
NAACL-HLT 2021

Teaching NLP

Proceedings of the Fifth Workshop

June 10 - 11, 2021
Mexico City (virtual)

©2021 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-954085-36-7

ii

Introduction

Welcome to the Fifth Workshop on Teaching Natural Language Processing (NLP). This online workshop
featured an exciting mix of papers, teaching material submissions, panels, talks, and participatory
activities.

The field of NLP is growing rapidly, with new state-of-the-art methods emerging every year, if not sooner.
As educators in NLP, we struggle to keep up. We need to make decisions about what to teach and how
to teach it with every offering of a course, sometimes even as a course is being offered. The fast-paced
nature of NLP brings unique challenges for curriculum design, and the immense growth of the field has
lead to not just core NLP courses, but also to more specialized classes and seminars in subareas such as
Natural Language Understanding, Computational Social Science, Machine Translation, and many more.
We also have an increasing number of students interested in NLP, bringing with them a wide range of
backgrounds and experiences.

We were happy to accept 13 long papers and 13 short papers on teaching materials. The latter
were accompanied by exercises and assignments as Jupyter notebooks, software, slides, and teaching
guidelines that will be made available via a repository created as result of the workshop. Both types
of papers cover many topics: curriculum selection, teaching strategies, adapting to different student
audiences, resources for assignments, and course or program design.

Our workshop also featured two panels, one on "What should we be teaching?" and another on "What
does industry need?". The first panel featured Isabelle Augenstein (University of Copenhagen), Emily
M. Bender (University of Washington), Yoav Goldberg (Bar Ilan University), and Dan Jurafsky (Stanford
University). The second panel featured Lenny Bronner (The Washington Post), Delip Rao (Allen Institute
for AI), Frank Rudzicz (University of Toronto), and Rachael Tatman (Rasa). We also had two amazing
invited speakers, Ines Montani (Explosion) and Jason Eisner (Johns Hopkins University).

We thank the Program Committee, who thoughtfully reviewed these papers this year. We also appreciate
the sponsorship funding we received from Google and Duolingo. Finally, we thank the workshop
participants, whose interests in teaching allow us to establish and grow the next generation of NLP
researchers and practitioners.

David Jurgens, Varada Kolhatkar, Lucy Li, Margot Mieskes, and Ted Pedersen (the co-organizers)

iii

Organizing Committee

David Jurgens, University of Michigan

Varada Kolhatkar, University of British Columbia

Lucy Li, University of California, Berkeley

Margot Mieskes, Darmstadt University of Applied Sciences

Ted Pedersen, University of Minnesota, Duluth

Keynote Speakers

Jason Eisner, Johns Hopkins University

Ines Montani, Explosion

Panelists

Isabelle Augenstein, University of Copenhagen

Emily M. Bender, University of Washington

Lenny Bronner, The Washington Post

Yoav Goldberg, Bar-Ilan University

Dan Jurafsky, Stanford University

Delip Rao, Allen Institute for AI

Frank Rudzicz, University of Toronto

Rachael Tatman, Rasa

Program Committee

Benedikt Adelmann, University of Hamburg

Thomas Arnold, Technische Universität Darmstadt

Denilson Barbosa, University of Alberta

Austin Blodgett, Georgetown University

Su Lin Blodgett, Microsoft Research

Brendon Boldt, Carnegie Mellon University

Chris Brew, LivePerson

Julian Brooke, University of British Columbia

Paul Cook, University of New Brunswick

Carrie Demmans Epp, University of Alberta

Ivan Derzhanski, Bulgarian Academy of Sciences

Anna Feldman, Montclair State University

Alvin Grissom II, Haverford College

Bradley Hauer, University of Alberta

v

Marti A. Hearst, University of California, Berkeley

Katherine Keith, University of Massachusetts, Amherst

Grzegorz Kondrak, University of Alberta

Valia Kordoni, Humboldt University Berlin

Sandra Kübler, Indiana University

Vladislav Kubon, Charles University in Prague

James Kunz, Google / University of California, Berkeley

Lori Levin, Carnegie Mellon University

Deryle Lonsdale, Brigham Young University

Olga Lyashevskaya, HSE University

Christian M. Meyer, Technische Universitat Darmstadt

Bridget McInnes, Virginia Commonwealth University

Julie Medero, Harvey Mudd College

Gerald Penn, University of Toronto

Alexander Piperski, HSE University

Christopher Potts, Stanford University

Anoop Sarkar, Simon Fraser University

Nathan Schneider, Georgetown University

Alexandra Schofield, Harvey Mudd College

Melanie Siegel, Hochschule Darmstadt

Sowmya Vajjala, National Research Council

Gerhard Van Huyssteen, North-West University

Shira Wein, Georgetown University

Richard Wicentowski, Swarthmore College

Shuly Wintner, University of Haifa

Torsten Zesch, University of Duisburg-Essen

Heike Zinsmeister, University of Hamburg

vi

Table of Contents

Pedagogical Principles in the Online Teaching of Text Mining: A Retrospection
Rajkumar Saini, György Kovács, Mohamadreza Faridghasemnia, Hamam Mokayed, Oluwatosin

Adewumi, Pedro Alonso, Sumit Rakesh and Marcus Liwicki . 1

Teaching a Massive Open Online Course on Natural Language Processing
Ekaterina Artemova, Murat Apishev, Denis Kirianov, Veronica Sarkisyan, Sergey Aksenov and

Oleg Serikov . 13

Natural Language Processing 4 All (NLP4All): A New Online Platform for Teaching and Learning NLP
Concepts

Rebekah Baglini and Hermes Hjorth . 28

A New Broad NLP Training from Speech to Knowledge
Maxime Amblard and Miguel Couceiro . 34

Applied Language Technology: NLP for the Humanities
Tuomo Hiippala . 46

A Crash Course on Ethics for Natural Language Processing
Annemarie Friedrich and Torsten Zesch . 49

A dissemination workshop for introducing young Italian students to NLP
Lucio Messina, Lucia Busso, Claudia Roberta Combei, Alessio Miaschi, Ludovica Pannitto, Gabriele

Sarti and Malvina Nissim . 52

MiniVQA - A resource to build your tailored VQA competition
Jean-Benoit Delbrouck . 55

From back to the roots into the gated woods: Deep learning for NLP
Barbara Plank . 59

Learning PyTorch Through A Neural Dependency Parsing Exercise
David Jurgens . 62

A Balanced and Broadly Targeted Computational Linguistics Curriculum
Emma Manning, Nathan Schneider and Amir Zeldes . 65

Gaining Experience with Structured Data: Using the Resources of Dialog State Tracking Challenge 2
Ronnie Smith . 70

The Flipped Classroom model for teaching Conditional Random Fields in an NLP course
Manex Agirrezabal . 80

Flamingos and Hedgehogs in the Croquet-Ground: Teaching Evaluation of NLP Systems for Undergrad-
uate Students

Brielen Madureira . 87

An Immersive Computational Text Analysis Course for Non-Computer Science Students at Barnard Col-
lege

Adam Poliak and Jalisha Jenifer . 92

vii

Introducing Information Retrieval for Biomedical Informatics Students
Sanya Taneja, Richard Boyce, William Reynolds and Denis Newman-Griffis96

Contemporary NLP Modeling in Six Comprehensive Programming Assignments
Greg Durrett, Jifan Chen, Shrey Desai, Tanya Goyal, Lucas Kabela, Yasumasa Onoe and Jiacheng

Xu . 99

Interactive Assignments for Teaching Structured Neural NLP
David Gaddy, Daniel Fried, Nikita Kitaev, Mitchell Stern, Rodolfo Corona, John DeNero and Dan

Klein. .104

Learning about Word Vector Representations and Deep Learning through Implementing Word2vec
David Jurgens . 108

Naive Bayes versus BERT: Jupyter notebook assignments for an introductory NLP course
Jennifer Foster and Joachim Wagner . 112

Natural Language Processing for Computer Scientists and Data Scientists at a Large State University
Casey Kennington . 115

On Writing a Textbook on Natural Language Processing
Jacob Eisenstein . 125

Learning How To Learn NLP: Developing Introductory Concepts Through Scaffolded Discovery
Alexandra Schofield, Richard Wicentowski and Julie Medero . 131

The Online Pivot: Lessons Learned from Teaching a Text and Data Mining Course in Lockdown, En-
hancing online Teaching with Pair Programming and Digital Badges

Beatrice Alex, Clare Llewellyn, Pawel Orzechowski and Maria Boutchkova 138

Teaching NLP outside Linguistics and Computer Science classrooms: Some challenges and some oppor-
tunities

Sowmya Vajjala . 149

Teaching NLP with Bracelets and Restaurant Menus: An Interactive Workshop for Italian Students
Ludovica Pannitto, Lucia Busso, Claudia Roberta Combei, Lucio Messina, Alessio Miaschi, Gabriele

Sarti and Malvina Nissim . 160

viii

Workshop Program

Thursday, June 10, 2021

Poster Session 1

+ Long Papers : Courses and Curricula

Pedagogical Principles in the Online Teaching of Text Mining: A Retrospection
Rajkumar Saini, György Kovács, Mohamadreza Faridghasemnia, Hamam
Mokayed, Oluwatosin Adewumi, Pedro Alonso, Sumit Rakesh and Marcus Liwicki

Teaching a Massive Open Online Course on Natural Language Processing
Ekaterina Artemova, Murat Apishev, Denis Kirianov, Veronica Sarkisyan, Sergey
Aksenov and Oleg Serikov

Natural Language Processing 4 All (NLP4All): A New Online Platform for Teaching
and Learning NLP Concepts
Rebekah Baglini and Hermes Hjorth

A New Broad NLP Training from Speech to Knowledge
Maxime Amblard and Miguel Couceiro

+ Teaching Materials Short Papers : Courses and Curricula

Applied Language Technology: NLP for the Humanities
Tuomo Hiippala

A Crash Course on Ethics for Natural Language Processing
Annemarie Friedrich and Torsten Zesch

A dissemination workshop for introducing young Italian students to NLP
Lucio Messina, Lucia Busso, Claudia Roberta Combei, Alessio Miaschi, Ludovica
Pannitto, Gabriele Sarti and Malvina Nissim

+ Teaching Materials Short Papers: Tools and Assignments

MiniVQA - A resource to build your tailored VQA competition
Jean-Benoit Delbrouck

ix

Thursday, June 10, 2021 (continued)

From back to the roots into the gated woods: Deep learning for NLP
Barbara Plank

Learning PyTorch Through A Neural Dependency Parsing Exercise
David Jurgens

Panel 1 : "What Should We Be Teaching?" Panelists : Isabelle Augenstein (U
of Copenhagen), Emily M. Bender (U of Washington), Yoav Goldberg (Bar Ilan
U), and Dan Jurafsky (Stanford U)

Poster Session 2

+ Long Papers : Courses and Curricula

A Balanced and Broadly Targeted Computational Linguistics Curriculum
Emma Manning, Nathan Schneider and Amir Zeldes

Gaining Experience with Structured Data: Using the Resources of Dialog State
Tracking Challenge 2
Ronnie Smith

The Flipped Classroom model for teaching Conditional Random Fields in an NLP
course
Manex Agirrezabal

+ Teaching Materials Short Papers: Courses and Curricula

Flamingos and Hedgehogs in the Croquet-Ground: Teaching Evaluation of NLP
Systems for Undergraduate Students
Brielen Madureira

An Immersive Computational Text Analysis Course for Non-Computer Science Stu-
dents at Barnard College
Adam Poliak and Jalisha Jenifer

Introducing Information Retrieval for Biomedical Informatics Students
Sanya Taneja, Richard Boyce, William Reynolds and Denis Newman-Griffis

x

Thursday, June 10, 2021 (continued)

+ Teaching Materials Short Papers : Tools and Assignments

Contemporary NLP Modeling in Six Comprehensive Programming Assignments
Greg Durrett, Jifan Chen, Shrey Desai, Tanya Goyal, Lucas Kabela, Yasumasa Onoe
and Jiacheng Xu

Interactive Assignments for Teaching Structured Neural NLP
David Gaddy, Daniel Fried, Nikita Kitaev, Mitchell Stern, Rodolfo Corona, John
DeNero and Dan Klein

Learning about Word Vector Representations and Deep Learning through Imple-
menting Word2vec
David Jurgens

Naive Bayes versus BERT: Jupyter notebook assignments for an introductory NLP
course
Jennifer Foster and Joachim Wagner

Oral Presentations 1

+ Long Papers : Courses and Curricula

Natural Language Processing for Computer Scientists and Data Scientists at a
Large State University
Casey Kennington

On Writing a Textbook on Natural Language Processing
Jacob Eisenstein

Learning How To Learn NLP: Developing Introductory Concepts Through Scaf-
folded Discovery
Alexandra Schofield, Richard Wicentowski and Julie Medero

xi

Thursday, June 10, 2021 (continued)

Keynote Address : Ines Montani (Explosion)

Friday, June 11, 2021

Oral Presentations 2

+ Long Papers : Courses and Curricula

The Online Pivot: Lessons Learned from Teaching a Text and Data Mining Course
in Lockdown, Enhancing online Teaching with Pair Programming and Digital
Badges
Beatrice Alex, Clare Llewellyn, Pawel Orzechowski and Maria Boutchkova

Teaching NLP outside Linguistics and Computer Science classrooms: Some chal-
lenges and some opportunities
Sowmya Vajjala

Teaching NLP with Bracelets and Restaurant Menus: An Interactive Workshop for
Italian Students
Ludovica Pannitto, Lucia Busso, Claudia Roberta Combei, Lucio Messina, Alessio
Miaschi, Gabriele Sarti and Malvina Nissim

Panel 2 : "What Does Industry Need?" Panelists : Lenny Bronner (Washing-
ton Post), Delip Rao (AI2), Frank Rudzicz (U of Toronto), and Rachel Tatman
(Rasa)

Keynote Address : Jason Eisner (Johns Hopkins University)

xii

Proceedings of the Fifth Workshop on Teaching NLP, pages 1–12
June 10–11, 2021. ©2021 Association for Computational Linguistics

Pedagogical Principles in the Online Teaching of NLP: A Retrospection
György Kovács1, Rajkumar Saini1, Mohamadreza Faridghasemnia2, Hamam Mokayed1

Tosin Adewumi1, Pedro Alonso1, Sumit Rakesh1 and Marcus Liwicki1
1Luleå Tekniska Universitet / Luleå, Sweden-97187

2Örebro Universitet / Örebro, Sweden-70182
{gyorgy.kovacs, rajkumar.saini}@ltu.se

mohamadreza.farid@oru.se
{hamam.mokayed, oluwatosin.adewumi, pedro.alonso}@ltu.se

sumrak-0@student.ltu.se, marcus.liwicki@ltu.se

Abstract
The ongoing COVID-19 pandemic has
brought online education to the forefront
of pedagogical discussions. To make this
increased interest sustainable in a post-
pandemic era, online courses must be built on
strong pedagogical foundations. With a long
history of pedagogic research, there are many
principles, frameworks, and models available
to help teachers in doing so. These models
cover different teaching perspectives, such
as constructive alignment, feedback, and the
learning environment. In this paper, we dis-
cuss how we designed and implemented our
online Natural Language Processing (NLP)
course following constructive alignment and
adhering to the pedagogical principles of
LTU. By examining our course and analyzing
student evaluation forms, we show that we
have met our goal and successfully delivered
the course. Furthermore, we discuss the addi-
tional benefits resulting from the current mode
of delivery, including the increased reusability
of course content and increased potential for
collaboration between universities. Lastly, we
also discuss where we can and will further
improve the current course design.

Keywords- NLP, Constructive Alignment,
LTU’s Pedagogical Principles, Student Acti-
vation, Online Pedagogy, COVID19, Canvas,
Blackboard, Zoom

1 Introduction

With the COVID-19 pandemic, academic institu-
tions were pushed to moving their education on-
line (Gallagher and Palmer, 2020; Dick et al., 2020).
Furthermore, even institutes that still allowed stu-
dents on campus were more open to online alter-
natives. However, in order to solidify the results
attained in online education (Ossiannilsson, 2021)
in these extraordinary circumstances, it is crucial
to demonstrate that this mode of education can
be a viable alternative to presential education in
terms of the underlying pedagogical fundamentals

and the success of practical implementation. For
this, in setting up our Natural Language Processing
course, our goal was to do so based on constructive
alignment and LTU’s pedagogical principles. We
hypothesized that adherence to both set of princi-
ples would be possible in an online version too.
In this paper, by examining the design and imple-
mentation of the course and analyzing the student
feedback, we will demonstrate the viability of our
hypothesis.

The rest of the paper is organized as follows.
First, we discuss the related literature in Section 1.1,
followed by LTU’s pedagogical principles in Sec-
tion 1.2. Then in Section 2, we present the course
design. That is followed by the Teaching and learn-
ing activities being discussed in Section 3. Next,
we present the course evaluation result and the per-
spective of a volunteering student of the course
in Section 4. Lastly, we conclude the paper and
outline planned improvements in Section 5.

1.1 Related work

The teaching paradigm has been moving from a
teacher-centered view to a more student-centered
perspective (Kaymakamoglu, 2018). Meaning that
instead of focusing on the role of the teacher, the
focus is more and more on what the student should
do, that is, process the material through deliberate
practice, collaboration, and active reflection. To ef-
fectively support this process, teaching is planned
and conducted with the student’s disposition in
mind, considering their prior knowledge, expecta-
tions, study skills, and other conditions. With the
proper planning, design, and implementation of the
course, active learning can then be achieved.

This active learning or student activation (Cook
and Babon, 2017) is achieved when students are
going into lectures and tutorials prepared to engage
in the learning process, and they are not just pas-
sively trying to absorb information. Active learning
encourages active cognitive processing of informa-

1

tion, and the concept is not a new one. Confucius is
often quoted as saying: "Tell me and I will forget,
show me and I may remember, involve me and I
will learn”. The use of student activation or ac-
tive learning is well suited for presential learning.
In an online setting, this type of learning has to
be adapted to acquire the same knowledge from
online activities. The main goal for students is to
learn as well from online as in presential lectures.

Following levels from (Center for Teaching and
Learning, 1990) might help to trigger student acti-
vation.

• To test the students’ memory by asking ques-
tions related to specific facts, terms, principles,
or theories.

• To utilize the students’ knowledge to solve
problems or analyze a situation.

• To exercise the informed judgment of the stu-
dents.

Many pedagogical theories and frameworks have
been developed to facilitate effective teaching cov-
ering different aspects of teaching (Kandlbinder,
2014; Chi and Wylie, 2014; Cook and Babon, 2017;
Rust, 2002). However, with the advancement of
technology and globalization, the traditional ped-
agogical models were evolved to make distance
learning possible. Students can sit anywhere and
learn online through the internet and connect with
other students in the physical classroom or online.

Our designed course follows pedagogical prin-
ciples to enhance learning outcomes. The course
is segmented into 83 videos, given by eight lectur-
ers of different expertise, coherent and harmonized.
This well-balanced theory-practical course covers
a broad range of applications and approaches.

1.2 LTU’s Pedagogical Principles
To support the development of teaching practices
and students developing the necessary skills re-
quired for them to become independent actors in
their respective fields, LTU developed its pedagog-
ical idea centering around nine important princi-
ples (Luleå University of Technology, University
Pedagogy Center). These principles support Öre-
bro University pedagogical principles (Örebro Uni-
versity), and we believe other courses, in other uni-
versities, should follow the same principles. Here,
we briefly introduce these principles (along with
feedback regarding the course) as a barometer for
our course design.

1. Emphasize relevant knowledge and skill, is
an important goal at university education to
emphasize relevant skills and knowledge; that
is to say, students should acquire the relevant
theoretical knowledge, as well as the skills
necessary to apply that knowledge.

2. Encourage active cognitive processing, so
as students engage with the subject matter
deliberately, contributing to long-term learn-
ing (Chi and Wylie, 2014).

3. Choose forms of assessment that enhance
learning. The design of assessment has
a great impact on student learning (Sny-
der, 1971; Wiiand, 1998; Ramsden, 2003),
and thus it is important to choose the meth-
ods (“If you want to change student learn-
ing then change the methods of assess-
ment” (Brown G., 1999)), frequency, and con-
tent of assessment in a way that would con-
tribute to student learning. Naturally, active
learning, and student activation discussed in
more detail in Section refssec:related are cru-
cial components of adherence to this principle.

4. Ensure clarity in the course and task de-
sign, an important principle to make sure stu-
dents have a clear picture of the course and its
requirements. One approach to achieve this is
that of constructive alignment (Kandlbinder,
2014), making clear connections between the
goals of the program, the intended learning
outcomes of the course, the assessment meth-
ods, and the activities carried out through the
course.

5. Promote knowledge-enhancing feedback.
It is important that students receive feed-
back on their work beside the final assess-
ment, which could guide their progress and
inform them how close they are to learning
outcomes (Elmgren and Henriksson, 2018).
The impact of feedback is highest when it is
in-time, personalized, and specific.

6. Foster independence and self-awareness is
an important principle when we consider the
current need for life-long learning and the goal
of university education as enabling students to
become independent actors in their respective
fields.

2

7. Be aware of your students’ starting points,
as learning is more effective when the new
information is either integrated into existing
mental frameworks or said frameworks are
reshaped by the new information. For this,
however, it is crucial that we are aware of the
current mental framework of students. Fur-
thermore, being aware of the starting point
of learners is also crucial to identify skill or
knowledge gaps that should be filled.

8. Communicate high, positive expectations,
so as to stimulate students for higher perfor-
mance; a phenomenon widely known as the
Pygmalion effect (Goddard, 1995).

9. Create a supportive learning environment,
is a principle supporting all preceding princi-
ples. Since the proper environment is key to
communicate not only high but positive ex-
pectations in a manner that encourages and
not discourages students. Similarly, in a sup-
portive environment, students are more open
to discussing their experiences and receiving
feedback.

As we consider adherence to them especially dif-
ficult in an online setting, we will give particular
consideration to principles 2, 5, and 9. For exam-
ple, in the absence of in-presence teaching, when
in-person interaction between students and teacher
and among students is not possible, it is especially
challenging to create a supportive learning environ-
ment, and the opportunities to give feedback also
diminish. Online learning management systems
like Canvas and Blackboard provide the infrastruc-
tures to conduct courses online. However, similar
to classrooms, it is up to teachers and course de-
velopers to fill them with content and utilize them
effectively. We would discuss the learning manage-
ment systems and how we used them to support the
pedagogical principles in Section 3.3.

2 Course Design

In this section, we examine the course design based
on LTU’s pedagogical principles (see Section 1.2),
the principle of constructive alignment, and other
pedagogical considerations. We should note here
that one may arrive at similar design patterns based
solely on practical considerations as well. However,
we consider it an integral part of our contribution
that the design of the NLP course discussed here is

rooted not only in pedagogical practices but also in
pedagogical theories and research.

2.1 Objectives/Intended Learning Outcomes
In accordance with constructive alignment (Kandl-
binder, 2014), course level objectives and Intended
Learning Outcomes (ILOs) were set at the begin-
ning of process of course design. For this, we were
following the pedagogical principles, as well as
ABCD and SMART techniques (Tullu et al., 2015;
Smaldino et al., 2005; Doran et al., 1981). Based
on these factors, the ILOs for the NLP course were
as follows: After passing the course, the student
should be able to. . .

• . . . explain and use text preprocessing tech-
niques

• . . . describe a text analytics system together
with its components, optional and mandatory
ones

• . . . explain how text could be analyzed

• . . . evaluate results of text analytics

• . . . analyze and reflect on the various tech-
niques used in text analytics and the parame-
ters needed as well as the problem solved

• . . . plan and execute a text analytics experi-
ment

2.2 Course description
The course contents were designed according to the
ILOs discussed in Section 2.1. The syllabus and
content of the course were designed after examin-
ing NLP courses, and other similar courses offered
by different universities, as well as reviewing rele-
vant literature (Agarwal, 2013; Hearst, 2005; Liddy
and McCracken, 2005). Our NLP course consists
of seven modules that provide motivation, tools,
and techniques for solving NLP problems. This
section explains the contents of the modules briefly
to give the reader a better understanding of how the
ILOs are reflected in the proposed contents.

The course starts at the first module with NLP
applications, providing links to online API, chat-
bots, and dialog systems to motivate students. Then
we discuss basic definitions and concepts in NLP,
such as what a language is. The second module of
this course is devoted to structure analysis of texts.
Morphological analysis like n-grams and filtering
(such as identifying missing values, tokenization,

3

stemming & lemmatization, handling URLs, ac-
cents, contractions, typos, digits, etc.) is covered
in the second module. Moreover, Part Of Speech
(POS) is described, including its application and a
more in-depth view into it. This module also de-
scribes the syntax and syntactic analysis of a text,
followed by feature extraction and text representa-
tion; it starts with commonly used features in NLP
and describes different encodings that can represent
text to machines.

The third module of this course delivers the the-
ory and practice of neural networks. It starts with
the basics of neurons and network architectures,
then training using backpropagation followed by
vanishing gradients and over/under fitting problems.
RNN, LSTM, GRU, and CNN layers are covered
in depth. This module finishes by debugging neu-
ral networks, discussing regularizers, and covering
common problems of neural networks.

Having the essential tools of NLP, the fourth
module is more towards application, text classifica-
tion, and how NLP problems can be solved using
neural networks. This module starts in learning
taxonomies, with a step-by-step design of an end-
to-end neural network. It also discusses common
choices for simple network architectures, learning
taxonomies, multi-class, multi-label, and multi-
task problems. After that, text classification is
grounded to the problem of tagging in NLP, fol-
lowed by transfer learning methods. At the end of
this module, standard metrics in NLP are discussed.

The fifth module is dedicated to semantics, in-
troducing semantics and symbols in NLP and pos-
sible ways to represent them. The theory of frames
and synsets are discussed as the formal represen-
tation of semantics. Then, vector representations
of semantics are discussed alongside different ap-
proaches to obtain them. Approaches like distribu-
tional hypothesis, statistical methods, and neural
methods such as Word2vec are covered. At the end
of this module, some of the state-of-the-art word
embeddings are reviewed.

Sequence to sequence architectures, encoder-
decoder architecture, attention, transformers, and
Bert model are discussed in the next module. At
the end, some different topics such as structured
prediction, arc-standard transition parsing, and in-
sights into dialog and chatbots, image captioning,
and gender bias in NLP were discussed.

2.3 Video Clips

Our main challenge here is to deliver the material
in a manner that still adheres to Principle 2 and
encourages active cognitive processing. To achieve
this goal, the design of the lecture format is one of
the first consequences. For that, we split our mate-
rial into short videos with a length of at most ten
minutes. (McKeachie et al., 2006; Benjamin, 2002;
Ozan and Ozarslan, 2016; Bordes et al., 2021). De-
livering the course in short videos has the benefit of
encouraging active cognitive processing of students
among videos, as discussed in Section 1.

Another benefit of presenting our course content
in short videos is the potential for the reusability of
videos (Crame, 2016). Lastly, splitting all subjects
into smaller topics facilitates sharing the workload
among many presenters. It allowed us to organize
the course in a joint setting, as discussed in more
detail in Section 2.4.

2.4 Joint Course

Designing and developing a course for multiple
initiatives requires a deep knowledge of the field, a
broad range of knowledge in the field, and a deeper
understanding of each topic. This requirement is
not easy to be fulfilled by one lecturer. Thus, we
make it a joint course between Örebro University
(ORU) and LTU. This allows benefiting from mul-
tiple lecturers that let each deliver a specialized
lecture. Load sharing is the other benefit of a joint
course. However, designing and developing a joint
course with multiple lecturers brought some diffi-
culties, such as:

• Keeping harmony between lectures.

• Segmenting sub-topics to keep the lengths
short.

• Distributing each subtopic between lecturers.

• Avoiding repetition in lectures.

To overcome these difficulties, lecturers from the
two universities hold weekly meetings to design the
course and distribute sub-topics among themselves.
Lecturers created material by themselves, and then
the material and the narratives are reviewed weekly.
Moreover, after the course’s first run, all materials
are reviewed again to keep the outcome coherent
and harmonic. This revision and harmonization of
material should contribute to the clarity of course
content (Principle 4).

4

2.5 Assessment and Assignments

To achieve desired students’ activation, we de-
signed the initial assignments and project tasks
involving ready-to-use web API for various appli-
cations like hate speech, profanity filtering, image
captioning. Later, the focus is on how these applica-
tions are developed using NLP. Therefore, we cover
theoretical, numerical, and programming tasks in
assignments and projects.

The course’s assessment design is based on a
quote by David Boud “students can escape bad
teaching, but they cannot escape bad assessment”.
The forms of assessment in the joint NLP course
were based on guiding the students towards achiev-
ing their learning outcomes. We avoid designing
the assessment as a written exam at the end of the
course as we are looking to engage the students
with the course contents all the way till the end
of the course (Principle 2, 3) (Luleå University of
Technology, University Pedagogy Center). The as-
sessment had been done in two stages which are
practical project and oral discussion. The practi-
cal project is designed to follow the principle of
the constructive alignment (Kandlbinder, 2014).
The project’s main objective is to lead the student
to develop an actual NLP application (Principle
8) (Luleå University of Technology, University
Pedagogy Center) but in the form of accumula-
tive five tasks. The task will guide the students
through the different levels of Bloom’s cognitive
domain (Bloom et al., 1956), namely Remembering,
Understanding, Applying, Analyzing, Evaluating
and Creating.

Each task is designed to match with the weekly
delivered contents, so it will give real feedback on
how the students understand and implement the
concepts in practice (Principle 5) (Luleå Univer-
sity of Technology, University Pedagogy Center),
and whether they can transfer the knowledge (the-
ory) from one context to another context (Practi-
cal Implementation). Students have the flexibil-
ity to choose the programming language (however,
Python is preferred), framework, or tool that they
would like to use to reach the target. The pro-
vided flexibility will give a chance to find multiple
approaches proposed by different students to sort
out the problem (Principle 6, (Luleå University of
Technology, University Pedagogy Center)). The
sharing of different ideas among the class will add
significant value to the course outcome. The final
exam is an oral exam for each student. It is more

like a discussion, and we assess each student based
on that. An open discussion trying to mimic the
understanding of a real problem related to NLP
is conducted. The discussion starts with an ask-
ing about the general understanding of one of the
known NLP applications, such as machine trans-
lation. All the consecutive questions are asked to
evaluate the practical understanding of the problem
and test the need in each stage to implement the so-
lution. The examiner and examinee use the zoom’s
whiteboard to convey the questions and answers
for better clarity.

3 Teaching and Learning Activities

The course is designed to maximize the intended
learning outcomes. We refer to students some
python programming tutorials available online to
get familiarized with Python. This section de-
scribes this course’s teaching and learning activ-
ities, which includes delivering lectures in short
videos, live sessions, lab sessions, and our learning
management system.

3.1 Live Sessions

The lectures are delivered through recorded videos
on each module of the course. However, it is essen-
tial to take the students’ questions, reflections and
address their potential confusion after they have
watched the video lectures. For this, we conducted
weekly live sessions for each module. Students
learned from the video lectures and discussed with
the instructors in the live sessions, thus, aligned
with flipped classroom learning. These live ses-
sions where students had the opportunity to directly
ask the instructors contributed toa supportive learn-
ing environment (Principle 9), and gave us the op-
portunity to provide the students with feedback
(Principle 5).

The live sessions were delivered to address the
queries regarding the theoretical concepts, practi-
cals, contents, specific assignments, and other or-
ganizational queries. We addressed the immediate
queries, and the queries asked in discussion threads
in Canvas for the modules covered until a specific
live session. However, there was a scope of queries
related to the upcoming part of the course.

Live sessions are conducted online through
zoom every week during the course. There are
at least two instructors and one teaching assistant
present during online live sessions. First, we took
the queries asked in the learning management sys-

5

tem. We have a follow-up discussion regarding
those queries. Next, we have other questions re-
lated to the theory and practicals.

We encourage students to ask more and more
questions/confusions to enhance their learning
(Gibbs, 2005). In the end, we ask for regular feed-
back (Principle 5) (Luleå University of Technology,
University Pedagogy Center) for each module, ei-
ther in the live sessions or in learning management
system.

3.2 Lab Sessions

Practical (lab) sessions make up student-centered
teaching strategies for experiential courses (Moate
and Cox, 2015). The lab sessions provide practi-
cal programming experience to the students, fol-
lowing Kolb’s cycle and ICAP framework (Kolb,
2014; Chi and Wylie, 2014). Students watch or
read a given experience (as concrete experience)
and reflect on it (as reflective observation) before
conceptualizing how to go about implementation
through flowchart or pseudocode and finally active
experimentation by writing and running the codes.
Furthermore, in a lab session, students get to ask
questions and get possible answers from their col-
leagues or the instructor. They also get formative
feedback after the lab session (Principle 5) through
online channels identified in this work, making it
possible for them to improve their practical skills.
They can work together in groups (using online
collaborative tools), which is sometimes preferred.
This makes it an interactive session, thereby achiev-
ing the interacting stage of the ICAP framework
(Chi and Wylie, 2014). Assessment at the end of
each lab session provides a good context and affects
learning (Rust, 2002).

The technique is a vital element of pedagogy,
which is the science of teaching (Lea, 2004). This
approach fulfills the emerging trend of flipped class-
room (Europass Teacher Academy, 2020), where
students are responsible for their own learning be-
fore attending classes (Ng, 2018). The sessions
help to bridge the gap in knowledge between stu-
dents and the instructors. It was essential to be
aware that not all the students had the same level
of programming experience. Hence, it was essen-
tial to provide the practical sessions in stages that
could address the beginner, intermediate and expe-
rienced developers. Students were given tasks that
progressed from introductory programming with
Python for text preprocessing to introduction to

the Pytorch framework and, finally, an advanced
machine translation (MT) task.

3.3 Learning Management Systems
The lack of in-person interaction between students
and teachers did emphasize the framework through
which the students were interacting with the course
material and the teachers. The two universities of-
fering the NLP course used different frameworks
or Learning Management Systems (LMSs) for this
task; however, the principles to bear in mind were
the same. Most importantly, the course material
had to be presented in the LMS in a way to make
it clear for the student what their task is and how
to proceed with their learning (Principle 4: ensure
clarity in the course and task design). Another crit-
ical aspect of the LMS was to facilitate interaction
between teachers and students, providing an open
channel of communication (Principle 9: Create a
supportive learning environment). Additionally,
it was required that the LMS facilitates feedback
(Principle 5: Promote knowledge-enhancing feed-
back) and supports the assessment methods to be
used for the course (Principle 3: Choose forms of
assessment that enhance learning). In the following
sections, we will discuss how each LMS was used
to achieve these goals.

3.3.1 Canvas and Blackboard
Both Canvas and Blackboard are cloud-based LMS
used for courses at many educational institutes.
Here, we will discuss (in numerical order) how
we set up the course in them to support the above-
listed pedagogical principles.

