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Abstract

Current methods for event representation ig-
nore related events in a corpus-level global
context. For a deep and comprehensive un-
derstanding of complex events, we introduce
a new task, Event Network Embedding, which
aims to represent events by capturing the con-
nections among events. We propose a novel
framework, Global Event Network Embed-
ding (GENE), that encodes the event network
with a multi-view graph encoder while preserv-
ing the graph topology and node semantics.
The graph encoder is trained by minimizing
both structural and semantic losses. We de-
velop a new series of structured probing tasks,
and show that our approach effectively outper-
forms baseline models on node typing, argu-
ment role classification, and event coreference
resolution. 1

1 Introduction

Understanding events is a fundamental human ac-
tivity. Our minds represent events at various gran-
ularity and abstraction levels, which allows us to
quickly access and reason about related scenarios.
A typical event mention includes an event trigger
(the word or phrase that most clearly expresses
an event occurrence) and its arguments (i.e., par-
ticipants in events). The lexical embedding of a
trigger is usually not sufficient, because the type
of an event often depends on its arguments (Rit-
ter and Rosen, 2000; Xu and Huang, 2013; Weber
et al., 2018). For example, the support verb “get”
may indicate a Transfer.Ownership event (“Ellison
to spend $10.3 billion to get his company.”) or a
Movement.Transport event (“Airlines are getting
flyers to destinations on time more often.”). In Fig-
ure 1, the event type triggered by “execution” is
Life.Die instead of project implementation. How-
ever, such kind of atomic event representation is

1Our code is released at https://github.com/
pkuzengqi/GENE

still overly simplistic since it only captures local
information and ignores related events in the global
context. Real-world events are inter-connected, as
illustrated in the example in Figure 1. To have a
comprehensive representation of the set fire event
on an embassy, we need to incorporate its causes
(e.g., the preceding execution event) and recent rel-
evant events (e.g., the protests that happened before
and after it). To capture these inter-event relations
in a global context, we propose the following two
assumptions.

Assumption 1. Two events can be connected
through the entities involved. On schema or type
level, two event types can be connected through
multiple paths and form a coherent story (Li et al.,
2020). This observation is also valid on instance
level. For the example in Figure 1, one of the rela-
tions between the Set Fire event and the Execution
event is the blue path 〈Set Fire, target, Saudi
Embassy, affiliation, Saudi Arabia, agent, Execu-
tion〉, which partially supports the fact that an-
gry protesters revenge the death of Nimr al-Nimr
against Saudi Arabia by attacking its embassy. This
approximation for event-event relations lessens the
problems of coarse classification granularity and
low inter-annotation agreement (which may be as
low as 20% as reported in (Hong et al., 2016)).
Hence, we propose to construct an Event Network,
where each event node represents a unique instance
labeled with its type, arguments, and attributes.
These nodes are connected through multiple in-
stantiated meta-paths (Sun et al., 2011) consisting
of their entity arguments and the entity-entity re-
lations. These entities can be co-referential (e.g.,
two protests on different dates that both occur in
Tehran, Iran) or involved in the same semantic re-
lations (both protests targeted the Saudi embassy,
which is affiliated with the location entity “Saudi
Arabia”).

Assumption 2. The representation of one
event depends on its neighboring events in the

https://github.com/pkuzengqi/GENE
https://github.com/pkuzengqi/GENE
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Figure 1: An example of Event Network constructed from one VOA news article, where events are connected
through entities involved. Each node is an event or entity and each edge represents an argument role or entity-
entity relation. In this example, Execution event and Set Fire event are connected through two paths, which tell the
story of angry protesters revenge the death of Nimral-Nimr against Saudi Arabia by attacking its embassy.

event network. In Figure 1, a good represen-
tation of the Set Fire event should involve the
Execution event because the latter clarifies the
grievance motivating the former. We further en-
rich event representations by introducing more con-
text from the entire event network. Compared with
other methods to connect events (e.g., with event-
event relations (Pustejovsky et al., 2003; Cassidy
et al., 2014; Hong et al., 2016; Ikuta et al., 2014;
O’Gorman et al., 2016)), our representation of each
event grounded in an event network is semantically
richer.

