g. incorrect articles
in the definition or trigger phrase). Appendix C
gives some examples and model predictions.

BERT RoBERTa XLNet
50

75

100
mean-pool [CLS]-pool bilinear

Figure 5: Test accuracy across encoders and probing
methods; all models perform well above chance.

Human annotators are able to perform the task
with high reliability, achieving an accuracy of 88.54
with majority voting. Fig. 4 shows that certain sen-
tences are easily classified as either true or false,
while a smaller number of sentences are consid-
ered borderline. A qualitative analysis of these
sentences reveals that they typically fall into two
categories: sentences where the trigger described
is very abstract (e.g. “a separation is the state of
lacking unity”) and those where the distractor defi-
nition is very closely related to the trigger (e.g. “a
baby is a person’s brother or sister”). Intuitively,
both of these phenomena can make a sentence only
partially true or false.

While Fig. 5 suggests the models are performing
reasonably well in the aggregate, Fig. 4 demon-
strates a similar trend to those seen in § 3, show-
ing that the classification patterns of humans dif-
fer drastically from those of the best model, as
illustrated by the overlaid examples. We also see
the same overconfidence in the output distribution
of the model, with predictions saturating at either
end of the simplex. Fig. 6 further reinforces this;
here, we perform the same analysis as in § 3, fit-

BERT RoBERTa XLNet
0.00

0.25

0.50

R
M

SE

mean-pool [CLS]-pool bilinear

Figure 6: 10-fold cross-validated RMSE against model
of 2-parameter sigmoid against model predictions from
each encoder and model pairing. RMSE to human per-
formance (green line, bottom) and against random data
(red line, top) are overlaid. RMSE to model predictions
is close to or worse than to random data.

ting a 2-parameter logistic regression to the ag-
gregate human scores, the model predictions, and
samples of a uniformly-distributed random vari-
able, computing the RMSE between the best-fit
sigmoid and the data. Across all models and all
encoder types, we see that the RMSE of a sigmoid
fit to the model predictions is close to or higher
than the RMSE of a sigmoid fit to uniformly ran-
dom data (RMSErandom = 0.326), as evidenced by
the overlaid red horizontal line, while the sigmoid
fit to human performance has a far lower RSME
(RMSEhuman = 0.051). This quantitatively rein-
forces the qualitative difference seen in Fig. 4.

6 Related Work

Human-model divergence In similar vein to our
work, Pavlick and Kwiatkowski (2019) observe
that human annotators consistently disagree on nat-
ural language inference (NLI) labels, and that the
disagreement cannot be attributed to a lack of an-
notations. They similarly find that models do not
implicitly learn to capture human uncertainty from
categorical data. In contrast, our work seeks to
pinpoint vagueness as a cause for some of the dif-
ference in behavior.10

Other work has looked at annotating data to ac-
commodate the kinds of disagreements seen in
Pavlick and Kwiatkowski. Chen et al. (2020)
extends the EASL framework (Sakaguchi and
Van Durme, 2018) for efficiently eliciting reliable
scalar judgements from crowdworkers to NLI, ob-

10We examined high-disagreement examples from the data
released by Pavlick and Kwiatkowski, which largely seem not
to be caused by vagueness except for some examples from
JOCI (Zhang et al., 2017), e.g. P: “I loved apple sauce”, H:
“The sauce is a condiment” may have high disagreement due
to vagueness in the predicate isACondiment(x)”.
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taining scalar NLI judgements rather than categor-
ical labels. In a similar context, Li et al. (2019)
argue that for tasks involving plausibility, the use
of cross-entropy loss drives model predictions to
the extremes of the simplex, and demonstrate the
benefits of shifting to a margin-based loss on the
Choice of Plausible Alternatives (Roemmele et al.,
2011) task. These results dovetail with our obser-
vations regarding various models’ output distribu-
tions, especially in the text-only setting, where our
task is very similar to tasks measuring plausibility.

While Pavlick and Kwiatkowski (2019) focus on
NLI data, Bhattacharya et al. (2019) have noted that
similar disagreements exist in the visual domain,
specifically on the VQA data set, where they find
that certain image-question pairs are less reliably
answered than others. The ontology they propose
to classify these images includes ambiguity and
under-specification, but not vagueness.