• Principle 3: Both Canvas and Blackboard en-
ables the posting and evaluation of the assign-
ment types we used (for more details, see Sec-
tion 2.5). Moreover, they also enable students
to assign peer feedback tasks for students au-
tomatically. This feature contributes to the
adherence to Principle 6 (Foster independence
and self-awareness) by encouraging students
to reflect on others’ learning and the require-
ments of each assignment.

• Principle 4: On the starting page (the entry
point for students to the course room), the
course syllabus is linked, and students can also
find the course plan here, along with a weekly,
thematical breakdown of the course. In this
breakdown, we also provide links that allow
students to access all materials allotted for the

6

given weeks. Moreover, to further enhance
the clarity in course design, the material was
added weekly to direct students’ attention to
the current tasks. Another tool provided by
Canvas and Blackboard that serves clarity is
assignments page, where students can access
all assignments in one place, enabling them to
overview what assignments they have already
fulfilled, what assignments are still due, and
when due dates are coming up.

• Principle 5: The opportunity to provide
knowledge-enhancing feedback was two-fold.
For one, teachers could rate and comment
on student assignments. Moreover, teachers
could provide feedback through the various
forums on the course’s discussion page, also
hosted on Canvas and Blackboard.

• Principle 9: The discussion page of the LMS
used also served as an open communication
channel among students and between students
and teachers. This contributes to a high degree
of interaction that is important for a supportive
learning environment.

4 Results

The NLP course (7.5 credits) was a part of the one-
year Data Science Masters program at LTU. There
were 24 students enrolled in the NLP course. The
students were from academia and industry both.
Most students had a background in computer sci-
ence or engineering and thus had at least an intro-
ductory course in programming. Some students,
however, had no programming background.

4.1 A student’s perspective of the course

This section is the work of a student who took the
course and gave his comments, as discussed below.

Keeping in mind that students need to be pre-
pared for both the industry and research front. Stu-
dents need to focus on using tools and methods
that are most widely used. When there are so many
tools to deal with, students get overburdened. Here,
the instructor needs to follow a suitable pathway
to let students understand the concept and imple-
ment an executable project for demonstration. The
class contains students with both programming and
non-programming backgrounds. Python was used
in the project assignments. The students without a
programming background may not feel confident

using Python. Therefore, there should be an alter-
native to that.

Text Preprocessing is an essential step in NLP
that various libraries exist for that. The main at-
tention of lecturers was on applying preprocess-
ing (such as identifying missing values, tokeniza-
tion, lemmatization, etc.) on a text file. It did not
seem easy to apply those on Pandas dataframes.
Specially applying regular expressions on Pandas
dataframe for a beginner seemed to be daunting.
Though the instructors have done their job of both
concepts and practicalities, students felt less confi-
dent to carry the instructor’s work and stuck using
libraries. So, one needs to develop a clear strategy
or steps for being selective in using libraries that
are more helpful for carrying real project develop-
ment. It helps to form the proper foundations for
the student. Therefore students would feel more
confident to carry forward the concepts taught by
the lecturers in a class. Similarly, when using li-
braries such as Tensorflow and Pytorch.

Some students had high expectations towards the
instructors that instructors should have supported
them in building a web-based or desktop NLP ap-
plication, i.e., taking the NLP course project to
technology readiness level 7. However, this was
beyond this course.

Another difficulty students were facing was
understanding the speech patterns in the videos
recorded by lecturers coming from different back-
grounds, and having different accents. Moreover,
there were many technical terms and idioms in the
course that are hard to capture at the first sight.
A neat solution to this can be subtitles. Adding
subtitles to recorded lectures improve speech un-
derstanding, and helps students to capture new tech-
nical terms.

This course came with various interesting points
from students’ perspectives. Such as:

• Efficient knowledge transfer.

• To make the student feel confident at the end
of the course by applying theoretical and prac-
tical aspects learned in the course.

• Removing the barrier for students coming
from different cultures, different backgrounds.

• In initial stages, sticking to most widely
used programming language and libraries and
ecosystem in NLP. At the same time, being

7

selective in libraries, which are more useful in
day-to-day project/coding implementations.

• Motivating students to build their own models,
and its customization.

4.2 Course evaluation by students

The department surveys each course. Students are
asked to give a rating on a scale of 1-6 (1: strongly
disagree, 6: strongly agree). Students are encour-
aged to provide feedback; however, it is up to them
if they want to give the feedback or not. Here, we
discuss the students’ reflections we received after
the course. In total, eight students gave their re-
sponses in the course evaluation report out of the
twenty-four students taking the course. The survey
consists of six sections: self-assessment, course
aims and content, quality of teaching, course mate-
rials, examination, and overall assessment.

Table 1 shows the stats of students′ self-
assessment. It can be noticed that many students
did not spend sufficient effort. In a way, we failed
in motivating students to put their efforts into the
course. It may be due to students’ other commit-
ments. However, the fact remains that we could
not manage students to put enough effort into the
course. Thus, we need to think about how we can
improve more in this regard.

The following questions (Table 2) were asked
regarding ILOs of the course, to ensure that the
course design and implementation adhere to one
aspect of the principle of constructive alignment
(i.e. the teaching and learning activities support
the ILOs), as well as that Principles 1 (Emphasize
relevant knowledge and skill) and 4 (Ensure clarity
in course design) were at least partially fulfilled.
While the last question partially reflected in Princi-
ple 9 as well (Create a supportive learning environ-
ment). The average scores for these statements are
between 4.25 and 4.9, suggesting that students on
average agree with the given statements, thus we
have managed to achieve these goals in the design
and delivery of the course. The lowest agreement
was given for the third statement, thus our main ob-
jective for the upcoming installment of the course
will be to ensure that the study guide provides bet-
ter guidance for the students.

Another set of questions were asked for the eval-
uation of course delivery, and the exam conducted
(see Table 3). For one, these questions measure an-
other aspect of the constructive alignment (i.e. the
alignment of assessment with ILOs - Question 3.5).

Moreover, it is also measured here, how well adher-
ence to some of LTUs principles was implemented.
It can once again be noted here that all average val-
ues are above 3.5, thus students are more inclined
to agree with the given statements than they are
to disagree with them. In particular, they rate the
alignment between the examination and ILOs (and
thus the adherence to constructive alignment) quite
high. The second highest score was given for the
technical support and communication, suggesting
that this aspect of creating a supportive learning
environment (Principle 9) was rather successful.
The score given for the rewarding nature of theoret-
ical teaching and learning activities was only one
decimal lower, which suggests that in this aspect,
we were successful in emphasizing relevant knowl-
edge and skill (Principle 1). However, the score
concerning the practical aspects of teaching and
learning activities was considerably lower (though
still closer to six than one), suggesting that there
is more room for improvement in terms of practi-
cal tasks and assignments, as some comments also
confirmed. Another way to address the score is to
communicate more clearly towards students that
building a complete web-based or desktop NLP
application is beyond the scope of this introductory
course. Another area where there is more room for
improvement is regarding the input of instructors
supporting student learning (Question 3.1).

Lastly, the overall assessment of the course by
students is shown in Table 4. While, the overall
scores are encouraging for us (in particular the
question regarding the overall impression of stu-
dents about the course - Question 4.3), there is still
scope for improvement in all sections, and our goal
for future installments of the course is to achieve
even higher student satisfaction scores.

5 Conclusion and Improvements planned
for the future versions of the course

Here, we discuss the course and the improvements
we plan for the future course.

5.1 Conclusion

This paper discusses how the course was designed,
organized, and delivered online at the university.
We followed the pedagogy principles in all these
phases of the course. We argue that we can deliver
the course fully online even after the pandemic as
we delivered the course up to a satisfactory level.
To be precise, we hypothesized that our course

8

Table 1: Students′ self-assessment regarding the NLP course

No. Question Average
score

1.1

How many hours of study have you in average dedicated to this course
per week, including both scheduled and non-scheduled time?

1.2 I am satisfied with my efforts during the course. 4.5
1.3 have participated in all the teaching and learning activities in the course. 4.0
1.4 I have prepared myself prior to all teaching and learning activities. 3.3

Table 2: Evaluation of achieving ILOs and aim of the conducted NLP course

No. Question Average
score

2.1 The intended learning outcomes of the course have been clear. 4.9
2.2 The contents of the course have helped me to achieve the ILOs of the course 4.5
2.3 The course planning and the study guide have provided good guidance 4.25

Table 3: Evaluation of the course delivery and the exam of the conducted NLP course

No. Question Average
score

3.1 The teacher’s input has supported my learning. 4.0
3.2 The teaching and learning activities of the theoretical nature have been rewarding 4.6

3.3
The practical/creative teaching and learning activities of the course
e.g. labs, field trips, teaching practice, placements/internships, project work
have been rewarding.

4.0

3.4
The technical support for communication, e.g. learning platform, e-learning
resources, has been satisfactory.

4.7

3.5 The examination was in accordance with the ILOs of the course. 5.0

Table 4: Overall assessment of the NLP course by the students

No. Question Average
score

4.1 The workload of the course is appropriate for the number of credits given. 4.3
4.2 Given the aims of the course the level of work required has been appropriate 4.1
4.3 My overall impression is that this has been a good course 4.6

9

would adhere to the LTU’s pedagogical principles
and other pedagogical theories refereed in this pa-
per and delivered online at the same time. This
could be verified from the students’ response re-
port; The average scores (Table 4) greater than 4
support our hypothesis. In fact the scores in Tables
2, and 3 also support our hypothesis. However,
there is always room for improvement. We figured
out many things to improve even before the course
was finished. The students’ response report gave
us a clear idea of where to put more energy to im-
prove the course, e.g., as observed from Table 3,
we will improve on teachers’ efforts and projects
related activities. The planned improvements are
listed below.

5.2 Improvements planned

Here we discuss the improvements planned for fu-
ture iterations of the course based on student feed-
back and pedagogical principles.

5.2.1 Two-layered course

Our course design started to be for multiple initia-
tives, for people from the industry and people from
academia, people with no background in AI and
maths, and people with a strong background. This
ended up in designing a general course that can
be used for all people with different backgrounds
and goals. One track of 3 credits for industrial
students and one track of 7.5 credits for academic
students. Although this idea never came to real life,
we would like to mention our final thoughts of it as
one of the possible future works.

Students from the industry most often have dif-
ferent backgrounds, limited knowledge in mathe-
matics, and stronger motivation, looking for spe-
cific applications. On the other hand, academic
students have a better knowledge of mathematics.
They have sufficient background in the field and are
interested in learning a broad range of applications
and topics.

Thus, we designed the course to cover theories,
concepts, applications, and their implementation.
For example, for a topic like neural networks, the
materials should include mathematical background,
practical usage, and possible tweaks and configu-
rations. The choice of two tracks will be taking
theoretical subtopics only for academics and prac-
ticalities for both. In the end, all who finish the
course have a broad understanding of various ap-
plications in NLP that should satisfy their interests.

5.2.2 Other Improvements
• Better naming convention of the videos for

clarity

• Adding subtitles to the videos for better un-
derstanding (the video lectures are delivered
in English, but none of the lecturers are native
speakers).

• Adding quizzes between videos for better stu-
dent activation and learning.

• Removing handwritten notes from the lecture
videos and slides, as in some cases students
found that difficult to read.

• Multiple practical tasks with different levels
of difficulty can be provided to cater to the
students’ different levels of programming ex-
perience, so each student can pick the task
applicable to them.

• Splitting the project into subtasks aligned with
the NLP pipeline.

• More live sessions to support students’ learn-
ing.

• Giving more to the point references to the
content related to the theory and project im-
plementation.

• A tutorial on specific libraries to use during
the course and their setup.

• Additional tutorial on building a usable web
app, e.g., for Hate speech detection, where
anyone can feed a text and classify it.

We hope that future versions of the course will
be better in all aspects (planning, designing, orga-
nizing, and conducting) and perspectives.

References
Apoorv Agarwal. 2013. Teaching the basics of nlp and

ml in an introductory course to information science.
In Proceedings of the Fourth Workshop on Teaching
NLP and CL, pages 77–84.

L.T. Benjamin. 2002. Lecturing. In S.F. Davis and
W. Buskist, editors, The Teaching of psychology: Es-
says in honor of Wilbert J. McKeachie and Charles
L. Brewer, pages 57–67.

10

B. S. Bloom, M. B. Engelhart, E. J. Furst, W. H. Hill,
and D. R. Krathwohl. 1956. Taxonomy of educa-
tional objectives. The classification of educational
goals. Handbook 1: Cognitive domain. Longmans
Green, New York.

Stephen J. Bordes, Donna Walker, Louis Jonathan
Modica, Joanne Buckland, and Andrew K. Sobering.
2021. Towards the optimal use of video recordings
to support the flipped classroom in medical school
basic sciences education. Medical Education On-
line, 26(1):1841406. PMID: 33119431.

Atkins M. Brown G. 1999. Effective teaching in higher
education. Routledge.

Center for Teaching and Learning. 1990. Improving
multiple choice questions. For your consideration...
suggestions and reflections on Teaching and Learn-
ing, (8).

Michelene TH Chi and Ruth Wylie. 2014. The ICAP
framework: Linking cognitive engagement to ac-
tive learning outcomes. Educational psychologist,
49(4):219–243.

Brian Robert Cook and Andrea Babon. 2017. Active
learning through online quizzes: better learning and
less (busy) work. Journal of Geography in Higher
Education, 41(1):24–38.

Cynthia J. Crame. 2016. Effective educational videos:
Principles and guidelines for maximizing student
learning from video content. CBE life sciences ed-
ucation, 15(4).

Geoffrey Dick, Asli Yagmur Akbulut, and Vic Matta.
2020. Teaching and learning transformation in the
time of the coronavirus crisis. Journal of Infor-
mation Technology Case and Application Research,
22(4):243–255.

George T. Doran et al. 1981. There’s a SMART way to
write management’s goals and objectives. Manage-
ment review, 70(11):35–36.

Maya Elmgren and Ann-Sofie Henriksson. 2018. Aca-
demic Teaching. Studentlitteratur AB.

Europass Teacher Academy. 2020. Flipped classroom.
online. Accessed on: March 08, 2021.

Sean Gallagher and Jason Palmer. 2020. The pandemic
pushed universities online. the change was long over-
due.

Graham Gibbs. 2005. Improving the quality of student
learning. University of South Wales (United King-
dom).

R. W. Goddard. 1995. The pygmalion effect. Person-
nel Journal, 64(6):10–16.

Marti A Hearst. 2005. Teaching applied natural lan-
guage processing: Triumphs and tribulations. In
Proceedings of the Second ACL Workshop on Effec-
tive Tools and Methodologies for Teaching NLP and
CL, pages 1–8.

Peter Kandlbinder. 2014. Constructive alignment in
university teaching. HERDSA News, 36(3):5–6.

Sibel Ersel Kaymakamoglu. 2018. Teachers’ beliefs,
perceived practice and actual classroom practice in
relation to traditional (teacher-centered) and con-
structivist (learner-centered) teaching (note 1). Jour-
nal of Education and Learning, 7(1):29–37.

David A Kolb. 2014. Experiential learning: Experi-
ence as the source of learning and development. FT
press.

Mary R Lea. 2004. Academic literacies: A peda-
gogy for course design. Studies in higher education,
29(6):739–756.

Elizabeth D Liddy and Nancy J McCracken. 2005.
Hands-on nlp for an interdisciplinary audience.

Luleå University of Technology, University Pedagogy
Center. LTU’s pedagogical principles. https:
//ltu.instructure.com/courses/
8692/files/1364701/download?wrap=1.

W.J. McKeachie, M. Svinicki, M.D. Svinicki, B.K.
Hofer, and R.M. Suinn. 2006. McKeachie’s Teach-
ing Tips: Strategies, Research, and Theory for Col-
lege and University Teachers. College teaching se-
ries. Houghton Mifflin.

Randall M Moate and Jane A Cox. 2015. Learner-
centered pedagogy: Considerations for applica-
tion in a didactic course. Professional Counselor,
5(3):379–389.

Eugenia MW Ng. 2018. Integrating self-regulation
principles with flipped classroom pedagogy for first
year university students. Computers & Education,
126:65–74.

Ledningsstaben Örebro University. Örebro Uni-
versity basic pedagogical view. https:
//www.oru.se/om-universitetet/
vision-strategi-och-regelverk/
pedagogisk-grundsyn/.

Ebba Ossiannilsson. 2021. The new normal: Post
covid-19 is about change and sustainability. Near
East University Online Journal of Education,
4(1):72–77.

Ozlem Ozan and Yasin Ozarslan. 2016. Video lecture
watching behaviors of learners in online courses. Ed-
ucational Media International, 53(1):27–41.

P. Ramsden. 2003. Learning to Teach in Higher Edu-
cation. RoutledgeFalmer.

Chris Rust. 2002. The impact of assessment on stu-
dent learning: how can the research literature practi-
cally help to inform the development of departmen-
tal assessment strategies and learner-centred assess-
ment practices? Active learning in higher education,
3(2):145–158.

11

S.E. Smaldino, J.D. Russell, and R. Heinich. 2005.
Instructional Technology and Media for Learning.
Pearson/Merrill/Prentice Hall.

B.R. Snyder. 1971. The Hidden Curriculum. Borzoi
book. Knopf.

Milind S Tullu, Sandeep B Bavdekar, and Nirmala N
Rege. 2015. Educational (learning) objectives:
Guide to teaching and learning. The Art of Teach-
ing Medical Students-E-Book, page 89.

Towe Wiiand. 1998. Examinationen i fokus :
högskolestudenters lärande och examination : en lit-
teraturöversikt.

12

Proceedings of the Fifth Workshop on Teaching NLP, pages 13–27
June 10–11, 2021. ©2021 Association for Computational Linguistics

Teaching a Massive Open Online Course on Natural Language Processing

Ekaterina Artemova1,2∗, Murat Apishev 1, Veronika Sarkisyan 1,
Sergey Aksenov1, Denis Kirjanov3, Oleg Serikov 1,4

1 HSE University, Moscow, Russia
2 Huawei Noah’s Ark lab, Moscow, Russia
3 SberDevices, Sberbank, Moscow, Russia
4 DeepPavlov, MIPT, Dolgoprudny, Russia

https://openedu.ru/course/hse/TEXT/

Abstract

This paper presents a new Massive Open On-
line Course on Natural Language Process-
ing, targeted at non-English speaking students.
The course lasts 12 weeks; every week con-
sists of lectures, practical sessions, and quiz
assignments. Three weeks out of 12 are fol-
lowed by Kaggle-style coding assignments.

Our course intends to serve multiple purposes:
(i) familiarize students with the core con-
cepts and methods in NLP, such as language
modeling or word or sentence representations,
(ii) show that recent advances, including pre-
trained Transformer-based models, are built
upon these concepts; (iii) introduce architec-
tures for most demanded real-life applications,
(iv) develop practical skills to process texts in
multiple languages. The course was prepared
and recorded during 2020, launched by the end
of the year, and in early 2021 has received pos-
itive feedback.

1 Introduction

The vast majority of recently developed online
courses on Artificial Intelligence (AI), Natural Lan-
guage Processing (NLP) included, are oriented to-
wards English-speaking audiences. In non-English
speaking countries, such courses’ audience is unfor-
tunately quite limited, mainly due to the language
barrier. Students, who are not fluent in English,
find it difficult to cope with language issues and
study simultaneously. Thus the students face seri-
ous learning difficulties and lack of motivation to
complete the online course. While creating new on-
line courses in languages other than English seems
redundant and unprofitable, there are multiple rea-
sons to support it. First, students may find it easier
to comprehend new concepts and problems in their
native language. Secondly, it may be easier to
build a strong online learning community if stu-
dents can express themselves fluently. Finally, and

∗Corresponding author, email: elartemova@hse.ru

more specifically to NLP, an NLP course aimed at
building practical skills should include language-
specific tools and applications. Knowing how to
use tools for English is essential to understand the
core principles of the NLP pipeline. However, it is
of little use if the students work on real-life appli-
cations in the non-English industry.

In this paper, we present an overview of an on-
line course aimed at Russian-speaking students.
This course was developed and run for the first time
in 2020, achieving positive feedback. Our course
is a part of the HSE university’s online specializa-
tion on AI and is built upon previous courses in the
specialization, which introduced core concepts in
calculus, probability theory, and programming in
Python. Outside of the specialization, the course
can be used for additional training of students ma-
joring in computer science or software engineering
and others who fulfill prerequisites.

The main contributions of this paper are:

• We present the syllabus of a recent wide-scope
massive open online course on NLP, aimed at
a broad audience;

• We describe methodological choices made for
teaching NLP to non-English speaking stu-
dents;

• In this course, we combine recent deep learn-
ing trends with other best practices, such as
topic modeling.

The remainder of the paper is organized as fol-
lows: Section 2 introduces methodological choices
made for the course design. Section 3 presents the
course structure and topics in more details. Sec-
tion 4 lists home works. Section 5 describes the
hosting platform and its functionality.

2 Course overview

The course presented in this paper is split into two
main parts, six weeks each, which cover (i) core

13

NLP concepts and approaches and (ii) main applica-
tions and more sophisticated problem formulations.
The first six weeks’ main goal is to present dif-
ferent word and sentence representation methods,
starting from bag-of-words and moving to word
and sentence embeddings, reaching contextualized
word embeddings and pre-trained language mod-
els. Simultaneously we introduce basic problem
definitions: text classification, sequence labeling,
and sequence-to-sequence transformation. The first
part of the course roughly follows Yoav Goldberg’s
textbook (Goldberg, 2017), albeit we extend it with
pre-training approaches and recent Transformer-
based architectures.

The second part of the course introduces BERT-
based models and such NLP applications as ques-
tion answering, text summarization, and informa-
tion extraction. This part adopts some of the ex-
planations from the recent draft of “Speech and
Language Processing” (Jurafsky and Martin, 2000).
An entire week is devoted to topic modeling, and
BigARTM (Vorontsov et al., 2015), a tool for topic
modeling developed in MIPT, one of the top Rus-
sian universities and widely used in real-life ap-
plications. Overall practical sessions are aimed
at developing text processing skills and practical
coding skills.

Every week comprises both a lecture and a prac-
tical session. Lectures have a “talking head” for-
mat, so slides and pre-recorded demos are pre-
sented, while practical sessions are real-time cod-
ing sessions. The instructor writes code snippets in
Jupyter notebooks and explains them at the same
time. Overall every week, there are 3-5 lecture
videos and 2-3 practical session videos. Weeks 3,
5, 9 are extended with coding assignments.

Weeks 7 and 9 are followed by interviews. In
these interviews, one of the instructors’ talks to
the leading specialist in the area. Tatyana Shav-
rina, one of the guests interviewed, leads an R&D
team in Sber, one of the leading IT companies. The
second guest, Konstantin Vorontsov, is a professor
from one of the top universities. The guests are
asked about their current projects and interests, ca-
reer paths, what keeps them inspired and motivated,
and what kind of advice they can give.

The final mark is calculated according to the
formula:

of accepted coding assignment

+0.7mean(quiz assignment mark)

Coding assignments are evaluated on the binary
scale (accepted or rejected), and quiz assignments
are evaluated on the 10 point scale. To earn a cer-
tificate, the student has to earn at least 4 points.

In practical sessions, we made a special effort to
introduce tools developed for processing texts in
Russian. The vast majority of examples, utilized
in lectures, problems, attempted during practical
sessions, and coding assignments, utilized datasets
in Russian. The same choice was made by Pavel
Braslavski, who was the first to create an NLP
course in Russian in 2017 (Braslavski, 2017). We
utilized datasets in English only if Russian lacks
the non-commercial and freely available datasets
for the same task of high quality.

Some topics are intentionally not covered in the
course. We focus on written texts and do not ap-
proach the tasks of text-to-speech and speech-to-
text transformations. Low-resource languages spo-
ken in Russia are out of the scope, too. Besides, we
almost left out potentially controversial topics, such
as AI ethics and green AI problems. Although we
briefly touch upon potential biases in pre-trained
language models, we have to leave out a large body
of research in the area, mainly oriented towards
the English language and the US or European so-
cial problems. Besides, little has been explored in
how neural models are affected by those biases and
problems in Russia.

The team of instructors includes specialists from
different backgrounds in computer science and the-
oretical linguists. Three instructors worked on
lectures, two instructors taught practical sessions,
and three teaching assistants prepared home assign-
ments and conducted question-answering sessions
in the course forum.

3 Syllabus

Week 1. Introduction. The first introductory
lecture consists of two parts. The first part
overviews the core tasks and problems in NLP,
presents the main industrial applications, such as
search engines, Business Intelligence tools, and
conversational engines, and draws a comparison
between broad-defined linguistics and NLP. To
conclude this part, we touch upon recent trends,
which can be grasped easily without the need to go
deep into details, such as multi-modal applications
(Zhou et al., 2020), cross-lingual methods (Feng
et al., 2020; Conneau et al., 2020) and computa-
tional humor (Braslavski et al., 2018; West and

14

Horvitz, 2019). Throughout this part lecture, we
try to show NLP systems’ duality: those aimed
at understanding language (or speech) and those
aimed at generating language (or speech). The
most complex systems used for machine transla-
tion, for example, aim at both. The second part
of the lecture introduces such basic concepts as
bag-of-words, count-based document vector repre-
sentation, tf-idf weighting. Finally, we explore
bigram association measures, PMI and t-score.
We point out that these techniques can be used to
conduct an exploratory analysis of a given collec-
tion of texts and prepare input for machine learning
methods.

Practical session gives an overview of text pre-
possessing techniques and simple count-based text
representation models. We emphasize how prepos-
sessing pipelines can differ for languages such as
English and Russian (for example, what is prefer-
able, stemming or lemmatization) and give ex-
amples of Python frameworks that are designed
to work with the Russian language (pymystem3
(Segalovich), pymorphy2 (Korobov, 2015)). We
also included an intro to regular expressions be-
cause we find this knowledge instrumental both
within and outside NLP tasks.

During the first weeks, most participants are
highly motivated, we can afford to give them more
practical material, but we still need to end up with
some close-to-life clear examples. We use a simple
sentiment analysis task on Twitter data to demon-
strate that even the first week’s knowledge (together
with understanding basic machine learning) allows
participants to solve real-world problems. At the
same time, we illustrate how particular steps of
text prepossessing can have a crucial impact on the
model’s outcome.

Week 2. Word embeddings. The lecture intro-
duces the concepts of distributional semantics and
word vector representations. We familiarize the
students with early models, which utilized sin-
gular value decomposition (SVD) and move to-
wards more advanced word embedding models,
such as word2vec (Mikolov et al., 2013) and
fasttext (Bojanowski et al., 2017). We briefly
touch upon the hierarchical softmax and the hash-
ing trick and draw attention to negative sampling
techniques. We show ways to compute word dis-
tance, including Euclidean and cosine similarity
measures.

We discuss the difference between word2vec

Figure 1: One slide from Lecture 2. Difference be-
tween raw texts (top line), bag-of-words (middle line),
and bag-of-vectors (bottom line). Background words:
text, words, vectors.

and GloVe (Pennington et al., 2014) models and
emphasize main issues, such as dealing with out-
of-vocabulary (OOV) words and disregarding rich
morphology. fasttext is then claimed to ad-
dress these issues. To conclude, we present ap-
proaches for intrinsic and extrinsic evaluation of
word embeddings. Fig. 1 explains the difference
between bag-of-words and bag-of-vectors.

In practical session we explore only ad-
vanced word embedding models (word2vec,
fasttext and GloVe) and we cover three most
common scenarios for working with such models:
using pre-trained models, training models from
scratch and tuning pre-trained models. Giving
a few examples, we show that fasttext as a
character-level model serves as a better word repre-
sentation model for Russian and copes better with
Russian rich morphology. We also demonstrate
some approaches of intrinsic evaluation of models’
quality, such as solving analogy tasks (like well
known “king - man + woman = queen”) and eval-
uating semantic similarity and some useful tech-
niques for visualization of word embeddings space.

This topic can be fascinating for students when
supplemented with illustrative examples. Explor-
ing visualization of words clusters on plots or solv-
ing analogies is a memorable part of the “classic”
NLP part of most students’ course.

Week 3. Text classification. The lecture con-
siders core concepts for supervised learning. We
begin by providing examples for text classification
applications, such as sentiment classification and
spam filtering. Multiple problem statements, such
as binary, multi-class, and multi-label classifica-
tion, are stated. To introduce ML algorithms, we
start with logistic regression and move towards neu-

15

ral methods for text classification. To this end, we
introduce fasttext as an easy, out-of-the-box
solution. We introduce the concept of sentence
(paragraph) embedding by presenting doc2vec
model (Le and Mikolov, 2014) and show how such
embeddings can be used as input to the classifica-
tion model. Next, we move towards more sophisti-
cated techniques, including convolutional models
for sentence classification (Kim, 2014). We do
not discuss backpropagation algorithms but refer
to the DL course of the specialization to refresh
understanding of neural network training. We show
ways to collect annotated data on crowdsourcing
platforms and speed up the process using active
learning (Esuli and Sebastiani, 2009). Finally, we
conclude with text augmentation techniques, in-
cluding SMOTE (Chawla et al., 2002) and EDA
(Wei and Zou, 2019).

In the practical session we continue working
with the text classification on the IMDb movies re-
views dataset. We demonstrate several approaches
to create classification models with different word
embeddings. We compare two different ways to
get sentence embedding, based on any word em-
bedding model: by averaging word vectors and
using tf-idf weights for a linear combination of
word vectors. We showcase fasttext tool for
text classification using its built-in classification
algorithm.

Additionally, we consider use GloVe word em-
bedding model to build a simple Convolutional
Neural Network for text classification. In this week
and all of the following, we use PyTorch 1 as a
framework for deep learning.

Week 4. Language modeling. The lecture fo-
cuses on the concept of language modelling. We
start with early count-based models (Song and
Croft, 1999) and create a link to Markov chains.
We refer to the problem of OOV words and show
the add-one smoothing method, avoiding more
sophisticated techniques, such as Knesser-Ney
smoothing (Kneser and Ney, 1995), for the sake of
time. Next, we introduce neural language models.
To this end, we first approach Bengio’s language
model (Bengio et al., 2003), which utilizes fully
connected layers. Second, we present recurrent
neural networks and show how they can be used
for language modeling. Again, we remind the stu-
dents of backpropagation through time and gradi-
ent vanishing or explosion, introduced earlier in

1https://pytorch.org/

the DL course. We claim, that LSTM (Hochre-
iter and Schmidhuber, 1997) and GRU (Chung
et al., 2014) cope with these problems. As a brief
revision of the LSTM architecture is necessary, we
utilize Christopher Olah’s tutorial (Olah, 2015).
We pay extra attention to the inner working of
the LSTM, following Andrej Karpathy’s tutorial
(Karpathy, 2015). To add some research flavor to
the lecture, we talk about text generation (Sutskever
et al., 2011), its application, and different decoding
strategies (Holtzman et al., 2019), including beam
search and nucleus sampling. Lastly, we introduce
the sequence labeling task (Ma and Hovy, 2016)
for part-of-speech (POS) tagging and named entity
recognition (NER) and show how RNN’s can be
utilized as sequence models for the tasks.

The practical session in this week is divided
into two parts. The first part is dedicated to lan-
guage models for text generation. We experi-
ment with count-based probabilistic models and
RNN’s to generate dinosaur names and get familiar
with perplexity calculation (the task and the data
were introduced in Sequence Models course from
DeepLearning.AI 2). To bring things together, stu-
dents are asked to make minor changes in the code
and run it to answer some questions in the week’s
quiz assignment.

The second part of the session demonstrates the
application of RNN’s to named entity recognition.
We first introduce the BIO and BIOES annotation
schemes and show frameworks with pre-trained
NER models for English (Spacy 3) and Russian
(Natasha4) languages. Further, we move on to
CNN-biLSTM-CRF architecture described in the
lecture and test it on CoNLL 2003 shared task
data (Sang and De Meulder, 2003).

Week 5. Machine Translation. This lecture
starts with referring to the common experience of
using machine translation tools and a historical
overview of the area. Next, the idea of encoder-
decoder (seq2seq) architecture opens the techni-
cal part of the lecture. We start with RNN-based
seq2seq models (Sutskever et al., 2014) and in-
troduce the concept of attention (Bahdanau et al.,
2015). We show how attention maps can be used
for “black box” interpretation. Next, we reveal
the core architecture of modern NLP, namely, the

2https://www.coursera.org/learn/
nlp-sequence-models

3https://spacy.io
4https://natasha.github.io

16

Transformer model (Vaswani et al., 2017) and ask
the students explicitly to take this part seriously.
Following Jay Allamar’s tutorial (Alammar, 2015),
we decompose the transformer architecture and go
through it step by step. In the last part of the lecture,
we return to machine translation and introduce qual-
ity measures, such as WER and BLEU (Papineni
et al., 2002), touch upon human evaluation and the
fact that BLEU correlates well with human judg-
ments. Finally, we discuss briefly more advanced
techniques, such as non-autoregressive models (Gu
et al., 2017) and back translation (Hoang et al.,
2018). Although we do not expect the student
to comprehend these techniques immediately, we
want to broaden their horizons so that they can
think out of the box of supervised learning and
autoregressive decoding.

In the first part of practical session we solve
the following task: given a date in an arbitrary
format transform it to the standard format “dd-mm-
yyyy” (for example, “18 Feb 2018”, “18.02.2018”,
“18/02/2018”→ “18-02-2018”). We adopt the code
from PyTorch machine translation tutorial 5 to our
task: we use the same RNN encoder, RNN decoder,
and its modification - RNN encoder with atten-
tion mechanism - and compare the quality of two
decoders. We also demonstrate how to visualize
attention weights.

The second part is dedicated to the Transformer
model and is based on the Harvard NLP tutorial
(Klein et al., 2017) that decomposes the article
“Attention is All You Need” (Vaswani et al., 2017).
Step by step, like in the lecture, we go through
the Transformer code, trying to draw parallels with
a simple encoder-decoder model we have seen in
the first part. We describe and comment on every
layer and pay special attention to implementing
the attention layer and masking and the shapes of
embeddings and layers.

Week 6. Sesame Street I. The sixth lecture and
the next one are the most intense in the course.
The paradigm of pre-trained language models is
introduced in these two weeks. The first model
to discuss in detail is ELMo (Peters et al., 2018).
Next, we move to BERT (Devlin et al., 2019) and
introduce the masked language modeling and next
sentence prediction objectives. While presenting
BERT, we briefly revise the inner working of Trans-

5https://pytorch.org/tutorials/
intermediate/seq2seq_translation_
tutorial.html

Figure 2: To spice up the lectures, the lecturer is
dressed in an ELMo costume

former blocks. We showcase three scenarios to
fine-tune BERT: (i) text classification by using dif-
ferent pooling strategies ([CLS], max or mean),
(ii) sentence pair classification for paraphrase iden-
tification and for natural language inference, (iii)
named entity recognition. SQuAD-style question-
answering, at which BERT is aimed too, as avoided
here, as we will have another week for QA systems.
Next, we move towards GPT-2 (Radford et al.)
and elaborate on how high-quality text generation
can be potentially harmful. To make the differ-
ence between BERT’s and GPT-2’s objective more
clear, we draw parallels with the Transformer ar-
chitecture for machine translation and show that
BERT is an encoder-style model, while GPT-2 is a
decoder-style model. We show Allen NLP (Gard-
ner et al., 2018) demos of how GPT-2 generates
texts and how attention scores implicitly resolve
coreference.