Based on these two hypotheses, we introduce a
new task of Event Network Embedding, aiming
at representing events with low-dimensional and
informative embeddings by incorporating neighbor-
ing events. We also propose a novel Global Event
Network Embedding Learning (GENE) frame-
work for this task. To capture network topology
and preserve node attributes in the event representa-
tions, GENE trains a graph encoder by minimizing
both structural and semantic losses. To promote
relational message passing with focus on differ-
ent parts of the graph, we propose an innovative
multi-view graph encoding method.

We design Event Network Structural Probes,
an evaluation framework including a series of struc-
tural probing tasks, to check the model’s capability
to implicitly incorporate event network structures.
In this work, the learned node embeddings are in-
trinsically evaluated with node typing and event
argument role classification tasks, and applied to
the downstream task of event coreference resolu-
tion. Experimental results on the augmented Auto-
matic Content Extraction (ACE) dataset show that
leveraging global context can significantly enrich

the event representations. GENE and its variants
significantly outperform the baseline methods on
various tasks.

In summary, our contributions are:

• We formalize the task of event network em-
bedding and accordingly propose a novel un-
supervised learning framework, which trains
the multi-view graph encoder with topology
and semantics learning losses.
• We design a series of incrementally structural

probing tasks, including node typing, argu-
ment role classification, and event coreference
resolution, to comprehensively evaluate the
event network embedding models.
• We demonstrate that our event network em-

bedding is effective and general enough to
enhance downstream applications.

2 Problem Formulation

Event Network. An event network with n nodes
is a heterogeneous attributed network denoted as
G = {V,E}, where V and E are node and edge
sets, respectively. Each node vi = 〈ai, bi, si, li〉 ∈
V represents an event or entity mention, where
ai and bi are the start and end word indices in
sentence si, and li is the node type label. Each edge
eij = 〈i, j, lij〉 ∈ E represents an event-entity or
entity-entity relation, where i and j are indices of
the involved nodes and lij is the edge type label.

In this work, we initialize the semantic repre-
sentation of each node vi with an m-dimensional
attribute vector xi derived from sentence context us-
ing a pretrained BERT model (Devlin et al., 2019).

Semantic Proximity (Gao and Huang, 2018).
Given an event network G = {V,E}, the semantic
proximity of node vi and node vj is determined by
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the similarity of node attribute vectors xi and xj . If
two nodes are semantically similar in the original
space, they should stay similar in the new space.

Local Neighborhood. Given G = {V,E}, the
local (one-hop) neighborhood Ni of node vi is de-
fined as Ni = {vj ∈ V | eij ∈ E}. For example,
the local neighborhood of one event is composed
of its argument entities. Given event-entity node
pairs, the task of argument role classification is to
label the local neighborhood of events.

Global Neighborhood. Given G = {V,E},
node vj belongs to the global (k-hop with k ≥ 2)
neighborhood of node vi, if node vi can walk to
node vj in k hops. For example, two events are 3-
hop neighbors when there is a path from one event
to the other through two entity nodes.

Event Network Embedding. Given an event
network G = {V,E} with n nodes, the task of
event network embedding aims to learn a mapping
function f : {V,E} → Y or f : Rn×m×Rn×n →
Rn×d, where Y = [yi] ∈ Rn×d is the node rep-
resentation, d is the embedding dimension, and
Y should preserve the Semantic Proximity, Local
Neighborhood and Global Neighborhood.

3 Model

3.1 Approach Overview
Compared to other network embedding tasks, there
are three challenges in event network embedding:

• Data Sparsity: We rely on supervised Infor-
mation Extraction (IE) techniques to construct
the event network, because they provide high-
quality knowledge elements. However, due to
the limited number of types in pre-defined on-
tologies, the constructed event network tends
to be sparse.
• Relational Structure: The event network is het-

erogeneous with edges representing relations
of different types. Relation types differ in
semantics and will influence message passing.
• Long-Distance Dependency: Global neighbor-

hood preservation requires node embedding
to capture the distant relations between two
nodes.

