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Abstract

We describe ud2rrg, a rule-based approach for converting UD trees to Role and Reference Gram-
mar (RRG) structures. Our conversion method aims at facilitating the annotation of multilingual
RRG treebanks. ud2rrg uses general and language-specific conversion rules. In order to evalu-
ate ud2rrg, we approximate the subsequent annotation effort via measures of tree edit distance.
Our evaluation, based on English, German, French, Russian, and Farsi, shows that the ud2rrg
transformation of UD-parsed data constitutes a highly useful starting point for multilingual RRG
treebanking. Once a sufficient amount of data has been annotated in this way, the automatic
conversion can be replaced by a statistical parser trained on that data for an even better starting
point.

1 Introduction

Role and Reference Grammar (RRG) (Van Valin Jr. and LaPolla, 1997; Van Valin Jr., 2005) is a gram-
mar theory for natural language that shares with Universal Dependencies (Nivre et al., 2016; Nivre et
al., 2020) the aim of being descriptively adequate across typologically diverse languages while reflecting
their commonalities in its analyses. It also shares with UD a number of design characteristics, such as
recognizing dissociated nuclei and the principle to “annotate what is there”, eschewing the use of empty
elements, cf. de Marneffe et al. (2021). In addition, RRG’s separation between constituent structure
and operator structure (the latter reflecting the attachment of functional elements) offers an explanatory
framework for certain word-order and semantic phenomena. In recent years, the computational linguis-
tics community has become increasingly interested in RRG and has started to formalize RRG (Osswald
and Kallmeyer, 2018) and to build resources and tools to support data-driven linguistic research within
RRG (Bladier et al., 2018; Bladier et al., 2020; Chiarcos and Fäth, 2019).

As illustrated in the examples in Figure 1, an important feature of RRG is the layered structure of the
clause. The nucleus (NUC) contains the (verbal) predicate, arguments attach at the core (CORE) layer,
and extracted arguments at the clause (CLAUSE) layer. Each layer also has a periphery, where adjuncts
attach (marked PERI). Operators (closed-class elements encoding tense, modality, aspect, negation, etc.)
attach at the layer over which they take scope. They are assumed to be part of a separate projection,
but we collapse both projections into a single tree structure for convenience. Elements like wh-words in
English are placed in the pre-core slot (PrCS), and the pre-clausal elements like fronted prepositional or
adverbial phrases are placed in the pre-detached position (PrDP).

In this paper we describe the ongoing effort to build RRGparbank1, a novel-length parallel RRG tree-
bank for English, German, French, Russian, and Farsi, in a semi-automatic fashion. We focus on the
automatic part. Exploiting an off-the-shelf UD parser, the text (George Orwell’s novel 1984 and trans-
lations) is parsed into UD. Then, exploiting structural similarities between UD and RRG, the UD trees
are automatically converted into RRG trees (§2). This conversion accelerates the process of manually
annotating the corpus (§3). Once enough data has been collected in this way, we replace the rule-based
conversion with a statistical RRG parser trained on the collected data. A series of experiments shows that
the statistical RRG parser offers a better starting point for annotating once approximately 2 000 sentences

1https://rrgparbank.phil.hhu.de
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Figure 1: Examples of RRG annotation. Punctuation marks are omitted.
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Figure 2: UD tree, RRG derivation tree and resulting RRG tree for the sentence Avoiding failure is easy.

are available for training ($4). Finally, we give a qualitative comparison between our converter and that
of Chiarcos and Fäth (2019), which targets a slightly different flavor of RRG (§5).

2 UD to RRG Conversion

2.1 Auxiliary Formalism

We define a custom formalism, inspired by tree grammar formalisms such as LTAG (Joshi and Schabes,
1997) that allows us to treat RRG trees as being composed from lexically anchored elementary trees via
a number of composition operations. Figure 2 and Figure 3 show examples: in the middle, there are a
number of elementary trees and the operations with which they are combined (the derivation) and on the
right there is the resulting RRG tree. The set of operations is RRG-specific:

• NUC-SUB: presupposes that the host tree is clausal.2 If the guest tree is clausal, attach its NUC node
under the host tree’s NUC node, and merge its CORE, CLAUSE and SENTENCE nodes (if any)
into the corresponding nodes of the host tree.3 If not, attach its root under the host tree’s NUC node.

• NUC-COSUB: presupposes that both trees are clausal. Create a NUC node above the host tree’s
NUC node (if it doesn’t exist yet), and attach the guest tree’s NUC node to that. Merge the CORE,
CLAUSE, and SENTENCE nodes.

• NUC-COORD: presupposes that both trees are clausal. Attach the guest tree’s NUC node under the
host tree’s CORE node. Merge the CORE, CLAUSE, and SENTENCE nodes.

2A clausal tree is an elementary tree whose lexical anchor is the head of a clause. Its spine starts with SENTENCE,
CLAUSE, CORE, or NUC, followed by nodes for the lower clausal layers.

3By merging we mean attaching any children of the former under the latter.
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Figure 3: UD tree, RRG derivation tree and resulting tree for the sentence We keep wondering what he
wanted to say.

• CORE-SUB: presupposes that the host tree is clausal. If the guest tree is clausal, attach its CORE
node under the host tree’s CORE node, and merge the CLAUSE and SENTENCE nodes (if any). If
not, attach its root under the host tree’s CORE node.

• CORE-COSUB: presupposes that both trees are clausal. Create a CORE node above the host tree’s
CORE node (if it doesn’t exist yet) and attach the guest tree’s CORE node to that. Merge the
CLAUSE and SENTENCE nodes.