In this week, we massively rely on Jay Allamar’s
(Alammar, 2015) tutorial and adopt some of these
brilliant illustrations. One of the main problems,
though, rising in this week is the lack of Russian
terminology, as the Russian-speaking community
has not agreed on the proper ways to translate such
terms as “contextualized encoder” or “fine-tuning”.
To spice up this week, we were dressed in Sesame
Street kigurumis (see Fig. 2).

The main idea of the practical session is to
demonstrate ELMo and BERT models, considered

17

earlier in the lecture. The session is divided into
two parts, and in both parts, we consider text clas-
sification, using ELMo and BERT models, respec-
tively.

In the first part, we demonstrate how to use
ELMo word embeddings for text classification
on the IMBdb dataset used in previous sessions.
We use pre-trained ELMo embeddings by Al-
lenNLP (Gardner et al., 2018) library and imple-
ment a simple recurrent neural network with a GRU
layer on top for text classification. In the end, we
compare the performance of this model with the
scores we got in previous sessions on the same
dataset and demonstrate that using ELMo embed-
dings can improve model performance.

The second part of the session is focused on
models based on Transformer architecture. We
use huggingface-transformers library (Wolf et al.,
2020) and a pre-trained BERT model to build a
classification algorithm for Google play applica-
tions reviews written in English. We implement
an entire pipeline of data preparation, using a pre-
trained model and demonstrating how to fine-tune
the downstream task model. Besides, we imple-
ment a wrapper for the BERT classification model
to get the prediction on new text.

Week 7. Sesame Street II. To continue diving
into the pre-trained language model paradigm, the
lecture first questions, how to evaluate the model.
We discuss some methods to interpret the BERT’s
inner workings, sometimes referred to as BERTol-
ogy (Rogers et al., 2021). We introduce a few
common ideas: BERT’s lower layers account for
surface features, lower to middle layers are respon-
sible for morphology, while the upper-middle lay-
ers have better syntax representation (Conneau
and Kiela, 2018). We talk about ethical issues
(May et al., 2019), caused by pre-training on raw
web texts. We move towards the extrinsic evalua-
tion of pre-trained models and familiarize the stu-
dents with GLUE-style evaluations (Wang et al.,
2019b,a). The next part of the lecture covers dif-
ferent improvements of BERT-like models. We
show how different design choices may affect the
model’s performance in different tasks and present
RoBERTa (Liu et al., 2019), and ALBERT (Lan
et al., 2019) as members of a BERT-based family.
We touch upon the computational inefficiency of
pre-trained models and introduce lighter models,
including DistillBERT (Sanh et al., 2019). To be
solid, we touch upon other techniques to compress

pre-trained models, including pruning (Sajjad et al.,
2020) and quantization (Zafrir et al., 2019), but do
not expect the students to be able to implement
these techniques immediately. We present the con-
cept of language transferring and introduce multi-
lingual Transformers, such as XLM-R (Conneau
et al., 2020). Language transfer becomes more and
more crucial for non-English applications, and thus
we draw more attention to it. Finally, we cover
some of the basic multi-modal models aimed at
image captioning and visual question answering,
such as the unified Vision-Language Pre-training
(VLP) model (Zhou et al., 2020).

In the practical session we continue discussing
BERT-based models, shown in the lectures. The
session’s main idea is to consider different tasks
that may be solved by BERT-based models and
to demonstrate different tools and approaches for
solving them. So the practical session is divided
into two parts. The first part is devoted to named
entity recognition. We consider a pre-trained cross-
lingual BERT-based NER model from the Deep-
Pavlov library (Burtsev et al., 2018) and demon-
strate how it can be used to extract named entities
from Russian and English text. The second part
is focused on multilingual zero-shot classification.
We consider the pre-trained XLM-based model by
HuggingFace, discuss the approach’s key ideas,
and demonstrate how the model works, classify-
ing short texts in English, Russian, Spanish, and
French.

Week 8. Syntax parsing. The lecture is devoted
to computational approaches to syntactic parsing
and is structured as follows. After a brief intro-
duction about the matter and its possible applica-
tions (both as an auxiliary task and an indepen-
dent one), we consider syntactic frameworks de-
veloped in linguistics: dependency grammar (Tes-
nière, 2015) and constituency grammar (Bloom-
field, 1936). Then we discuss only algorithms
that deal with dependency parsing (mainly because
there are no constituency parsers for Russian), so
we turn to graph-based (McDonald et al., 2005)
and transition-based (Aho and Ullman, 1972) de-
pendency parsers and consider their logics, struc-
ture, sorts, advantages, and drawbacks. Afterward,
we familiarize students with the practical side of
parsing, so we introduce syntactically annotated
corpora, Universal Dependencies project (Nivre
et al., 2016b) and some parsers which perform for
Russian well (UDPipe (Straka and Straková, 2017),

18

DeepPavlov Project (Burtsev et al., 2018)). The
last part of our lecture represents a brief overview
of the problems which were not covered in previ-
ous parts: BERTology, some issues of web-texts
parsing, latest advances in computational syntax
(like enhanced dependencies (Schuster and Man-
ning, 2016)).

The practical session starts with a quick
overview of CoNLL-U annotation format (Nivre
et al., 2016a): we show how to load, parse and visu-
alize such data on the example from the SynTagRus
corpus 6. Next, we learn to parse data with pre-
trained UDPipe models (Straka et al., 2016) and
Russian-language framework Natasha. To demon-
strate some practical usage of syntax parsing, we
first understand how to extract subject-verb-object
(SVO) triples and then design a simple template-
based text summarization model.

Week 9. Topic modelling The focus of this lec-
ture is topic modeling. First, we formulate the
topic modeling problem and ways it can be used
to cluster texts or extract topics. We explain the
basic probabilistic latent semantic analysis (PLSA)
model (HOFMANN, 1999), that modifies early ap-
proaches, which were based on SVD (Dumais,
2004). We approach the PLSA problem using the
Expectation-Minimization (EM) algorithm and in-
troduce the basic performance metrics, such as per-
plexity and topic coherence.

As the PLSA problem is ill-posed, we famil-
iarize students with regularization techniques us-
ing Additive Regularization for Topic Modeling
(ARTM) model (Vorontsov and Potapenko, 2015)
as an example. We describe the general EM algo-
rithm for ARTM and some basic regularizers. Then
we move towards the Latent Dirichlet Allocation
(LDA) model (Blei et al., 2003) and show that the
maximum a posteriori estimation for LDA is the
special case of the ARTM model with a smoothing
or sparsing regularizer (see Fig. 3 for the explana-
tion snippet). We conclude the lecture with a brief
introduction to multi-modal ARTM models and
show how to generalize different Bayesian topic
models based on LDA. We showcase classification,
word translation, and trend detection tasks as multi-
modal models.

In practical session we consider the models dis-
cussed in the lecture in a slightly different order.
First, we take a closer look at Gensim realization

6https://universaldependencies.org/
treebanks/ru_syntagrus/index.html

Figure 3: One slide from Lecture 9. Sparsification of
an ARTM model explained.

of the LDA model (Řehůřek and Sojka, 2010),
pick up the model’s optimal parameters in terms of
perplexity and topic coherence, and visualize the
model with pyLDAvis library. Next, we explore
BigARTM (Vorontsov et al., 2015) library, partic-
ularly LDA, PLSA, and multi-modal models, and
the impact of different regularizers. For all experi-
ments, we use a corpus of Russian-language news
from Lenta.ru 7 which allows us to compare the
models to each other.

Week 10. In this lecture we discussed mono-
lingual seq2seq problems, text summarization and
sentence simplification. We start with extractive
summarization techniques. The first approach intro-
duced is TextRank (Mihalcea and Tarau, 2004). We
present each step of this approach and explain that
any sentence or keyword embeddings can be used
to construct a text graph, as required by the method.
Thus we refer the students back to earlier lectures,
where sentence embeddings were discussed. Next,
we move to abstractive summarization techniques.
To this end, we present performance metrics, such
as ROUGE (Lin, 2004) and METEOR (Baner-
jee and Lavie, 2005) and briefly overview pre-
Transformer architectures, including Pointer net-
works (See et al., 2017). Next, we show recent
pre-trained Transformer-based models, which aim
at multi-task learning, including summarization.
To this end, we discuss pre-training approaches of
T5 (Raffel et al., 2020) and BART (Lewis et al.,
2020), and how they help to improve the perfor-
mance of mono-lingual se2seq tasks. Unfortu-
nately, when this lecture was created, multilingual
versions of these models were not available, so
they are left out of the scope. Finally, we talk about
sentence simplification task (Coster and Kauchak,
2011; Alva-Manchego et al., 2020) and its social
impact. We present SARI (Xu et al., 2016) as a

7https://github.com/yutkin/Lenta.
Ru-News-Dataset

19

metric for sentence simplification performance and
state, explain how T5 or BART can be utilized for
the task.

The practical session is devoted to extractive
summarization and TextRank algorithm. We are
urged to stick to extractive summarization, as Rus-
sian lacks annotated datasets, but, at the same time,
the task is demanded by in industry—extractive
summarization compromises than between the need
for summarization techniques and the absence of
training datasets. Nevertheless, we used annotated
English datasets to show how performance metrics
can be used for the task. The CNN/DailyMail ar-
ticles are used as an example of a dataset for the
summarization task. As there is no standard bench-
mark for text summarization in Russian, we have
to use English to measure different models’ per-
formance. We implement the TextRank algorithm
and compare it with the algorithm from the Net-
workX library (Hagberg et al., 2008). Also, we
demonstrate how to estimate the performance of
the summarization by calculating the ROUGE met-
ric for the resulting algorithm using the PyRouge
library8. This practical session allows us to refer
back the students to sentence embedding models
and showcase another application of sentence vec-
tors.

Week 11. The penultimate lecture approaches
Question-Answering (QA) systems and chat-bot
technologies. We present multiple real-life in-
dustrial applications, where chat-bots and QA
technologies are used, ranging from simple task-
oriented chat-bots for food ordering to help desk
or hotline automation. Next, we formulate the core
problems of task-oriented chat-bots, which are in-
tent classification and slot-filling (Liu and Lane,
2016) and revise methods, to approach them. Af-
ter that, we introduce the concept of a dialog sce-
nario graph and show how such a graph can guide
users to complete their requests. Without going
deep into technical details, we show how ready-
made solutions, such as Google Dialogflow9, can
be used to create task-oriented chat-bots. Next,
we move towards QA models, of which we pay
more attention to information retrieval-based (IR-
based) approaches and SQuAD-style (Rajpurkar
et al., 2016) approaches. Since natural language
generation models are not mature enough (at least
for Russian) to be used in free dialog, we explain

8urlhttps://github.com/andersjo/pyrouge
9https://cloud.google.com/dialogflow

how IR-based techniques imitate a conversation
with a user. Finally, we show how BERT can be
used to tackle the SQuAD problem. The lecture
is concluded by comparing industrial dialog assis-
tants created by Russian companies, such as Yan-
dex.Alisa or Mail.ru Marusya.

In the practical session we demonstrate several
examples of using Transformer-based models for
QA task. Firstly, we try to finetune Electra model
(Clark et al., 2020) on COVID-19 questions dataset
10 and BERT on SQuAD 2.0 (Rajpurkar et al.,
2018) (we use code from hugginface tutorial 11

for the latter). Next, we show an example of us-
age of pretrained model for Russian-language data
from DeepPavlov project. Finally, we explore how
to use BERT for joint intent classification and slot
filling task (Chen et al., 2019).

Week 12. The last lecture wraps up the course
by discussing knowledge graphs (KG) and some
of their applications for QA systems. We revise
core information extraction problems, such as NER
and relation detection, and show how they can be
used to extract a knowledge graph from unstruc-
tured texts (Paulheim, 2017). We touch upon the
entity linking problem but do not go deep into de-
tails. To propose to students an alternative view to
information extraction, we present machine read-
ing comprehension approaches for NER (Li et al.,
2019a) and relation detection (Li et al., 2019b), re-
ferring to the previous lecture. Finally, we close
the course by revising all topics covered. We recite
the evolution of text representation models from
bag-of-words to BERT. We show that all the prob-
lems discussed throughout the course fall into one
of three categories: (i) text classification or sen-
tence pair classification, (ii) sequence tagging, (iii)
sequence-to-sequence transformation. We draw at-
tention to the fact that the most recent models can
tackle all of the problem categories. Last but not
least we revise, how all of these problem statements
are utilized in real-life applications.

The practical session in this week is dedi-
cated to information extraction tasks with Stanford
CoreNLP library (Manning et al., 2014). The ses-
sion’s main idea is to demonstrate using the tool
for constructing knowledge graphs based on natu-
ral text. We consider different ways of using the

10https://github.com/xhlulu/covid-qa
11https://huggingface.co/

transformers/custom_datasets.html#
question-answering-with-squad-2-0

20

library and experimented with using the library to
solve different NLP tasks that were already con-
sidered in the course: tokenization, lemmatization,
POS-tagging, and dependency parsing. The library
includes models for 53 languages, so we consider
examples of solving these tasks for English and
Russian texts. Besides, relation extraction is consid-
ered using the Open Information Extraction (Ope-
nIE) module from the CoreNLP library.

4 Home works

The course consists of multiple ungraded quiz
assignments, 11 graded quiz assignments, three
graded coding assignments. Grading is performed
automatically in a Kaggle-like fashion.

4.1 Quiz Assignments

Every video lecture is followed by an ungraded
quiz, consisting of 1-2 questions. A typical ques-
tion address the core concepts introduced:

• What kind of vectors are more common for
word embedding models?
A1: dense (true), A2: sparse (false)

• What kind of layers are essential for GPT-2
model?
A1: transformer stacks (true), A2: recurrent
layers (false), A3: convolutional layers (false),
A4: dense layers (false)

A graded test is conducted every week, except
the very last one. It consists of 12-15 questions,
which we tried to split into three parts, being more
or less of the same complexity. First part questions
about main concepts and ideas introduced during
the week. These questions are a bit more compli-
cated than after video ones:

• What part of an encoder-decoder model solves
the language modeling problem, i.e., the next
word prediction?
A1: encoder (false), A2: decoder (true)

• What are the BPE algorithm units?
A1: syllables (false), A2: morphemes (false),
A3: n−grams (true), A4: words (false)

Second part of the quiz asks the students to conduct
simple computations by hand:

• Given a detailed description of an neural archi-
tecture, compute the number of parameters;

• Given a gold-standard NER annotation and
a system output, compute token-based and
span-based micro F1.

The third part of the quiz asks to complete a
simple programming assignment or asks about the
code presented in practical sessions:

• Given a pre-trained language model, compute
perplexity of a test sentence

• Does DeepPavlov cross-lingual NER model
require to announce the language of the input
text?

For convenience and to avoid format ambiguity,
all questions are in multiple-choice format. For
questions, which require a numerical answer, we
provided answer options in the form of intervals,
with one of the endpoints excluded.

Each quiz is estimated on a 10 point scale. All
questions have equal weights.

The final week is followed by a comprehensive
quiz covering all topics studied. This quiz is oblig-
atory for those students who desire to earn a certifi-
cate.

4.2 Coding assignments

There are three coding assignments concerning
the following topics: (i) text classification, (ii) se-
quence labeling, (iii) topic modeling. Assignments
grading is binary. Text classification and sequence
labeling assignments require students to beat the
score of the provided baseline submission. Topic
modeling assignment is evaluated differently.

All the coding tasks provide students with the
starter code and sample submission bundles. The
number of student’s submissions is limited. Sample
submission bundles illustrate the required submis-
sion format and could serve as the random baseline
for each task. Submissions are evaluated using the
Moodle12 (Dougiamas and Taylor, 2003) CodeRun-
ner13 (Lobb and Harlow, 2016) plugin.

4.2.1 Text classification and sequence
labeling coding assignments

Text classification assignment is based on the
Harry Potter and the Action Prediction Chal-
lenge from Natural Language dataset (Vilares and
Gómez-Rodríguez, 2019), which uses fiction fan-
tasy texts. Here, the task is the following: given

12https://moodle.org/
13https://coderunner.org.nz/

21

some text preceding a spell occurrence in the text,
predict this spell name. Students are provided
with starter code in Jupyter notebooks (Pérez and
Granger, 2007). Starter code implements all the
needed data pre-processing, shows how to imple-
ment the baseline Logistic Regression model, and
provides code needed to generate the submission.

Students’ goal is to build three different models
performing better than the baseline. The first one
should differ from the baseline model by only hy-
perparameter values. The second one should be a
Gradient Boosting model. The third model to build
is a CNN model. All the three models’ predictions
on the provided testing dataset should be then sub-
mitted to the scoring system. Submissions, where
all the models beat the baseline models classifica-
tion F1-score, are graded positively.

Sequence labeling Sequence labeling assign-
ment is based on the LitBank data (Bamman et al.,
2019). Here, the task is to given fiction texts, per-
form a NER labeling. Students are provided with a
starter code for data pre-processing and submission
packaging. Starter code also illustrates building a
recurrent neural model using the PyTorch frame-
work, showing how to compose a single-layer uni-
directional RNN model.

Students’ goal is to build a bidirectional LSTM
model that would outperform the baseline. Sub-
missions are based on the held-out testing subset
provided by the course team.

4.2.2 Topic modeling assignment

Topic modeling assignment motivation is to give
students practical experience with LDA (Blei et al.,
2003) algorithm. The assignment is organized as
follows: first, students have to download and pre-
process Wikipedia texts.

Then, the following experiment should be con-
ducted. The experiment consists of training and
exploring an LDA model for the given collection of
texts. The task is to build several LDA models for
the given data: models differ only in the configured
number of topics. Students are asked to explore
the obtained models using the pyLDAvis (Sievert
and Shirley, 2014) tool. This stage is not evalu-
ated. Finally, students are asked to submit the topic
labels that LDA models assign to words provided
by the course team. Such a prediction should be
performed for each of the obtained models.

5 Platform description

The course is hosted on OpenEdu 14 - an educa-
tional platform created by the Association “Na-
tional Platform for Open Education”, established
by leading Russian universities. Our course and all
courses on the platform are available free of charge
so that everyone can access all materials (includ-
ing videos, practical Jupyter notebooks, tests, and
coding assessments). The platform also provides
a forum where course participants can ask ques-
tions or discuss the material with each other and
lecturers.

6 Expected outcomes

First of all, we expect the students to understand
basic formulations of the NLP tasks, such as text
classification, sentence pair modeling, sequence
tagging, and sequence-to-sequence transformation.
We expect the students to be able to recall core
terminology and use it fluently. In some weeks,
we provide links to extra materials, mainly in En-
glish, so that the students can learn more about
the topic themselves. We hope that after complet-
ing the course, the students become able to read
those materials. Secondly, we anticipate that after
completing the course, the students are comfort-
able using popular Python tools to process texts in
Russian and English and utilize pre-trained mod-
els. Thirdly, we hope that the students can state
and approach their tasks related to NLP, using the
knowledge acquired, conducting experiments, and
evaluating the results correctly.

7 Feedback

The early feedback we have received so far is posi-
tive. Although the course has only been advertised
so far to a broader audience, we know that there
are two groups interested in the course. First, some
students come to study at their own will. Secondly,
selected topics were used in offline courses in an
inverse classroom format or as additional materials.
The students note that our course is a good starting
point for studying NLP and helps navigate a broad
range of topics and learn the terminology. Some of
the students note that it was easy for them to learn
in Russian, and now, as they feel more comfort-
able with the core concepts, they can turn to read
detailed and more recent sources. Unfortunately,
programming assignments turn out to be our weak

14https://npoed.ru/

22

Figure 4: The results of survey among course participants. Left: current educational level. Right: professional
area.

spot, as there are challenging to complete, and little
feedback on them can be provided.

We ask all participants to fill in a short survey
after they enroll in the course. So far, we have
received about 100 responses. According to the
results, most students (78%) have previously taken
online courses, but only 24% of them have experi-
ence with courses from foreign universities. The
average age of course participants is 32 years; most
of them already have or are getting a higher educa-
tion (see Fig. 4 for more details). Almost half of the
students are occupied in Computer Science area,
20% have a background in Humanities, followed
by Engineering Science (16%).

We also ask students about their motivation in
the form of a multiple-choice question: almost half
of them (46%) stated that they want to improve
their qualification either to improve at their current
job (33%) or to change their occupation (13%), and
20% answered they enrolled the course for research
and academic purposes. For the vast majority of
the student, the reputation of HSE university was
the key factor to select this course among other
available.

8 Conclusion

This paper introduced and described a new massive
open online course on Natural Language Process-
ing targeted at Russian-speaking students. This
twelve-week course was designed and recorded
during 2020 and launched by the end of the year.
In the lectures and practical session, we managed
to document a paradigm shift caused by the discov-
ery and widespread use of pre-trained Transformer-
based language models. We inherited the best of
two worlds, showing how to utilize both static word
embeddings in a more traditional machine learning
setup and contextualized word embeddings in the

most recent fashion. The course’s theoretical out-
come is understanding and knowing core concepts
and problem formulations, while the practical out-
come covers knowing how to use tools to process
text in Russian and English.

Early feedback we got from the students is pos-
itive. As every week was devoted to a new topic,
they did not find it difficult to keep being engaged.
The ways we introduce the core problem formula-
tions and showcase different tools to process texts
in Russian earned approval. What is more, the
presented course is used now as supplementary ma-
terial in a few off-line educational programs to the
best of our knowledge.

Further improvements and adjustments, which
could be made for the course, include new home
works related to machine translation or mono-
lingual sequence-to-sequence tasks and the devel-
opment of additional materials in written form to
support mathematical calculations, avoided in the
video lecture for the sake of time.

References

Alfred V Aho and Jeffrey D Ullman. 1972. The theory
of parsing, translation, and compiling.

Jay Alammar. 2015. The illustrated transformer. Jay
Alammar blog.

Fernando Alva-Manchego, Carolina Scarton, and Lu-
cia Specia. 2020. Data-driven sentence simplifica-
tion: Survey and benchmark. Computational Lin-
guistics, 46(1):135–187.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015.

23

David Bamman, Sejal Popat, and Sheng Shen. 2019.
An annotated dataset of literary entities. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2138–2144.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. The journal of machine learning re-
search, 3:1137–1155.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. the Journal of ma-
chine Learning research, 3:993–1022.

Leonard Bloomfield. 1936. Language or ideas? Lan-
guage, pages 89–95.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Pavel Braslavski. 2017. Nlp – how will it be in russian?
Habr blog.

Pavel Braslavski, Vladislav Blinov, Valeria Bolotova,
and Katya Pertsova. 2018. How to evaluate humor-
ous response generation, seriously? In Proceedings
of the 2018 Conference on Human Information In-
teraction & Retrieval, pages 225–228.

Mikhail Burtsev, Alexander Seliverstov, Rafael
Airapetyan, Mikhail Arkhipov, Dilyara Baymurz-
ina, Nickolay Bushkov, Olga Gureenkova, Taras
Khakhulin, Yurii Kuratov, Denis Kuznetsov, et al.
2018. Deeppavlov: Open-source library for dia-
logue systems. In Proceedings of ACL 2018, System
Demonstrations, pages 122–127.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. BERT
for joint intent classification and slot filling. CoRR,
abs/1902.10909.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence mod-
eling. In NIPS 2014 Workshop on Deep Learning,
December 2014.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In ICLR.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Édouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018).

William Coster and David Kauchak. 2011. Simple en-
glish wikipedia: a new text simplification task. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 665–669.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Martin Dougiamas and Peter Taylor. 2003. Moo-
dle: Using learning communities to create an open
source course management system.

Susan T Dumais. 2004. Latent semantic analysis. An-
nual review of information science and technology,
38(1):188–230.

Andrea Esuli and Fabrizio Sebastiani. 2009. Active
learning strategies for multi-label text classification.
In European Conference on Information Retrieval,
pages 102–113. Springer.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen
Arivazhagan, and Wei Wang. 2020. Language-
agnostic bert sentence embedding. arXiv preprint
arXiv:2007.01852.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. In Proceedings of Workshop for NLP
Open Source Software (NLP-OSS), pages 1–6.

Yoav Goldberg. 2017. Neural network methods for nat-
ural language processing. Synthesis lectures on hu-
man language technologies, 10(1):1–309.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor OK Li, and Richard Socher. 2017. Non-
autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281.

24

Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008.
Exploring network structure, dynamics, and func-
tion using networkx. Technical report, Los Alamos
National Lab.(LANL), Los Alamos, NM (United
States).

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza
Haffari, and Trevor Cohn. 2018. Iterative back-
translation for neural machine translation. In Pro-
ceedings of the 2nd Workshop on Neural Machine
Translation and Generation, pages 18–24.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

T HOFMANN. 1999. Probabilistic latent semantic
analysis. In Proc. Conf. on Uncertainty in Artificial
Intelligence (UAI), 1999, pages 289–296.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text de-
generation. In International Conference on Learn-
ing Representations.

Daniel Jurafsky and James H Martin. 2000. Speech
and language processing: An introduction to natural
language processing, computational linguistics, and
speech recognition.

Andrej Karpathy. 2015. The unreasonable effective-
ness of recurrent neural networks. Andrej Karpathy
blog, 21:23.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. CoRR, abs/1408.5882.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proc. ACL.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In 1995
international conference on acoustics, speech, and
signal processing, volume 1, pages 181–184. IEEE.

Mikhail Korobov. 2015. Morphological analyzer and
generator for russian and ukrainian languages. In
International Conference on Analysis of Images, So-
cial Networks and Texts, pages 320–332. Springer.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-
tional conference on machine learning, pages 1188–
1196. PMLR.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.

2020. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880.

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong
Han, Fei Wu, and Jiwei Li. 2019a. A unified mrc
framework for named entity recognition. arXiv
preprint arXiv:1910.11476.

Xiaoya Li, Fan Yin, Zijun Sun, Xiayu Li, Arianna
Yuan, Duo Chai, Mingxin Zhou, and Jiwei Li. 2019b.
Entity-relation extraction as multi-turn question an-
swering. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1340–1350.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Bing Liu and Ian Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. Interspeech 2016, pages 685–689.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Richard Lobb and Jenny Harlow. 2016. Coderunner:
A tool for assessing computer programming skills.
ACM Inroads, 7(1):47–51.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Chandler May, Alex Wang, Shikha Bordia, Samuel
Bowman, and Rachel Rudinger. 2019. On measur-
ing social biases in sentence encoders. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 622–628.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL’05), pages 91–98.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404–411.

25

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems-
Volume 2, pages 3111–3119.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016a. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016b. Universal dependen-
cies v1: A multilingual treebank collection. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 1659–1666.

Christopher Olah. 2015. Understanding lstm networks.
Christopher Olah blog.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Heiko Paulheim. 2017. Knowledge graph refinement:
A survey of approaches and evaluation methods. Se-
mantic web, 8(3):489–508.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Fernando Pérez and Brian E. Granger. 2007. IPython:
a system for interactive scientific computing. Com-
puting in Science and Engineering, 9(3):21–29.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227–2237.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language mod-
els are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:1–67.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. CoRR, abs/1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2021. A primer in bertology: What we know about
how bert works. Transactions of the Association for
Computational Linguistics, 8:842–866.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and
Preslav Nakov. 2020. Poor man’s bert: Smaller
and faster transformer models. arXiv preprint
arXiv:2004.03844.

Erik Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003, pages 142–147.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Sebastian Schuster and Christopher D Manning. 2016.
Enhanced english universal dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’16), pages 2371–2378.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083.

Ilya Segalovich. A fast morphological algorithm with
unknown word guessing induced by a dictionary for
a web search engine.

Carson Sievert and Kenneth Shirley. 2014. Ldavis:
A method for visualizing and interpreting topics.
In Proceedings of the workshop on interactive lan-
guage learning, visualization, and interfaces, pages
63–70.

Fei Song and W Bruce Croft. 1999. A general language
model for information retrieval. In Proceedings of
the eighth international conference on Information
and knowledge management, pages 316–321.

26

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: Trainable pipeline for processing CoNLL-U
files performing tokenization, morphological analy-
sis, POS tagging and parsing. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 4290–
4297, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Milan Straka and Jana Straková. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99.

Ilya Sutskever, James Martens, and Geoffrey E Hin-
ton. 2011. Generating text with recurrent neural net-
works. In ICML.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in Neural Information Processing Systems,
27:3104–3112.

Lucien Tesnière. 2015. Elements of Structural Syntax.
John Benjamins Publishing Company.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, pages 6000–6010.

David Vilares and Carlos Gómez-Rodríguez. 2019.
Harry Potter and the action prediction challenge
from natural language. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2124–2130, Minneapolis, Minnesota.
Association for Computational Linguistics.

Konstantin Vorontsov, Oleksandr Frei, Murat Apishev,
Peter Romov, and Marina Dudarenko. 2015. Bi-
gartm: Open source library for regularized multi-
modal topic modeling of large collections. In Inter-
national Conference on Analysis of Images, Social
Networks and Texts, pages 370–381. Springer.

Konstantin Vorontsov and Anna Potapenko. 2015. Ad-
ditive regularization of topic models. Machine
Learning, 101(1):303–323.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. 2019a. Superglue:
A stickier benchmark for general-purpose language
understanding systems. Advances in Neural Infor-
mation Processing Systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019b.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019.

Jason Wei and Kai Zou. 2019. Eda: Easy data augmen-
tation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 6383–6389.

Robert West and Eric Horvitz. 2019. Reverse-
engineering satire, or “paper on computational hu-
mor accepted despite making serious advances”. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 7265–7272.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert.
arXiv preprint arXiv:1910.06188.

Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong
Hu, Jason Corso, and Jianfeng Gao. 2020. Unified
Vision-language Pre-training for Image Captioning
and VQA. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 13041–
13049.

27

Proceedings of the Fifth Workshop on Teaching NLP, pages 28–33
June 10–11, 2021. ©2021 Association for Computational Linguistics

Natural Language Processing 4 All (NLP4All): A New Online Platform
for Teaching and Learning NLP Concepts

Anonymous NAACL-HLT 2021 submission

Abstract

Natural Language Processing offers new in-001
sights into language data across almost all dis-002
ciplines and domains, and allows us to cor-003
roborate and/or challenge existing knowledge.004
The primary hurdles to widening participation005
in and use of these new research tools are, first,006
a lack of coding skills in students across K-16,007
and in the population at large, and second, a008
lack of knowledge of how NLP-methods can009
be used to answer questions of disciplinary in-010
terest outside of linguistics and/or computer011
science. To broaden participation in NLP and012
improve NLP-literacy, we introduced a new013
tool web-based tool called Natural Language014
Processing 4 All (NLP4All). The intended015
purpose of NLP4All is to help teachers facili-016
tate learning with and about NLP, by providing017
easy-to-use interfaces to NLP-methods, data,018
and analyses, making it possible for non- and019
novice-programmers to learn NLP concepts in-020
teractively.021

1 Introduction022

An emerging body of work has explored ways of023

lowering the threshold for people to work with AI024

and ML-technologies, specifically in educational025

contexts. Much of this work has focused on making026

AI “explainable” (Gunning, 2017) by visualizing027

the underlying math, or visualizing how machines028

make decisions. However, NLP has been largely029

absent from these efforts so far. To address this gap,030

we developed a new educational tool called Natu-031

ralLanguageProcessing4All (NLP4All), which al-032

lows teachers to interactively introduce applica-033

tions of statistical NLP to students without any034

coding skills.035

NLP4All1 is a web-based interface for teaching036

and learning NLP concepts, designed with flex-037

ibility and accessibility in mind. It is an open038

1A demo version of NLP4All can be accessed here:
http://86.52.121.12:5000/, pre-loaded with the data and analy-
sis described in this paper.

source application built in Python on top of the 039

Flask framework, and can therefore be easily ex- 040

tended with existing Python-based NLP- and ML- 041

packages. The first prototype of NLP4All is de- 042

signed to work with tweets only, but we are cur- 043

rently expanding to be able to work with any kind 044

of text, bringing NLP tools to a wider array of 045

disciplines and student populations. 046

We first present the design of the tool and its 047

current capabilities, and then briefly describe two 048

different real-world settings in which we have used 049

NLP4All. 050

2 Teaching text classification with 051

NLP4All 052

NLP4All provides two different user types: teach- 053

ers and students. Whereas teachers can see data 054

from all students and can create new projects, stu- 055

dents’ activities are more limited in the system. 056

The system is organized into user groups, 057

projects, and analyses. To better describe how 058

the system, we will briefly outline how each of 059

these work. 060

2.1 User Groups 061

User groups provide an easy way to organize 062

groups of students. A group will consist of stu- 063

dents who are doing the same activities, and simply 064

act as an easy way to add students to projects. They 065

will typically consist of students in one class. User 066

groups can be created by a teacher and associated 067

with a unique sign-up link to be distributed to the 068

intended recipient group. 069

2.2 Projects 070

Projects in NLP4All offer teachers a way to orga- 071

nize a lesson by selecting some texts of interest, 072

and tying them to a user group. A project consists 073

of a title, a description, a user group (of students), 074

and a set corpora that will be included in the project. 075

Teachers create projects with associated datasets 076

1
28

prior to classroom sessions; they can either choose077

to use several pre-loaded datasets (Tweets from the078

accounts of different American and Danish politi-079

cians or political parties) or upload their own texts080

in .csv or .json format.081

Figure 1: Teacher view displaying Projects interface.

2.3 Analyses082

Inside a project, both teachers and students can cre-083

ate a new analysis. An analysis is NLP4All’s name084

for an untrained model and all data associated with085

training it. Students can create a new analysis if086

they think that they have trained their old model087

poorly and want to start from scratch. Students can088

only create personal analyses - i.e. analyses that089

are unique to their account, and not shared among090

other members of the user group. Teachers, in con-091

trast, can create analyses that are shared between092

all members of a user group.093

There are two different ways in which an analy-094

sis can be shared (Fig. 2): the teacher can choose095

to just share the texts that students hand-label, or096

they can choose to share an underlying model. For097

the former case, the teacher can specify a number098

of texts from each category, and NLP4All will cre-099

ate a mini-corpus of just those texts for students100

to work with. For the latter case, students work101

with the whole corpus of the texts present in the102

project, but all train the same underlying model as103

they hand label texts.104

NLP4All also supports text annotation, but we105

do not discuss this functionality here.106

3 Example: Teaching classification with107

NLP4All108

The initial version of NLP4All features interactive109

tools for a curriculum module on text classifica-110

tion with Naïve Bayes and Logistic Regression111

models. In this section, we walk through an exam-112

ple of how NLP4All could be used in the classroom113

Figure 2: New Analysis interface.

to introduce Naïve Bayes text classification using 114

a corpus of posts from the Twitter accounts of Joe 115

Biden and Bernie Sanders collected in the run-up 116

to the 2020 Democratic Primaries. 117

Upon logging in, students see a landing page 118

which lists all projects that the student is currently 119

part of, as determined by the instructor (Fig. 3). 120

Figure 3: Landing page for students.