We first initiate the event network by event and
entity extraction, event argument role labeling and
entity-entity relation extraction. The nodes in the
event network are events and entities. If entity
coreference resolution results are available, we
merge coreferential entity mentions and label the

mention text with the first occurring mention. For
each node vi, we derive itsm-dimensional attribute
vector xi with its mention text by averaging the
corresponding contextual token embeddings from
a pretrained bert-base model. The edges in the
event network come from the event argument roles
connecting event mentions and entities, and the
entity-entity relations. In addition, to alleviate the
data sparsity problem we enrich the event network
with external Wikipedia entity-entity relations and
event narrative orders as a data preprocessing step
detailed in Section 5.1.

We propose an unsupervised Global Event Net-
work Embedding (GENE) learning framework for
this task (Figure 2). We first encode the graph
with a Relational Graph Convolutional Network
(RGCN) (Schlichtkrull et al., 2018) based multi-
view graph encoder, in which the multi-view com-
ponent puts focus on various perspectives of the
graph. To capture both the semantic and topologi-
cal contexts, i.e. the node attributes and graph struc-
ture, in event node representation, GENE trains the
graph encoder by minimizing semantic reconstruc-
tion loss and relation discrimination loss.

3.2 Multi-View Graph Encoder

Given an event network G = {V,E}, the graph
encoder projects the nodes into a set of embeddings
Y while preserving the graph structure and node
attributes. As shown in Figure 2, we first feed
different views of G to the graph encoder, then
integrate encoded node embeddings into Y .

RGCN. Because of the relational structure of
event network, we apply RGCN (Schlichtkrull
et al., 2018), a relational variant of GCN (Kipf
and Welling, 2017), as the graph encoder. RGCN
induces the node embeddings based on the local
neighborhood with operations on a heterogeneous
graph. It differs from GCN in the type-specific
weights in message propagation.

We stack two RGCN layers in the encoder. The
hidden state of node vi in the first layer is initiated
with node attribute xi. The output of the former
layer serves as the input of the next layer. Formally,
in each RGCN layer the hidden state h of node vi
is updated through message propagation with the
hidden states of neighbors (and itself) from the last
layer and message aggregation with an addition
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Figure 2: An overview of the proposed GENE framework. The event network is encoded by a relational graph
convolutional network, which is trained with node reconstruction loss and relation discrimination loss.

operation and an element-wise activation function.
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where h(l)i ∈ Rd(l) is the hidden state of node vi
at the l-th layer of RGCN, d(l) is the dimension
of the hidden state at the l-th layer, R is the edge
relation set, N r

i is the neighborhood of node vi
under relation type r ∈ R, W (l)

r is the trainable
weight matrix of relation type r at the l-th layer,
ci,r = |N r

i | is a normalization constant, and σ is
Leaky ReLU.

Weight Decomposition. In order to reduce
the growing model parameter size and prevent
the accompanying over-fitting problem, we follow
(Schlichtkrull et al., 2018) and perform basis de-
composition on relation weight matrix:

W (l)
r =

B∑
b=1

a
(l)
rb V

(l)
b ,

where the edge weightW (l)
r is a linear combination

of basis transformations V (l)
b ∈ Rd(l+1)×d(l) with

coefficients arb. This basis decomposition method
reduces model parameters by using a much smaller
base set B to compose relation set R and can be
seen as a way of weight sharing between different
relation types.

Multiple Views. The structure of event net-
works can be viewed in multiple different perspec-
tives. For example, when entity-entity relations are
masked out, an event network degenerates to pieces
of isolated events and only local neighborhood will
be observed. The advantage of separate modeling

is that it enables the graph encoder to focus on
different perspectives of the graph and lessens the
over-smoothing problem (the tendency of indistin-
guishable encoded node embeddings). Therefore,
we propose to encode the network G = {V,E}
from the following views:

(1) Complete View: We keep all nodes and all
edges in this view.

(2) Event-Entity View: We keep all nodes and
only event-entity relations in this view. Events are
isolated as single subgraphs, each of which only
includes the corresponding event and its argument
entities.

(3) Entity-Only View: We only keep entity nodes
and entity-entity relations in this view. Information
is flowed only among entity nodes and will not be
influenced by events.

(4) Event-Only View: We only keep event nodes
and event-event relations in this view. Similarly,
events are isolated from entities.