• CORE-COORD: presupposes that both trees are clausal. Attach the guest tree’s CORE node under the
host tree’s CLAUSE node. Merge the CLAUSE and SENTENCE nodes.

• CLAUSE-SUB: presupposes that the host tree is clausal. If the guest tree is clausal, attach its
CLAUSE node under the host tree’s CLAUSE node, and merge the SENTENCE nodes (if any).
If not, attach its root under the host tree’s CLAUSE node.

• PRCS-SUB: create a left PrCS daughter of the host tree’s CLAUSE node (if it doesn’t exist yet) and
attach the guest tree’s root under it.

• PRDP-SUB: create a left PrDP daughter of the host tree’s SENTENCE node (if it doesn’t exist yet)
and attach the guest tree’s root under it.

• WRAP: attach the host under a designated node (marked *) of the guest (used for attaching preposi-
tion complements under PPs).

2.2 General Conversion Rules
If we view the derivations, as exemplified in Figures 2 and 3, as derivation trees where nodes are labeled
with elementary trees and edges are labeled with operations, then this derivation tree is isomorphic to a
corresponding UD tree. What remains to do to convert UD trees to RRG trees is to specify a set of rules
that relabel nodes in UD trees with RRG elementary trees, and edges with operations. We try to keep
these rules as local as possible, ideally looking only at one UD node and its incoming edge at a time, so
a simple recursive traversal of the UD tree suffices. However, as we will see, in some cases we need to
take a little more context into account. Table 1 shows the rules used in the example conversions.

UD’s content-word-centric approach is a good fit for the conversion to RRG regarding, e.g., copulas,
modal, tense, and aspect operators, which RRG treats not as heads of verb phrases but as additional



label POS additional conditions elementary tree operation

1 root ADJ (SENTENCE (CLAUSE (CORE (NUC (AP
(CORE A (NUC A (A <>))))))))

2 cop AUX (AUX <>) NUC-SUB
3 csubj VERB (CORE (NUC (V <>))) CORE-SUB
4 dobj NOUN (NP (CORE N (NUC N (N <>)))) CORE-SUB
5 root VERB (SENTENCE (CLAUSE (CORE (NUC (V <>)))))
6 nsubj PRON (NP (PRO <>)) CORE-SUB
7 dobj WP or WP$ (NP (PRO <>)) PRCS-SUB
8 mark SCONJ (CLM <>) CORE-SUB
9 ccomp VERB (CORE (NUC (V <>))) CORE-SUB

10 ccomp VERB verb of cognition/saying (CLAUSE (CORE (NUC (V <>)))) CLAUSE-SUB
11 xcomp VERB (CORE (NUC (V <>))) CORE-COSUB
12 xcomp VERB phase verb (NUC (V <>)) NUC-COSUB
13 xcomp VERB raising verb (CORE (NUC (V <>))) CORE-COORD
14 case ADP (PP (CORE P* (NUC P (P <>)))) WRAP

Table 1: Examples of rules. Rules 1–12 are the ones used in Figures 2 and 3. Rules 7, 10, 12, and 13 are
examples of rules whose implementation requires language-specific POS tags or lexicons.

operators attaching to clauses, cores, or nuclei. By contrast, prepositions are treated as heads of PPs and
thus necessitate a slightly more complicated rule (WRAP) to wrap the prepositional complement in a PP.
Overall, RRG’s approach can be characterized as more content-word-centric than function-word-centric.
This and the ready availability of UD resources made UD a more natural starting point for our conversion
project than more function-word-centric variants such as SUD (Gerdes et al., 2018).

2.3 Special Conversion Rules

Rules can also make reference to lexical and other language-specific knowledge. One area where this is
important is clause linkage, which in UD is always represented with conj, ccomp, or xcomp relations,
but in RRG splits up into a more fine-grained set of juncture-nexus types. For example, while we sub-
ordinate clausal complements at the CORE level by default (Rule 9 in Table 1), clausal complements of
verbs of cognition and saying typically require subordination at the CLAUSE level (Rule 10). Similarly,
while we cosubordinate open clausal complements at the CORE level by default (Rule 11), open clausal
complements of phase verbs as in starts walking, keep wondering or stopped believing require cosubor-
dination at the NUC level (Rule 12). This is illustrated in Figure 3. We have so far implemented this rule
for English and for German. For English, we determine the verb class by lookup in the VerbNet lexical
database (Kipper-Schuler, 2005). For German, as far as we are aware, similar resources such as Ger-
maNet (Hamp and Feldweg, 1997), provide sets of verb classes which are less fine-grained. Therefore,
the equivalent conversion rule for German uses a handwritten set of verbs instead of a lexical database.
We have also defined rules to recognize xcomp instances encoding the raising construction and trigger
core coordination by its associated lemma seem in English or scheinen in German (Rule 13). Due to
the low frequency of relevant phenomena and the inevitable brittleness of rules, we have left these spe-
cialized conversion rules as a proof-of-concept and not aimed for more extensive coverage, relying on
statistical predictions (see below) and annotators instead for the purpose of building RRGparbank.

2.4 Implementation and Workflow

The text basis for RRGparbank is provided by George Orwell’s novel 1984 as well as translations to
German, French, Russian and Farsi. The English and Farsi texts, their segmentation into sentences and
tokens as well as POS tags and lemmas are taken from the MULTEXT-East dataset (Erjavec, 2017),
which also provides the (non-annotated) Russian text. The French and German data was built using the
Orwell (1972) and Orwell (2003) editions, respectively. A large part of the German data was annotated
by hand following the guidelines of the MULTEXT-East dataset. We used UDpipe2 (Straka, 2018) for
segmentation, tagging, and lemmatization of the Russian, French and the non-annotated German data.
UD parses for all languages are also provided by UDPipe2.4

4The reported Labeled Attachment Scores for the 5 languages on UD treebanks are as follows: 85.8% for English, 81.2%
for German, 84.3% for Farsi, 83.5% for French and 85.3% for Russian.