3.1 Hand labeling: The Tweet View 121

The current implementation of NLP4All has a spe- 122

cial view called the Tweet View, where students 123

hand label Twitter data, as seen in Fig. 4. At the 124

bottom of the page, it shows the tweet currently be- 125

ing labeled. Students label each tweet by dragging 126

the Twitter bird to whichever side of the circle rep- 127

resents the category that they think the it belongs to. 128

For example, by dragging the bird to the green part 129

of the circle, a student would label the tweet in Fig. 130

4 as having been written by Bernie Sanders. All 131

2
29

Tweets in this dataset were pre-processed so that132

mentions, hashtags, and links were replaced with133

mention, #hashtag, and http://link, respectively.134

Figure 4: The Tweet View interface.

In the top right corner Fig. 4, the Tweet View135

also shows the model’s best estimate of who wrote136

the tweet, based on the data that it has been trained137

on so far. For the current tweet, the model estimates138

that Biden wrote the tweet with around .63 and that139

Bernie wrote it with the remaining .37. By making140

the classification explicit to students, we hope to141

achieve two different goals. First, we want students142

to understand how each word contributes to the143

overall classification. Second, we want students144

to critically reflect on whether they agree with the145

model’s assessment. It is, of course, important146

when working with ML to not always trust your147

model. By giving students a clear idea of how148

the model reaches its conclusions, we hope that149

students can learn not only to be skeptical of ML150

models in a general sense, but that they can begin to151

understand why particular features or combinations152

of features may confuse a model, and through this153

get a better sense of what can go wrong when ML154

makes classifications. Finally, at the top of the155

page, students are shown how many more tweets156

this student needs to hand label before they are157

done with all tweets.158

4 Using label and word statistics to159

facilitate learning160

Clicking the Label & Word Statistics link at the161

top of the page gives an overview of all tweets162

that students in this shared analysis have labeled,163

how many labeled them correctly, and how many164

labeled them incorrectly. 165

The purpose of this view is for the teacher to be 166

able to discuss with students which tweets are hard 167

to classify (i.e. the ones that many hand label incor- 168

rectly), which ones are easy, to foster discussion 169

in the classroom what we know about these data. 170

The screenshot below shows us this list, sorted by 171

correct-% in ascending order. Here, we see that 22 172

out of 23 students mislabeled the tweet with the 173

text, “FLORIDA: Today is the LAST DAY to reg- 174

ister for the Democratic primary. You must register 175

as a Democrat to vote in the March 17th primary 176

at http://link Let’s win this together! http://link”. 177

This is not surprising, given how generic this tweet 178

is given the choice between two democratic candi- 179

dates competing in the same primaries. 1803/15/2021 NLP4All

86.52.121.12:5000/shared_analysis_view?analysis=1 1/1

Figure 5: Label & Word Statistics view. After students
participate in hand labeling data, this view can be used
to facilitate discussion.

Sorting the list in descending order of correct-%, 181

we can see the tweets that all or most students la- 182

beled correctly. For instance, the tweet “We will 183

not defeat Donald Trump with a candidate who, 184

instead of holding the crooks on Wall Street ac- 185

countable, blamed the end of racist policies such 186

as redlining for the financial crisis.” was seemingly 187

easily recognizable as a Bernie-tweet (23/23 stu- 188

dents labeled it correctly.) Similarly, “We need a 189

leader who will be ready on day one to pick up the 190

pieces of Donald Trump’s broken foreign policy 191

and repair the damage he has caused around the 192

world. http://link” was easily recognizable by 23 193

students as having been written by the Biden team. 194

(The wrong guess was from the teacher demonstrat- 195

ing the system to students.) 196

The See all words link brings up a table of all 197

words present in tweets that have been labeled so 198

far. This list shows how many times each word 199

3
30

Figure 6: Label & Word Statistics view, sorted by %
correctly labeled.

has appeared in the set of labeled tweets, and to200

which extent each word predicts each of the cat-201

egories in the project, here Joe Biden and Bernie202

Sanders. For instructional purposes, this list can203

be used to discuss a variety of questions: In the204

screenshot above, the list is sorted by how many205

times a word appears. Since the texts have not been206

filtered, this can act as a point of entry to a dis-207

cussion of why only some words are meaningful208

when it comes to distinguishing between different209

classes. The teacher may choose this moment to210

introduce students to the concept of stop words, or211

even to the notion of statistical power laws behind212

word frequency (Zipf’s law).213

Figure 7: Word statistics, sorted by frequency.

4.1 Model training and evaluation214

NLP4All also lets students create their own Naïve215

Bayes models by specifying a set search terms to216

train their model on. Asterisks work as wildcards,217

and can be placed anywhere in a word, including 218

at the front or back. Importantly, for the purpose of 219

reflection and classroom discussions, students are 220

prompted to also state a reason why they think this 221

would be a good word feature for distinguishing 222

between the categories of text in the project. In 223

the screenshot in Fig. 8 we see how one student 224

has added four different terms and their reasons for 225

inclusion. 226

Figure 8: Student-defined word features

By clicking Run Model button at the bottom, 227

NLP4All finds all words that match the search 228

terms (including wild cards) and trains a Naïve 229

Bayes model based on them. It returns the screen 230

shown in the example screenshot in Fig. 9. 231

Here, the user is shown a table with information 232

on each word found from their set of search terms: 233

which category the model predicts based on the 234

training set, how accurately that word was for pre- 235

dicting tweets in the test set, and how many tweets 236

contain the word (‘targeted’) in the test set. 237

In this particular case, we see that the word ‘bil- 238

lionaire’ is the most predictive term: based on the 239

training set, the model predicts that a tweet con- 240

taining ‘billionaire’ is written by Bernie Sanders, 241

and this was the case in every single one of the 242

54 tweets containing this word in the test set. Fi- 243

nally, each search term earns a score. This provides 244

a “gamified” element of NLP4All that can be ig- 245

nored, but that has been found to be motivating and 246

fun to many students. Students can iterative im- 247

prove their models by adding or removing search 248

4
31

Figure 9: Feedback on model performance

terms, and running these analyses until they are249

happy with the terms they have found.250

NLP4All users can also view confusion matrices251

for any of their trained models, as illustrated in Fig.252

10.253

Figure 10: Viewing a confusion matrix

5 NLP4All in the classroom: Case studies 254

5.1 Introducing text classification to MA 255

students in the Humanities 256

Recent revisions to the national study regulations 257

for humanities students in Denmark place an em- 258

phasis on digitization and digital literacy. This 259

poses a challenge, however, as students in these 260

programs typically have little background or inter- 261

est in math, statistics, or programming and some 262

lack even basic computer skills. 263

Working with a faculty member in at a ma- 264

jor Danish university, we developed a classroom 265

module on Classification as part of a introductory 266

course on Computational Linguistics. The students 267

in the class were second semester masters students 268

in Linguistics and Cognitive Semiotics. Only one 269

out of 22 students had any background in program- 270

ming, and none had taken a specialization in math 271

or science in high school. Student prepared for the 272

two-week module by reading an introductory text- 273

book chapter on Document Classification (Dickin- 274

son et al., 2012). 275

In a post-classroom evaluation of students 276

(n=20), 100% agreed that ‘the in-class exercises 277

using NLP4All were effective for learning’ and that 278

the exercises ‘improved my understanding of text 279

classification’. In additional comments, several stu- 280

dents reported that they enjoyed the gamified and 281

competitive aspect of NLP4All, while others men- 282

tioned that they liked the opportunity to work with 283

real-world social media data. 284

5.2 Facilitating social studies discussion in a 285

Danish high school 286

We tested NLP4All in a Social Studies high school 287

classroom. In collaboration with a social studies 288

teacher, we developed a 6-hour learning unit on lan- 289

guage, ideology and political parties. The unit was 290

designed to address one of learning goals of our na- 291

tional learning standards, specifying that students 292

should learn about the different policy positions of 293

political parties (we have 13 in our national par- 294

liament.) In other words, the purpose was not to 295

teach NLP, but to teach with NLP, and to offer NLP- 296

methods as a way of analyzing larger amounts of 297

text than is otherwise possible. 298

24 2nd year (sophomore) Danish high school stu- 299

dents participated, with roughly equal numbers of 300

girls and boys. In a survey sent out to students prior 301

to our test, none of these students self-reported as 302

having any programming experience, and 20 out of 303

5
32

24 reported no or low interest in computer science304

or machine learning. All had self-selected into “A-305

level” Social Studies, a 3-year elective class. About306

one third of students had immigrant backgrounds,307

slightly above the national average.308

The teacher and students used NLP4All to dis-309

cuss tweets from pairs of Danish political parties.310

First, students had to label tweets and a model to311

tell a socialist and a nationalist party apart. Then,312

students did the same with the same socialist party,313

and a libertarian party.314

We cannot report on more concrete findings or315

analyses of learning data at present, as these re-316

sults are currently under review at another venue.317

However, in evaluations the students reported en-318

joying being able to provide concrete evidence for319

their analyses. To them, purely qualitative analy-320

ses sometimes feel fluffy, but by showing that their321

analyses were backed up by hundreds or thousands322

of tweets made them feel more comfortable making323

claims during classroom discussions.324

6 Comparison to Prior Work325

We have found two systems that are similar to326

NLP4All in certain ways, though also different in327

others. GATE (Cunningham, 2002) is a combined328

Java API and graphical interface that makes it easy329

to create NLP pipelines without writing all code330

from scratch. While it was originally made for re-331

searchers, it has also been used in teaching contexts332

(Bontcheva et al., 2002) because it makes it easy333

for novice programmers to implement more sophis-334

ticated NLP methods than they could do on their335

own. However, presumably because GATE was336

made for researchers, it is not made for classroom337

contexts, and does not offer interfaces on data that338

would be useful for teachers during the teaching sit-339

uation. Light et al. (2005) present a web interface340

that lets novices process text with common models341

and methods like NLTK’s PoS tagger and grammar342

parser. The web interface lets novices combine343

these models when processing text and visualizes344

output. However, similar to GATE, this interface345

does not provide views on data that are relevant to346

the teaching context. Additionally, the modules are347

black boxed to the students and do not provide any348

information on how the models work, how they are349

trained, or how they make predictions.350

7 Conclusion 351

At present, NLP4All provides support for teaching 352

the following technical topics, without requiring 353

any programming on the part of teachers or stu- 354

dents: 355

• Classification algorithms 356

– Naive Bayes 357

– Logistic regression 358

• Feature selection 359

• Supervised machine learning, test and train 360

sets 361

• Model evaluation 362

– Precision, recall, f-measure 363

– Confusion matrices 364

With a grant received in Spring 2021, the platform 365

will be extended to support new learning mod- 366

ules on tf-idf, vector-based representations of texts, 367

topic modeling, and word embeddings. 368

References 369

Kalina Bontcheva, Hamish Cunningham, Valentin 370
Tablan, Diana Maynard, and Oana Hamza. 2002. 371
Using GATE as an Environment for Teaching NLP. 372
In Proceedings of the ACL-02 Workshop on Effec- 373
tive tools and methodologies for teaching natural 374
language processing and computational linguistics, 375
pages 54–62. 376

Hamish Cunningham. 2002. GATE: A framework and 377
graphical development environment for robust NLP 378
tools and applications. In Proc. 40th annual meet- 379
ing of the association for computational linguistics 380
(ACL 2002), pages 168–175. 381

Markus Dickinson, Chris Brew, and Detmar Meurers. 382
2012. Language and computers. John Wiley & 383
Sons. 384

David Gunning. 2017. Explainable artificial intelli- 385
gence (xai). Defense Advanced Research Projects 386
Agency (DARPA), nd Web, 2(2). 387

Marc Light, Robert Arens, and Xin Lu. 2005. Web- 388
based interfaces for natural language processing 389
tools. In Proceedings of the Second ACL Workshop 390
on Effective Tools and Methodologies for Teaching 391
NLP and CL, pages 28–31. 392

6
33

Proceedings of the Fifth Workshop on Teaching NLP, pages 34–45
June 10–11, 2021. ©2021 Association for Computational Linguistics

A New Broad NLP Training from Speech to Knowledge

Maxime Amblard and Miguel Couceiro
LORIA, UMR 7503, Université de Lorraine, Inria and CNRS

{maxime.amblard, miguel.couceiro}@univ-lorraine.fr

Abstract

In 2018, the Master Sc. in NLP1 opened at
the IDMC2, Université de Lorraine - Nancy,
France. Far from being a creation ex-nihilo,
it is the product of a history and many reflec-
tions on the field and its teaching. This article
proposes epistemological and critical elements
on the opening and maintainance of this so far
new master’s program in NLP.

1 Introduction

This article discusses the epistemological back-
ground of the creation of the Master of Science
program in natural language processing (NLP) at
the University of Lorraine in 2018. It puts for-
ward a critical analysis of the environment, of the
methodology chosen to produce this program, and
it highlights the salient elements for the teaching
of NLP.

Currently, the master’s degree is taught at the
IDMC of the University de Lorraine. It is accessi-
ble to students trained within the undergraduate pro-
gram of the institute or to students that successfully
apply to the program. A jury from the pedagogi-
cal team evaluates the adequacy of the candidates’
profile with the requirements and expectations of
the training. For the detailed description of the
master’s degree in NLP, please visit our dedicated
website3.

We propose a singular training at the French
level, and probably at the international level. It is a
Master’s degree that gives the tools and methods to
carry out language data processing. If NLP is at the
heart of the training, we have opened up to speech
and knowledge processing. The objective is to train
tomorrow’s professionals in both the economic and
academic fields for language data processing.

1Natural Language Processing
2Institut des Sciences du Digital, du Management et de la

Cognition https://idmc.univ-lorraine.fr/
3https://idmc.univ-lorraine.fr/idmc-master-degree-in-

natural-language-processing/

In this article we present the Master’s degree in
NLP at the IDMC. We start by reviewing the histori-
cal background that is important to the current NLP
Master’s program, before presenting the approach
explaining the constitution of the program. We will
then return to the program itself and discuss some
structural aspects. Finally, we put forward some
elements of analysis.

2 History

The Department of Mathematics and Computer Sci-
ence at the University of Nancy 2 pursued a policy
of opening up both of these disciplines to human
and social sciences. At the beginning of the 2000s,
the department proposed a training program based
on these aspects by integrating economics and busi-
ness management. Following this interdisciplinary
view, the pedagogical team created a bachelor’s
degree program in cognitive sciences. Several the-
matic openings were made, in particular, towards
psychology, biology, linguistics and neurosciences.
The dynamics was successful and paved the way
to the opening of a complete master’s program in
Cognitive Sciences (two years). The core of the
training has clearly been cognitive sciences.

2.1 Research environment

The French higher education and research implies
that research and teaching are carried out in dif-
ferent components. Thus, the teachers carry out
their research in a different research laboratory.
In Nancy (France), two laboratories are particu-
larly concerned: LORIA4 and ATILF5. These two
laboratories are mixed research units, i.e., univer-
sity laboratories co-accredited by a research center.
This co-accreditation makes it possible to integrate
staff who only have research duties. It appears as
a quality label for the research carried out. ATILF

4https://www.loria.fr/en/
5https://www.atilf.fr//

34

is co-accredited by the CNRS6, and LORIA is co-
accredited by the CNRS and Inria7. The two lab-
oratories ensure a sustained research activity in
the field in Nancy. ATILF is organized with three
themes: lexicons; corpora and knowledge; and dy-
namic aspects of language. Atilf is known for the
Trésor de la Langue Française Informatisé, a large
online dictionary of French.

Research in computer science is carried out
jointly by LORIA and the Inria Nancy Grand-Est
center. Beyond institutional issues, the researchers
work jointly on all computer science domains. In
particular, LORIA is organised into research de-
partments, one of which is the largest and entirely
devoted to NLP research. The department gathers
about fifty permanent staff members in eight teams
of different sizes (Cello, Team K, Multispeech, Or-
pailleur, Read, SMarT, Sémagramme, Synalp).

2.2 Creation of a training program in NLP

The dynamics of the teaching of mathematics and
computer science open to other disciplines, and the
strong research activity in Nancy have proven to
be a favorable ground for the creation of a training
program in NLP. In the early 2000s, the Master’s
degree in Cognitive Science integrated language-
related issues into some of its courses. A DESS, an
applied training program at the master’s level, was
also opened for a few years under the direction of
Fiammetta Nammer and Yannick Toussaint. How-
ever, as the people in charge were not in the teach-
ing component and the theme was not yet explicitly
recognized by the French industry, this attempt had
to be stopped quickly. It nevertheless established
the possibility of developing a curriculum in NLP.

It was in 2005 that the main turning point took
place. At that time, the dynamic was set up, embod-
ied by Patrick Blackburn and Guy Perrier. The lat-
ter was a university professor in computer science
and set up a training program integrating students
from computer science programs with linguistics
programs within the Master’s degree in Cognitive
Science. During this time, Patrick Blackburn was
working on the creation of the Erasmus Mundus
Language and Communication Technologies con-
sortium, of which Nancy would be the french part-
ner.

The Erasmus Mundus master’s program on Lan-

6Centre National pour la Recherche Scientifique
https://www.cnrs.fr/

7Institut National de la Recherche en Informatique et Au-
tomatique https://inria.fr/

guage and Communication Technologies8 is a joint
master’s program between seven European Univer-
sities. This is an excellence program supported by
European Union, which offers appealing grants to
students each year. The recipients are selected at
the international level and based on selection cri-
teria9 that take into account the qualitiy of their
trainning and their motivation. Some students inte-
grate the program as self-funded. Each student of
the program spends a full year in two partner uni-
versity of the consortium. They also share activities
and events all together during the year.

In 2009, Maxime Amblard took over the respon-
sibility of the Master’s program on Cognitive Sci-
ences (SC), institutionalizing the existence of the
NLP theme in the university. From that moment
on, he has been in charge of the NLP theme, first
as head of the SC Master’s program from 2009 to
201210, and then as head of the M2 TAL11 special-
ity from 2010 to 2012 and from 2015 to 2018. He
carried out two years of sabatical leave12 fully ded-
icated to research. He was then the project leader
for the creation of the Master’s program in NLP
that was opened in 2018. He was the creator and
organizor of the teaching from 2009 to today, both
in Cognitive Sciences and in NLP. The responsibili-
ties of 2nd year of the NLP program were assumed
by Fabienne Venant in 2009-2010, Laure Buhry in
2013-14, then Miguel Couceiro from 2018. The co-
ordination of the Erasmus Mundus LCT at the Uni-
versité de Lorraine has been carried out by Miguel
Couceiro since 2015.

2.3 Other contextual elements

In addition to the synergy between the cognitive
science and NLP courses, it is worth noting the
presence of other important training factors. On the
one hand, there is a Master’s degree in Language
Sciences as well as a second Erasmus Mundu pro-
gram specialized in Lexicology: EMLEX13. This
program works very differently because the classes
share semesters together on a given campus. The
students are therefore not systematically present
in Nancy. In all cases, they are also international
students selected for their results and motivation.

8https://lct-master.org/
9See https://lct-master.org/

10The responsibility of the SC master has since been as-
sumed by Manuel Rebuschi

11“Traitement automatique des langues” that then became
NLP.

12délégation
13https://www.emlex.phil.fau.eu/

35

In addition, the Université de Lorraine integrates
engineering schools into its structure. In particular,
the Ecole des Mines de Nancy. This engineering
training is recognized as being of high quality in
France. However, students from this type of train-
ing rarely go on to complete a PhD, despite their
qualities. For those who are interested in this type
of opening, it is traditional to offer double courses
with Master’s programs. Thus we have set up an ex-
change protocol that allows students from the Ecole
des Mines to join the Master’s program during the
last year of the program.

All these elements made the Université de Lor-
raine a suitable environment for developing the
master’s program in NLP.

3 Definition of the NLP program

The first question is to decide to whom the program
is intended. To do this we went back to the ambi-
tion we wanted to give to the program. Once the
objective was clarified, we were able to work on
defining the content of the program.

3.1 Program’s objectives

The first observation made in 2016 was that there
was an effective increase in the need for NLP, both
for industrial issues and for the development of
research. At that time, a very strong dynamic was
already in place, driven by AI and deep learning.

We realized that the training we had developed
until then was attached to a more traditional defi-
nition of NLP, rooted in computer science and lin-
guistics. Its objectives being mainly to accompany
students towards research, this was not very surpris-
ing, but it proved to be out of step with scientific
and societal evolutions.

The project took shape in the idea of considering
that students should leave the Master’s program
for industry as much as for research. We already
considered that a significant part of the companies
concerned were also concerned with research is-
sues. This shift towards more applicative issues
also seemed necessary to us to be able to integrate
more students into the training.

Moreover, our experience with the second year
of the Master’s program showed us that the students
who successfully completed the program could
have very heterogeneous profiles. The challenge
for us was more to define the type of profile that
we wanted to find at the end of the training and
to propose paths to bring the students there. This

being the case, in view of the size of the classes, it
was not possible to multiply the paths and above all,
it seemed important to us that the profiles be built
in interaction with each other. To achieve this, we
need to have a precise vision of the type of training
we can accept.

We have therefore chosen to build a training pro-
gram centered on computer science and mathemat-
ics for the NLP that is as open to research issues as
it is to applications.

3.2 Methodology

To build the program, a project manager was ap-
pointed in 2015 by the teaching component in the
person of Maxime Amblard with the task of de-
signing a project to be presented to the university
in June 2016. Some examples were used, such
as (Bender et al., 2008).

The project manager made the choice to start
from scratch, considering that the contents present
at that time needed to be renovated. He set up a
working group gathering members of the LORIA
and ATILF teams working on language data who
wanted to invest in the new training. The aim was to
integrate new colleagues, new views and possibly
new themes/issues.

A shared space was set up online allowing all
parties to access the working material as it became
available. The working group started with 13 peo-
ple and ended up with 25 people. It was decided
to meet the equivalent of once a month until July
2026. After each meeting, the leader wrote a report
that was sent to all members, as well as a doo-
dle to choose the date of the next meeting and the
agenda of this meeting. The participants thus had
the agenda well in advance, which allowed them
to prepare the meeting as well as possible or to
send their points of view and their work in case
of absence. This methodology ensured that no in-
formation was lost and that the work dynamic was
maintained throughout the year. In addition, meet-
ing times were strictly adhered to. In the end, this
procedure worked well in a complicated context.
All the proposals made were heard and discussed.
Some less committed participants naturally with-
drew from the project. The vast majority of the
participants stayed until the end and others were
really committed to the project. We did not need to
change the methodology during the process. The
most difficult element to manage was to maintain
a focus with the group and synthesize all the pro-

36

posals as we went along. We return to the major
orientations in the following section.

Higher education and research are undergoing
numerous transformations. This is obviously the
case in France. In particular, at that time, major
programs were being launched and it was important
to position training in this ecosystem. In the end,
we quickly dismissed this issue, considering that
the constitution of a scientifically solid program
would always be easier to defend.

After several discussion sessions, we came to
some important conclusions:

• the environment has many competences as
well in data processing as in linguistics, which
moreover with habits of work in common;

• the Erasmus Mundus LCT obliged us to teach
in English, which is not always easy in France,
but this should be a strength for the recruit-
ment of international students;

• we had a scientific positioning neither in com-
puter science nor in linguistics, clearly based
on mathematics and computer science;

• it is now possible to award a French diploma
in NLP;

• the needs in both the industrial and the aca-
demic worlds are important.

We have also considered two hypotheses on the
organization of the training: the non-opening of
the training to distance learning because it requires
another type of organization that we cannot propose
for now, and the possibility of carrying out the
training in alternation. This program is a French
specificity which allows students to study while
being employed by a company. Thus, the training
alternates (in the literal sense) periods of training
at the institute and periods of work in a company.

One important aspect is to have concluded that
if we have many strengths in the field of NLP, we
have the specificity of covering a wider field of
language data processing. If we are not the only
ones in France, we wanted to make a specificity
of our mathematic and computer science position-
ing in the field of language data processing. We
have therefore decided to offer a curriculum enti-
tled “Computer Science, Speech, Text and Knowl-
edge”. Thus, the new program deals with speech
processing, NLP and knowledge. It is obvious that
the reconciliation of formal and statistics tools op-
erated in the last ten years facilitates this closeness.

3.3 Broad Program Directions

We have therefore chosen to integrate students
whose initial training is either in computer science
or linguistics, with an appetite for formalization,
programming and mathematics. A single pathway
is proposed through the training that brings together
these different profiles. The objective is to bring
all students to the same exit point. Beyond this
declaration of intent, it is obvious that we cannot
transform in two years linguists who have never
done programming into operational computer sci-
entists, just as we cannot transform computer sci-
entists into linguists in the same time. On the other
hand, students must be comfortable enough to over-
come the paralysis of working in a new field, to go
beyond naive approaches and above all to be able
to discuss the different aspects precisely with spe-
cialists in the other field. To achieve this, there is
nothing better than to mix these profiles throughout
the training.

This mixing adds entropy to the construction of
individual paths. To compensate for this, we have
proposed a very legible and regular architecture in
the training. This apparently very rigid organiza-
tion allows students to build their path together.

Moreover, as we have already mentioned, the
aim is to offer a course with a strong research com-
ponent, while at the same time offering numerous
applications.

It was therefore decided that the first year would
serve as a substrate to establish the background by
opening up to long-term prospects. The second
year would focus on NLP topics, with many more
applications and especially a significant amount of
time devoted to an internship either in a laboratory
or in a company. The training is given over two
years, i.e. 4 semesters:

• two semesters of the first year of 260 effective
teaching hours each - 30 credits each

• one long semester of the second year of 350
effective hours of teaching each - 30 credits

• one internship of at least 5 months (one
semester) - 30 credits

The architecture of each of the three semesters is
the same with 5 teaching units of equal importance
in the validation of the training. The organization
of studies in France implies that each semester
validates 30 credits (ECTS).

37

3.4 Renewal of Teaching Practices

As we have already mentioned, we did not want to
transform our teaching practices by switching to
distance learning, especially because we thought
it was important to have different profiles working
together. It is difficult to measure this at a distance.

However, we questioned these practices to pro-
pose more applied teaching or with effective data
manipulation, as well as the implementation of
group work, in particular in the form of projects.

Concerning the discovery of research, we pro-
pose a project in groups of 2 to 4 students, called
“supervised project”. This is a project carried out
during the first year, at the initiative of a researcher,
and which leads to the writing of two reports. The
first part of the year is a bibliographic work. It
consists of taking the time to read and understand
scientific articles on the state of the art and to put
them in perspective with the proposed project. The
work is synthesized in a bibliographic report which
opens to the second part of the work which is a
more classical realization part. The students pro-
duce a report, which is a first experience of long
writing before their final report of master, as well
as a defense of 20 minutes in front of a jury and the
presentation of a poster. The objective is to have
them carry out a research project over a long period
of time, with links to the literature on the one hand
and actual achievements on the other, and also to
master the codes of scientific presentation. This
work often leads to publications in international
conference workshops.

As an example, here are some titles of projects
carried out in recent years on different themes:
Speaker Adaptation Techniques for Automatic
Speech Recognition, Testing Greenberg’s Linguis-
tic Universals on the Universal Dependencies Cor-
pora using a Graph Rewriting tool, Does my ques-
tion answer your answer, Anomaly detection with
deep learning models, ...

The counterpart of this work is the realization
of an applied group project throughout the first
semester of the second year of the program. It is
carried out by groups of 3 to 4 students. The ini-
tiative is left to the students, who are nevertheless
supervised by two teachers. Once the application
is identified, the students implement the concepts
they have encountered in their training to produce
an application. The functional and deployable ap-
plications are put online to showcase the work done.
The students also produce a report explaining their

approach and their achievement, and they make a
defense. Here some examples of realization sub-
jects:

• GECko+ is built on top of two Artificial In-
telligence models in order to correct spelling
and grammar mistakes, and tackling discourse
fallacies with BERT (Devlin et al., 2018).

• Askme is a Question Answering model built
on the Stanford Question Answering Dataset
(SQuAD) with a fine-tuned BERT. Askme is
able to automatically answer factual questions
without being aware of the context.

• IGrander Essay: Automated Essay Grading
systems provide an easy and time-efficient
solution to essay scoring.

• Multilingual multispeaker expressive Text-
to-speech system: The main goal of this
work is from text input to be able to gener-
ate speech with expressivity for multiple lan-
guages, which are currently French and En-
glish, with an end-to-end multilingual text-to-
speech (TTS) system.

The first experiences have shown that both for-
mats are very formative. It is common for groups
of students to go from very enthusiastic to over-
whelmed phases. Thanks to the mentoring pro-
cess, all projects are completed by the end of the
semester. In both cases, although very different
from each other, the situation allows them to better
understand where the interests of NLP are and es-
pecially where the difficulties are. Working over a
long period of time shows them the importance of
anticipating problems in both research and develop-
ment. We make sure that the groups are mixed in
terms of profiles to avoid the pitfall of groups stuck
on IT developments, as well as groups missing out
on linguistic issues. We note that an additional
exercise is paper writing in the format of the main
conferences in the field.

3.5 Support for internationalization
As part of the development of French universities,
the gouvernment has set up the development of ma-
jor projects, under the name Project Investment of
the Future (PIA). The Université de Lorraine ben-
efits from a major project of this type called Lor-
raine University of Excellence (LUE). This project
covers several themes around systems engineering.
The training program has benefited from financial

38

support from this program to support internation-
alization. For this purpose, we are translating the
presentation documents into several languages, in
particular into Russian, Persian, Greek and Turk-
ish. The objective is to accompany as effectively
as possible the arrival of students in the training.

In addition, we have made a promotional film
for international students to highlight the necessary
complementarity between computer science and
linguistics that is achieved within our training. The
production was made in a professional way by re-
lying on the students and their profile. Once again,
the aim is to highlight the diversity and quality of
the students’ profiles.

4 Program Design

4.1 Education
We do not want to propose an advertising brochure
of the training, also we do not give explicitly the
titles of each teaching sub-unit. This being said,
the training is thought to put forward continuum
between the semesters, as much as possible on the
whole training, at least between the semesters. It
is this dynamic that we put forward. We invite
the readers to refer to the descriptions of the train-
ing for more details. We have the three semesters
with regular teaching. Units of the first semester
are numbered 70X, ones of the second semester
with 80X and those of the last semester with 90X,
where X takes its value in {1, 2, 3, 4, 5}. In each
semester, the students follow all the units. For now,
the programm has no optional course.

The first units described in Table 1 gather the
fundamental background in mathematics and com-
puter science. For these units, the continuum is
natural: on one side probabilities and statistics -
machine learning - neural networks, and on the
other one programming - semantic web - data min-
ing/recommendation.

The second units, see Table 2, gathers the teach-
ings around corpora and formal tools14.

The third units, see Table 3 gathers the teaching
on software engineering and data sciences.

The linguistics units are the one ending by 4, see
Table 4.

Finally, the fifth units, see Table 5, is the project-
based teaching that we have detailed above, to
which we add language teaching (French for non-
French speakers, English for the others). In the

14For units two and three in the second year, we make sure
to offer state of the art teaching applied to language data.

second year, we add opening lessons, in particular
around ethical issues.

Students are evaluated on the acquisition of tar-
geted skills, identified for the Sc. Master.

To compensate for the differences in levels, the
technical courses of the first semester are accom-
panied by a refresher course. After several years
of courses, we notice that the difference in level is
not caught up between the different audiences. We
have decided to change the organization of some
courses as of the next academic year. For example,
for Python programming, two courses will be of-
fered, one for beginners and an advanced course,
shared with cognitive science students.

The teachers are free to choose the teaching
methods they follow, within the general perspec-
tive of the program. We clearly share the objectives
for the end of the program where students are au-
tonomous in dealing with the scientific literature
and in participating to produce new results.

4.2 Example of a course

It is obviously not possible to describe the all
courses of the training and it is not the object of
this article. We want to highlight one course in par-
ticular which allows us to put forward the principle
of training by project by mixing profiles.

This is Methods4NLP given in unit 704. It is
one of the very first courses introducing NLP to
students. The teaching is divided into several se-
quences: a first one allowing to set up a common
culture around NLP, a second academic one pre-
senting the basic formalizations that they will de-
velop throughout the two years of training, and the
setting up of a project.

The first phase can be divided into three parts:

• a seminar to set the spectrum of NLP, from
linguistic aspects to technical developments.
This teaching allows to give a common cul-
ture to the students at the beginning of the
program by positioning NLP in relation to the
challenges of AI.

• apprehension of the concepts by experimen-
tation with unplugged activities (Bell et al.,
2009)(Romero et al., 2018): one simulat-
ing machine learning with a machine playing
Nim’s game, the other on Huffman coding
with groundhogs. The students meet the two
paradigms of NLP in an intuitive way.

39

701 Probabilities, Statistics and Algorithms for AI: The course deals with fundamental
mathematical tools, particularly statistical and algorithmic tools, which are necessary
to define and resolve an artificial intelligence problem. The course unit stresses a
case study approach in order to ensure the acquisition of theoretical aspects and
practical application (Elementary mathematics tools, propabilities and statistics; and
Python programming, both for beginners and advanced users)

801 Machine Learning and Semantic Web: This course takes on the fundamental princi-
ples of Machine Learning, of data mining and knowledge extraction. All the notions
are illustrated through practical applications on real data (Machine learning theory
and Web Semantics)

901 Deep Learning and Data Mining: The objective of this course unit is to acquire
machine learning tools, mainly deep neural networks and factorisation matrices, to
be able to manipulate these tools when considering practical applications (tweets,
traces of e-learning), as well as to expand the students’ knowledge in semantic web
and the extensions of analysis of formal concepts for textual and relational data
processing (Neural Networks, Deep Neural Networks; Data mining (structured data
and text); and Collaborative filtering)

Table 1: Description of the teaching units of block 1

702 Design and Acquisition of corpus: This course aims to introduce techniques of
construction, structuring, annotating and archival of textual oral or multimodal
corpora, which play an essential role in the analysis of the structure of spoken
and written language, and on the other hand in the training and evaluation of NLP
algorithms. This subject is complex as it is necessary that (1) the corpora be restricted
to a reasonable size in order to guarantee the proper collection of corresponding data
and that (2) this data sufficiently represents the phenomena studied (Written Corpora;
and Spoken Corpora).

802 Formal Tools: This course unit is dedicate to the introduction to theoretical frame-
works and logic used in symbolic approaches to the modeling of language. It consists
of mathematical logic and of formal languages. The objective is to familiarize the
students with these formal models, their properties, the demonstration techniques
associated with them, and the notions of calculability and complexity.

902 Text and Speech Processing: Automatic processing of texts and speeches involves
different methods of machine learning. This class will introduce these methods and
illustrate their use through examples and practical application using tools developed
(Speech processing, Processing Textual Data, Terminology and ontology).