We feed the event network in different views as
separate inputs to the graph encoder, and integrate
the encoded results in three ways:

Concatenation. Node embeddings of d
v dimen-

sions from v views are directly concatenated with
ycat = [y0 · y1 · · · yv−1].

Averaging. Node embeddings of d dimensions
from v views are averaged with yavg = 1

v

∑v
j=1 y

j .
Weighted Averaging. Node embeddings of

d dimensions from v views are averaged with
ywavg = 1

v

∑v
j=1W

j
v yj , where W j

v is a trainable
matrix.

3.3 Topology Learning

To capture neighborhood information, we train the
graph encoder with relation discrimination loss to
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learn the graph topology.

LT =
∑
i

(
∑
r∈R

∑
j∈N r

i

E[logDr(yi, yj)]

+
∑
r∈R

∑
j′ /∈N r

i

E[log(1−Dr(yi, yj′))])

The relation-specific discriminator Dr determines
the probability score for one node’s being con-
nected with another node in relation r:

Dr(yi, yj) = σ(yTi W
r
Dyj)

where W r
D is a trainable bi-linear scoring matrix

and σ is Sigmoid funtion. We choose binary dis-
criminator over multi-class classifier to capture fea-
tures required for independent classification deci-
sions.

3.4 Semantics Learning
To preserve the node semantics, we perform node
attribute reconstruction with a two-layer feed-
forward neural network:

LS =
∑
i

‖xi − φ(yi)‖2

where xi represents the attributes of node vi, yi
represents the encoded embedding of node vi, and
φ : Rn×d → Rn×m denotes the non-linear trans-
formation function. LS loss evaluates how much
information required to reconstruct node attributes
is preserved in the encoded node embeddings.

3.5 Training
To encourage the graph encoder to learn both the
graph topology and node semantics, we combine
the structural loss and semantics loss as the final
objective function:

L = LT + λLS

where λ is a weight normalization hyper-parameter.

4 Structural Probes for Event Network

As there is no existing work on comprehensive
event representation evaluation, in this work we de-
sign an evaluation framework with a series of prob-
ing tasks to comprehensively evaluate the model’s
capability to capture network structures and pre-
serve node attributes. Structural Probes are models
trained to predict certain properties from inferred
representations, and have been used to understand

linguistic properties (Hewitt and Manning, 2019;
Conneau et al., 2018).

The task of event network embedding requires
the embedded distributional node representations
to preserve semantic proximity, local neighborhood
and global neighborhood. Accordingly, we intrinsi-
cally evaluate the semantics preservation with node
typing and assess the local neighborhood preser-
vation with event argument role classification. We
also apply the node embeddings to a downstream
task, event coreference resolution, to extrinsically
evaluate the global neighborhood preservation.

Node Typing and Event Argument Role Classi-
fication are conducted under the same evaluation
setting: given the learned node embeddings, pre-
dict the labels with a multi-layer perceptron (MLP)
based classifier. If the input of the classifier is of dif-
ferent dimension to the event network embeddings,
it will be first projected into the same dimension.
The classifier is a two-layer feed-forward neural
network with a linear transformation layer, a non-
linear activation operation, a layer normalization, a
dropout operation, and another linear transforma-
tion layer. The classifier is designed to be simple
on purpose so that it will be limited in reasoning
ability and thus the evidence for classification will
be mainly derived from the node embeddings.

4.1 Node Typing
The event or entity type of each node can be in-
ferred from the sentence context of its mentions.
As the node attribute vector xi for node vi comes
from the contextual word embeddings, xi naturally
implies its node type. This characteristic is sup-
posed to be preserved after the node has been fur-
ther embedded and the embedding dimension has
been reduced.

We evaluate the node semantics preservation by
checking whether the node types can be recovered
from the node embeddings. Given one event or en-
tity node, our evaluation model predicts its type out
of 45 labels, which includes 7 coarse-grained entity
types, 5 value types, and 33 event types as defined
in the NIST Automatic Content Extraction (ACE)
task. The performance on this task is compared in
terms of multi-label classification Micro F1 score.