Timestamp nBURP LF1 failed

#1 0.66 61.02 1 100
#2 0.57 64.09 773
#3 0.47 68.75 355
#4 0.33 72.51 221
#5 0.20 79.96 0

Table 2: nBURP and LF1 scores for the output of ud2rrg using Russian data (4 635 sentences), at different
steps of development. Sentences that could not be converted are replaced with flat dummy trees.

In the next step, we use a script called ud2rrg5, which we developed based on the formalism described
above, to convert the UD trees to RRG. It performs a traversal of each UD tree and at each node applies
the matching rule, thereby gradually building up an RRG tree. In the rare cases where conversion fails for
a node because there is no matching rule (e.g., with rare combinations of POS and grammatical relation),
conversion fails and a dummy tree is generated where all tokens are attached to the root.

For the results reported in this paper, 13 annotators with training in RRG annotated 5 453 English,
5 723 German, 2 177 French, 4 675 Russian, and 1 110 Farsi sentences over a time period of 21 months.6

They were provided the output of ud2rrg and corrected the trees using a graphical interface. The graphical
interface and the annotation guidelines were based on RRGbank (Bladier et al., 2018). Development of
ud2rrg was ongoing during this period and informed by manual inspection of sentences that failed to
convert and of changes annotators made to the ud2rrg output.

Annotation on different languages started at different times. We used the same ud2rrg for all languages,
but each new language typically brings with it a number of POS tags and constructions that have not or
not much been seen in the data so far, meaning that rules have to be refined and added before ud2rrg
performs as well on the new as on the old languages. As an example, consider the case of Russian.
Table 2 shows the performance of ud2rrg on Russian at different points in time after its introduction
as a new language. We measure the performance in nBURP (smaller is better), LF1 (larger is better),
and number of failed sentences (smaller is better) – details are given below in Section 3. Timestamp
#1 corresponds to the introduction of the Russian data in the annotation interface. Between #1 and #2,
ongoing development of ud2rrg took into account, among other data, Russian gold data produced by
annotators. The first rules making specific reference to Russian lexemes were added between #2 and #3
(7 new rules and 2 extensions of existing rules), leading to significantly better performance. Timestamp
#4 is a week after #3, while #5 is the time of redaction of this article. The scores keep improving with
time, as regular evaluations on the updated gold data indicates which transformation rules are missing,
or need an update. Annotators are also encouraged to report sentences for which the transformation is
problematic, or fails.

As of this writing, ud2rrg contains about 278 rules, 4 of which depend on language-specific semantic
lexical resources to select a juncture-nexus type. In addition, we have language-specific routines to deter-
mine finer-grained parts of speech for function words, such as negation particles, negative determiners,
indefinite pronouns, demonstrative pronouns, clitic pronouns, or negative pronouns.

3 Impact on Annotation Effort

Correcting automatically pre-annotated data facilitates the annotation of the treebank because the data
no longer need to be annotated from scratch. In this section we estimate the impact of pre-annotation
on the human effort of creating treebank data. Specifically, we try to measure the mechanical effort it
takes annotators to move, insert, delete, and relabel tree nodes in our graphical drag-and-drop annotation
interface (Bladier et al., 2018). For this study, we ignore the cognitive cost of annotation decisions, which
is much harder to measure.

Roughly speaking, the more similar a pre-annotated tree to the gold tree, the fewer drag-and-drop

5https://gitlab.com/treegrasp/ud2rrg
6The data is a snapshot of RRGparbank as of 2021-09-17.
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Figure 4: Example pair of gold tree and corresponding ud2rrg output.

operations annotators will need. Established tree similarity measures include tree edit distance (TED)
(Zhang and Shasha, 1989) and EVALB (Collins, 1997). However, it is well known that these measures
tend to over-penalize attachment errors (Bangalore et al., 1998; Emms, 2008) because constituents that
have to be reattached do not incur a unitary cost but rather a cost proportional to their size or to the
length of the path between the predicted and the correct attachment site. This contrasts with our graphical
annotation interface where reattachment is a single drag-and-drop operation. As an example, consider
Figure 4. Here, we have to reattach one ADVP subtree and delete one NUC node in order to transform
the ud2rrg tree into the gold tree. However, the tree edit distance is 6 because reattachment incurs a
cost not only for the ADVP node but for all its descendants. Similarly, EVALB will count not 2 but 3
spans (NUC, NP, CORE N) as “false positives” in the ud2rrg tree. This effect gets worse with longer
reattachments.

We are not aware of a polynomial algorithm to compute optimal edit scripts between trees when reat-
tachment is allowed as a single operation. Instead, we use an approximate but principled algorithm that
counts the number of operations needed to turn the predicted tree into the gold tree when recreating the
constituents of the gold tree by modifying the predicted tree in a strict bottom-up fashion, recreating
smaller constituents first and then moving on to larger ones. This algorithm, called “bottom-up replug-
ging” (BURP), is described in detail in Appendix B. In our example, BURP first recreates the CORE N
subtree, for which the ADVP subtree needs to be moved down (cost 1). It then recreates the NP subtree
and deletes the NUC node (cost 1). The trees are now identical, with total cost 2, which is exactly the
number of operations intuitively needed. While not necessarily optimal, we conjecture that BURP ap-
proximates the strategies that human annotators use to edit trees, and that its scores are therefore a better
predictor of human annotation effort than TED or EVALB.