Table 2: Description of the teaching units of block 2

703 Software Engineering: Collection, analysis and formalization of customers’ needs
(Software design and; Functional analysis; specifications; and Project management)

803 Data Science: This course unit introduces fundamental techniques for the extraction,
storage, cleaning, visualisation and analysis of data. We give a practical introduction
to the tools and software libraries which allows the processing of data. We combine
theoretical sessions with programming exercises which allows students to put into
practice the software and concepts taught during the course.

903 Natural Language and Discourse: This course unit gathers courses which deal with
discursive and semantic processing of language (Application to texts; Computational
semantics; and Discourse and Dialog modelling)

Table 3: Description of the teaching units of block 3

40

704 Linguistics for NLP-1: This course takes on one hand the fundamental elements of
NLP and on the other hand the phonological and morphological elements, which are
studied through a language sciences based approach (Methods for Natural Language
Processing; Phonology; and Morphology)

804 Linguistics for NLP-2: This course takes up where the previous teachings of lin-
guistics left off, wherein the content and methodologies of the courses are, however,
independent from these prior teachings. The courses are concentrated on syntax and
semantics, as well as lexicology. In this context, the focus is put on the question of
formalisation of linguistic rules (Lexicology: lexical units and phraseology; Syntax;
and Semantics)

904 Lexicon and Grammars for NLP: This course introduces advanced tools for the
computational modeling of different types of linguistic information which describe
lexical units (lexical resources) or the rules of organisation of larger units (grammar)
(Diachronic and synchronic lexicology; Lexical resources; and Syntactic framework)

Table 4: Description of the teaching units of block 4

705 This course unit is composed of the first part of the year-long supervised project
(which will be finalized in the second semester), as well as language classes. The
project consists of group work (in pairs), which is supervised by researchers, in
which the students will carry out the bibliographic part of the final report. Language
classes will allow non-anglophone students to become more familiar with scientific
english, the language in which all courses are conducted, whereas the french classes
will facilitate non-francophone students’ social and cultural integration. The course
allows students to test their first skills acquired during the semester while synthesizing
the different research issues concerned by a more open research topic. Students are
evaluated on the acquisition of targeted skills, identified for the Sc. Master.

805 This course unit is made up of language classes as well as the second part of the year-
long supervised project (UE 705) which is finalized during the second semester. The
second part of the year-long project begins by following through with the procedure
introduced in the first semester groupwork, and leads up to the presentation at the
end of the year, explaining the implementation of the project, which puts to test all
of the skills the student acquires during the first year of the program. The language
classes allow students to become more comfortable with the knowledge of scientific
english.

905 Projects and Foreign Language: This course unit gathers many teaching including the
project and language classes (Software project; Law and ethics; Research methods;
Professional integration; Foreign language courses (French or English))

Table 5: Description of the teaching units of block 5

41

• first experiments to highlight the possibility
of getting results with few developments with
two labs: one on FastText (Bojanowski et al.,
2016)(Joulin et al., 2016) and the one on
Scikit Learn (Pedregosa et al., 2011), are pro-
posed. The objective is to make all students
aware of the ease of manipulating data with-
out understanding what is behind it, and the
difficulty of confronting how to improve the
results.

The second phase is carried out in two parallel
parts: project and lectures.

For the project part, the students form groups
of 4 in a balanced way between the profiles. It is
requested that the students of the same national-
ity do not stay together and especially that all the
groups have explicit different profiles (linguist and
computer scientist). The groups choose the sub-
ject of their development. They are only required
to explicitly include NLP aspects in their project
(POS tagging, Named Entity recognition, Machine
learning, etc.).

This project is shared with another course that
deals with written corpora. For this course, the
project must contain the constitution of a corpus,
its normalization, as much as possible its annota-
tion with study of the quality of the annotation, and
thus implementation in a defined context. Thus,
the themes of the projects are more naturally re-
lated to NLP than to speech processing, or even to
knowledge processing.

For information, here are a few topics chosen
by the students: Gender bias in young targeted
literature: 19th century vs. early 21st century, Au-
thor Identification for Philosophers, Song Lyrics
Generator, Autonomous Vocabulary Assistant, ...

It is interesting to let the students choose a topic
that interests them. Sometimes we see students
with very specific subjects, letting them work on
them allows us to build on their engagement. If the
subject is not relevant, it allows us to put them back
into a more appropriate training perspective. There
is no such thing as a bad topic. The different topics
make students aware of the difference between the
desire to achieve a development and the possibility
of achieving it. In general, we see that some groups
prefer to stay close to a very classical topic and
often regret not having explored more diversity of
topics. Moreover, a recurrent element appears on
the question of the evaluation of development. This
practice makes them aware of the significance of

anticipating the implementation of the evaluation
in order to measure the quality of the final project.

Students are monitored weekly. They have to
make a 1 minute presentation of the progress of
their developments in front of the whole class.
They may not have made any progress, what is
important is that all students follow the progress of
all groups. During the Covid-19 period, the follow-
up was done by video-conference and it was diffi-
cult to share this experience with the whole class.
During the semester, students submit 3 progress
reports, the first ones being only a few pages long.
They are used to document problems, issues and
progress. The final report is due before the exam
period during which a defense is organized.

Finally, the last part consists of more academic
teaching that takes up the two main paradigms of
NLP and defines them explicitly (Agarwal, 2013).
The first part deals with out-of-context grammars
and automata. These concepts are often known
by students more or less well. This allows on the
one hand to bring everyone up to speed and on the
other hand to show how basic concepts in com-
puter science find links with linguistics. This is
done by looking at Turing’s work on abstract ma-
chines, or through Chomsky’s hierarchy. Then the
course highlights the use of statistical techniques
by explaining Bayes’ models and automatic clas-
sification as done by Jurafsky (Jurafsky and Mar-
tin, 2018). Finally, the last part explains dynamic
programming by focusing on the syntax with the
algorithm of CKY (Kozen, 1977). This part of
the course is carried out in a traditional way with
plenary teaching and tutorials.

This course is the course which launches the
training. Indeed, if it begins with a phase requiring
little knowledge a priori, it continues with a phase
that requires the mobilization of technical knowl-
edge delivered in the other courses, as well as lin-
guistic knowledge. The fact of leaving the choice
of the theme allows to motivate the students, while
showing them the need to be autonomous and pro-
active in the training. In addition, a very traditional
part of the course allows students to establish com-
mon ground by building epistemological bridges
between computer science and linguistics.

5 Analysis of student profiles

After having presented the structure, the organiza-
tion and the stakes of the training, we propose to
come back on quantitative elements concerning the

42

applicants. # students Comp. Mixed ling Fr Eu non-EU
2015-16 M2 35 17 41 24 35 24 12 65
2016-17 M2 20 6 67 17 17 67 0 33
2017-18 M2 33 17 47 18 29 41 0 59

Mean 29,33 13,33 51,66 19,66 27 44 4 52,33
2018-19 M1 47 16 25 38 38 50 13 38

M2 21 7 57 29 14 29 14 57
2019-20 M1 65 20 30 25 45 35 30 35

M2 32 20 45 20 35 30 0 70
2020-21 M1 117 33 45 18 36 36 12 52

M2 33 27 48 19 33 26 15 59
Mean M1 76,33 23 33,33 27 39,66 40,33 18,33 41,66
Mean M2 28,66 18 50 22,66 27,33 28,33 9,66 62

Mean 52,5 20,5 41,66 24,83 33,5 34,33 14 51,83

Table 6: Distribution of students in the training over the last 6 years: number of candidates, number of students,
then distribution of students in percentage (%) between the 3 profiles (CS, mixed and L), then according to their
nationality (France, Europe and non-EU).

disciplinary profile of the students, the diversity of
their origin and their success. In order to give a
little more perspective to these elements, we rely
on the data of the Master’s since 2018, that is to
say 3 academic years, as well as on the M2 TAL
speciality over the 3 previous years.

Before the definition of the program, we had
made a study on the 2008-2017 classes. We noted
that 36% of the students were French, 45% from
another European country and 19% from a non-
European country, which is proof of a good diver-
sity of origin. Of those who continued their studies
after the course, 40% joined a company, 33% were
doing a thesis and 27% had an academic post.

Table 6 presents the evolution of the number of
candidates and students in the training before the
creation of the Master (3 years) and for the first 3
years of the training. It also contains the distribu-
tion of students according to the profiles (Fosler-
Lussier, 2008): computer science, mixed or linguis-
tics. Figure 1a shows the evolution of the data over
time. We observe that the distribution is homo-
geneous over the different years of training, with
an average of 41.6% computer scientists over the
first three years of the Master’s program for 33.5%
linguists. This good distribution makes it possible
to build balanced work groups. Moreover, we ob-
serve that the opening as a Master has significantly
increased the average number of this profile from
27 to 33.5. This implies reinforcing the course
for this type of profile and increasing the means
implemented on their programming skills.

Another interesting element that appears in this
table, put foward in Figure 1b, is the increase in
the number of candidates, with 117 candidates for
the M1 year in 2020-21. It should be noted that
this number of applicants does not include students
trained within the IDMC or Erasmus Mundus LCT
students who are selected through another process.
For M2 students, only a few students are selected,
the majority coming from the first year of training.
Our experience leads us to limit even more the num-
ber of students entering the second year directly,
because on the one hand these students have gaps
that they are unable to fill, and on the other hand
they have difficulties integrating the class. These
elements must of course be put into perspective
because the effects of the health crisis must also be
taken into account.

Finally, the other axis of analysis proposed is to
look at the nationalities of the students. It can be
seen that the average number of French students
has decreased significantly, from 44% to 34.5%.
This decrease did not affect the rate of oversea
students, keeping their number slightly above 50.

Finally, an important element is to analyze the
profiles at entry with the success at the end of the
Master’s degree. The first element is that the stu-
dents who follow the two years of training have
better results and rankings. This supports the idea
that the training has singular characteristics that
are difficult to catch up on. This is understandable
because it is necessary to master concepts in com-
puter science and linguistics, and moreover it is

43

(a) Origin and background of the students.

0

20

40

60

80

100

120

140

160

2015-16 2016-17 2017-18 2018-19 2019-20 2020-21

applicants # students

(b) Number of applicants and students.

Figure 1: Data of the program from 2015 to 2020.

necessary to master the tools and methods of AI,
which are specific and rather abstract.

One should not believe that a profile at the en-
trance would be privileged in this type of training.
The ringleader or the first ones of the promotions
do not have a priori determined profiles. They
may come from traditional computer science or lin-
guistics. What seems to make the difference is, in
addition to their aptitude at entry, their investment
in the training throughout the two years. This reas-
sures us that the aim is to bring together the profiles,
while respecting their original specificities.

6 Conclusion and perspectives

We highlighted the process of creating the Master’s
degree in NLP at the IDMC. This training is unique
in that it delivers a French diploma in NLP. Stu-
dents who enter the program have a background
either in computer science or in linguistics. The
training aims to give them strong skills to train
future professionals in language data processing.

We have integrated collaborations with several
components in our environment (Erasmus Mundus
LCT, EMLEX, Ecole des Mines, etc.). The train-
ing is attractive and has good results. Students
trained in this way are currently making choices
between different possible careers, rather than be-
ing affected by the economic and sanitary situation
due to the health crisis, that impacted negatively
the job market.

Over the different years observed, we noticed
that the number of internship proposals on the one
hand and the number of job offers on the other
hand, are constantly increasing. We see the search
for profiles explicitly in NLP. Moreover, our open-
ing towards more applied profiles has not been at

the expense of the relationship with the academic
world. Out of the first class that followed the 2
years of the training, 7 are pursuing a thesis which
is very positive. These two dynamics reinforce our
commitment to the development of the program.

Since the beginning of the program, we have
asked for oral and written evaluations from the
students on both the teaching and the organization
of the training. This feedback has allowed us to
improve the content while remaining within the
same general framework. The integration of the
students at the end of the training confirms us in
the belief of the interest of the training that we
have. The accreditation we have obtained is coming
to an end and we must now prepare a proposal
for a general evolution for 2023. The Master is
now considered mature and can benefit from more
autonomy.

For the future, we want to consolidate the train-
ing by slightly increasing the flow of students until
we reach 40 students per year, especially with stu-
dents from the European area. In addition, we are
working on developing opportunities for research,
which would allow us to offer training courses of
very good quality towards PhD.

Acknowledgments

We truly want to thank the anonymous review-
ers for their helpful comments and insights. This
work was supported partly by the french PIA
project “Lorraine Universite d’Excellence”, refer-
ence ANR-15-IDEX-04-LUE.

44

References
Apoorv Agarwal. 2013. Teaching the basics of NLP

and ML in an introductory course to information sci-
ence. In Proceedings of the Fourth Workshop on
Teaching NLP and CL, pages 77–84, Sofia, Bulgaria.
Association for Computational Linguistics.

Tim Bell, Jason Alexander, Isaac Freeman, and Mick
Grimley. 2009. Computer science unplugged:
School students doing real computing without com-
puters. The New Zealand Journal of Applied Com-
puting and Information Technology, 13(1):20–29.

Emily M Bender, Fei Xia, and Erik Bansleben. 2008.
Building a flexible, collaborative, intensive master’s
program in computational linguistics. In Proceed-
ings of the Third Workshop on Issues in Teaching
Computational Linguistics, pages 10–18.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Eric Fosler-Lussier. 2008. Strategies for teaching
“mixed” computational linguistics classes. In Pro-
ceedings of the Third Workshop on Issues in Teach-
ing Computational Linguistics, pages 36–44.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Daniel Jurafsky and James H Martin. 2018. Speech
and language processing (draft). Chapter A: Hidden
Markov Models (Draft of September 11, 2018). Re-
trieved March, 19:2019.

Dexter C Kozen. 1977. The cocke–kasami–younger
algorithm. In Automata and Computability, pages
191–197. Springer.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Margarida Romero, Benjamin Lille, Thierry Viéville,
Marie Duflot-Kremer, Cindy de Smet, and David
Belhassein. 2018. Analyse comparative d’une ac-
tivité d’apprentissage de la programmation en mode
branché et débranché. In Educode-Conférence inter-
nationale sur l’enseignement au numérique et par le
numérique.

45

Proceedings of the Fifth Workshop on Teaching NLP, pages 46–48
June 10–11, 2021. ©2021 Association for Computational Linguistics

Applied Language Technology: NLP for the Humanities

Tuomo Hiippala
Department of Languages, University of Helsinki

P.O. Box 24, Unioninkatu 40 B.
00014 University of Helsinki, Finland
tuomo.hiippala@helsinki.fi

Abstract

This contribution describes a two-course mod-
ule that seeks to provide humanities ma-
jors with a basic understanding of language
technology and its applications using Python.
The learning materials consist of interac-
tive Jupyter Notebooks and accompanying
YouTube videos, which are openly available
with a Creative Commons licence.

1 Introduction

Language technology is increasingly applied in
the humanities (Hinrichs et al., 2019). This con-
tribution describes a two-course module named
Applied Language Technology, which seeks to pro-
vide humanities majors with a basic understanding
of language technology and practical skills needed
to apply language technology using Python. The
module is intended to empower the students by
showing that language technology is both accessi-
ble and applicable to research in the humanities.

2 Pedagogical Approach

The learning materials seek to address two major
pedagogical challenges. The first challenge con-
cerns terminology: in my experience, the greatest
hurdle in teaching language technology to human-
ities majors is not ‘technophobia’ (Öhman, 2019,
480), but the technical jargon that acts as a gate-
keeper to knowledge in the field (cf. Maton, 2014).
This issue is fundamental to teaching students with
no previous experience of programming. To exem-
plify, beginners in my class occasionally interpret
the term ‘code’ in phrases such as “Write your
code here” as a numerical code needed to unlock
an exercise, as opposed to a command written in a
programming language. For this reason, the learn-
ing materials introduce concepts in Python and lan-
guage technology in layperson terms and gradually
build up the vocabulary needed to advance beyond
the learning materials.

The second challenge involves the diversity of
the humanities, which covers a broad range of dis-
ciplines with different epistemological and method-
ological standpoints. This results in considerable
differences in previous knowledge among the stu-
dents: linguistics majors may be more likely to be
exposed to computational methods and tools than
their counterparts majoring in philosophy or art
history. Some students may have taken an introduc-
tory course in Java or Python, whereas others have
never used a command line interface before. To
address this issue, the learning materials are based
on Jupyter Notebooks, which provide an environ-
ment familiar to most students – a web browser –
for interactive programming. The command line is
used for interacting with GitHub, which is used to
distribute the learning materials and exercises.

The module also emphasises peer and collabora-
tive learning: 20% of the course grade is awarded
for activity on the course discussion forum hosted
on GitHub. All activity – both asking and answer-
ing questions – counts positively towards the fi-
nal grade. This allows the students with previous
knowledge to help onboard newcomers. Accord-
ing to student feedback, this also fosters a sense
of community. The discussion forum is also used
to discuss weekly readings, which focus on ethics
(e.g. Hovy and Spruit, 2016; Bird, 2020) and the
relationship between language technology and hu-
manities (e.g. Kuhn, 2019; Nguyen et al., 2020).
These discussions are guided by questions that en-
courage the students to draw on their disciplinary
backgrounds, which exposes them to a wide range
of perspectives to language technology and the hu-
manities.

3 Learning Materials

The learning materials cover two seven-week
courses.

The first course starts by introducing rich, plain
and structured text and character encodings, fol-

46

lowed by file input/output in Python, common data
structures for manipulating textual data and regu-
lar expressions. The course then exemplifies basic
NLP tasks, such as tokenisation, part-of-speech tag-
ging, syntactic parsing and sentence segmentation
by using the spaCy 3.0 natural language processing
library (Honnibal et al., 2020) to process exam-
ples in the English language. This is followed by
an introduction to basic metrics for evaluating the
performance of language models. The course con-
cludes with a brief tour of the pandas library for
storing and manipulating data (McKinney, 2010).

The second course begins with an introduction
to processing diverse languages using the Stanza
library (Qi et al., 2020), shows how Stanza can
interfaced with spaCy, and how the resulting anno-
tations can be searched for linguistic patterns using
spaCy. The course then introduces word embed-
dings to provide the students with a general under-
standing of this technique and its role in modern
NLP, which is also increasingly applied in research
on the humanities. The course finishes with an
exploration of discourse-level annotations in the
Georgetown University Multilayer Corpus (Zeldes,
2017), which showcases the CoNLL-U annotation
schema.

To what extent the students meet the learn-
ing objectives is measured in weekly exercises.
The weekly assignments are distributed through
GitHub Classroom and automatically graded using
nbgrader1, which allows generating feedback files
with comments that are then pushed back to the
student repositories on GitHub. The exercises are
also revisited in weekly walkthrough sessions to
allow the students to ask questions about the assign-
ments. The students are also required to complete
a final assignment for both courses: the first course
concludes with a group project that involves prepar-
ing a set of data for further analysis, whereas the
second course finishes with a longer individual as-
signment.

All learning materials are openly available with
a Creative Commons 4.0 CC-BY licence at the
addresses provided in the following section. Access
to the weekly exercises is available on request.

4 Technical Stack

The learning materials are based on Jupyter Note-
books (Kluyver et al., 2016) hosted in their own

1https://nbgrader.readthedocs.io

GitHub repository.2 This repository constitutes a
submodule of a separate repository for the website,
which is hosted on ReadTheDocs.3 The notebooks
containing the learning materials are rendered into
HTML using the Myst-NB parser from the Exe-
cutable Books project.4 This allows keeping the
learning materials synchronised, and enables the
users to clone the notebooks without the source
code for the website. Myst-NB also adds links to
Binder (Project Jupyter et al., 2018) to each note-
book on the ReadTheDocs website, which enables
anyone to execute and explore the code.

The Jupyter Notebooks provide a familiar envi-
ronment for interactively exploring Python and the
various libraries used, whereas the ReadTheDocs
website is meant to be used as a reference work.
Both media embed videos from a YouTube channel
associated with the courses.5 These short explana-
tory videos exploit the features of the underlying
audiovisual medium, such as overlaid arrows, ani-
mations and other modes of presentation to explain
the topics.

5 Conclusion

This contribution has introduced a two-course mod-
ule that aims to teach humanities majors to ap-
ply language technology using Python. Targeted
at a student population with diverse disciplinary
backgrounds and levels of previous experience, the
learning materials use multiple media and layper-
son terms to build up the vocabulary needed to
engage with Python and language technology, com-
plemented by the use of a familiar environment – a
web browser – for interactive programming using
Jupyter Notebooks.

References
Steven Bird. 2020. Decolonising speech and lan-

guage technology. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 3504–3519.

Erhard Hinrichs, Marie Hinrichs, Sandra Kübler, and
Thorsten Trippel. 2019. Language technology for
digital humanities: introduction to the special issue.

2https://github.com/
Applied-Language-Technology/notebooks

3https://applied-language-technology.
readthedocs.io

4https://executablebooks.org
5https://www.youtube.com/c/

AppliedLanguageTechnology

47

Language Resources and Evaluation, 53(4):559–
563.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python. DOI: 10.5281/zenodo.1212303.

Dirk Hovy and Shannon L. Spruit. 2016. The so-
cial impact of natural language processing. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 591–598. Association for Computa-
tional Linguistics.

Thomas Kluyver, Benjamin Ragan-Kelley, Fer-
nando Pérez, Brian Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica Hamrick,
Jason Grout, Sylvain Corlay, Paul Ivanov, Damián
Avila, Safia Abdalla, Carol Willing, and Jupyter
development team. 2016. Jupyter Notebooks – a
publishing format for reproducible computational
workflows. In Positioning and Power in Academic
Publishing: Players, Agents and Agendas, pages
87–90, Netherlands. IOS Press.

Jonas Kuhn. 2019. Computational text analysis within
the humanities: How to combine working practices
from the contributing fields? Language Resources
and Evaluation, 53(4):565–602.

Karl Maton. 2014. Knowledge and Knowers: Towards
a Realist Sociology of Education. Routledge, New
York and London.

Wes McKinney. 2010. Data structures for statistical
computing in Python. In Proceedings of the 9th
Python in Science Conference, pages 51–56.

Dong Nguyen, Maria Liakata, Simon DeDeo, Jacob
Eisenstein, David Mimno, Rebekah Tromble, and
Jane Winters. 2020. How we do things with words:
Analyzing text as social and cultural data. Frontiers
in Artificial Intelligence, 3.

Emily Öhman. 2019. Teaching computational methods
to humanities students. In Proceedings of the Digi-
tal Humanities in the Nordic Countries 4th Confer-
ence, volume 2364 of CEUR Workshop Proceedings,
pages 479–494.

Project Jupyter, Matthias Bussonnier, Jessica Forde,
Jeremy Freeman, Brian Granger, Tim Head, Chris
Holdgraf, Kyle Kelley, Gladys Nalvarte, Andrew
Osheroff, M Pacer, Yuvi Panda, Fernando Perez,
Benjamin Ragan Kelley, and Carol Willing. 2018.
Binder 2.0 – Reproducible, interactive, sharable en-
vironments for science at scale. In Proceedings of
the 17th Python in Science Conference, pages 113 –
120.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational

Linguistics: System Demonstrations, pages 101–108.
Association for Computational Linguistics.

Amir Zeldes. 2017. The GUM corpus: Creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581–612.

48

Proceedings of the Fifth Workshop on Teaching NLP, pages 49–51
June 10–11, 2021. ©2021 Association for Computational Linguistics

A Crash Course on Ethics for Natural Language Processing

Annemarie Friedrich1 Torsten Zesch2

1Bosch Center for Artificial Intelligence, Renningen, Germany
2Language Technology Lab, University Duisburg-Essen, Germany

annemarie.friedrich@de.bosch.com
torsten.zesch@uni-due.de

Abstract

It is generally agreed upon in the natural
language processing (NLP) community that
ethics should be integrated into any curricu-
lum. Being aware of and understanding the rel-
evant core concepts is a prerequisite for follow-
ing and participating in the discourse on ethi-
cal NLP. We here present ready-made teaching
material in the form of slides and practical ex-
ercises on ethical issues in NLP, which is pri-
marily intended to be integrated into introduc-
tory NLP or computational linguistics courses.
By making this material freely available, we
aim at lowering the threshold to adding ethics
to the curriculum. We hope that increased
awareness will enable students to identify po-
tentially unethical behavior.

1 Motivation and Overview

The recent sharp rise in the capabilities of natural
language processing (NLP) methods has led to a
wide application of language technology, influenc-
ing many aspects of our daily lives. As a result,
NLP technology can have considerable real-world
consequences (Vitak et al., 2016; Hovy and Spruit,
2016). While language technology has the aim
of supporting humans, mis-use of data or abuse
of subjects, mis-representation, or direct harm are
some of numerous potentially critical problems.
Hence, it is crucial for NLP researchers, develop-
ers, and deciders to be aware of the social implica-
tions of deploying a particular piece of language
technology. They should be able to analyze the
degree to which a setup conforms with ethical prin-
ciples, which guide what is considered ‘right’ or
‘wrong’ (Deigh, 2010), and be aware of the poten-
tially harmful side even of components developed
with the aim of supporting humans.

As a consequence, it is crucial to start early and
embed ethics into the NLP curriculum to be taught
along with the technological and linguistic mate-
rial in an interactive manner (Bender et al., 2020).

While many teachers are very open to the topic area
as demonstrated by the lively participation in events
such as the 2020 Workshop on Integrating Ethics
into the NLP Curriculum (Bender et al., 2020),
ethics for NLP also constitutes a very broad topic
area where even teachers might not feel knowl-
edgeable enough. We argue that many more lec-
turers would include ethics if there existed some
freely available ready-made teaching material that
can be easily integrated in existing courses, or that
could serve as a starting point for designing a more
in-depth course. In this paper, we describe such
a material, which is primarily intended to be inte-
grated into introductory NLP courses.

Our “crash course” does not claim exhaustive-
ness and aims at breadth rather than depth, intend-
ing to give a good overview of the field and high-
lighting potential issues. The main focus is to en-
able students to behave ethically in their future re-
search and work careers, and to continue their own
research and reading. To be able to participate in
the discourse on ethical issues in NLP, the first step
is to learn about the important concepts and ter-
minology. The material also provides numerous
suggestions for in-class discussions and exercises
with the aim of gaining a deeper understanding.

The material consists of extensively com-
mented slides and suggestions for practical ex-
ercises. The comments and lists of references serve
both for teacher preparation and as a script for stu-
dents. The teaching material is freely available
under CC-BY-SA from our website.1 Finally, both
ethics and NLP are dynamic fields which may re-
quire updating views, beliefs, opinions, and theo-
ries. We therefore welcome continuous feedback
regarding and contributions to the teaching mate-
rial.

Benefit of this Course. The main difference
versus existing freely available material is that our
crash course is short, self-explanatory in the con-

1https://gscl.org/en/resources/ethics-crash-course

49

text of the provided comments such that other lec-
turers can easily work with it, and contains many
linked exercises. The Markkula Center for Ap-
plied Ethics at Santa Clara University offers a slide
set with a crash course on ethics along with materi-
als for discussions focusing of ethics in the general
area of technology.2 Our intention is very simi-
lar, but the focus is on NLP-specific issues. We
found most existing freely-available courses on
ethics in NLP to go into depth and usually span an
entire semester.3 In addition, we are aware of sev-
eral recent tutorials at ACL venues. Most similar
to our materials is the tutorial on socially respon-
sible NLP by Tsvetkov et al. (2018), which is a
condensed version of a full-semester class.4 Our
course differs from this tutorial in length and by
mostly concentrating on NLP-specific examples.
Chang et al. (2019) focus on sub-topics of ethical
NLP such as fairness and mitigating bias.5 Bender
et al. (2020) have started a collection of pointers to
existing materials, as well as general pointers for
teaching ethics for NLP.6 This collection has been
a very valuable starting point for our own research.

Ethical Considerations. Admittedly, a poten-
tial issue is that teachers could just “check off” the
topic by using our material without deeper engage-
ment, individual reading or reasoning. However,
we believe that having a good starting point will
actually lead to both teachers and students doing
more research on this subject, and our companion
material emphasizes the benefit of digging deeper.

2 Course Description

Format. The crash course consists of an inter-
active lecture accompanied by practical exercises.
The slides are available as extensively commented
Google slides, which can be easily adapted and
exported into a number of common formats. Ex-
ercises consist of reading assignments, examples
and case studies that serve as the basis for pair or
group discussions, or essays if submitting written
material is essential, e.g., for grading purposes.

Learning Goals. After the crash course, stu-
dents will have acquired a basic understanding

2https://www.scu.edu/ethics-in-technology-practice
3See, e.g, http://demo.clab.cs.cmu.edu/ethical_nlp2020/#readings,

http://faculty.washington.edu/ebender/2017_575
4Materials are also publicly available at https://sites.google.

com/view/srnlp/.
5http://web.cs.ucla.edu/~kwchang/talks/emnlp19-fairnlp
6https://aclweb.org/aclwiki/Notes_on_Teaching_Ethics_in_NLP,

https://aclweb.org/aclwiki/Ethics_in_NLP

of the relevant terminology and concepts. They
should understand that there are different ethical
theories at interplay with the field of NLP which
are currently developing best practices for ethical
conduct and systems (Prabhumoye et al., 2019).
As a result, they should be able to critically reflect
the on-going discourse in the community and, last
but not least, have acquired the basis for behaving
ethically in their own work. It is not our goal to
provide ‘ultimate’ definitions of the concepts and
we strongly advise lecturers not to pose exam ques-
tions aiming at memorizing definitions. Instead,
the learning goals could be tested in the form of
group presentations or written essays.

The predominant principle behind the design
of our crash course is activation. Besides giving
clear descriptions of relevant concepts and termi-
nology, we believe that a sensitivity for ethical
issues can only be achieved by actively thinking
about problems. We hence provide discussion ques-
tions for most topics covered in the crash course.
We strongly recommend taking the time for short
pair- or small-group discussions on these questions
before further discussion in the plenum.

Topics Covered. Our course aims at providing
a good overview of the field, offering references as
starting points for deeper research. We consider our
teaching materials to be a ‘living document’ that
will be updated or extended continuously. Topics
covered in our first version include, among oth-
ers, bias, fairness, privacy, and analyzing NLP use
cases or methods from different ethical perspec-
tives. For an up-to-date overview of the course
content, please refer directly to the material.

3 Discussion

Our stated goal is to inform a broader public about
the on-going discourse about ethics in NLP, and
educate future NLP researchers, developers and de-
ciders about an ethical approach to NLP research
technology. We hope that our materials will be of
benefit not only in university classrooms, but also
in other settings such as reading groups or indus-
trial meet-ups. We hence publish our resources
under the CC-BY-SA 4.0 license,7 which, under
the conditions of stating the source and redistribu-
tion under the same license, allows copying, redis-
tributing, adapting and mixing the material in any
medium or format.

7https://creativecommons.org/licenses/by-sa/4.0/

50

Acknowledgments

We thank Dirk Hovy for sharing his materials on
ethics and for his feedback on this crash course.
We also thank Ronja Laarman-Quante, Sophie Hen-
ning, Heike Adel, Andrea Horbach, and the anony-
mous reviewers for their valuable feedback.

References
Emily M. Bender, Dirk Hovy, and Alexandra Schofield.

2020. Integrating ethics into the NLP curriculum.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: Tutorial
Abstracts, pages 6–9, Online. Association for Com-
putational Linguistics.

Kai-Wei Chang, Vinod Prabhakaran, and Vicente Or-
donez. 2019. Bias and fairness in natural language
processing. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP):
Tutorial Abstracts, Hong Kong, China. Association
for Computational Linguistics.

John Deigh. 2010. An Introduction to Ethics. Cam-
bridge University Press.

Dirk Hovy and Shannon L. Spruit. 2016. The social
impact of natural language processing. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 591–598, Berlin, Germany. Association
for Computational Linguistics.

Shrimai Prabhumoye, Elijah Mayfield, and Alan W
Black. 2019. Principled Frameworks for Eval-
uating Ethics in NLP Systems. arXiv preprint
arXiv:1906.06425.

Yulia Tsvetkov, Vinodkumar Prabhakaran, and Rob
Voigt. 2018. Socially responsible NLP. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Tutorial Abstracts, pages 24–26, New
Orleans, Louisiana. Association for Computational
Linguistics.

Jessica Vitak, Katie Shilton, and Zahra Ashktorab.
2016. Beyond the Belmont Principles: Ethical Chal-
lenges, Practices, and Beliefs in the Online Data
Research Community. In Proceedings of the 19th
ACM Conference on Computer-Supported Cooper-
ative Work & Social Computing, CSCW ’16, page
941–953, New York, NY, USA. Association for
Computing Machinery.

51

Proceedings of the Fifth Workshop on Teaching NLP, pages 52–54
June 10–11, 2021. ©2021 Association for Computational Linguistics

A dissemination workshop for introducing young Italian students to NLP

Lucio Messina
Independent Researcher

lucio.messina@autistici.org

Lucia Busso
Aston University

l.busso@aston.ac.uk

Claudia Roberta Combei
University of Bologna

claudiaroberta.combei@unibo.it

Ludovica Pannitto
University of Trento

ludovica.pannitto@unitn.it

Alessio Miaschi
University of Pisa

alessio.miaschi@phd.unipi.it

Gabriele Sarti
University of Trieste
gsarti@sissa.it

Malvina Nissim
University of Groningen
m.nissim@rug.nl

Abstract

We describe and make available the game-
based material developed for a laboratory run
at several Italian science festivals to popularize
NLP among young students.

1 Introduction

The present paper aims at describing in detail the
teaching materials developed and used for a series
of interactive dissemination workshops on NLP
and computational linguistics1. These workshops
were designed and delivered by the authors on be-
half of the Italian Association for Computational
Linguistics (AILC, www.ai-lc.it), with the
aim of popularizing Natural Language Processing
(NLP) among young Italian students (13+) and the
general public. The workshops were run in the
context of nationwide popular science festivals and
open-day events both onsite (at BergamoScienza,
and Scuola Internazionale Superiore di Studi Avan-
zati [SISSA], Trieste) and online (at Festival della
Scienza di Genova, the BRIGHT European Re-
searchers’ Night, high school ITS Tullio Buzzi in
Prato and the second edition of Science Web Festi-
val, engaging over 700 participants in Center and
Northern Italy from 2019 to 2021.2

The core approach of the workshop remained
the same throughout all the events. However, the
materials and activities were adapted to a variety
of different formats and time-slots, ranging from
30 to 90 minutes. We find that this workshop –

1In this discussion, and throughout the paper, we conflate
the terms Natural Language Processing and Computational
Linguistics and use them interchangeably.

2Links to events are in the repository’s README file.

thanks to its modular nature – can fit different tar-
get audiences and different time slots, depending
on the level of interactive engagement required
from participants and on the level of granularity
of the presentation itself. Other than on the level
of engagement expected of participants, time re-
quired can also vary depending on the participants’
background and metalinguistic awareness.

Our interactive workshops took the form of mod-
ular games where participants, guided by trained
tutors, acted as if they were computers that had to
recognize speech and text, as well as to generate
written sentences in a mysterious language they
knew nothing about.