4.2 Event Argument Role Classification
We detect local neighborhood preservation by eval-
uating whether the event-entity relation (event ar-
gument role) can be recovered from the node em-
beddings. Given one event node and one entity
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node, we predict the relation type between each
pair of nodes out of 238 labels. Each label con-
sists of an event type and an argument role type as
defined in ACE. For example, the argument role
label “Justice:Arrest-Jail:Agent" can only be cor-
rectly selected when the event node implies the type
“Justice:Arrest-Jail" and the entity node implies its
role being the “Agent". Compared to the traditional
argument role labeling procedure, this setting skips
the step of mention identification, which has been
done in network construction process. The perfor-
mance is reported with multi-label classification
Micro F1 score.

4.3 Event Coreference Resolution

The goal of event coreference resolution is to de-
termine which event mentions refer to the same
real-world event. The features for similarity com-
putation used in previous work are typically limited
to event triggers, arguments and sentence-level con-
texts (Chen et al., 2009; Chen and Ji, 2009; Sam-
mons et al., 2015; Lu and Ng, 2016; Chen and Ng,
2016; Duncan et al., 2017; Lai et al., 2021). How-
ever, event arguments are often distributed across
the content of an article. Therefore a global event
network can ground event mentions into a wider
context with related events and help cluster coref-
erential mentions more accurately.

In this task we evaluate the impact of apply-
ing event network embedding as additional fea-
tures on enhancing event coreference resolution.
We concatenate the event embeddings learned by
the event network and by a fine-tuned SpanBERT
model (Joshi et al., 2020) as the input for the scor-
ing function. The training procedure is the same as
that in (Joshi et al., 2019).

We report F1 scores in terms of B3 (Bagga and
Baldwin, 1998), MUC (Vilain et al., 1995), CEAFe

(Luo, 2005), BLANC (Recasens and Hovy, 2011)
metrics, and also their averaged results (AVG).

5 Results and Analysis

5.1 Dataset

We construct corpus-level graphs for training, de-
velopment, and test sets from the English subset of
Automatic Content Extraction (ACE) 2005 dataset2.
We follow the pre-processing steps in (Lin et al.,
2020) and show the dataset statistics in Table 1.

2https://www.ldc.upenn.edu/collaborations/
past-projects/ace

We perform automatic entity linking (Pan et al.,
2017) to link entities to Wikipedia. Entity nodes
linked to the same Wikipedia entity are merged into
one node. We further retrieve entity-entity relations
from Wikidata and enrich the event network with
these connections, such as the part-whole relation
between Tehran and Iran in Figure 1. We also add
narrative event-event relations by connecting every
pair of events within one document as edges in the
graph.

5.2 Baseline
Non-Graph Event Representation Methods.
Mention-based method represents events with con-
textual representations inferred by BERT (Devlin
et al., 2019). Tuple-based method uses the aver-
aged contextual representations of event mentions
and its arguments.

Graph Representation Methods. Skip-
gram (Mikolov et al., 2013) learns graph topology
by increasing the predicted similarity of adjacent
node embeddings and decreasing the similarity of
irrelevant node embeddings with random negative
sampling:

LG =
∑
i

(
∑
j∈Ni

log σ(yTj yi)+
∑
j′ /∈Ni

log σ(−yTj′yi))

Deep Graph Infomax (Velickovic et al., 2019)
captures graph topology by maximizing the mu-
tual information between patch representations and
higher-level subgraph summary:

LD =
∑
i

(
∑
j∈Ni

E[logD(yi, s)]

+
∑
j′ /∈Ni

E[log(1−D(yj′ , s))])

where the subgraph summary s is read out as the
average of node embeddings and D is the discrim-
inator deciding the probability score for node’s
being contained in the summary.

For fair comparison, we train the same frame-
work with the following graph representation learn-
ing methods.