For our evaluation, we use all three measures. For TED and BURP, we normalize the score by the
number of brackets in the gold RRG tree, since trees with a more complex internal structure require
more editing than simpler trees. The results are given in Table 3.

4 Comparison with statistical parsing

We compare the output of ud2rrg with parsing the sentences using the statistical neural parser ParTAGe
(Bladier et al., 2020), developed for RRG-based tree rewriting grammars. We evaluate how much train-
ing data is needed for the statistical parser to outperform the rule-based conversion approach. For the
experiments, we did not distinguish between silver and gold data7 but split all gold and silver data up into
4 385 training, 542 development, and 526 test sentences for English. We randomly shuffle the training
data and use the first n trees for training. Our experiments show that the statistical parser needs around

7Silver sentences are annotated by one annotator whereas gold sentences are annotated by at least two annotators. We had
5 228 gold and 225 silver sentences in the English subcorpus in total.



approach train sz. failures nTED LF1 (exact match) nBURP
dev test dev test dev test dev test

ud2rrg 0 0 0.32 0.34 76.97 (90) 76.51 (84) 0.20 0.21

statist. 500 137 131 0.43 0.42 62.65 (70) 63.45 (85) 0.64 0.63
parser 1 000 0 1 0.35 0.35 68.93 (88) 70.27 (85) 0.30 0.29

2 000 0 0 0.27 0.27 75.35 (128) 76.13 (113) 0.22 0.21
3 000 0 0 0.25 0.24 77.93 (135) 78.73 (133) 0.19 0.18
4 000 0 0 0.23 0.22 79.56 (149) 80.62 (135) 0.18 0.17
>4 000 0 0 0.23 0.22 79.75 (157) 80.30 (137) 0.17 0.16

# sent. 542 526 542 526 542 526 542 526
∅ len. 13.99 14.02 13.99 14.02 13.99 14.02 13.99 14.02

Table 3: Comparison of UD parsing for English followed by rule-based ud2rrg conversion vs. statistical
RRG parsing (Bladier et al., 2020), depending on the amount of RRG training data available. The
evaluation does not consider function tags and punctuation. The numbers in brackets indicate the amount
of exactly matched produced trees. Sentences that could not be converted/parsed are counted in the
evaluation as flat dummy trees. We use our BURP measure (normalized by number of constituents in
the gold tree) as well as tree edit distance (Zhang and Shasha, 1989) normalized in the same way, and
EVALB LF1 (Collins, 1997). All three measures show that statistical parsing starts to outperform ud2rrg
at around 2 000 training sentences.

2 000 pre-annotated trees for training to surpass the rule-based conversion.
We also evaluate the UD conversion on other languages (see Table 4).8 In cases where ud2rrg could not

convert UD parses to trees, we evaluate the scores as if the trees were annotated from scratch. Concretely,
we measure the distance from flat dummy trees where each pre-terminal has a dummy POS tag and
attaches directly to the root. The results show that about a fifth of the sentences are converted directly to
the gold standard for different languages and in general the annotators’ effort is reduced for the majority
of sentences compared to annotation from scratch (represented as baseline in Table 4). These findings
clearly show that using the rule-based UD conversion approach can be a good starting point for pre-
annotation of a multilingual treebank.

language baseline ud2rrg # sents ∅ len. failures # sents
nBURP LF1 nBURP LF1 (annot.) (annot.) (entire corpus)

de 1.24 6.56 0.18 79.24 (926) 5723 17.00 9 6661
fr 1.22 8.97 0.21 79.80 (402) 2177 12.57 1 7261
ru 1.18 7.64 0.20 79.96 (939) 4635 11.76 0 6669
fa 1.16 9.14 0.30 72.09 (211) 1110 9.01 37 6604

Table 4: Comparison of normalized BURP and EVALB F1 scores of ud2rrg for German, French, Russian,
and Farsi evaluated on the full set of annotated sentences without taking into account punctuation and
function tags. The baseline is annotation from scratch, starting with flat dummy trees. For sentences
where ud2rrg fails, we fall back to the baseline. The numbers in brackets show produced trees exactly
matching with gold annotations.

5 Related Work

The availability of UD corpora for a big variety of languages makes them appealing to use for creating
linguistic resources for different NLP tasks. Fancellu et al. (2017) and Reddy et al. (2017) describe
algorithms for conversion of UD structures to logical forms enabling an almost language-independent
transformation. Ranta and Kolachina (2017) develop an approach to convert UDs into abstract syntactic

8Note that these data do not fully reflect differences between languages in RRGparbank, since the annotation is still ongoing
and the current amount of covered data and annotated syntactic phenomena is different for each language.



annotations to create treebanks based on the Grammatical Framework (GF) formalism for multilingual
grammars (Ranta, 2011).

Closest to our work is that of Chiarcos and Fäth (2019) who define a RDF/SPARQL-based converter
to RRG, using as input not only UD but also semantic role annotation. The data for which both the input
(partially manually corrected UD) and the output is publicly available9 consists of 351 examples from the
textbook of Van Valin Jr. and LaPolla (1997). While their converter was developed on this kind of data,
for us it presents a new domain. After normalizing away notational differences and ignoring operator
attachment as well as POS tags (see below) but without any updates to ud2rrg, we obtained an nBURP
of 0.16, an nTED of 0.18, and an F1 score of 85.75, with 15.38% exact matches. We then performed a
qualitative comparison on 100 randomly chosen sentences to gain insights into types of mistakes and to
inform future development. We summarize our findings here; the full results are provided in Appendix A.