The present contribution only describes the
teaching materials and provide a general outline
of the activities composing the workshop. For a
detailed discussion and reflection on the workshop
genesis and goals and on how it was received by
the participants see (Pannitto et al., 2021).

The teaching support consist in an interactive
presentation plus hands-on material, either in hard-
copy or digital form. We share a sample presen-
tation3 and an open-access repository4 containing
both printable materials to download and scripts to
reproduce them on different input data.

2 Workshop and materials

The activity contains both more theoretical and
hands-on parts, which are cast as games.

3https://docs.google.com/presentation/
d/1ebES_K8o3I2ND_1iMyBlQmrH733eQ6m_
K8a0tON8reo/edit?usp=sharing

4https://bitbucket.org/melfnt/
malvisindi

52

Awareness The first part consists of a brief intro-
duction to (computational) linguistics, focusing on
some common misconceptions (slides 3-5), and on
examples of linguistic questions (slides 6-12). Due
to their increasing popularity, we chose vocal as-
sistants as practical examples of NLP technologies
accounting for how humans and machines differ
in processing speech in particular and language in
general (slides 20-39).

Games The core of the activity is inspired by the
word salad puzzle (Radev and Pustejovsky, 2013)
and is organized as a game revolving around a fun-
damental problem in NLP: given a set of words,
participants are asked to determine the most likely
ordering for a sentence containing those words.
This is a trivial problem when approached in a
known language (i.e., consider reordering the to-
kens garden, my, is, the, in, dog), but an apparently
impossible task when semantics is not accessible,
which is the most common situation for simple
NLP algorithms.

To make participants deal with language as a
computer would do, we asked them to compose
sentences using tokens obtained by transliterating
and annotating 60 sentences from the well known
fairy tale "Snow White" to a set of symbols. We
produced two possible versions of the masked ma-
terials: either replacing each word with a random
sequence of DINGs (e.g. d©Ü= for the word morn-
ing) or replacing them with a corresponding non-
word (for example croto for the word morning).
The grammatical structure of each sentence is repre-
sented by horizontal lines on top of it representing
phrases (such as noun or verb phrases), while the
parts of speech are indicated by numbers from 0 to
9 placed as superscripts on each word (Figure 1).

Figure 1: The first sentence of the corpus "on a
snowy day a queen was sewing by her
window" translated using DINGs (above) and using
non-words (below)

Participants were divided into two teams, one
team would be working on masked Italian and the
other on masked English. Both teams were given
the corpus in A3 format and were told that the texts
are written in a fictional language.

Two activities were then run, focusing on two

Figure 2: Example cards, both showing a word. Left:
a card for the first activity, with a button loop to thread
it in a sentence. Right: a card for the second activity,
with part of speech (number) at the bottom.

Figure 3: Possible rules extracted from the corpus.
Each rule is made of felt strips for phrases, cards with
numbers for parts of speech, and “=” cards.

different algorithms for sentence generation. In
the first, participants received a deck of cards each
equipped with a button loop (Figure 2) and show-
ing a token from the corpus. Participants had to
create new valid sentences by rearranging the cards
according to the bigrams’ distribution in the cor-
pus. Using the bracelet method (slides 52-61), they
could physically thread tokens into sentences.

In the second activity (slides 63-92), the partici-
pants extracted grammatical rules from the corpus,
and used them to generate new sentences. In or-
der to write the grammar, participants were given
felt strips reproducing the colors of the annotation,
a deck of cards with numbers (identifying parts
of speech) and a deck of “=” symbols (Figure 3).
With a new deck of words (Figure 2), not all present
in the corpus, participants had to generate a sen-
tence using the previously composed rules.

Reflection and Outlook By superimposing a
plexiglass frame on the A3 corpus pages (Figure 4),
the true nature of the corpora was eventually re-
vealed. The participants could see the original texts
(in Italian and English) and translate the sentences
they had created previously.

The activity ended with a discussion of recent
NLP technologies and their commercial applica-
tions (slides 93-96), and of what it takes to become
a computational linguist today (slides 97-99).

53

Figure 4: A session of the workshop: the original lan-
guage of the corpus has just been revealed by superim-
posing plexiglass supports on the corpus tables.

3 Activity Preparation

The preparation of the activity consists of several
steps: (1) creating and tagging the corpora with
morpho-syntactic and syntactic categories as de-
scribed in the repository; (2) choosing the words to
include in the card decks: these must be manually
selected but scripts are provided to generate possi-
ble sentences based on bigram co-occurrences, and
to extract all the possible grammar rules present in
the annotation; (3) when the produced sentences
and grammar are satisfactory, scripts are provided
to generate (i) the printable formats of corpora and
decks of cards, (ii) a dictionary to support the trans-
lation of sentences in the last part of the work-
shop, and (iii) clear-text corpora; (4) sentences
from the clear-text corpora have to be manually
cut and glued on a transparent support that can be
superimposed on the printed corpora to reveal the
sentences; (5) finally, some manual work is neces-
sary: producing strips of felt or any material with
the same colors used in the corpus; cutting threads;
attaching a button loop to the relevant cards, etc.

4 Reusability

In the spirit of open science and to encourage the
popularization of NLP, the teaching materials and
source code are freely available in our repository
(see footnotes 2-3 for the links). The print-ready
material is released under CC BY-NC; the source
code is distributed under the GNU gpl license ver-
sion 3. All scripts work for Python versions 3.6 or
above and the overall process requires python3,
lualatex, pdftk and pdfnup as detailed in
the README.md file in the repository, which con-
tains all necessary instructions.

Acknowledgements

We would like to thank the board of the Italian As-
sociation for Computational Linguistics (AILC) for
the support given to the workshop development and
delivery. We are also grateful to BergamoScienza,
Festival della Scienza di Genova, Science Web Fes-
tival for hosting the activity during the festivals; to
ILC-CNR “Antonio Zampolli" and ColingLab (Uni-
versity of Pisa) for hosting us during the European
Night of Research; and to the Scuola Internazionale
Superiore di Studi Avanzati (SISSA) and ITI Tullio
Buzzi for hosting our activities with their students.
We also thank Dr. Mirko Lai, who has collaborated
on the development of the web interface for the
online versions of our activity.

References
Ludovica Pannitto, Lucia Busso, Claudia Roberta

Combei, Lucio Messina, Alessio Miaschi, Gabriele
Sarti, and Malvina Nissim. 2021. Teaching NLP
with bracelets and restaurant menus: An interactive
workshop for italian students. In Proceedings of the
Fifth Workshop on Teaching NLP and CL, Online
event. Association for Computational Linguistics.

Dragomir Radev and James Pustejovsky. 2013. Puzzles
in logic, languages and computation: the red book.
Springer.

54

Proceedings of the Fifth Workshop on Teaching NLP, pages 55–58
June 10–11, 2021. ©2021 Association for Computational Linguistics

MiniVQA - A resource to build your tailored VQA competition

Jean-Benoit Delbrouck
Stanford University

jeanbenoit.delbrouck@stanford.edu

Abstract

MiniVQA1 is a Jupyter notebook to build a tai-
lored VQA competition for your students. The
resource creates all the needed resources to cre-
ate a classroom competition that engages and
inspires your students on the free, self-service
Kaggle platform. “InClass competitions make
machine learning fun!”2.

1 Task overview

Beyond simply recognizing what objects are
present, vision-and-language tasks, such as
captioning (Chen et al., 2015) or visual question
answering (Antol et al., 2015), challenge systems
to understand a wide range of detailed semantics
of an image, including objects, attributes, spatial
relationships, actions and intentions, and how
all these concepts are referred to and grounded
in natural language. VQA is therefore viewed
as a suitable way to evaluate a system reading
comprehension.

“Since questions can be devised to query any as-
pect of text comprehension, the ability to answer
questions is the strongest possible demonstration
of understanding“ (Lehnert, 1977)

2 To teach NLP

A trained model cannot perform satisfactorily on
the Visual Question Answering task without lan-
guage understanding abilities. A visual-only sys-
tem (i.e., processing only the image) will not have
the visual reasoning skills required to provide cor-
rect answers (as it doesn’t process the questions
as input). Two NLP challenges arise to build a
multimodal model:

• The questions must be processed by the sys-
tem as input. This is the opportunity to teach

1https://github.com/jbdel/miniVQA
2https://www.kaggle.com/

different features extractions techniques for
sentences. The techniques can range from
unsupervised methods (bag of words, tf-idf
or Word2Vec/Doc2Vec (Mikolov et al., 2013)
models) to supervised methods (Recurrent
Neural Networks (Hochreiter and Schmidhu-
ber, 1997) or Transformers (Vaswani et al.,
2017) neural networks).

• The extracted linguistic features must be in-
corporated into the visual processing pipeline.
This challenge lies at the intersection of vision
and language research. Different approaches,
such as early and late fusion techniques, can
be introduced.

All implemented techniques can be evaluated on
the difficult task that is VQA. Because answering
questions about a visual context is a hard cognitive
task, using different NLP approaches can lead to
significant performance differences.

3 Resource overview

The source code is split into several sections, each
section containing tunable parameters to modulate
the dataset to match your needs. For example, you
can choose the number of possible answers, the
sample size per answer or the balance of labels
between splits.

MiniVQA built upon two datasets, the VQA V2
dataset (Goyal et al., 2017) and the VQA-Med
dataset (Ben Abacha et al., 2020). You can choose
to create a competition based on natural images or
medical images. MiniVQA proposes 443k ques-
tions on 82.7k images and 4547 unique answers
for the former, and 7.4k unique image-question
pairs and 332 answers for the latter 3.

Finally, MiniVQA provides a second Jupyter note-
book that trains and evaluates a baseline VQA

3As of 2021

55

model on any dataset you create. You are free
to share it or not amongst your class.

4 Resource presentation

The following sections present the features of
MiniVQA. We illustrate these features using the
VQA v2.0 dataset as a matter of example. The
same can be applied to the VQA-Med dataset.

4.1 Automatic download

The resource automatically downloads annotations
(questions, image_ids and answer)s from the of-
ficial datasets websites. Any pre-processing that
must be done is carried out. The number of possi-
ble questions and unique answers are printed to the
user, along with random examples.

4.2 Decide the volume of your dataset

Using MiniVQA, you can choose the size of your
dataset according to several settings.

num_answers the number of possible different
answers (i.e., how many classes).

sampling_type how to select samples, choose
between "top" or "random". Value "top" gets
the ’num_answers’ most common answers in the
dataset.

sampling_exclude_top and sam-
pling_exclude_bottom you can choose to
exclude the n most popular or least popular
answers (the most popular answers is "no" and
contains 80.000 examples).

min_samples and max_samples if sam-
pling_type is random, you can choose a
minimum and maximum number of samples with
min_samples and max_samples.

This section outputs a bar graph containing the
label distributions and some additional information.
Figure 1 shows two examples.

Figure 1: sampling_type random (left) and sam-
pling_type top (right).

4.3 Create dataset files
This section creates the chosen samples a json for-
mat. Two more parameters are available.
sample_clipping set to select n maximum
samples per answer. This setting is particularly
handy if you chose the "top" sampling_type in the
previous section.

im_download you can choose to download the
images of the selected samples directly through
http requests. Though rather slow, this allows the
user not to download the images of the full dataset.

resize if im_download is set to True, images are
squared-resized to n pixels. For your mini-VQA
project, you might want to use lower resolution for
your images (faster training). n = 128 is a good
choice.

4.4 Create splits
As in any competition, participants are provided a
train and validation set with ground-truth answers,
and a test-set without these answers.

train_size and valid_size fraction of the total
examples selected to populate the splits. 0.8 and
0.1 are usually good values. The rest (0.1) goes in
the test set.

balanced whether or not labels are homoge-
neously distributed across splits.

Figure 2 shows an example of the balanced setting
effect:

56

Figure 2: balance set to True (left) and to False (right).

Regardless of the balanced value, at least one sam-
ple of each label is put in each split.

4.5 Explore the question embedding space

It is possible to compute questions embedding us-
ing pre-trained transformer models. Each repre-
sentation is then reduced into a two-dimensional
point using t-SNE algorithm (van der Maaten and
Hinton, 2008). These embeddings can also be used
for section 5. MiniVQA plots two projections, one
for the 5 most popular question types and one with
randomly chosen question types.

Figure 3: Questions embedding using a pretrained bert-
base-nli-mean-tokens model.

4.6 Download files

Finally, you can download the dataset file in json,
the splits, and optionally, the images.
{train, val, sample_submission}.csv csv files
containing question_id, label.

test.csv must be given to students. They must
fill it with their systems predictions formatted like
sample_submission.csv which contains random
predictions.

answer_key.csv is the ground-truth file that has
to be stored on Kaggle (see Appendix A).

answer_list.csv maps the label to the answer in
natural language (i.e., label 0 is answer at line 1 in

answer_list, etc.).

image_question.json maps an image_id to a list
of questions (that concerns image_id). Each ques-
tion is a tuple (question_id, question).

5 Baseline Model

The provided baseline consists of a dataloader that
opens images and resize them to 112× 112 pixels
and that embeds questions to a feature vector of
size 768 from a pre-trained DistilBERT (Sanh
et al.).

The network consists a modified Resnet (He et al.,
2016) that takes as input an RBG image of size
112× 112 and outputs a feature map of size 512×
4× 4 that is flattened and then concatenated with
the question representation of size 768. Finally, a
classification layer projects this representation to
probabilities over answers. The network is trained
until no improvements is recorded on the validation
set (early-stopping).

References
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick, and
Devi Parikh. 2015. VQA: Visual Question Answer-
ing. In International Conference on Computer Vision
(ICCV).

Asma Ben Abacha, Vivek V. Datla, Sadid A. Hasan,
Dina Demner-Fushman, and Henning Müller. 2020.
Overview of the vqa-med task at imageclef 2020: Vi-
sual question answering and generation in the medi-
cal domain. In CLEF 2020 Working Notes, CEUR
Workshop Proceedings, Thessaloniki, Greece. CEUR-
WS.org <http://ceur-ws.org>.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. 2015. Microsoft coco captions:
Data collection and evaluation server. arXiv preprint
arXiv:1504.00325.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the V in
VQA matter: Elevating the role of image understand-
ing in Visual Question Answering. In Conference on
Computer Vision and Pattern Recognition (CVPR).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

57

Wendy Lehnert. 1977. Human and computational ques-
tion answering. Cognitive Science, 1(1):47–73.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In Ad-
vances in Neural Information Processing Systems, vol-
ume 26. Curran Associates, Inc.

Victor Sanh, Lysandre DEBUT, Julien CHAUMOND,
Thomas WOLF, and Hugging Face. Distilbert, a dis-
tilled version of bert: smaller, faster, cheaper and
lighter.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc.

A Create a competition on Kaggle

Navigate to http://www.kaggle.com/
inclass. Follow the instructions to setup
an InClass competition. Upload files train.csv,
val.csv, test.csv, answer_key.csv, and sam-
ple_submission.csv when prompted.

B image_question.json structure

Figure 4: Maps an image_id to a list of questions (that
concerns image_id). Each question is a tuple (ques-
tion_id, question).

58

Proceedings of the Fifth Workshop on Teaching NLP, pages 59–61
June 10–11, 2021. ©2021 Association for Computational Linguistics

From back to the roots into the gated woods: Deep learning for NLP

Barbara Plank
IT University of Copenhagen
bplank@gmail.com

Abstract

Deep neural networks have revolutionized
many fields, including Natural Language Pro-
cessing. This paper outlines teaching materi-
als for an introductory lecture on deep learn-
ing in Natural Language Processing (NLP).
The main submitted material covers a summer
school lecture on encoder-decoder models.
Complementary to this is a set of jupyter note-
book slides from earlier teaching, on which
parts of the lecture were based on. The main
goal of this teaching material is to provide an
overview of neural network approaches to nat-
ural language processing, while linking mod-
ern concepts back to the roots showing tradi-
tional essential counterparts. The lecture de-
parts from count-based statistical methods and
spans up to gated recurrent networks and atten-
tion, which is ubiquitous in today’s NLP.

1 Introduction

In 2015, the “deep learning tsunami” hit our
field (Manning, 2015). In 2011, neural networks
were not really “a thing” yet in NLP; they were
even hardly taught. I remember when in 2011 An-
drew Ng introduced the free online course on ma-
chine learning, which soon after led Daphne Koller
and him to start massive online education: “Many
scientists think the best way to make progress [..]
is through learning algorithms called neural net-
works”.1 Ten years later, it is hard to imagine any
NLP education not touching upon neural networks
and in particular, representation learning. While
neural networks have undoubtedly pushed the field,
it has led to a more homogenized field; some lec-
turers even question whether to include pre-neural
methods. I believe it is essential to teach statistical
foundations besides modern DL, ie., to go back to
the roots, to better be equipped for the future.2

1Accessed March 15, 2021: https://bit.ly/
2OZH2MZ

2Disclaimer: This submitted teaching material is limited as
it spans a single lecture. However, I believe it to be essential to

2 Structure of the summer school lecture

This paper outlines teaching material (Keynote
slides, Jupyter notebooks), which I would like to
provide to the community for reuse when teaching
an introductory course on deep learning for NLP.3

The main material outlined in this paper is a
Keynote presentation slide deck for a 3-h lecture
on encoder-decoder models. An overview of the
lecture (in non-temporal form), from foundations,
to representations to neural networks (NNs) be-
yond vanilla NNs is given in Figure 1. Moreover, I
provide complementary teaching material in form
of Jupyter notebook (convertable to slides). I’ve
used these notebooks (slides and exercises) during
earlier teaching and in parts formed the basis of the
summer school lecture (see Section 3).

Figure 1: Overview of the core concepts covered.

The lecture covers NLP methods broadly from
introduction concepts of more traditional NLP
methods to recent deep learning methods. A par-
ticular focus is to contrast traditional approaches
from the statistical NLP literature (sparse repre-

teach traditional methods besides modern neural approaches
(e.g. count-based vs prediction-based word representations;
statistical n-grams vs neural LMs; naive Bayes and logistic
regression vs neural classifiers, to name a few examples).

3Available at: https://github.com/bplank/
teaching-dl4nlp

59

sentations, n-grams) to their deep learning-based
counterparts (dense representations, ‘soft’ ngrams
in CNNS and RNN-based encoders). Consequently,
the following topics are covered in the lecture:

• Introduction to NLP and DL (deep learning),
what makes language so difficult; traditional
versus neural approaches

• N-gram Language Models,

• Feedforward Neural Networks (FFNNs)

• What’s the input? Sparse traditional vs dense
representations; Bag of words (BOW) vs con-
tinuous BOW (CBOW)

• Neural Language Models (LMs)

• Convolutional Neural Networks (CNNs) for
Text Classification (‘soft n-grams’)

• Recurrent Neural Networks (RNNs) for Text
Processing, RNNs as LMs

• Bidirectional RNNs, stacking, character rep-
resentations

• Gated RNNs (GRU, LSTMs)

• Deep contextualized embeddings (Embed-
dings as LMs, Elmo)

• Attention

The lecture was held as 3-h lecture at the first
Athens in NLP (AthNLP) summer school in 2019.
In the overall schedule of the summer school, this
lecture was the 3rd in a row of six. It was scheduled
after an introduction to classification (by Ryan Mc-
Donald), and a lecture on structured prediction (by
Xavier Carreras). The outlined encoder-decoder
lecture was then followed by a lecture on ma-
chine translation (by Arianna Bisazza; the lecture
build upon this lecture here and included the trans-
former), machine reading (by Sebastian Riedel)
and dialogue (by Vivian Chen).4 Each lecture was
enhanced by unified lab exercises.5

4Videos of all lectures are available at: http:
//athnlp2019.iit.demokritos.gr/schedule/
index.html

5Exercises were kindly provided as unified framework by
the AthNLP team, and hence are not provided here. They in-
cluded, lab 1: Part-of-Speech tagging with the perceptron; lab
2: POS tagging with the structured perceptron; lab 3: neural
encoding for text classification; lab 4: neural language model-
ing; lab 5: machine translation; lab 6: question answering

As key textbook references, I would like to refer
the reader to chapters 3-9 of Jurafsky and Mar-
tin’s 3rd edition (under development) (Jurafsky
and Martin, 2020),6 and Yoav Goldberg’s NLP
primer (Goldberg, 2015). Besides these textbooks,
key papers include (Kim, 2014) for CNNs on texts,
attention (Luong et al., 2015) and Elmo (Peters
et al., 2018).

3 Complementary notebooks of earlier
material

This lecture evolved from a series of lectures given
earlier, amongst which a short course given in
Malta in 2019, and a MSc-level course I taught
at the University of Groningen (Language Technol-
ogy Project). To complement the Keynote slides
of the summer school lecture provided here, ear-
lier Jupyter notebooks can be found at the website.
These cover a subset of the material above.

4 Conclusions

This short paper outlines teaching material for an in-
troductory lecture on deep learning for NLP. By re-
leasing this teaching material, I hope to contribute
material that fellow researchers find useful when
teaching introductory courses on DL for NLP. For
comments and suggestions to improve upon this
material, please reach out to me.

Acknowledgements

I would like to thank Arianna Bisazza for many
fruitful discussions in preparing this summer
school lecture, and the AthNLP 2019 organizers
for the invitation, with special thanks to Andreas
Vlachos, Yannis Konstas and Ion Androutsopou-
los. I would like to thank many colleagues who
inspired me throughout the years in so many ways,
including those who provide excellent teaching ma-
terial online. Thanks goes to Abigal See, Anders
Johannsen, Alexander Koller, Chris Manning, Dan
Jurafsky, Dirk Hovy, Graham Neubig, Greg Durrett,
Malvina Nissim, Richard Johannson, Ryan McDon-
ald and Philip Koehn. Special thank to those who
inspired me in one way or another for teaching
the beauty and challenges of computational linguis-
tics, NLP or deep learning (in chronological or-
der): Raffaella Bernardi, Reut Tsarfaty and Khalil
Sima’an, Gertjan van Noord, Ryan McDonald and
Yoav Goldberg.

6https://web.stanford.edu/~jurafsky/
slp3/

60

References
Yoav Goldberg. 2015. A primer on neural network

models for natural language processing.

Dan Jurafsky and James H. Martin. 2020. Speech and
language processing : an introduction to natural
language processing, computational linguistics, and
speech recognition. Upper Saddle River, N.J.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Christopher D Manning. 2015. Computational linguis-
tics and deep learning. Computational Linguistics,
41(4):701–707.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

61

Proceedings of the Fifth Workshop on Teaching NLP, pages 62–64
June 10–11, 2021. ©2021 Association for Computational Linguistics

Learning PyTorch Through A Neural Dependency Parsing Exercise

David Jurgens
School of Information
University of Michigan
jurgens@umich.edu

Abstract

Dependency parsing is increasingly the pop-
ular parsing formalism in practice. This as-
signment provides a practice exercise in im-
plementing the shift-reduce dependency parser
of Chen and Manning (2014). This parser
is a two-layer feed-forward neural network,
which students implement in PyTorch, provid-
ing practice in developing deep learning mod-
els and exposure to developing parser models.

1 Introduction

Deep learning methods are ubiquitous in nearly
all areas of NLP. However, some applications for
these models require extensive training or data that
make implementing the model in a classroom in-
feasible without additional computational support.
This homework introduces a simple-yet-powerful
network for performing dependency parsing us-
ing the shift-reduce parser of Chen and Manning
(2014). This three-layer network is efficient to train,
making it suitable for development by all students,
exposes students to dependency parsing, and helps
connect how a neural network can be used in prac-
tice. Through the assignment, students implement
the network, the training procedure, and explore
how the parser operates.

2 Design and Learning Goals

This exercise is designed for an advanced under-
graduate or graduate-level course in NLP. The mate-
rial is appropriate for students who have previously
covered simple neural networks and are learning
about dependency parsing. The exercise contains
extensive scaffolding code that simplifies the train-
ing process by turning the CoNLL treebank data
(Nivre et al., 2007) into training examples for the
students and computing the unlabeled attachment
score (UAS) for evaluating the model. The tech-
nical depth of the material is likely too involved
for an Applied NLP or Linguistics-focus setting;

the material could be re-purposed for an early exer-
cise in a Machine-learning focused course with the
addition of more content on network design. Stu-
dents typically have three weeks to complete the
assignment, with the majority finishing the main
tasks within a week. Through doing the exercise,
students practice building neural models and un-
derstanding how the core training procedure is im-
plemented in PyTorch (Paszke et al., 2019, e.g.,
what is a loss function and an optimizer), which
enables them to design, extend, or modify a variety
of PyTorch implementations for later assignments
and course projects.

The assignment has the following three broad
learning objectives. First, the exercise is an in-
troduction to developing neural models using the
PyTorch library. The relatively simple nature of
the network reduces the scope of design (e.g.,
compared with implementing an RNN or LSTM),
which allows students to understand how to con-
struct a basic network, use layers, embeddings,
and loss functions. Further, because the model
can be trained efficiently, this allows students to
complete the entire assignment on a laptop that is
several years old, which reduces the overhead of
needing students to gain access to GPUs or more
advanced computing. Through the exercise, stu-
dents experiment with changing different network
hyperparameters and designs and measuring their
effect on performance. These simple modifications
allow students to build confidence and gain intu-
ition on which kinds of modifications may improve
performance—or dramatically slow training time.

Second, students gain familiarity with how to
use pre-trained embeddings in downstream appli-
cations. The dependency parser makes use of
these embeddings for its initial word representa-
tions and the assignment provides an optional ex-
ercise to have students try embeddings from differ-
ent sources (e.g., Twitter-based embeddings) or no
pre-training at all in order to see how these affect

62

performance and convergence time. This learning
objective helps bridge the conceptual material to
later pre-trained language models like BERT if they
have not been introduced earlier.

Third, students should gain a basic familiarity
with dependency parsing and how a shift-reduce
parser works. Shift-reduce parsing is a classic tech-
nique (Aho and Ullman, 1973) and has been widely
adopted for multiple parsing tasks beyond syntax,
such as semantic parsing (Misra and Artzi, 2016) or
discourse parsing (Ji and Eisenstein, 2014). This as-
signment helps students understand the basic struc-
tures for parsing (e.g., the stack and buffer) to see
how neural approaches can be used in practice.
The concepts in the homework are connected to
textbook material in Chapter 14 of Speech & Lan-
guage Processing (Jurafsky and Martin, 2021, 3rd
ed.), which provides additional examples and defi-
nitions.

3 Homework Description

This homework has students implement two key
components of the Chen and Manning (2014)
parser in PyTorch, using extensive scaffolding code
to handle the parsing preparation. First, students
implement the feed-forward neural network, which
requires using three common elements of neural
networks in NLP: multiple layers, embeddings, and
a custom activation function. These elements pro-
vide conceptual scaffolding for later implementa-
tions on attention and recurrent layers in networks.
Second, students implement the main training loop,
which requires students to understand how the loss
is computed and gradient descent is applied. This
second step is found in nearly all code using net-
works built from scratch (or built upon pre-trained
parameters) and enables students to learn this pro-
cess in a simplified setting for use later. These
two components are broken into multiple discrete
steps to help students figure out where to start in
the code.

The second part of the homework has students
explore the parser in two ways. First, students ex-
amine the parsing data structures and report the
full parse of a sentence of their choice; this explo-
ration has students consider the steps required for a
successful parse. As a part of this exploration, stu-
dents are required to report a parse that is incorrect;
this latter task requires students to understand what
is a correct dependency parse and diagnose what
steps the parser has taken to introduce the error.

In some iterations, we have asked the students to
report on an error introduced from a non-projective
parse of their choice, though some students found
it difficult to come up with an example of their own.
Second, students are asked to extend the network in
some way of their choice (e.g., add a layer or add
dropout). This extension helps introduce additional
design components and build intuition.

4 Potential Extensions

Prior parts of the course examine word vectors and
this parsing exercise includes an optional exten-
sion to allow students to see their effect in practice.
Here, we provide students with multiple pre-trained
vectors from different domains (e.g., Twitter and
Wikipedia) and ask them to report on convergence
times and accuracy. Students may also optionally
freeze these embeddings to test how well their in-
formation can generalize. Since training data are
known to contain biases that affect downstream
performance (e.g., Garimella et al., 2019), one ad-
ditional extension could be to test how particular
embeddings perform better or worse on parsing
text from specific groups.

After implementing the model, the assignment
has students explore the parsing outputs and in-
termediate state, which provides some grounding
for how shift-reduce works in practice. However,
due to the focus on learning PyTorch, the parsing
component of the exercise is less in-depth; a more
parsing-focus variant of this assignment could have
students perform the CoNLL-to-training-data con-
version in order to see how dependency trees can
be turned into a sequence of shift-reduce opera-
tions and how such a process introduces errors for
non-projective parses.

5 Reflection on Student Experiences

In two iterations of the homework, students have
reported the exercise helped demystify deep learn-
ing and make the concepts accessible. Once the
model was implemented and working, some stu-
dents were surprisingly active in trying different
model designs; these students reported feeling ex-
cited that making these simple extensions could be
so easy, which encouraged them to try implement-
ing deep learning models in their course projects.

The initial version of this homework did not
include any parsing introspection. Students ex-
pressed feeling like the homework was more about
building a network than learning about parsing. As

63

a result, the second iteration added more diagnos-
tics for students to see what the parser is doing
and the exploration component. This addition was
intentionally simple to avoid substantially expand-
ing the scope of the assignment. However, adding
more parsing-oriented tasks remains an active area
of development for this homework.

References
Alfred V Aho and Jeffrey D Ullman. 1973. The the-

ory of parsing, translation, and compiling, volume 1.
Prentice-Hall Englewood Cliffs, NJ.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Proceedings of the 2014 conference on
empirical methods in natural language processing
(EMNLP), pages 740–750.

Aparna Garimella, Carmen Banea, Dirk Hovy, and
Rada Mihalcea. 2019. Women’s syntactic resilience
and men’s grammatical luck: Gender-bias in part-of-
speech tagging and dependency parsing. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3493–3498.

Yangfeng Ji and Jacob Eisenstein. 2014. Representa-
tion learning for text-level discourse parsing. In Pro-
ceedings of the 52nd annual meeting of the associa-
tion for computational linguistics (volume 1: Long
papers), pages 13–24.

Dan Jurafsky and James H. Martin. 2021. Speech &
Language Processing, 3rd edition. Prentice Hall.

Dipendra Misra and Yoav Artzi. 2016. Neural shift-
reduce ccg semantic parsing. In Proceedings of the
2016 conference on empirical methods in natural
language processing, pages 1775–1786.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The conll 2007 shared task on depen-
dency parsing. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 915–932.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative
style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703.

64

Proceedings of the Fifth Workshop on Teaching NLP, pages 65–69
June 10–11, 2021. ©2021 Association for Computational Linguistics

A Balanced and Broadly Targeted Computational Linguistics Curriculum

Emma Manning Nathan Schneider Amir Zeldes
Georgetown University

{esm76, nathan.schneider, amir.zeldes}@georgetown.edu

Abstract

This paper describes the primarily-graduate
computational linguistics and NLP curriculum
at Georgetown University, a U.S. research uni-
versity that has seen significant growth in these
areas in recent years. We discuss the prin-
ciples behind our curriculum choices, includ-
ing recognizing the various academic back-
grounds and goals of our students; teaching
a variety of skills with an emphasis on work-
ing directly with data; encouraging collabora-
tion and interdisciplinary work; and including
languages beyond English. We reflect on chal-
lenges we have encountered, such as the dif-
ficulty of teaching programming skills along-
side NLP fundamentals, and discuss areas for
future growth.

1 Introduction

This paper describes the computational linguistics
and NLP curriculum at Georgetown University, a
private research university whose computational
linguistics program has grown significantly over
the past 7 years. This curriculum has been deve-
loped with a high degree of collaboration between
the Linguistics and Computer Science departments,
as well as involvement with related programs such
as the Master’s in Data Science and Analytics. We
reflect on several principles that underlie our cur-
riculum, and discuss opportunities for further ex-
pansion.

2 Course Offerings

Table 1 summarizes our main graduate-level
courses focusing on computational linguistics and
NLP.1 These include:

1All are standard fall or spring semester courses for 3 cred-
its, with 150 minutes of instruction time per week. The total
number of 3-credit courses a student takes varies considerably
by graduate program: 8–10 for the CS MS; 10 for the CS
Ph.D.; 8–12 for the Linguistics MS; and 18 for the Linguistics
Ph.D. This includes departmental core requirements and other
course options beyond computational linguistics and NLP.

• A 3-course NLP sequence for novice program-
mers, which can be shortened to 1 or 2 courses
for students proficient in Python (discussed in
§3).

• A group of courses targeting methods for com-
putational linguistics research: corpus design
and use (§5), statistical analysis with R, and
machine learning techniques.

• A selection of application-oriented speech and
language technology courses encompassing
speech processing, dialogue systems, and ma-
chine translation.

• Special topics courses addressing issues such
as social factors and ethics in NLP, discourse
parsing, grammar formalisms, and meaning
representation design and parsing. These tend
to be reading- and research-oriented courses,
whereas the other courses place more empha-
sis on implementation and theory learning.

Advanced students of NLP can also take a num-
ber of related courses in the CS and Analytics
departments on topics like information retrieval
and machine learning for general (and not only
language-oriented) purposes.2

Syllabi for courses taught by Nathan Schnei-
der (instructor S in the table), including de-
tailed schedules with course materials, can be
found via http://people.cs.georgetown.edu/

nschneid/teaching.html. Recent syllabi for
courses taught by Amir Zeldes (instructor Z) can
be found at https://corpling.uis.georgetown.
edu/amir/pdf/syllabi/.

3 Interdisciplinarity

Our students include many from both the Linguis-
tics and Computer Science departments, as well as
some from other programs, such as Data Science
& Analytics and language departments. We have
developed a sequence of NLP courses designed

2A full list of CL-relevant courses are described at: http:
//gucl.georgetown.edu/gu-cl-curriculum.pdf

65

Course Target audience Frequency Instructor
Intro NLP (INLP) any except CS Annual Z

NLP Advanced Python for CL Ling+Analytics Annual A
Empirical Methods in NLP (ENLP) Ling+CS Annual S
Computational Corpus Linguistics any Annual Z

CL METHODS Analyzing Language Data with R Ling 2 Years Z
Machine Learning for Linguistics Ling 2 Years Z
Speech Processing Ling 2 Years A

APPLICATIONS Dialogue Systems any 2 Years A
Statistical/Neural Machine Translation any 2 Years A
Social Factors in CL/AI any 2 Years A

SPECIAL Discourse Modeling Ling+CS 2 Years Z
TOPICS Grammar Formalisms Ling 3–4 Years P

Meaning Representations Ling+CS 2 Years S

Table 1: Courses oriented specifically at computational linguistics or NLP and targeting graduate students (many
are also open to undergraduates in their third and fourth years). The first group is the main NLP sequence that
includes Python programming and fundamental algorithms, representations, and tasks; fluent Python programmers
can start with ENLP. The second group focuses on computational linguistic methods. The third group focuses on
application areas and associated tools. The last group consists of special topics. Instructors: Courses designated
S or Z are taught by dedicated computational linguistics faculty, Nathan Schneider and Amir Zeldes. Grammar
Formalisms is taught by Paul Portner, a Linguistics professor. Other courses, designated A, are taught by Adjunct
professors (different for each course).

to accommodate these various backgrounds. Lin-
guistics students with little or no prior program-
ming experience are introduced to basic Python
and NLP foundations in an Introduction to NLP
(INLP) course;3 they can then further develop their
programming skills with Computational Linguis-
tics with Advanced Python before taking Empirical
Methods in NLP (ENLP). Students who already
have strong programming skills, such as Com-
puter Science graduate students, can begin their
NLP journey in this same ENLP course, which
has projects emphasizing collaboration between
students of different backgrounds;4 as discussed
in Fosler-Lussier (2008), cross-disciplinary collab-
orations are helpful to establish respect between
students from different fields and mitigate the chal-
lenges of disparate backgrounds. Many other
NLP courses, such as those focusing on Dialogue
Systems and Machine Translation, are also cross-
listed between the Linguistics and CS departments,
which, as noted in e.g. Baldridge and Erk (2008),
helps these courses reach a wider audience.