Event Coreference Resolution. Besides exist-
ing methods (Bejan and Harabagiu, 2010b; Liu
et al., 2014) we implement the model architec-
ture (Lee et al., 2017) that has achieved the current
state-of-the-art results in entity coreference resolu-
tion (Joshi et al., 2019) and cross-document event

https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.ldc.upenn.edu/collaborations/past-projects/ace
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Article
Node Edge

Event Entity Event-Entity Entity-Entity Event-Event
Original Wiki* Narrative* Coref

ACE
train 521 4,353 3,688 7,888 6,856 7,040 70,992 912
dev 30 494 667 938 723 853 12,572 144
test 40 424 750 897 796 1,543 6,154 121

Table 1: Statistics for the enhanced ACE 2005 dataset. Wiki and Narrative are enriched event-event relations.

coreference resolution (Cattan et al., 2020). We
use SpanBERT (Joshi et al., 2020) for contextual
embeddings. The detailed methods about the base-
line event corefernece resolution framework are
described in (Lai et al., 2021). In this experiment,
we compare the performance with and without our
event network embeddings as additional features.

5.3 Training Details

All models are implemented with Deep Graph Li-
brary and Pytorch framework. We train each mod-
els for 10 epochs and apply an early stopping strat-
egy with a patience of 3 epochs (if the model does
not outperform its best checkpoint for 3 epochs on
validation set we will stop the training process).
The batch size is 64.

The hyper-parameters are selected based on
model performance on development set. The model
is optimized with the Adam optimizer with a learn-
ing rate of 1e − 5 and a dropout rate of 0.1. The
embedding dimension is 256 and the hidden di-
mension is 512. The lambda in loss function is 1.0.
On average it takes approximately four hours to
train a model until converge with one Tesla V100
GPU with 16GB DRAM. To improve training effi-
ciency, neighbor pre-sampling is performed for all
topology learning losses.

5.4 Results and Analysis

We conclude the results shown in Table 2 with the
following observations:

GENE preserves node semantics well with
low-dimensional and informative embeddings.
Though with only one third of embedding dimen-
sion (typically 256, comparing to 768 in other event
representation baselines), our models have higher
performance on Node Typing, which shows the
node semantics has been well preserved.

Topology learning loss is crucial to event
neighborhood proximity preservation. We pro-
pose to use relation discrimination loss to learn the
graph structure and exam it with argument role clas-
sification task. Methods without topology learning
objectives (Event as Mention, Event as Tuple, and

GENE w/ LT ) have a significant drop of perfor-
mance on this task, while our proposed model has
the best performance because of the similarity and
transferability between argument role classification
and argument role discrimination in LT . Another
reason is that only LT is designed for heteroge-
neous graphs while SKG and DGI do not consider
relation types.

In general Multi-view encoder is beneficial.
Compared to the single-view variants, our multi-
view encoder has overall better performance. Keep-
ing complete view has the most closed perfor-
mance, while discarding event-entity relations
yields significant drop on argument role classifi-
cation.

Averaging multi-view embeddings is better
than Weighted Averaging. Intuitively weighted
averaging captures the correlations among different
embedding dimensions, promotes salient dimen-
sions and/or teases out unimportant ones within
the same view by performing a linear transforma-
tion within each view before averaging over views.
However, results show that it is not comparable
with averaging and concatenation multi-view en-
coders. One possible reason is that the distribution
of embedding within each view is greatly restricted
by the input embedding distribution.

GENE improves the performance on event
coreference resolution by connecting events
through related entities. SpanBERT model is a
strong baseline with better performance compared
with the former methods. We show that using
our embeddings as additional features, SpanBERT
can further improve all event coreference resolu-
tion scores. In the following example, SpanBERT
model fails to detect the coreference link between
event sell and event buy while GENE succeeds by
discovering the relation between the entity argu-
ments.
... The Times said Vivendi Universal was negotiating to
sell its flagship theme parks to New York investment firm
Blackstone Group as a the first step toward dismantlingits
entertainment empire . Vivendi Universal officials in the
United States were not immediately available for comment
on Friday . Under the reported plans , Blackstone Group
would buy Vivendi ’ s theme park division , including ...
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Model Node Argument Event Coreference
Typing Classification MUC B3 CEAFe BLANC AVG