Notational conventions A large part of the differences are purely notational and can be automatically
normalized away: C&F attach all punctuation at the root whereas we leave it attached at smaller phrases
as in UD. We mark wh-phrases with -REL or -WH labels, C&F don’t. C&F mark arguments with ARG
nodes, which we don’t have, and peripheries with PERIPHERY nodes, while we mark the children with
-PERI instead. Some nonterminals have slightly different names, e.g., COREn vs. CORE N, LDP vs.
PrDP, or ADJ vs. AP. We also ignore part-of-speech tags because C&F do not attempt to convert the
input POS tags into the POS tags conventionally used in RRG analyses.

Tense, modality, and aspect operator attachment In RRG, tense operators attach at the CLAUSE
level, modal operators at the CORE level, and aspect operators at the NUC level. This means that, e.g.,
a tensed auxiliary verb as in she has seen or a tensed modal verb as in he can see attach at more than
one level, namely at both CLAUSE and NUC, and at both CLAUSE and CORE, respectively. In C&F’s
annotation, this is so. By contrast, our guidelines limit annotations to trees for ease of processing and
by convention only attach at one level, which is typically CLAUSE. We tried to ignore these differences
in attachment by removing the non-CLAUSE additional edges from C&F’s annotation. 10 differences
due to operator attachment remain. Since auxiliary and modal verbs form a closed class, the multiple
attachment would be easy to restore.

Theoretical assumptions (51 instances) Some of the remaining differences can be explained by
ud2rrg following conventions set down in our RRGbank-based annotation guidelines which differ from
those followed in C&F’s data. These are not mere notational differences but have potential theoretical
significance because they reflect different assumptions about the internal structure of phrases, etc. These
differences will be used to check and revise our annotation guidelines. For example, we annotate nu-
merals using “quantifier phrases” (QPs), attach attributive APs at CORE N rather than NUC N level,
assume a full AP rather than a simple nucleus for predicative adjectives, treat possessive pronouns like
determiners and do not place them under NPIP, treat prepositions introducing adverbial clauses as clause
linkage markers (CLM) rather than prepositions, do not distinguish CONJ from CLM, etc.

Bugs (25 instances) Some differences are bugs in ud2rrg which can easily be fixed in future develop-
ment, e.g., failure to convert prepositions marking clauses into PPs rather than CLM-marked clauses,
failure to handle nmod:tmod dependents as adverbial modifiers, attachment of wh-PPs in PrDP rather
than PrCS, or failure to recognize wh-movement when the subject is a passive subject.

Limitations (84 instances) Telling the differences between an argument PP and a peripheral (adjunct)
PP is hard and currently out of scope for ud2rrg. C&F use semantic role information to predict this.
Relatedly, ud2rrg currently does not distinguish between PPs with and without internal layers (CORE P
and NUC P).

Clause linkage (20 instances) Similarly, mapping conj, ccomp, and xcomp dependencies to the
appropriate juncture-nexus type for linking clauses together is complex. As described in Section 2, we

9https://github.com/acoli-repo/RRG



have some rules to address this heuristically, but many cases are not yet covered and may also require
semantic role or other lexical information to resolve.

Bad input (12 instances) Incorrect UD input sometimes leads to incorrect ud2rrg output. For example,
the input data contain a number of unspecific dep relations which are then not correctly handled. There
are also instances of wrongly resolved PP attachment ambiguity and the occasional confusion of a relative
clause with an adverbial clause, and vice versa.

Error in gold standard (7 instances) Finally, we also discovered a handful of apparent errors in
C&F’s annotation. For example, the genitive suffix ’s is always attached to the root instead of inside the
NPIP, and some PrCS nodes appear to be spurious.

6 Conclusions

We have presented a rule-based algorithm for converting Universal Dependencies to RRG trees as a way
to bootstrap RRG treebanks. By mapping UD nodes to RRG fragments and grammatical relations to
operations that combine these fragments, it provides a principled mapping between the two formalisms.
Language-independent at core, the algorithm can be extended with language-specific rules to incorporate
lexical and other language-specific knowledge. We have shown that by basing RRG annotation on au-
tomatically converted trees, the number of tree manipulation operations that annotators have to perform
is considerably reduced compared to annotating from scratch. We have also shown that for annotating
English, a statistical parser trained on sentences annotated so far starts to produce more accurate trees
than our rule-based conversion at around 2 000 training sentences. Finally, we have performed a detailed
qualitative comparison with the output of another converter and pinned down the remaining issues for
ours. In future work, we will consider applying the ud2rrg algorithm to the data from Parallel Univer-
sal Dependencies corpora (Zeman et al., 2020). Moreover, ud2rrg allows bootstrapping of further RRG
treebanks for different languages, based on existing UD treebanks.
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George Orwell. 2003. 1984. Ullstein, 37th edition. German translation by Kurt Wagenseil (first published 1950
by Alfons Bürger Verlag).