Teaching NLP concepts alongside basic pro-
3Introducing these together allows linguistics students who

are unsure how interested they are in NLP to get a taste of it
in just one class, without requiring them to spend time on an
non-language-related programming class first.

4Depending on class makeup, there are sometimes require-
ments for the composition project groups to enforce this, e.g.
that each group needs to contain at least one linguist.

gramming skills has been a significant challenge.
INLP requires no prior programming experience,
but students who enter the course with none some-
times struggle to grasp programming concepts at
the speed they are taught, and many students rely
on significant support from teaching assistants to
successfully complete the course’s programming
assignments. Our experience has taught us that
frequent contact and check-ins initiated by teach-
ing assistants are very important for catching stu-
dents who may fall behind before assignment sub-
missions make problems more obvious. Use of
IDEs with syntax validation and auto-complete fa-
cilities, which are freely available for academic
purposes, are also very useful in this respect,
and in recent years students have used PyCharm
(https://www.jetbrains.com/pycharm/) as their
first Python IDE for this purpose.

Previously, linguistics students who completed
INLP were encouraged to enroll in ENLP im-
mediately afterward. However, we found that
INLP alone did not adequately prepare students
for the more advanced programming assignments
in ENLP—INLP assignments tend to involve mak-
ing fairly limited modifications to provided starter
code, while ENLP expects independent implemen-
tation of more substantial algorithms. Thus, the
Advanced Python course was introduced to give

66

students more practice implementing algorithms
for linguistic tasks as code. This bridges the gap
between the introductory and more advanced NLP
courses; however, it does mean that linguistics stu-
dents who enter the program with little or no pro-
gramming experience may need to take a sequence
of 3 courses to gain a thorough understanding of
NLP fundamentals, while students with a CS back-
ground only need to take one course. ENLP’s As-
signment 0 is a diagnostic of Python proficiency to
help students choose the appropriate course level.5

4 Balancing Skills Taught

Along with coming from different academic back-
grounds, we acknowledge that students studying
NLP have a variety of goals: for example, they
may wish to pursue NLP in academia or industry,
or they may be interested in using computational
methods for linguistics, or other Digital Humanities
or Social Science fields. To support these varying
goals, we endeavor to teach a balance of differ-
ent skills and perspectives on NLP. While some
courses emphasize algorithms, others focus more
on computational representations of language, on
creating and using resources such as corpora, or
on using existing NLP tools. We are also care-
ful to consider that not all NLP applications are
realized in a Big Data context, and we therefore
include units targeting low resource settings across
our course offerings.

5 Focus on Data

In all courses, we emphasize working directly
with language data. This is perhaps best exem-
plified in the Computational Corpus Linguistics
course, which teaches corpus design and construc-
tion methods along with analytical Corpus Linguis-
tics methodology and relevant readings on data and
its potential pitfalls. As part of its assignment struc-
ture, the course integrates a set of five annotation
projects in which each student chooses a single
document from a selection of genres to annotate
throughout the semester with a variety of annota-
tions layers, including structural markup (which
teaches XML basics), part-of-speech tagging, de-
pendency treebanking, entity and coreference res-
olution, and finally discourse parsing. A unit on
inter-annotator agreement evaluates and compares

5http://people.cs.georgetown.edu/cosc572/s21/
a0/

the students’ own work, underscoring the subjec-
tive nature of ‘ground-truth’ data, the range of lin-
guistic variation across genres, and the importance
of consistency and validation. At its end, the course
engages students in a ‘real-world’ research project,
which produces valuable linguistically annotated
data, which can be released to the research commu-
nity under an open license as part of the George-
town University Multilayer (GUM) Corpus (Zeldes,
2017) if students so wish.6

Several other courses also include practice an-
notation of data, including a POS tagging in-class
exercise in ENLP, and annotation in three differ-
ent semantic representations in Meaning Repre-
sentations. Others include error analysis of NLP
systems, such as a comparison of the output from
statistical and neural translation systems in Ma-
chine Translation. The Discourse Modeling course
teaches discourse parsing frameworks and algo-
rithms, including introducing students to topics
in annotating Rhetorical Structure Theory (Mann
and Thompson, 1988), Segmented Discourse Rep-
resentation Theory (SDRT, Asher and Lascarides
2003) and the Penn Discourse Treebank framework
(PDTB, Prasad et al. 2014).

6 Collaboration

Our coursework emphasizes frequent collaboration
among students. This includes in-class group ac-
tivities, such as practicing part-of-speech tagging
in small groups in ENLP, or working together as
a class to create a morphological analyzer for a
low resource language in INLP (an activity which
literally runs in a simultaneous collaborative online
code editing format). On a larger scale, students
work in groups on final projects in courses such
as ENLP, and have collaborated on an entry to a
shared task in a our discourse parsing course, with
the resulting system winning some shared task cat-
egories. For this latter project, students attempted
to tackle the same task in small groups, and finally
submitted an ensemble system fed by each group’s
model to the competition.

Some classes use wikis to maintain information
about course content, such as annotation guide-
lines for Computational Corpus Linguistics and
some seminars tackling specific topics; this allows
students to collaborate not only with their class-
mates, but with past and future students of the same
course, which also increases the sense of relevance

6https://corpling.uis.georgetown.edu/gum/

67

of course work, as students can see that their work
may live on long after they complete the course.

7 Including Languages Beyond English

In response to an unfortunate tendency of NLP
teaching and research to focus primarily on English,
we try to include data and examples from other
languages when possible, while keeping in mind
that students cannot be expected to know these
languages in detail. In ENLP, for example, each
student gives a short presentation on a different
language of their choosing to develop awareness
of the diversity of the world’s languages, and the
challenges of NLP on different languages. Other
assignments integrating data from other languages
include a finite state transducer for Japanese mor-
phology in INLP as well as a unit on a ‘surprise’
low resource language, work on multilingual dis-
course treebanks in our discourse parsing course,
statistical analysis of non-English data in our stats-
centered R course for language data, and analysis
of data from other languages in Lexical Functional
Grammar (LFG) and Head-driven Phrase Structure
Grammar (HPSG) in Grammar Formalisms. In the
past we have also offered a dedicated course on
parallel and other types of multilingual corpora,
which we hope to be able to offer again, based on
the availability of resources.

8 Teaching Research Skills

While many of the courses in table 1 cover
textbook-style fundamentals, the Special Topics
courses expose students to the scientific literature
in particular areas. For Ph.D. students in par-
ticular, this provides the opportunity to engage
with research ideas by reading critically and de-
veloping original ideas as term papers or projects.
Two courses include a mock reviewing activity
simulating an ACL reviewing experience. Final
projects in several courses—including Corpus Lin-
guistics, Machine Learning for Linguistics, ENLP,
and Meaning Representations—consist of an open-
ended research project with an ACL-style writeup
for the final report.

9 Directions for Growth

The current curriculum caters primarily to graduate
students, though many of the courses are also avail-
able to advanced undergraduates, who sometimes
continue on into our regular Computational Lin-
guistics MS, or Accelerated MS programs. While

we do offer a few undergrad-specific classes, such
as ‘Algorithms for NLP,’ ‘Languages and Comput-
ers,’ and ‘Multilingual and Parallel Corpora,’ these
are taught on an occasional basis; in the future, re-
sources allowing, we would like to develop a more
consistent NLP curriculum aimed at undergradu-
ates.

We have recently introduced a course on Social
Factors in NLP to address a major gap in our cur-
riculum, which is the lack of material focusing
on the impact of real world NLP applications on
society, and the ways in which models reflect de-
mographic and other types of bias. While this is
a step toward teaching a better understanding of
the relationship of NLP to society, we believe it
is worthwhile to integrate more content on soci-
etal impact and ethical considerations into the core
NLP courses as well, and are working to do so for
coming years. We would also like to continue to
expand our curriculum to address other topics that
currently receive little coverage, such as grammar
engineering and computational psycholinguistics.

Acknowledgments

We would like to acknowledge the other fac-
ulty who teach the courses described in this pa-
per: Matthew Marge, Corey Miller, Elizabeth
Merkhofer, Paul Portner, Achim Ruopp, and Shab-
nam Tafreshi. We thank the anonymous reviewers
and members of the NERT lab for feedback on this
paper, as well as the organizers of the workshop.

References
Nicholas Asher and Alex Lascarides. 2003. Logics of

Conversation. Studies in Natural Language Process-
ing. Cambridge University Press, Cambridge.

Jason Baldridge and Katrin Erk. 2008. Teaching com-
putational linguistics to a large, diverse student body:
Courses, tools, and interdepartmental interaction.
In Proceedings of the Third Workshop on Issues
in Teaching Computational Linguistics, pages 1–
9, Columbus, Ohio. Association for Computational
Linguistics.

Eric Fosler-Lussier. 2008. Strategies for teaching
“mixed” computational linguistics classes. In Pro-
ceedings of the Third Workshop on Issues in Teach-
ing Computational Linguistics, pages 36–44, Colum-
bus, Ohio. Association for Computational Linguis-
tics.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical Structure Theory: Toward a functional
theory of text organization. Text, 8(3):243–281.

68

Rashmi Prasad, Bonnie Webber, and Aravind Joshi.
2014. Reflections on the Penn Discourse TreeBank,
comparable corpora, and complementary annotation.
Computational Linguistics, 40(4):921–950.

Amir Zeldes. 2017. The GUM corpus: Creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581–612.

69

Proceedings of the Fifth Workshop on Teaching NLP, pages 70–79
June 10–11, 2021. ©2021 Association for Computational Linguistics

Gaining Experience with Structured Data: Using the Resources of Dialog
State Tracking Challenge 2

Ronnie W. Smith
Department of Computer Science

East Carolina University
Greenville, NC 27858 USA

rws@cs.ecu.edu

Abstract
This paper describes a class project for a re-
cently introduced undergraduate NLP course
that gives computer science students the op-
portunity to explore the data of Dialog State
Tracking Challenge 2 (DSTC 2). Student back-
ground, curriculum choices, and project de-
tails are discussed. The paper concludes with
some instructor advice and final reflections.

1 Introduction

One of the consequences of the data explosion of
the past twenty-five years is the likelihood that
a large number of computer scientists and com-
puting professionals will have the opportunity to
develop analytical tools for processing large, struc-
tured datasets during their careers. This is of course
especially true in the domain of NLP. A variety
of NLP application domains can serve as an op-
portunity to provide undergraduate students with
a chance to gain experience with the processing
of structured data in order to solve an interesting
“real world” problem. This paper describes a class
project for an undergraduate NLP course that gives
students the opportunity to explore the data of Dia-
log State Tracking Challenge 2 (DSTC 2). Student
background, curriculum choices, and project de-
tails are discussed. The paper concludes with some
advice for instructors who might be interested in
incorporating a DSTC 2 based project into their
course and final reflections about student feedback.

2 Background

At East Carolina University, a Natural Language
Processing course was added to our curriculum dur-
ing academic year 2015-2016. It is a junior/senior
level course for which the prerequisites are data
structures and introductory statistics. Significant
factors that influenced the decisions about curricu-
lum and pedagogy during the initial offerings of
the course (spring semesters 2017 through 2019)
include the following.

• While we also have a machine learning course,
it is not a prerequisite. Consequently, the NLP
instructor cannot assume all students have
completed the machine learning course.

• While Python is a rapidly growing program-
ming language of choice, our students have
not had significant exposure to the language
prior to the NLP course. We use Java and
C++ in our introductory and data structures
courses.

• Only a small percentage of our students
choose graduate study and almost all of those
who do only seek a terminal masters degree.
Nevertheless, it is important to expose under-
graduate computer science majors to the tools
of research if for no other reason than to give
them an awareness of how research advance-
ments are made.

• It is this author’s belief that an undergraduate
degree in computer science is merely a “li-
cense to learn.” It is essential that our students
understand the necessity of and gain experi-
ence with self-directed learning before they
graduate.

Based on these factors, Natural Language Pro-
cessing with Python (Bird et al., 2009) was chosen
as the textbook for the course. It had been the basis
for a successful independent study course with a
Duke University undergraduate during spring 2013.
Notable advantages of this choice include the fol-
lowing.

1. Gives students the opportunity to engage in
some self-directed learning of a new program-
ming language (Python) and a new API (the
Natural Language Toolkit (Bird et al., 2008)).

2. Provides a gentle introduction to machine
learning techniques suitable for our students

70

who had not yet taken the machine learning
course.

3. Offers a low cost to students as it is available
free of charge online.

4. Provides a rich collection of exercises by
which students can begin to gain proficiency
and confidence in working with collections of
structured data.

A main disadvantage of this text is its limited
discussion of linguistic theory, but that can be ad-
dressed by other assigned readings.

With the cooperation of the department chair, the
class size was restricted (15 in 2017, 25 in 2018,
and 29 in 2019). This enabled the opportunity to
provide more individualized learning opportunities.
The primary such opportunity was the class project
using the DSTC 2 data that was assigned for the
spring 2018 and spring 2019 offerings of the course.
Discussion of this project will be the focus of the
remainder of the paper.

3 DSTC 2 Overview

For DSTC 2 a general discussion of the challenge
and challenge results are provided in (Henderson
et al., 2014a). The ground rules for the challenge
are specified in (Henderson et al., 2013). A sum-
mary of the details most relevant to its use for a
class project is provided below.

3.1 Problem Domain
The dialog environment was a telephone-based dia-
log system where the user task was to obtain restau-
rant information. During data collection each sys-
tem user was given a dialog scenario to follow.
Example scenario descriptions extracted from two
of the log files are given below.

• Task 09825: You want to
find a cheap restaurant and
it should be in the south part
of town. Make sure you get
the address and phone number.

• Task 11937: You want to find
an expensive restaurant and it
should serve portuguese food.
If there is no such venue how
about north american type of
food. You want to know the
phone number and postcode of
the venue.

The basic structure of the dialogs has the follow-
ing pattern.

1. Acquire from the user a set of constraints
about the type of restaurant desired. Users
may supply constraint information about area,
food, name, and price range. This phase
may require multiple iterations as user goals
change (such as from portuguese food to north
american food for task 11937).

2. Once the constraints have been acquired, pro-
vide information about one or more restau-
rants that satisfy the constraints. Users may re-
quest that additional attributes about a restau-
rant be provided (such as address and phone
number).

An example transcript of an actual dialog for
completing task 11937 is provided in appendix A.

As described in the challenge handbook (Hen-
derson et al., 2013), during each call, the dialog
system logged detailed information that provides
the needed input for a separate module for handling
dialog state tracking. Further details about the data
collection process are described next.

3.2 Data Collection Process
There were two different speech recognition (SR)
models and 3 different dialog management mod-
els for a total of six different dialog systems that
were used in the data collection process. Approx-
imately 500 dialogs were collected using each of
the six systems. There were a total of 184 unique
users that were recruited using Amazon Mechan-
ical Turk. Data using two of the dialog managers
across both SR models (i.e., four of the six dialog
systems) were used for training and development
while data collected using the third dialog manager
(1117 dialogs) was used as the test set for evalua-
tion.1

4 Possible Activities with the DSTC 2
Data

For a group of students with sufficient technical
background with Python and/or machine learning,
a class project that allows students to develop their
own dialog state tracking system is certainly feasi-
ble. Students could start from scratch and enhance

1The total number of dialogs was 3235. They were subdi-
vided by the challenge organizers into a training set of 1612
dialogs, a dev set of 506 dialogs and then the test set of 1117
dialogs.

71

one of the rule-based baseline trackers that are pro-
vided in the DSTC 2 dataset or else develop or
enhance a machine learning approach for tracking
(e.g. (Williams, 2014), (Henderson et al., 2014b))2.
In either case students should base their approach
on a data-driven analysis of the nature of the di-
alogs.

However, this is not the only possible use of
the data. In a circumstance where students do not
have the necessary background to develop their
own tracker, they can still engage with the data by
developing their own analysis tools to glean infor-
mation useful for studying other aspects of dialog
processing such as miscommunication handling.
Given the instructor’s personal research interests
and the students’ background, this seemed to be
the best way to proceed with a project as described
next.

5 In-class Project Activities

About midway through the semester after complet-
ing the first five chapters of Natural Language Pro-
cessing with Python, a week of class is taken to
introduce students to dialog state tracking and the
project. The goals for that week of class include
the following.

• Introduce students to the natural language
dialog problem. Resources used include a
video of the Circuit Fix-it Shoppe dialog
system (Hipp and Smith, 1993) and an in-
troductory paper on natural language inter-
faces (Smith, 2005).

• Introduce students to the dialog state track-
ing problem using selected information from
the first four sections of the DSTC 2 hand-
book (Henderson et al., 2013).

• Introduce students to the project requirements
(see section 6).

• Provide a brief introduction to the structure of
the raw data used in the project. The data is
represented using JavaScript Object Notation
(JSON). This introduction includes a template
Python program that can be used as the basis
for the software development activities of the
students. Detailed study of appendix A in the

2There are also several other papers related to DSTC 2 in
the SIGDIAL 2014 proceedings (Georgila et al., 2014). The
two specifically cited discuss the two best performing trackers
in the original challenge.

challenge handbook is essential for successful
completion of the project. This template pro-
gram can access all dialogs based on a list of
dialog ID’s that are specified in a file whose
name is specified as a command line argu-
ment. For each accessed dialog the template
program extracts and displays the dialog acts
of the system and speaker.

• Introduce students to other data resources
available for the project. Besides the raw
data, a supplemental resource that is provided
are annotated transcripts of the dialogs. To
keep students from being overwhelmed, each
student is assigned the dialogs of a specific
speaker. Several of the speakers interacted
with all six of the dialog systems. Each stu-
dent is assigned a different speaker.3 The total
number of dialogs in each set is between 15
and 20 dialogs per speaker. Besides the tran-
scribed system output and Automatic Speech
Recognition (ASR) input, other information
provided in the annotated transcript includes
the following.4

1. The formal dialog act of the system ut-
terance.

2. The list of hypotheses provided by the
Spoken Language Understanding (SLU)
module including scoring.

3. The actual transcription of what was spo-
ken by the user.

4. The chosen hypothesis of the SLU along
with a comparison of that hypothesis to
what was actually spoken.

5. The current state of the dialog track-
ing process with respect to the in-
formable attributes (area, food, name,
and pricerange) for which information
has been provided at some point in the
dialog. Note that as in the case of the
sample dialog for task 11937, the infor-
mation for a specific goal can change
(such as the food preference changing
from “portuguese” to “north american”.).

There are a few other in-class activities that re-
late more specifically to the project requirements.

3Besides acting as a limit on the amount of data a student
had to consider, another reason for this was to generate data
that could be used to study if speakers behaved differently
with the different dialog systems.

4Details about the formal notation are provided in (Hen-
derson et al., 2013).

72

They will be mentioned in the following section
that discusses the project requirements.

6 Project Requirements

Students are required to submit a separate Python
program for carrying out each of the following
tasks.

1. Basic performance analysis of the speech qual-
ity.

2. Automatic annotation of dialog state change.

3. Automatic generation of dialog feature infor-
mation for miscommunication detection.

More detailed discussion about each of these
activities will follow.

6.1 Basic performance analysis of the speech
quality

The intent of this requirement was to give students
a gentle introduction to modifying the Python tem-
plate program to access other elements in the raw
dialog data. Their program was required to produce
the following information for each user utterance.

• Number of words actually spoken by the hu-
man speaker.

• Number of words in the highest scored live
speech recognition hypothesis.

• Total number of unique words found in the
union of all the live speech recognition hy-
potheses.

• A label describing whether or not the utter-
ance was understood.5

6.2 Automatic annotation of dialog state
change

Dialog state change occurs when the user either
supplies constraint information for possible restau-
rant recommendations (area, food, name, or price
range) or else requests that additional attributes
about a restaurant be provided (such as address and
phone number). In this task students must imple-
ment a program that tracks the changes in these
supplied values as the dialog proceeds. The al-
gorithm for carrying out this task was discussed
as part of the in-class activities. For each user

5This required using a function call to an instructor-
provided Python module.

utterance, the program had to specify the set of
attributes for which (1) a new value had been sup-
plied; (2) a modified value has been supplied; and
(3) a value has been removed.

6.3 Automatic generation of dialog feature
information for miscommunication
detection

This part of the project gave students a chance to
conduct their own analysis and offer their own in-
sight into what readily computable features of the
dialogs might be helpful to a dialog manager in de-
termining that miscommunication occurred. Each
student was required to propose three possibilities
for feature detection, and in a one-on-one meeting,
we would discuss the options and settle on a partic-
ular choice.6 Details about chosen features and the
results are presented in section 9.3.

This particular project requirement was used
spring semester 2018 but not spring semester 2019.
The reason for this was not due to any problem
with the requirement other than the amount of time
required by the instructor to meet with the stu-
dents and then evaluate the work. Unfortunately for
spring semester 2019 due to workload constraints
the instructor did not have sufficient time to oversee
and evaluate that requirement. Instead a standard-
ized third requirement was used that asked students
to conduct a performance analysis for the SLU
module that looked at its performance as a func-
tion of the presence or absence of a “high-scoring”
NULL semantic hypothesis where the definition of
“high-scoring” was specified as a run-time parame-
ter.

6.4 Project Report Requirements

Detailed requirements are provided in appendix B.
The intent of the report requirement was to give
students a chance to reflect on the dialog state track-
ing problem and its relationship to detection of
dialog miscommunication. In earlier course as-
signments, students had been asked to reflect and
write about the domain problem at hand. One such
assignment was from the second chapter of the Nat-
ural Language Processing with Python textbook
where students were asked to calculate word fre-
quencies for words of their choice for five differ-
ent genres in the Brown corpus. Students were
asked to come up with words whose presence or

6Students were required to submit their proposal for ad-
vance review. Meetings were scheduled at 10 minute intervals.

73

absence might be typical for that genre. In their
reflection, students were asked to explain their ra-
tionale for the genres they chose and to discuss the
sequence of insights/lessons learned as different
sets of words were tested. Students were specif-
ically challenged to provide evidence of thought-
ful inquiry—demonstrate a sequence of cycling
through hypothesis, test, result, and refinement. It
was hoped that prior experience with this mode
of activity would be helpful while working on the
project.

7 Project Assessment

7.1 Weightings

The three parts of the project were weighted as
follows.

1. Speech quality performance (30%).

2. Dialog state change annotation (40%).

3. Generation of dialog feature information
(2018)/SLU performance (2019) (30%).

For each part, code correctness/quality was
weighted at 70% while report quality was weighted
at 30%.

7.2 Evaluating code correctness/quality

For the first two parts of the project as well as the
2019 part 3 requirement to analyze SLU perfor-
mance, it is certainly possible to base code cor-
rectness on automated testing. Unfortunately, that
is likely to penalize excessively logic errors of a
minor nature that could lead to large discrepan-
cies in output results. Given the limited scope of
each program, a checklist of features can be manu-
ally inspected reasonably quickly. A time estimate
would be 20 to 30 minutes per student. As would
be expected, correct solutions do not take as long
to check.

Checking correctness of the 2018 part 3 require-
ment where students implemented their own fea-
ture generation algorithm is not as straightforward.
While it was possible to steer the students towards
a total of about five different dialog features rather
than more than 20 different programs, it was still
not a simple task.

7.3 Evaluating report quality

Two main questions were examined.

1. Did the student address each of the report re-
quirements?

2. Does the report exhibit evidence that the stu-
dent seriously looked at the results of running
the software and base their observations on
that.

As might be expected, there was a wide disparity
in the quality of the efforts. Some excerpts from
the reports are the following.

• “Part 3 of this assignment seems to work when
it wants to.”

• “. . . much of our language is fluff.”

In contrast, some students wrote multiple para-
graphs analyzing details and making tangible pro-
posals for how to use the results to help with han-
dling dialog miscommunication. One student who
was concurrently enrolled in an information re-
trieval course and had learned about Naive Bayes
classifiers chose to explore using the data produced
from part 1 (speech quality), and implement a clas-
sifier to see how it would perform (unsurprisingly,
not well).

Fortunately in general, many students engaged
in meaningful self-discovery of principles for ef-
fective human-computer dialog interaction such as
the usefulness of careful design in the phrasing of
questions to the user. Several students also noted
that excessive user terseness is not always helpful.

8 Classroom reinforcement of their
research efforts

Given the challenging nature of this project to our
students, it would have been unwise to have spent
the final weeks of the semester with excessive pre-
sentation of new material. To reinforce the goal
of student exposure to the process of research and
to connect their work to the research community,
two 50 minute class periods were used looking
at four papers from the 2014 SIGDial conference
where the work from DSTC 2 was presented. Class
time was spent watching the videos of the original
conference presentations of these papers ((Hen-
derson et al., 2014a), (Smith, 2014), (Williams,
2014), and (Henderson et al., 2014b)). These are
available at https://www.superlectures.
com/sigdial2014/. This classroom activity
was conducted two weeks prior to the end of the

74

semester. The final week was spent being avail-
able for additional consultation about projects as
well as spending class time on answering questions
about NLP that were posed by students at the be-
ginning of the semester. This was a chance to help
them see what they had learned during the semester,
and to understand better what remains an unsolved
problem.

9 Student Outcomes

9.1 Part 1: Speech quality performance

This requirement served its purpose beautifully.
One problem that exists in undergraduate computer
science study is the pervasive belief that almost any
programming question is answerable by an Internet
search—you just have to submit the magic words to
get the answer to appear. To meet this requirement
and do the rest of the project, students really had
to study the handbook and apply the information it
contained to the provided template program. This
was mentioned several times in student project re-
ports in response to the “what was your biggest
challenge and how did you overcome it?” question.

9.2 Part 2: Dialog state change annotation

The algorithm presentation in class did not go into
the details of how to access the needed data. Again,
students had to apply the lessons learned from part
1 as well as further investigate the handbook to
understand how to access needed data. Between
the data access and the required data structures
needed in their implementation, students because
much more capable of identifying the differences in
use between Python lists and dictionaries. This part
of the project tended to be the most challenging for
the students.

9.3 Part 3: Generation of dialog feature
information (2018)

Besides setting a flag to indicate repetition of a
system response, the primary choice of students
was to drill deeper into the ASR and SLU data.
The most common approaches are given below.

• Counting the occurrences of an
<attribute,value> pair (e.g. <food,italian>)
in the different SLU hypotheses.

• Calculating cumulative confidence in an
<attribute,value> pair over the various SLU
hypotheses.

• Combining SLU score with utterance length
in some fashion.

• Detecting the presence or absence of the
NULL (no interpretation) hypothesis for the
SLU.

• Detecting the presence or absence of
<attribute,value> information in the SLU that
appeared in the ASR.

Given the technical challenges required, the final
item was only attempted by a few students.

A key misconception that arose in several stu-
dents initial proposals for feature generation was a
confusion over what is available at the time the dia-
log is occurring. Several students tried to propose
using information only available after the dialogs
had completed (i.e. using the correctness annota-
tions for what was actually spoken and what the
correct SLU hypothesis updated dialog state track-
ing values should be). While this information can
be helpful in reassessing the performance of dia-
log system modules, it cannot be directly used in
detecting miscommunication during an ongoing
dialog. I believe that their work on part 2: dia-
log state change annotation led to this confusion
since they were using the post-dialog annotations
to complete that task. An extra 15 minutes of class
time addressing this issue prior to student proposals
should have cleared up this misconception.

9.4 Part 3: SLU performance (2019)
Most students implemented this correctly. This
was one place where it might have been helpful
to have the students also run their solution on the
entire DSTC 2 dataset as well as the dialogs of their
assigned speaker to see if the SLU performance on
their speaker was representative of overall perfor-
mance.

10 Advice for Instructors

Besides in an introductory undergraduate NLP
class for computer science majors with limited
background in machine learning and Python, I be-
lieve a project based on the DSTC 2 data can be
used in a variety of contexts.

• In an advanced NLP class where students al-
ready have a machine learning background.

• In an advanced undergraduate data structures
class. The project could be a means to get stu-
dents interested in NLP based on a common

75

activity—having a conversation with someone
else.

• In an accelerated summer camp environment
for talented undergraduates.

If interested in using the DSTC 2 data for a class
project, I would suggest the following steps.

1. Go to https://github.com/
matthen/dstc and download the
following files at a minimum.

• handbook.pdf
• dstc2_traindev.tar.gz - Train

and development datasets for DSTC 2.
• dstc2_test.tar.gz - Test dataset

for DSTC 2.
• dstc2_scripts.tar.gz - Evalua-

tion scripts, baseline tracker and other
tools.

• HWU_baseline.zip - Alternative
baseline tracker, provided by Zhuoran
Wang.

2. Install the downloaded files and make sure
you can run one of the supplied trackers on
the entire dataset.

3. Streamline the baseline tracker code and/or
scoring code to access and process a subset of
the features from the datasets. Alternatively,
you may wish to consult the teaching materi-
als web site for this workshop to access the
demo scripts that should be made available.

4. Explore the /scripts/config subdirec-
tory within the installation to understand the
use of the flist files for listing the specific
dialogs to be processed during the execution
of a script.

Once you’ve successfully completed these tasks,
you should be well on your way to developing your
own project with this data. Feel free to consult the
author of this paper as needed.

11 Lessons Learned

Student feedback was largely anecdotal and quite
favorable. While it is certainly the case that in re-
sponse to the “What would you change to improve
the course?”, the most common answer was to have
more time spent on classifiers/machine learning,
students did enjoy working on the project. The

most interesting piece of feedback that was ac-
quired was from a student who originally submitted
an incomplete project during the first offering of
the assignment (spring 2018). The student was al-
lowed an extra couple of weeks to complete the
project. At some point during fall semester 2018
the student took the time to communicate with me
to let me know that the student had used the project
as part of a job interview when asked to give a
technical presentation about a previous project the
student had completed. The student said, “. . . the
final project in your NLP class was by far the most
interesting one that I’ve been assigned in college
. . . ”.

While this was gratifying feedback, the more
important outcome is the belief that the course and
project did achieve the goals of giving students
experience with self-directed learning and engage-
ment with the tools of research. We are fortunate
in NLP to have a wide variety of interesting prob-
lems available to us that will naturally intrigue our
students regardless of their original interest in NLP.
If one wishes to use dialog processing as the in-
teresting problem, the DSTC 2 data is a valuable
resource for use in the classroom. Regardless, I
would encourage instructors to pick a task that ex-
cites them. Our teaching is much stronger when
we are demonstrating the need for self-directed
learning ourselves. Our research provides such a
means.

12 Acknowledgements

I would like to thank my computer science depart-
ment chair, Dr. Venkat Gudivada, for allowing me
to teach the initial offerings of the course with a re-
stricted enrollment. This enabled me to offer more
individualized exploratory research opportunities
with our undergraduates.

None of this would have been possible without
the existence of the DSTC 2 challenge. A special
thanks goes to the DSTC 2 organizers, Matthew
Henderson, Blaise Thomson, and Jason Williams
as well as to the University of Cambridge, Mi-
crosoft Research, and SIGDIAL (Special Interest
Group on Discourse and Dialogue) for their spon-
sorship and support of the challenge.

A final thanks goes to the anonymous reviewers
who helped me better understand what would be of
most value to the readers of this paper.

76

References

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python: An-
alyzing Text with the Natural Language Toolkit.
O’Reilly, Beijing. Current version of the book is
available at http://www.nltk.org/book/.

Steven Bird, Ewan Klein, Edward Loper, and Jason
Baldridge. 2008. Multidisciplinary instruction with
the natural language toolkit. In Proceedings of
the Third Workshop on Issues in Teaching Compu-
tational Linguistics, pages 62–70, Columbus, Ohio.
Association for Computational Linguistics.

Kallirroi Georgila, Matthew Stone, Helen Hastie, and
Ani Nenkova, editors. 2014. Proceedings of the
15th Annual Meeting of the Special Interest Group
on Discourse and Dialogue (SIGDIAL). Association
for Computational Linguistics, Philadelphia, PA,
U.S.A.

M. Henderson, B. Thomson, and J. Williams.
2013. Dialog State Tracking Challenge 2 &
3. https://github.com/matthen/dstc/
blob/master/handbook.pdf.

M. Henderson, B. Thomson, and J. Williams. 2014a.
The second dialog state tracking challenge. In Pro-
ceedings of the SIGdial 2014 Conference, pages
263–272, Philadelphia, U.S.A. Association for Com-
putational Linguistics.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014b. Word-based dialog state tracking
with recurrent neural networks. In Proceedings
of the 15th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue (SIGDIAL),
pages 292–299, Philadelphia, PA, U.S.A. Associa-
tion for Computational Linguistics.

D. R. Hipp and R. W. Smith. 1993. A demonstration of
the “circuit fix-it shoppe”. In Video Proceedings of
the AAAI Conference.

Ronnie Smith. 2014. Comparative error analysis of dia-
log state tracking. In Proceedings of the 15th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue (SIGDIAL), pages 300–309, Philadel-
phia, PA, U.S.A. Association for Computational Lin-
guistics.

R.W. Smith. 2005. Natural language interfaces. In En-
cyclopedia of Language and Linguistics, 2 edition,
pages 496–503. Elsevier Limited, Oxford.

Jason D. Williams. 2014. Web-style ranking and SLU
combination for dialog state tracking. In Proceed-
ings of the 15th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue (SIGDIAL),
pages 282–291, Philadelphia, PA, U.S.A. Associa-
tion for Computational Linguistics.

A Sample Dialog Transcript

Figure 1 is the transcript of an actual dialog for
completing Task 11937 (description listed in sec-
tion 3.1). SYS denotes utterances by the computer
system and ASR is the speech returned by the
speech recognizer. This sample dialog was used
during class presentation about DSTC 2. It was
used in order to make clear to the students that
what ASR returns is not always what was actually
said, but it is close enough in this example so that
the intent is still understood. A more detailed tran-
script including what was actually said is also made
available to the students.

B Sample Project Report Requirements

This information comes from the second offering
of the dialog state tracking project during spring
semester 2019. The report requirements for the
previous year (where part three of the project al-
lowed students to choose a dialog miscommunica-
tion feature to extract) is identical except the final
paragraph was omitted.