Vagueness Past work in vagueness has often fo-
cused on modeling it as a phenomenon, while our
work is concerned with analyzing model perfor-
mance on vague predicates, rather than capturing
the semantics of vague predicates, which has been
the focus of previous work such as Meo et al. (2014)
and McMahan and Stone (2015). Although color
terms provide a particularly rich substrate for mod-
eling the semantics of vague terms, we have chosen
to exclude them as we feel they demand a level of
psychophysical analysis beyond the scope of this
work. This work deals instead with gradable terms,
following work such as Fernández and Larsson
(2014), who present a type-theory record account
of vagueness for learning the semantics of grad-
able adjectives, DeVault and Stone (2004), who
use vagueness to illustrate the need for context in a
dialog-driven drawing task, and Lassiter and Good-
man (2017), who introduce a Bayesian pragmatic
model of gradable adjective usage. These lines of
previous work draw on the contextualist account
of vagueness, holding that the meaning of vague
predicates shifts with respect to the interests of
the parties communicating, a notion that naturally
expresses itself in rational pragmatic models of di-
alog. Rather than modeling vagueness, we use it
as a tool to examine model behavior, focusing on
single interactions instead of a dialog. We refer the
reader to Juhl and Loomis (2009) for a full account
of the analytic/synthetic distinction.

Text-only semantic probing The challenge of
analyzing the semantic content of sentence en-

codings precedes the contextual encoders stud-
ied herein; Ettinger et al. (2016) introduce a
suite of simple classification tasks for probing
the compositionality of LSTM-based sentence em-
beddings, while Conneau et al. (2018) present 10
linguistically-motivated probing tasks, including
3 semantic tasks, for LSTM- and CNN-based sen-
tence embeddings. Ettinger et al. (2018) create a set
of artificial prompts, as done in this work, to probe
the compositionality of InferSent (Conneau et al.,
2017), while Dasgupta et al. (2018) use NLI-style
prompts for the same purpose.

Similar probing suites have been proposed since
the advent of contextual encoders; Tenney et al.
(2019b) propose a set of edge-probing tasks that ex-
amine semantic content, and Tenney et al. (2019a)
find that semantic information is typically encoded
at higher transformer layers. Presenting a suite of
negative polarity item-based tasks, Warstadt et al.
(2019) expand on the observation that different
transformer layers account for different phenom-
ena, noting that additionally, the manner in which a
probing task is framed often makes a large impact.

Dictionary Embeddings Dictionary embed-
dings, as described by Hill et al. (2016), use
dictionary resources to learn a mapping from
phrases to word vectors. Dictionaries have also
been used with a view to augmenting the semantic
information in word embeddings, as in Tissier et al.
(2017) and Bosc and Vincent (2018). In contrast to
these approaches, we use definitions to investigate
the semantic content of existing mappings.

7 Conclusion

We have identified clashes between the assump-
tions made under the current NLP paradigm and
the realities of language use by focusing on the
phenomenon of vagueness. By isolating a subset
of examples from VQA and GQA involving vague-
ness, we were able to pinpoint some key diver-
gences between model and human behavior which
result in lower model performance. We then cre-
ated an artificial text-only dataset, controlling for
world knowledge, which we used to contrast multi-
ple models building on multiple contextualized en-
coders, finding similar human-model contrasts. In
closing, we would like to advocate for the broader
use of concepts from the philosophy of language,
such as vagueness, in challenging current models
and providing additional insights beyond aggregate
statistics and leaderboards.
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A Data Collection

Figure 12 shows that on certain examples hu-
man annotators vary in their truth judgements,
with some sentences receiving a high score (i.e.
“True”) from certain annotators and a low score (i.e.
“False”) from others. Further inspection reveals that
many of the highest-variance examples have one
annotator who is an extreme outlier.

Figure 7 shows the MechanicalTurk annotator
interface for collecting VQA and GQA annotations.
The task was only available to annotators in the
US with an approval rating > 98% and more than
500 recorded HITs. Instructions asked annotators
to respond to the questions by using the sliding bar.
They were provided with a comment box to use in
case any issues arose.

Similarly, Figure 8 shows the interface for col-
lecting text-only annotations. Here, the task was
only shown to annotators from a list of reliable
workers. Instructions asked annotators to rate how
true a sentence was, and told that sentences may
be true or false. They were instructed to use the “I
don’t know” checkbox in cases where they did not
know a word in the statement.