Rainer Osswald and Laura Kallmeyer. 2018. Towards a formalization of Role and Reference Grammar. In Rolf
Kailuweit, Eva Staudinger, and Lisann Künkel, editors, Applying and Expanding Role and Reference Grammar,
(NIHIN Studies), pages 355–378. Albert-Ludwigs-Universität, Universitätsbibliothek, Freiburg.
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A Qualitative Comparison with Chiarcos and Fäth (2019)

The following table contains the results of the qualitative evaluation of our converter on 100 randomly
selected example sentences from Van Valin Jr. and LaPolla (1997) as annotated by Chiarcos and Fäth
(2019). The first column indicates the sentence number in their release, the second the type of difference
(different operator attachment, theoretical assumption, bug, limitation, clause linkage, bad input (ud),
or error in gold standard), and the third column contains a brief description of the difference. Empty
second and third columns indicates sentences from our sample with no difference after normalization.

sentence type description

5 op neg at CLAUSE vs. CORE
5 bug failure to attach fronted non-wh object in PrCS
8 ud dobj→ dep
8 limit theo PP internal structure
9 bug fronted wh-PP attached to PrDP instead of PrCS
9 limit theo PP internal structure

12 limit failure to recognize PERI
17 limit theo PP internal structure
17 ud fronted wh-object attached with dep
18 ud nmod:tmod→ dep
18 limit failure to recognize PERI
18 limit theo PP internal structure
24
26 limit theo PP internal structure
29 limit theo PP internal structure
30 limit theo PP internal structure
31 limit theo PP internal structure
31 limit theo PP internal structure
35 acoli ”that” treated as NP when it is a determiner
48 acoli ’s attached to root
48 theo AP-PERI always attaches at CORE N, not NUC N
48 limit theo PP internal structure
50 limit theo PP internal structure
54 limit theo PP internal structure
54 theo ADVP-PERI always attaches at CORE, not NUC
54 theo AP-PERI always attaches at CORE, not NUC
55 theo ADVP-PERI always attaches at CORE, not NUC
55 theo AP-PERI always attaches at CORE, not NUC
55 bug failure to recognize PoDP
55 limit theo PP internal structure
58 theo ”by” passive subject treated as argument, not adjunct
58 limit theo PP internal structure
59 limit theo PP internal structure
62
67 theo ”by” passive subject treated as argument, not adjunct
68 limit theo PP internal structure
71 limit failure to recognize PERI
74 ud compound→ dobj
74 limit failure to recognize PERI
76 theo possessive pronoun treated as definiteness operators, not placed in NPIP
76 theo AP-PERI always attaches at CORE N, not NUC N
76 limit theo PP internal structure



89
91
99 bug raising construction where the subordinated predicate is an adjective is

wrongly classified as dependency parsing error
103 ud acl:relcl→ advcl
103 ud ”to whom” is not a subtree
103 limit theo PP internal structure
104 limit theo PP internal structure
104 limit theo PP internal structure
104 bug failure to recognize PrCS when subject is marked nsubjpass
105 limit theo PP internal structure
105 limit theo PP internal structure
105 bug failure to recognize PrCS when subject is marked nsubjpass
111
112
120 limit failure to recognize PERI
120 limit theo PP internal structure
120 limit failure to recognize PERI
123 limit theo PP internal structure
123 limit failure to recognize PERI
123 limit failure to recognize PERI
125 limit failure to recognize PERI
125 limit failure to recognize PERI
127
132 theo to-infinitive that replaces a relative clause treated as CLAUSE-PERI and

attached in NUC N instead of CORE attached at CORE N
132 limit theo PP internal structure
133 limit theo PP internal structure
134 ud NP with relcl instead of SENTENCE with fronted dobj
135 limit theo PP internal structure
139
140 limit theo PP internal structure
141 limit theo PP internal structure
146 limit theo PP internal structure
150 limit theo PP internal structure
153 theo AP-PERI always attaches at CORE N, not NUC N
153 limit theo PP internal structure
153 limit theo PP internal structure
153 limit theo PP internal structure
153 limit theo PP internal structure
153 limit theo PP internal structure
159 limit theo PP internal structure
159 limit theo PP internal structure
160 limit theo PP internal structure
160 limit theo PP internal structure
162 limit theo PP internal structure
168 limit theo PP internal structure
168 limit failure to recognize PERI
171 limit failure to recognize PERI
171 limit theo PP internal structure
172 limit theo PP internal structure



172 limit failure to recognize PERI
174 limit theo PP internal structure
182
183 limit failure to recognize PERI
183 limit theo PP internal structure
188 bug fronted wh-PP attached to PrDP instead of PrCS
188 limit theo PP internal structure
190 op neg at CLAUSE vs. CORE
190 link parataxis handled as CORE cosubordination instead of SENTENCE co-

ordination
190 limit failure to recognize/handle cleft construction
200 theo single complex NUC instead of NUC cosubordination
200 theo predicative adjective: simple NUC vs. AP
200 link CORE coordination vs. cosubordination
202 link CORE coordination vs. cosubordination
205 link CORE coordination vs. subordination
205 theo predicative adjective: simple NUC vs. AP
207
211 theo single complex NUC instead of NUC cosubordination
211 theo predicative adjective: simple NUC vs. AP
217 bug failure to handle nmod:tmod as adverbial
217 theo single complex NUC instead of NUC cosubordination
217 theo predicative adjective: simple NUC vs. AP
225 link CORE coordination vs. CLAUSE subordination
229 bug advcl as PP-PERI vs. CLAUSE
229 limit theo PP internal structure
229 limit theo PP internal structure
231 op modal verbs attach at CORE
233 op modal verbs attach at CORE
233 link CORE coordination vs. cosubordination
236 limit failure to recognize PERI
236 limit theo PP internal structure
237
239 link CLAUSE vs. CORE subordination
239 acoli spurious PrCS?
240 ud nominalized clause parsed wrong
240 theo ”by” passive subject treated as argument, not adjunct
247 limit theo PP internal structure
247 bug failure to handle nmod:tmod as adverbial
247 link CLAUSE vs. CORE subordination
248 bug advcl as PP-PERI vs. CLAUSE
248 limit theo PP internal structure
255 ud xcomp→ dep
258 link CORE coordination vs. cosubordination
259 link CORE coordination vs. subordination
260 link CORE coordination vs. cosubordination
260 theo possessive pronoun treated as definiteness operators, not placed in NPIP
260 theo possessive pronoun treated as definiteness operators, not placed in NPIP
260 bug advcl as PP-PERI vs. CLAUSE
261 link CORE coordination vs. cosubordination
261 theo possessive pronoun treated as definiteness operators, not placed in NPIP