Event Mention 80.58 71.57 61.81 87.79 84.24 74.97 77.20
Event Tuple 68.40 72.13 63.10 89.06 85.23 77.6 78.75
Skip-gram(Mikolov et al., 2013) 75.55 93.42 59.81 88.09 83.40 77.30 77.15
Deep Graph Infomax(Velickovic et al., 2019) 74.96 95.32 59.36 87.05 82.19 73.41 75.50
HDP(Bejan and Harabagiu, 2010b) - - - 83.8 76.7 - -
(Liu et al., 2014) - - 50.98 89.38 86.47 70.43 74.32
SpanBERT(Joshi et al., 2020) - - 65.72 89.48 85.35 79.82 80.09
GENE 81.26 95.76 68.99 89.53 85.86 80.38 81.19
· w/o LT 78.78 79.04 70.63 89.03 84.88 81.13 81.42
· w/o LS 78.02 95.32 68.14 89.53 86.17 79.90 80.94
· w/ Event-Entity view 80.82 92.64 60.09 87.97 84.75 70.67 75.87
· w/ Event-only & Entity-only views 74.79 72.02 60.86 88.46 85.15 75.64 77.53
· w/ Complete view 79.42 90.52 63.01 88.11 84.94 75.50 77.89
· w/ Concatenated integration 78.45 93.87 70.08 89.81 85.85 81.08 81.71
· w/ Weighted integration 74.53 94.31 66.36 88.99 85.81 76.97 79.53

Table 2: Results on test set of ACE dataset. Node typing and argument role classification results are reported in
micro F1 scores(%). Event Coreference are performed with our embeddings as additional features.

Remaining Challenges. One of the unsolved
challenges is to capture the long distance relation
in the encoder in addition to the two encoder lay-
ers. Another challenge is the limited ability in
entity coreference resolution. In some failing cases,
GENE model does not link two events because
some of their connecting arguments are expressed
as pronouns. This limitation is inherited from the
upstream event extraction.

6 Related Work

Event Representation. Some previous efforts
enrich event representations by introducing argu-
ments (Levin, 1993; Goldberg, 1995; Ritter and
Rosen, 2000; Huang and Ahrens, 2000; Iwata,
2005; Goldberg, 2006; Xu and Huang, 2013; Bies
et al., 2016; Do et al., 2017; Kalm et al., 2019),
intent and sentiment (Ding et al., 2019), and tem-
poral information (Tong et al., 2008). (Weber et al.,
2018) proposes a tensor-based event composition
approach to combine a trigger and arguments to
represent each event. We extend the definition of
scenario to multiple inter-connected events. (Modi,
2016) captures statistical dependencies between
events but limits to script data sets where the events
are naturally organized in sequential temporal order.
Our approach captures a rich variety of explicit se-
mantic connections among complex events. (Hong
et al., 2018) learns distributed event representa-
tions using supervised multi-task learning, while
our framework is based on unsupervised learning.
Network Embedding. Our work falls into the
scope of unsupervised learning for heterogeneous
attributed network embeddings. Heterogeneous
network embedding methods (Chang et al., 2015;

Dong et al., 2017; Wang et al., 2019) jointly model
nodes and edges. Attributed network embedding
approaches (Gao and Huang, 2018; Yang et al.,
2015) on the other hand put focus on preserving
node attributes when encoding the networks.
Event Coreference Resolution. Most existing
methods (Chen et al., 2009; Chen and Ji, 2009; Be-
jan and Harabagiu, 2010a; Zhang et al., 2015; Peng
et al., 2016; Lai et al., 2021) only exploit local fea-
tures including trigger, argument and sentence con-
text matching. To prevent error propagation, some
models perform joint inference between event ex-
traction and event coreference resolution (Lee et al.,
2012; Araki and Mitamura, 2015; Lu and Ng, 2017)
or incorporate document topic structures (Choubey
and Huang, 2018). To the best of our knowledge
our method is the first to leverage the entire event
networks to compute similarity features.

7 Conclusions and Future Work

We propose a novel continuous event representa-
tion called Event Network Embedding to capture
the connections among events in a global context.
This new representation provides a powerful frame-
work for downstream applications such as event
coreference resolution and event ordering.

In the future we aim to improve the ability to cap-
ture the long-distance relations in the graph encode
by introducing event-event relation in the form of
multiple meta-paths. The relations, or the event
evolution patterns, extracted from large-scale cor-
pora can guide event-related reasoning and act as
shortcut linking event nodes. Another direction is
to explore a unified automatic evaluation bench-
mark for event representation.
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