Figure 7: Mechanical Turk annotation template for vi-
sual annotations.

Figure 8: Mechanical Turk annotation template for text
annotations.

B Plots

Figures 9 and 10 show human annotations plotted
against model predictions for all of the predicates
examined. In all cases, we see major divergences
between human and model data, as quantified in
Fig. 3. We also see that the standard error be-
tween annotators is fairly low. Furthermore, we
see similar trends between descriptors across the
two datasets, with “new” being skewed towards the
higher end for both.

Figure 11 verifies that for the descriptors exam-
ined (“sunny” and “cloudy”) the mean score ob-
tained from annotators on Mechanical Turk and the
mean score from the VQA development roughly
correspond, justifying the use of the VQA devel-
opment data in § 3. However, we do note some
divergence between the two annotation formats,
likely due to the forced choice presented to the
original VQA annotators.

C Text Examples

Table 2 contains 28 example sentences from the val-
idation set, with human classifications derived by
majority voting over the annotators who did not use
the “I don’t know” box, as well as classifications
obtained by the [CLS] model.
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Figure 9: Human and model scores for questions containing vague terms from the GQA dataset.
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Figure 10: Average annotator scores and model scores for questions containing vague terms on the VQA dataset.
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Figure 12: Human means and quartiles for examples ranked by average score



57

Sentence Label Human XLNet BERT RoBERTa
a plot is (medicine) a systematic plan for therapy
(often including diet)

F 21.90 1.00 0.22 0.49

a plot is a secret scheme to do something (espe-
cially something underhand or illegal)

T 95.60 1.00 0.38 0.31

a measurement is the act or process of assigning
numbers to phenomena according to a rule

T 73.30 0.02 0.88 0.39

a measurement is a sudden event that imparts en-
ergy or excitement, usually with a dramatic impact

F 8.70 0.00 0.47 0.44

one is the product of two equal terms F 21.33 0.04 0.72 0.49
one is the smallest whole number or a numeral
representing this number

T 94.22 0.15 0.97 0.69

an exit is an opening that permits escape or release T 97.90 0.94 0.93 0.79
an exit is a man-made object taken as a whole F 7.30 0.00 0.01 0.09
a label is a brief description given for purposes of
identification

T 95.20 1.00 0.62 0.33

a label is the act of having on your person as a
covering or adornment

F 20.40 0.00 0.22 0.41

a ritual is the act of prolonging something F 25.22 0.64 0.26 0.92
a ritual is any customary observance or practice T 97.90 1.00 1.00 0.80
distance is faulty position F 5.90 0.27 0.00 0.71
distance is the property created by the space be-
tween two objects or points

T 97.90 1.00 0.98 0.40

a shock is a lack of gratitude F 7.67 0.00 0.29 0.27
a shock is the feeling of distress and disbelief that
you have when something bad happens acciden-
tally

T 96.10 0.53 0.03 0.74

a route is the frozen part of a body of water F 7.30 0.00 0.88 0.73
a route is an established line of travel or access T 97.90 0.79 0.89 1.00
a ban is a decree that prohibits something T 97.70 1.00 0.75 0.83
a ban is a legal instrument authorizing someone to
act as the grantor’s agent

F 5.70 0.00 0.19 0.88

citizenship is the status of a citizen with rights and
duties

T 96.20 1.00 0.91 1.00

citizenship is the state of having been made ready
or prepared for use or action (especially military
action)

F 12.56 0.00 0.07 1.00

an accent is distinctive manner of oral expression T 90.30 0.97 0.58 0.53
an accent is (language) communication by word of
mouth

F 47.56 0.03 0.08 0.22

journalism is newspapers and magazines collec-
tively

T 81.89 0.02 0.96 0.32

journalism is an artifact made of hard brittle mate-
rial produced from nonmetallic minerals by firing
at high temperatures

F 1.60 0.00 0.00 0.88

atmosphere is a particular environment or surround-
ing influence

T 87.20 1.00 0.52 0.72

atmosphere is any attribute or immaterial posses-
sion that is inherited from ancestors

F 12.56 0.00 0.00 0.31

Table 2: Sentences, labels, human means and model logits for 28 sample validation examples.