261 theo possessive pronoun treated as definiteness operators, not placed in NPIP
261 bug advcl as PP-PERI vs. CLAUSE
263 link CORE coordination vs. subordination
265 link CLAUSE coordination vs. cosubordination
265 bug advcl as PP-PERI vs. CLAUSE
265 theo possessive pronoun treated as definiteness operators, not placed in NPIP
265 limit theo PP internal structure
276 theo ”by” passive subject treated as argument, not adjunct
276 theo ”by” passive subject attached at higher vs. lower CORE
278 bug fronted advcl not in PrDP
278 bug ud2rrg advcl as PP vs. CLAUSE
292 link CORE subordination vs. cosubordination
293
294 limit theo PP internal structure
294 link CLAUSE in CORE vs. CORE subordination
294 acoli spurious PrCS?
294 theo predicative adjective: simple NUC vs. AP
295 limit theo PP internal structure
295 link CLAUSE under CORE vs. CORE subordination
297 limit theo PP internal structure
297 acoli ’s attached to root
297 acoli ’s attached to root
297 theo QP
297 theo QP
297 theo AP-PERI always attaches at CORE, not NUC
297 theo AP-PERI always attaches at CORE, not NUC
297 theo we don’t distinguish between CONJ and CLM
298 theo we don’t distinguish between CONJ and CLM
298 theo QP
298 theo QP
298 limit article of coordinated NP attaches too low
301 theo QP
301 theo AP-PERI always attaches at CORE, not NUC
305 op at CLAUSE vs. CORE
305 limit theo PP internal structure
305 limit theo PP internal structure
305 ud PP attachment
305 limit failure to recognize PERI
305 op modal verbs attach at CORE
305 link NP-CLAUSE subordination vs. CORE subordination
309 theo neg at CLAUSE vs. CORE
309 limit theo PP internal structure
309 ud advcl→ acl:relcl
309 op modal verbs attach at CORE
309 limit failure to recognize PERI
312 op modal verbs attach at CORE
312 bug neg determiner attached wrongly
312 limit failure to recognize PERI
318 link CORE coordination vs. CORE cosubordination
318 limit failure to recognize PERI
324 theo QP



324 theo AP-PERI always attaches at CORE N, not NUC N
324 ud discontinuous wh-PP (stranding) not parsed correctly
324 bug failure to handle nmod:tmod as adverbial
324 theo relative clause attaches at NUC N, not CORE N
325 theo QP
325 theo QP
325 theo AP-PERI always attaches at CORE N, not NUC N
325 theo AP-PERI always attaches at CORE N, not NUC N
325 limit PP attaches too low in coordinated NP
325 theo we don’t distinguish between CONJ and CLM
326 limit theo PP internal structure
326 op modal verbs attach at CORE
326 theo we don’t distinguish between CONJ and CLM
326 bug failure to handle elliptical conjunct
326 bug failure to recognize PoDP
331 theo single complex NUC instead of NUC cosubordination
331 acoli ’s attached to root
336 bug untensed auxiliary treated as OP-TNS
337 bug failure to handle nmod:tmod as adverbial
348
350
350 bug advcl as PP-PERI vs. CLAUSE
350 limit failure to recognize PERI
350 theo we don’t distinguish between CONJ and CLM
350 bug NP conjunction attaches to PP
350 bug failure to recongize PrDP
350 link CORE cosubordination vs. CORE under NUC
350 op modal verbs attach at CORE
350 theo AP-PERI always attaches at CORE N, not NUC N
350 theo predicative adjective: simple NUC vs. AP
350 limit theo PP internal structure

B Computing Tree Distance Using Bottom-up Replugging (BURP)

We describe BURP (“bottom-up replugging”), an algorithm that computes an edit script between two
trees with identical spans, such as two different natural-language constituent parse trees over the same
sentence. Potential applications include evaluating the performance of constituent parsers and estimating
the annotator effort in a semi-automatic annotation scenario.

Similar metrics include tree-distance (Zhang and Shasha, 1989; Emms, 2008), EVALB (Collins, 1997),
string-distance applied to tree linearizations (Roark, 2002), and the leaf-ancestor metric (Sampson and
Babarczy, 2003). None of them explicitly models the possibility of re-attaching a subtree to a different
node, and they thus tend to over-penalize attachment errors as every constituent containing a moved
subtree is affected (Bangalore et al., 1998). Although Roark (2002) and Emms (2008) propose strategies
that mitigate this, subtree re-attachment is still handled as pair of delete and insert operations, thus its
cost cannot be freely chosen but is necessarily the sum of the two.

BURP differs from all these algorithms by trying to explicitly simulate the way human annotators using
graphical annotation interface correct trees. We assume the following basic operations to be availalbe:
relabeling a node, deleting an internal node (implicitly reattaching all its children to its parent), inserting
a node below another node (so that children of the existing node become children of the new node), and
moving a node (that has at least one sibling) to a different parent. Given these operations, one question to
ask is what is the optimal set of operations to transform the source (or predicted) tree into the target (or
gold) tree, given some cost for each operation (in the following, we assume that every operation has cost



A

B

C

D

E

Figure 5: An example tree consisting of three maximal unary chains. Dashed edges indicate the bound-
aries between chains.

1, but they can easily be weighted differently). This is an NP-complete problem. Another, and perhaps
more interesting question is how many operations human annotators need. We conjecture that BURP

mimicks the human annotation process to some degree, and thus gives script lengths that correlate better
with human annotator effort than other measures.

Sketch of the algorithm BURP transforms the source tree into the target tree in a bottom-up fashion,
recreating smaller subtrees of the target tree in the source tree first and then moving on to larger ones
until the root is reached and the whole tree transformed. To this end, the target tree is first divided up
into maximal unary chains, as illustrated in Figure 5. To simplify the description, we will often refer to
a chain as if all its nodes have been contracted into one, i.e. we say that in the example, chain AB has
two children CD and E. We will also occasionally refer to a subtree and its root as the same entity if the
context makes it clear. BURP does a post-order traversal of the chains in the target tree and at each chain
transforms a part of the source tree into the subtree under that chain. All children of the chain have at this
point already been recreated, and they are re-used, even if this is not guaranteed to give an optimal edit
script. This is how BURP cuts the NP-complete problem down to a polynomial one. The local decisions,
viz., which part of the source tree to transform into the current target chain, however, are optimized for
minimal local cost.

Definitions The span (or yield) of a tree is the set of its leaves. Note that we do not assume spans to be
contiguous.

Inputs The inputs to BURP are a source tree T1 and a target tree T2 with identical spans.

Data Structures and Initialization While transforming T1 into T2, we will temporarily remove sub-
trees from T1 and thus take it apart into multiple parts. We maintain a set P of these parts, which we
initialize as P := {T1}. We say that a node is “free” if it is the root of a tree in P .

The Traversal We do a post-order traversal of the chains in T2, recreating the subtrees under them in
as subtrees of trees in P . Thus, when we visit a chain, all of its children have already been recreated. Let
p2 be the currently visited target chain and C its recreated children in the trees in P . In the example in
Figure 6, p2 = BDE and C = {F,G,H, I, J}. We then pick an extended source chain or x-chain, i.e., a
path p1 in some tree in P such that p1 = n1n2 . . . nN with N ≥ 1, nN ∈ C. In the example, p1 = ABCF.
The subtree under p1 is then deterministically transformed into that under p2 with the minimal number
of operations and assuming that the subtrees under all c ∈ C remain unchanged.11 The transformation
consists of the following steps:

11The reason for including one of the transformed children in p1 is to allow for the case where the rest of the source chain
is empty and all nodes in p2 have to be inserted during the transformation. An empty source chain would not specify where
to insert these nodes. Note also that n1 . . . nN−1 need not be a unary chain (in the example, B has another child P); it will be
transformed into one.
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Figure 6: Example state of the algorithm, with two source tree fragments on the left and a target tree
fragment on the right. Black nodes are parts of the target chain or source x-chain. Doubly circled nodes
are already-recreated children in the source tree fragments. Yellow nodes will be freed, blue ones moved,
red ones pruned, and violet ones moved and pruned.

1. Move down. For each topmost descendant of n1 . . . nN−2 whose span is a subset of the target span
(meaning the span of p2) but which is not dominated by nN−1, move it to nN−1. In the example, L
is moved to C (cost 1).

2. Free above. For each child of n1 . . . nN−2 that is not in p1, “free” it, i.e., remove it and add it to P
as a free subtree. It will find its place is the transformed tree later. In the example, O is freed (cost
1).

3. Edit chain. Insert, delete, and relabel nodes in n1 . . . nN−1 so as to make the chain identical to
p2. The cost is the Levenshtein distance (Levenshtein, 1966) between both sequences.12 In our
example, A is deleted, C is relabeled D, and E is inserted (cost 3).

4. Move up. For each topmost descendant of nN−1 whose span is a subset of the target span but which
is not a child of nN−1, move it to nN−1. In the example, H is moved to C (cost 1).

5. Free below. For each child of nN−1 whose span is not a subset of the target span, free it. In our
example, N is freed (cost 1).

6. Move in. For each topmost node whose span is a subset of the target span and that is not yet a
child of nN−1, move it there. If that node is a root, there is no cost because the cost of moving was
already incurred when the node was freed.13 In the example, M is moved in (cost 1).

7. Prune. For every node between nN−1 and any c ∈ C, delete it. In the example, K, L, and M are
deleted (cost 3).

Postcondition After visiting the root of T2, P contains exactly one tree, which is identical to T2.
12Our graphical annotation interface does not currently allow for inserting a node directly above another node in a unary

chain if the latter has siblings. This could be taken into account by disallowing insertions at the beginning of the Levenshtein
edit script.

13The cost is incurred early, by the freeing operation, not by the subsequent “moving in”, so it can be attributed to the x-chain
that necessitates the moving. Annotators often do not have a place where they can put removed subtrees temporarily; we assume
that they will immediately move the subtree to the node where it will eventually end up.



Search For every visited target chain, we pick an x-chain that minimizes the local cost. The final edit
chain and cost still depends on how ties between locally optimal x-chains are broken, and on the exact
order of traversal. In our current implementation14, the leaves are assumed to be ordered (as the words
are in natural language), and the postorder traversal proceeds from left to right. Ties between x-chains
are currently broken by preferring chains that are in more recently freed subtrees, further to the right
in the tree, and longer. A closer approximation to the optimal edit script could be achieved, e.g., by
randomizing this and doing multiple restarts.

14https://github.com/texttheater/burp