B.1 Report Organization

Your report should have three sections, one section
for each required investigation.

Section 1: Basic performance analysis of the
speech quality

Section 2: Automatic annotation of dialog state
change

Section 3: Basic performance analysis of the
SLU module

Each section should contain the following.

• A list of any known deficiencies in the soft-
ware. If you have no known deficiencies, ex-
plicitly say so.

• A description of the biggest challenge you
faced in successfully completing the software
for the given investigation. Did you overcome
the challenge and if so, how?

• A discussion of your most interesting obser-
vation based on the data produced by the
software. A quality discussion will not only
present the results, but also present some
thoughtful analysis that relates to the chal-
lenge of dialog state tracking. Possible con-
texts in which to frame the discussion include
the following.

77

1. An observation based on differences as a
function of the dialog system being used
(recall that each S[0-2]A[0-1] com-
bination represents a different dialog sys-
tem).

2. An observation based on differences as a
function of dialog type (goal change vs.
non-goal change).

3. An observation that provides insight
about one or more areas of exploration
that could lead to improved performance
by dialog state trackers, especially in re-
gards to detecting possible miscommuni-
cation.

NOTE: You are not required to use the same
context (or any of these contexts for that matter)
for each section. Use whatever seems appropri-
ate based on your observations as it relates to the
specific topic.

IMPORTANT: A quality discussion of your
most interesting observation for Section 3 should
also include a proposal for either extending the pro-
gram you wrote, or proposing a completely new
software tool (i.e. program) for deeper investiga-
tion of the relevant issues you have identified for
improving performance in dialog state tracking.

78

Session: data/Mar13_S2A0/voip-72e50baa85-20130326_053416

Turn 0
SYS > Hello , welcome to the Cambridge restaurant system. You can ask for
restaurants by area , price range or food type . How may I help you?
ASR > i don’t mind an expensive restaurant that serves portuguese food

Turn 1
SYS > I’m sorry but there is no restaurant serving expensive portuguese food
ASR > what about north american food

Turn 2
SYS > I’m sorry but there is no restaurant serving expensive portuguese food
ASR > north american food

Turn 3
SYS > Could you please repeat that?
ASR > what about north american food

Turn 4
SYS > gourmet burger kitchen serves north american food in the expensive
price range
ASR > what is the phone number

Turn 5
SYS > The phone number of gourmet burger kitchen is 01223 312598 .
ASR > what is the post code

Turn 6
SYS > The post code of gourmet burger kitchen is C.B 2, 1 A.B
ASR > bad

Turn 7
SYS > I am sorry but there is no other north american restaurant in the
expensive price range
ASR > thank you been bad

Turn 8
SYS > gourmet burger kitchen serves north american food in the expensive
price range
ASR > can you get back

Turn 9
SYS > Can I help you with anything else?
ASR > thank you good bye

Figure 1: Sample dialog for completing Task 11937

79

Proceedings of the Fifth Workshop on Teaching NLP, pages 80–86
June 10–11, 2021. ©2021 Association for Computational Linguistics

The Flipped Classroom model for teaching Conditional Random Fields in
an NLP course
Manex Agirrezabal

Centre for Language Technology (CST) - Department of Nordic Studies and Linguistics
University of Copenhagen / Københavns Universitet

Emil Holms Kanal 2
2300 Copenhagen (Denmark)

manex.aguirrezabal@hum.ku.dk

Abstract

In this article, we show and discuss our experi-
ence in applying the flipped classroom method
for teaching Conditional Random Fields in
a Natural Language Processing course. We
present the activities that we developed to-
gether with their relationship to a cognitive
complexity model (Bloom’s taxonomy). After
this, we provide our own reflections and expec-
tations of the model itself. Based on the evalu-
ation got from students, it seems that students
learn about the topic and also that the method
is rewarding for some students. Additionally,
we discuss some shortcomings and we propose
possible solutions to them. We conclude the
paper with some possible future work.

1 Introduction

In this article we would like to provide experience
on developing a flipped classroom environment in
a Natural Language Processing course. The most
common approach of teaching involves a teacher
“pouring” knowledge to its students, as if students
were plants and knowledge was water. There is a
tendency, though, to make classes more active and
interactive, in which communication does not only
happen from the teacher to the students, but also
from student to student.

Bloom’s taxonomy1 (Bloom et al., 1956; An-
derson et al., 2001) is a model that describes the
cognitive load of different types of work or activ-
ities. On the one hand, some activities, such as
remembering or understanding specific character-
istics of, for instance, a model of any kind, would
be considered to require a low cognitive load. On
the other hand, evaluating which model is best by
considering the characteristics of each, could be
considered to be in a higher level of complexity in
Bloom’s taxonomy.

1https://www.flickr.com/photos/
vandycft/29428436431

If we want our students to be more knowledge-
able and reflective, we need to go beyond the lower
levels in Bloom’s taxonomy. The traditional ap-
proach of introducing topics in a lecture would
make students remember and understand the cov-
ered topics. We believe, though, that with these
teaching practices there is a time limitation to go
beyond the first two levels of Bloom’s taxonomy.

A more efficient approach could be to ask stu-
dents to work on a set of topics beforehand, get
prepared, and then, work on activities that involve
a higher cognitive load. These activities could in-
volve applying and analyzing the acquired knowl-
edge to other aspects. In this article, we present
our experience in teaching Conditional Random
Fields as a Flipped Classroom. We teach this in a
course at the Master level about Natural Language
Processing (NLP).

The article is structured as follows. First we in-
troduce the flipped classroom method and some
challenges. After that, we present the program,
course and lecture in which the new teaching
method will be used. Then, we discuss the charac-
teristics of the implied student and also the evalu-
ation method that we use. Later, we describe the
lectures structure and the different activities and we
classify them according to Bloom’s taxonomy. We
then include some discussion, based on the expe-
rience. Finally, we conclude the work and suggest
some possible future directions.

2 Flipped Classroom: Are we going to
turn around the desks?

Flipped Classroom (Lage et al., 2000; Brame,
2013) is a teaching approach in which students get
first exposure to the material of a lecture outside of
class, and the in-class activities involve applying
the learned content. Provision of lecture material
can be done in a number of ways, such as reading
material, video lectures as slideshows, podcasts,
and so on.

80

Students are expected to do the homework, and
the majority of the in-class activities fully depend
on that. Because of that, the teacher should make
sure that students do their homework, because even
though we name it in various ways, watching lec-
tures or reading articles is still homework (Nielsen,
2012), and the challenge of making students ac-
complish with that is still there. A possible idea for
making sure that students do the reading homework
could be to ask them to do a quiz or reward them
somehow.

Apart from challenges regarding students, we
may not forget that all the activities, homework,
readings, and so on have to be retrieved, selected or
produced. Furthermore, as the content covered in
class is more complex, the teacher will have to be
more prepared. All this results in a larger working
load in the preparation of the class and its activities.

3 Background about program, course
and lecture

In this section, we briefly introduce the M. Sc. pro-
gram, the course and the specific lecture in which
we will be focusing on.

The IT & Cognition program

The IT & Cognition program at the University
of Copenhagen is an international and interdisci-
plinary program2 that accepts a small group of stu-
dents every year. The program covers three main
areas: Natural Language Processing, Image Pro-
cessing and Cognitive Science.

In the first semester, the students acquire the re-
quired basic skills for their further development in
the specialization area in which they are interested.
Scientific Programming, Language Processing I,
Cognitive Science I and Vision and Image Process-
ing are mandatory subjects that cover these basic
skills.

In the second semester students continue learn-
ing about Language Processing and Cognitive Sci-
ence in further specialized courses, and they also
get an introduction to Data Science. Besides, they
start their specialization process with an elective
course.

The third and forth semesters are devoted to a
third course about Cognitive Science and three dif-
ferent electives and after that, students work on
their thesis project.

2https://studies.ku.dk/masters/
it-and-cognition/

Language Processing 1 and 2 (LP1 and LP2)

These courses are taught during a whole academic
year (two semesters). There is one lecture per week
which lasts for two hours. Each course, LP1 and
LP2, goes through fourteen weeks in the fall and
spring semesters, respectively.

The Intended Learning Outcomes (ILOs) of both
courses are quite similar. The main differences are
in the degree of depth in which topics are cov-
ered. On the one hand, the first course offers basic
knowledge about different tasks relevant to Natural
Language Processing and their relationship to cur-
rent society. On the other hand, the second course
is more geared towards the development of more
advanced algorithms and their application in more
specific tasks.

Assessment method
We assess students by asking them to work on a
predefined topic. The common procedure is to
perform experiments for a relevant NLP task and
afterwards, they should write a scientific article
reporting on these experiments.

Lecture: Conditional Random Fields

One of the topics covered in the second Lan-
guage Processing course covers knowledge about
sequence tagging. We cover Hidden Markov Mod-
els, Maximum Entropy Markov Models and Condi-
tional Random Fields, as sequential tagging models.
This last model will be covered in one and a half
sessions. In the first session (2 hours) we will cover
theoretical questions and students are expected to
understand them. In the following week, there will
be one hour, and students will get hands-on practice
about Conditional Random Fields.

The lecture itself has the goal of providing the
students an understanding of how Maximum En-
tropy Markov Models (MEMMs) (McCallum et al.,
2000) and Conditional Random Fields (CRFs) (Laf-
ferty et al., 2001) make predictions compared to
hard classification methods. Additionally, they
should understand a common problem of MEMMs
(Label Bias problem (Bottou, 1991; Lafferty et al.,
2001)) and how CRFs solve such limitation. Fi-
nally, students should also be able to use CRFs for
their own research after the lectures.

4 The implied student

The background of our student group is very het-
erogeneous. Some people may have a Computer

81

Science related background, and therefore, suffi-
cient experience in programming. Other students
do not have the same background, but they are
strong in other aspects, such as linguistics, neuro-
science or psychology. Besides, at the time that our
analyzed lecture happens, students have already re-
ceived lectures about programming (first semester),
so therefore, this level gap should be significantly
smaller.

5 Evaluation method

In recent years, the usual teaching practice in the
Language Processing series has been lectures. As
the goal of this experiment is to check whether
the flipped classroom can support students in their
learning or not, we will implement this teaching
method for the section about Conditional Random
Fields, and analyze how students feel about it.

We evaluate this teaching practice by asking stu-
dents to fill in a survey. In the survey we ask stu-
dents about their general knowledge about some
topics (MEMMs, CRFs, Label Bias problem) but
also about whether they would be able to use CRFs
for their own work. Please find below the questions
that we asked in the questionnaire:

1. Do you know what a MEMM is (Maximum Entropy
Markov Model)?

2. Do you know what a CRF is (Conditional Random
Field)?

3. Do you know what the Label Bias problem is?
4. Do you feel capable of using a CRF for your own prob-

lems, such as developing a Named Entity Recognition
system?

5. Do you feel that this structure (teaching style) is more
rewarding?

6. Do you feel that this structure is more demanding (men-
tally)?

The response to these questions could be either
“Yes”, “Roughly” or “No”. Finally, there are two
questions related to the specific teaching method,
in which we ask students whether the teaching prac-
tice is more demanding (mentally) and also whether
it is more rewarding, compared to the lecturing ap-
proach. The survey was made one week before the
lecture day and after the lecture was done.

6 Activities

In this section we describe the activities that we
made for students before the lectures, during the
lectures and after the lectures. The activities will
be made public, hoping that they will be useful for
other NLP teachers and/or researchers.

6.1 Before lecture
Before the lecture, students were asked to watch
two video lectures. The two videos were avail-
able at the university learning platform and they
were made by ourselves. The first video covers
Maximum Entropy Markov Models and we intro-
duce them by showing the relationship to Logistic
Regression and Hidden Markov Models. These
last models (HMMs) were introduced two weeks
before in this same course. We use Maximum En-
tropy Markov Models as a middle step in order to
understand Conditional Random Fields, which are
discussed in the second video. We talk about the
Label Bias problem and show how this is solved by
using global normalization in Conditional Random
Fields.

Students should also read the paper that intro-
duces Conditional Random Fields (Lafferty et al.,
2001)3.

6.2 In classroom (online)
As mentioned before, CRFs will be covered in one
and a half lecture sessions. These sessions are held
online because of the current situation, following
our health authorities requirements.

Before we start the lecture, students are asked
whether there are questions regarding the reading
and watching activities. We will briefly recapitulate
some aspects, such as where could sequential mod-
els like HMM, MEMM or CRFs be useful: Part-of-
Speech (POS) tagging, Named Entity Recognition
(NER), and besides, any other task that requires
the production of tags for a given sequence of ele-
ments.

Then, the goal of the remaining time in the ses-
sion is threefold: (1) to revise and get an under-
standing of why sequential models such as HMMs,
MEMMs or CRFs are more powerful than hard clas-
sification models, e.g. Maximum Entropy, Support
Vector Machines (SVM), and so on; (2) to make
it clear what the Label Bias problem is; and (3)
to show how CRFs solve the Label Bias problem
by using global normalization. After this session,
there will be time to show CRFs working in prac-
tice, so that students get hands-on experience.

We describe below four different exercises that
students will have to do in small groups (3-4 peo-
ple). These exercises have an increasing level of

3We believe that including an additional article about Max-
imum Entropy Markov Models (McCallum et al., 2000) is
relevant and very helpful for students. Unfortunately, we did
not include it this year.

82

t 0 1 2 3 4
WORDS My smartphone worked very well
POS tags PRP N VP MOD RB
Features 1,2,0 0,10,0 0,6,1 0,4,0 0,4,0

complexity, as it will be seen.

Exercise 1
Understand how prediction is made in a Maximum
Entropy POS tagger. Students are given one sen-
tence and the POS tags for each word in that sen-
tence. They are told that the model is trained us-
ing three very simple features: isUpperCase,
length_chars, endsInEd), and they have to
simulate by hand how predictions are made for
each word. We also provide a list of 10 possible
POS tags. In order to make sure that the concepts
about the weight matrix are understood, we ask
some checkpoint questions, such as the shape of
the weight matrix, provided that the input matrix
has a size of 1x3 and the output matrix has a size
of 1x10.

Each group of students should provide two out-
puts to the teacher. Given an input and a weight
matrix,4 they should be able to see which POS tag
would be returned by the model. We also ask them
to describe, in one sentence with their own words,
how the model produces the output for each word.

Considering Bloom’s taxonomy (Bloom et al.,
1956), this exercise could be considered an exercise
to remember, understand and apply concepts, and
thus, in the three lower levels.

6.2.1 Exercise 2
In this exercise, students are given the same ex-
act sentence as before. The difference is that the
POS tagger with which the students will work is a
Maximum Entropy Markov Model (MEMM), and
therefore, there is no independent predictions.

Students already learned about the Viterbi al-
gorithm for Hidden Markov Models (HMM). The
goal of this exercise is to remember how this algo-
rithm works and also to try to be aware which is
the difference between HMMs and MEMMs, i.e.
the use of an extended set of features besides single
words and tags.

In order to raise that awareness, the exercise is
to go through the pseudo-code of the Viterbi al-
gorithm for HMMs (Jurafsky and Martin, 2008,
p. 220), understand it and find out which are the

4we also provide the dot product output to save time

specific elements that have to be changed, so that
this works with MEMMs. As a hint in order to
guess what should be put there, we provide stu-
dents a trellis of the example above. We highlight
one node in that trellis and discuss what its out-
going arcs represent: A probability distribution
PS′(S|0) = [P1, P2, ..., Pk]. The value of k de-
pends on the number of states, i.e. output classes.

This exercise requires understanding the Viterbi
algorithm for HMMs and understanding what
should be modified to make it work with MEMMs.
As students have to draw connections between
these two models, we consider that the cognitive
load, based on Bloom’s taxonomy, is higher than
in exercise 1.

Exercise 3
In the previous exercise, when we mention the
probability distribution PS′(S|O), we mention that
some of those probabilities could be zero. Because
of that, in this exercise we ask students to reflect on
what would happen if we have a node with many
zero probabilities. For example, what happens if a
node has 2 non-zero probabilities? What if it has 10
non-zero probabilities? We ask them this question
to think about those probabilities and make them
aware of the Label Bias problem.

In Bloom’s taxonomy this exercise could be seen
as evaluating and/or analyzing, as students should
be able to find out the problem by themselves. We
do not ask them to apply what they know, but to
think about how having more or less arcs could
affect the probabilities of nodes, and thus, the final
sequence probabilities.

Exercise 4
As they already identified the problem, the last
exercise is to suggest a solution for that problem.
They should analyze the trellis given in exercise 2
and think about a possible solution. Students are
given 5-10 minutes to discuss the topic. Afterwards,
we discuss their possible solutions and if nobody
reaches the actual solution, we introduce global
normalization (per observation sequence), which is
used in Conditional Random Fields.

In this case, the students would be in a similar
scenario as the researchers that found out the Label

83

Figure 1: The left plot shows the responses to the survey that we did one week before the flipped classroom session
started. The one on the right shows the responses to the same questions, but after the session was over. Based on
the responses, we can say that students felt that they understood these four relevant aspects. It looks like, though,
that in the future we should emphasize in the practical aspect of the taught models (Look at the right column in the
second figure).

Bias problem. As such, we consider that this is at
the highest level of Bloom’s taxonomy, in which
students discuss and conjecture about a possible
solution for the problem.

Practical applications

After covering the previous exercises, in the next
session, we cover Conditional Random Fields from
a practical perspective, for which we show students
how to process text to use it with Conditional Ran-
dom Fields. We also discuss how to extract relevant
features.

6.3 After classroom (exam project)

With regards to the final project, there will be a
practical session in which different methods, in-
cluding CRFs, will be shown. The students will be
then able to apply the obtained knowledge.

7 Discussion and evaluation

Our expectation is that students will learn more,
in a better way with a similar effort (from their
side). We think that the reward (for students) of
this teaching method is high, on the one hand. On

the other hand, the required time for preparation
(for teachers) is higher.

The preparation time increase is directly related
with the fact that the topics that are covered are
expected to be more complex. As students already
got lecturing as homework, then the in-class activi-
ties become more complicated, and it is because of
this that the teacher must have a deeper understand-
ing of the topic in question. Besides, in our specific
case the video lectures were made by us. We could
save time by using the available resources in on-
line learning platforms, but we decided to make
them ourselves, making the preparation more time-
consuming.

The evaluation, based on a survey that students
had to answer, seems positive, although there are
issues. Considering how much students learned,
we can say that the learning goals were satisfied, as
it can be seen in Figure 1. Each column in the plots
represents the answers of our students to a question
regarding knowledge on different concepts. They
had to answer either Yes, Roughly or No. As we
can see, students did not have much expertise on
the topic before the lecture and preparation. Af-
terwards, the responses show that students got the

84

required understanding.
Besides, we also asked whether this teaching

method is more rewarding. 7 out of 15 answered
yes. There was one that answered no. Finally,
there were other 7 out of 15 people that did not
take any stance, as they responded “I don’t know”.
From these results we cannot strongly confirm that
the method, in the way that we implemented it, is
rewarding. It seems quite rewarding, though.

Together with these answers, we gave the stu-
dents the option of writing further comments.
There were some positive comments, and some
others were possible issues with suggestions for
improvements. One mentions that it is hard not
to be able to ask questions when you watch the
lecture, and that it is hard to remember the context
of the question in class. A possible solution to this
issue could be to include a discussion forum for
each video lecture, so that students could post the
question immediately in the forum. Another stu-
dent pointed out that homework distribution was
far from being optimal, as all homework was given
in the first week and in the second week there was
nothing. This should definitely be thought in a way
that the homework load is more balanced. On the
bright side, it seemed positive to have the chance of
watching again the lecture videos. Also, some felt
that group work was better and that it was nice to
have more time to understand code and exercises.

8 Conclusion and Future directions

In this paper, we presented a possible class struc-
ture for teaching Conditional Random Fields in
almost two lectures. This class is formulated as a
Flipped classroom, in which there is a strong work-
load in the students’ preparation and this allows
students to get a further understanding of the topic,
compared to traditional lecturing.

We contemplate the Flipped Classroom as a rel-
evant teaching method for teaching complex topics.
We believe that by asking students to do part of
the work beforehand has allowed us to go one step
beyond in the understanding of CRFs. Further-
more, the exercise types that we covered were in
the highest orders in Bloom’s taxonomy, showing
the efficiency of the method.

The feedback that we got from students seems
to show that, in general, they learn about the topic
in question. It further seems that the method is
rewarding for some students. We believe that the
methodology has advantages, e.g. students get a

deeper understanding of the topic, and disadvan-
tages, for instance a higher preparation time. Con-
sidering both aspects, a possibility could be to find
a balance between flipping only a portion of the
whole lecture and having the other portion as a
more traditional lecture.

In our prepared lectures, we decided to empha-
size on a problem that Conditional Random Fields
fix, the Label Bias problem. In the future, it would
be interesting to include a discussion about the ob-
servation bias (Klein and Manning, 2002), which
happens when the prediction is made by totally
ignoring the labels.

As students have a very varied background, we
could already observe differences in the time of
execution of the exercises. A possible solution
to this is to apply differentiated teaching (Rock
et al., 2008), where the teaching content is adjusted
to some groups of students, making the activities
more tailored to those student clusters.

Acknowledgements

First of all, I would like to acknowledge the
whole Teaching and Learning in Higher Education
(TLHE) program taught at the University of Copen-
hagen, especially to my pedagogical and academic
supervisors, Lis Lak Risager (TEACH centre) and
Patrizia Paggio (Centre for Language Technology),
respectively. I would like to thank also the students
at Language Processing 2 (Spring semester, course
2020/2021, IT & Cognition program) for being so
helpful in the development of this model. Last, but
not least, I thank the anonymous reviewers for their
valuable comments and revisions. These reviews
are not only useful for this article, but also for the
development of the whole course of Language Pro-
cessing.

References
L.W. Anderson, B.S. Bloom, D.R. Krathwohl,

P. Airasian, K. Cruikshank, R. Mayer, P. Pintrich,
J. Raths, and M. Wittrock. 2001. A Taxonomy
for Learning, Teaching, and Assessing: A Revi-
sion of Bloom’s Taxonomy of Educational Objec-
tives. Longman.

Benjamin S Bloom et al. 1956. Taxonomy of educa-
tional objectives. vol. 1: Cognitive domain. New
York: McKay, 20:24.

Léon Bottou. 1991. Une Approche théorique de
l’Apprentissage Connexionniste: Applications à la
Reconnaissance de la Parole. Ph.D. thesis, Univer-
sité de Paris XI, Orsay, France.

85

Cynthia Brame. 2013. Flipping the classroom (re-
trieved last 2021-03-15).

Daniel Jurafsky and James H Martin. 2008. Speech
and language processing: An introduction to speech
recognition, computational linguistics and natural
language processing. Upper Saddle River, NJ: Pren-
tice Hall.

Dan Klein and Christopher D Manning. 2002. Condi-
tional structure versus conditional estimation in nlp
models. In Proceedings of the 2002 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2002), pages 9–16.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Maureen J Lage, Glenn J Platt, and Michael Treglia.
2000. Inverting the classroom: A gateway to creat-
ing an inclusive learning environment. The journal
of economic education, 31(1):30–43.

Andrew McCallum, Dayne Freitag, and Fernando CN
Pereira. 2000. Maximum entropy markov models
for information extraction and segmentation. In
Icml, volume 17, pages 591–598.

Lisa Nielsen. 2012. Five reasons i’m not flipping
over the flipped classroom. Technology & Learning,
32(10):46–46.

Marcia L Rock, Madeleine Gregg, Edwin Ellis, and
Robert A Gable. 2008. REACH: A framework for
differentiating classroom instruction. Preventing
School Failure: Alternative Education for Children
and Youth, 52(2):31–47.

86

Proceedings of the Fifth Workshop on Teaching NLP, pages 87–91
June 10–11, 2021. ©2021 Association for Computational Linguistics

Flamingos and Hedgehogs in the Croquet-Ground: Teaching Evaluation
of NLP Systems for Undergraduate Students

Brielen Madureira
Computational Linguistics
Department of Linguistics

University of Potsdam
madureiralasota@uni-potsdam.de

Abstract

This report describes the course Evaluation of
NLP Systems, taught for Computational Lin-
guistics undergraduate students during the win-
ter semester 20/21 at the University of Pots-
dam, Germany. It was a discussion-based
seminar that covered different aspects of eval-
uation in NLP, namely paradigms, common
procedures, data annotation, metrics and mea-
surements, statistical significance testing, best
practices and common approaches in specific
NLP tasks and applications.

1 Motivation

“Alice soon came to the conclusion that it was a very
difficult game indeed.” 1

When the Queen of Hearts invited Alice to her
croquet-ground, Alice had no idea how to play
that strange game with flamingos and hedgehogs.
NLP newcomers may be as puzzled as her when
they enter the Wonderland of NLP and encounter
a myriad of strange new concepts: Baseline, F1
score, glass box, ablation, diagnostic, extrinsic and
intrinsic, performance, annotation, metrics, human-
based, test suite, shared task. . .

Although experienced researchers and practition-
ers may easily relate them to the evaluation of NLP

1Alice in Wonderland by Lewis Carroll, public domain.
Illustration by John Tenniel, public domain, via Wikimedia
Commons.

models and systems, for newcomers like undergrad-
uate students it is not simply a matter of looking
up their definition. It is necessary to show them
the big picture of what and how we play in the
croquet-ground of evaluation in NLP.

The NLP community clearly cares for doing
proper evaluation. From earlier works like the
book by Karen Spärck Jones and Julia R. Galliers
(1995) to the winner of ACL 2020 best paper award
(Ribeiro et al., 2020) and recent dedicated work-
shops, e.g. Eger et al. (2020), the formulation of
evaluation methodologies has been a prominent
topic in the field.

Despite its importance, evaluation is usually cov-
ered very briefly in NLP courses due to a tight
schedule. Teachers barely have time to discuss
dataset splits, simple metrics like accuracy, preci-
sion, recall and F1 Score, and some techniques like
cross validation. As a result, students end up learn-
ing about evaluation on-the-fly as they begin their
careers in NLP. The lack of structured knowledge
may cause them to be unacquainted with the multi-
faceted metrics and procedures, which can render
them partially unable to evaluate models critically
and responsibly. The leap from that one lecture to
what is expected in good NLP papers and software
should not be underestimated.

The course Evaluation of NLP Systems, which I
taught for undergraduate Computational Linguis-
tics students in the winter semester of 20/21 at
the University of Potsdam, Germany, was a read-
ing and discussion-based learning approach with
three main goals: i) helping participants become
aware of the importance of evaluation in NLP; ii)
discussing different evaluation methods, metrics
and techniques; and iii) showing how evaluation is
being done for different NLP tasks.

The following sections provide an overview of
the course content and structure. With some adap-
tation, this course can also be suitable for more
advanced students.

87

Topic Content

Paradigms Kinds of evaluation and main steps, e.g. intrinsic and extrinsic,
manual and automatic, black box and glass box.

Common Procedures Overview about the use of measurements, baselines, dataset splits,
cross validation, error analysis, ablation, human evaluation and
comparisons.

Annotation How to annotate linguistic data, evaluate the annotation and how
the annotation scheme can affect the evaluation of a system’s
performance.

Metrics and Measurements Outline of the different metrics commonly used in NLP, what they
aim to quantify and how to interpret them.

Statistical Significance Testing Hypothesis testing for comparing the performance of two systems
in the same dataset.

Best Practices The linguistic aspect of NLP, reproducibility and the social impact
of NLP.

NLP Case Studies Group presentations about specific approaches in four NLP
tasks/applications (machine translation, natural language genera-
tion, dialogue and speech synthesis) and related themes (the history
of evaluation, shared tasks, ethics and ACL’s code of conduct and
replication crisis).

Table 1: Overview of the course content.

2 Course Content and Format

Table 1 presents an overview of the topics discussed
in the course. Details about the weekly reading lists
are available at the course’s website.2

The course happened 100% online due to the
pandemic. It was divided into two parts. In the
first half of the semester, students learned about the
evaluation methods used in general in NLP and, to
some extent, machine learning. After each meeting,
I posted a pre-recorded short lecture, slides and a
reading list about the next week’s content. The
participants had thus one week to work through
the material anytime before the next meeting slot.
I provided diverse sources like papers, blogposts,
tutorials, slides and videos.

I started the online meetings with a wrap-up and
feedback about the previous week’s content. Then,
I randomly split them into groups of 3 or 4 par-
ticipants in breakout sessions so that they could
discuss a worksheet together for about 45 minutes.
I encouraged them to use this occasion to profit
from the interaction and brainstorming with their

2https://briemadu.github.io/evalNLP/schedule

peers and exchange arguments and thoughts. After
the meeting, they had one week to write down their
solutions individually and submit it.

In the second half of the semester, they divided
into 4 groups to analyze how evaluation is being
done in specific NLP tasks. For larger groups, other
NLP tasks can be added. They prepared group
presentations and discussion topics according to
general guidelines and an initial bibliography that
they could expand. Students provided anonymous
feedback about each other’s presentations for me
and I then shared it with the presenters, to have the
chance to filter abusive or offensive comments.

The last lecture was a tutorial about useful met-
rics available in scikit-learn and nltk Python li-
braries using Jupyter Notebook (Kluyver et al.,
2016).

Finally, they had six weeks to work on a final
project. Students could select one of the following
three options: i) a critical essay on the development
and current state of evaluation in NLP, discussing
the positive and negative aspects and where to go
from here; ii) a hands-on detailed evaluation of
an NLP system of their choice, which could be,

88

for example, an algorithm they implemented for
another course; or iii) a summary of the course in
the format of a small newspaper.

3 Participants

Seventeen bachelor students of Computational Lin-
guistics attended the course. At the University of
Potsdam, this seminar falls into the category of
a module called Methods of Computational Lin-
guistics, which is intended for students in the 5th

semester of their bachelor course. Still, one student
in the 3rd and many students in higher semesters
also took part.

By the 5th semester, students are expected to
have completed introductory courses on linguis-
tics (phonetic and phonology, syntax, morphology,
semantics and psycho- and neurolinguistics), com-
putational linguistics techniques, computer science
and programming (finite state automata, advanced
Python and other courses of their choice), introduc-
tion to statistics and empirical methods and founda-
tions of mathematics and logic, as well as varying
seminars related to computational linguistics.

Although there were no formal requirements for
taking this course, students should preferably be
familiar some common tasks and practices in NLP
and the basics of statistics.

4 Outcomes

I believe this course successfully introduced stu-
dents to several fundamental principles of evalua-
tion in NLP. The quality of their submissions, espe-
cially the final project, was, in general, very high.
By knowing how to properly manage flamingos
and hedgehogs, they will hopefully be spared the
sentence “off with their head!” as they continue
their careers in NLP. The game is not very difficult
when one learns the rules.

Students gave very positive feedback at the end
of the semester about the content, the literature
and the format. They particularly enjoyed the op-
portunity to discuss with each other, saying it was
good to exchange what they recalled from the read-
ing. They also stated that what they learned con-
tributed to their understanding in other courses and
improved their ability to document and evaluate
models they implement. The course was also useful
for them to start reading more scientific literature.

In terms of improvements, they mentioned that
the weekly workload could be reduced. They also
reported that the reading for the week when we

covered statistical significance testing was too ad-
vanced. Still, they could do the worksheet since it
did not dive deep into the theory.

The syllabus, slides and suggested readings are
available on the course’s website.3 The references
here list the papers and books used to put together
the course and has no ambition of being exhaus-
tive. In case this course is replicated, the references
should be updated with the most recent papers. I
can share the worksheets and guidelines for the
group presentation and the project upon request.
Feedback from readers is very welcome.

Acknowledgments

In this course, I was inspired and used material
available online by many people, to whom I am
thankful. I also thank the students who were very
engaged during the semester and made it a reward-
ing experience for me. Moreover, I am grateful
for the anonymous reviewers for their detailed and
encouraging feedback.

References
Valerie Barr and Judith L. Klavans. 2001. Verification

and validation of language processing systems: Is it
evaluation? In Proceedings of the ACL 2001 Work-
shop on Evaluation Methodologies for Language
and Dialogue Systems.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Anja Belz. 2009. That’s nice. . . what can you do with
it? Computational Linguistics, 35(1):111–118.

Emily M. Bender and Batya Friedman. 2018. Data
statements for natural language processing: Toward
mitigating system bias and enabling better science.
Transactions of the Association for Computational
Linguistics, 6:587–604.

Taylor Berg-Kirkpatrick, David Burkett, and Dan
Klein. 2012. An empirical investigation of statis-
tical significance in NLP. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning, pages 995–1005, Jeju Is-
land, Korea. Association for Computational Linguis-
tics.

Chris Callison-Burch, Cameron Fordyce, Philipp
Koehn, Christof Monz, and Josh Schroeder. 2007.

3https://briemadu.github.io/evalNLP/

89

(meta-) evaluation of machine translation. In Pro-
ceedings of the Second Workshop on Statistical Ma-
chine Translation, pages 136–158, Prague, Czech
Republic. Association for Computational Linguis-
tics.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.
2020. Evaluation of text generation: A survey.
arXiv preprint arXiv:2006.14799.

Eirini Chatzikoumi. 2020. How to evaluate machine
translation: A review of automated and human met-
rics. Natural Language Engineering, 26(2):137–
161.

Jan Deriu, Alvaro Rodrigo, Arantxa Otegi, Guillermo
Echegoyen, Sophie Rosset, Eneko Agirre, and Mark
Cieliebak. 2021. Survey on evaluation methods
for dialogue systems. Artificial Intelligence Review,
54(1):755–810.

Rotem Dror, Gili Baumer, Marina Bogomolov, and Roi
Reichart. 2017. Replicability analysis for natural
language processing: Testing significance with mul-
tiple datasets. Transactions of the Association for
Computational Linguistics, 5:471–486.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The hitchhiker’s guide to testing statis-
tical significance in natural language processing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1383–1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Rotem Dror, Lotem Peled-Cohen, Segev Shlomov, and
Roi Reichart. 2020. Statistical significance testing
for natural language processing. Synthesis Lectures
on Human Language Technologies, 13(2):1–116.

Steffen Eger, Yang Gao, Maxime Peyrard, Wei Zhao,
and Eduard Hovy, editors. 2020. Proceedings of
the First Workshop on Evaluation and Comparison
of NLP Systems. Association for Computational Lin-
guistics, Online.

Karën Fort, Gilles Adda, and K. Bretonnel Cohen.
2011. Last words: Amazon Mechanical Turk: Gold
mine or coal mine? Computational Linguistics,
37(2):413–420.

J.R. Galliers, K.S. Jones, and University of Cambridge.
Computer Laboratory. 1993. Evaluating Natural
Language Processing Systems. Computer Labora-
tory Cambridge: Technical report. University of
Cambridge, Computer Laboratory.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artifi-
cial Intelligence Research, 61:65–170.

Kyle Gorman and Steven Bedrick. 2019. We need to
talk about standard splits. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2786–2791, Florence,
Italy. Association for Computational Linguistics.

Lynette Hirschman and Henry S. Thompson. 1997.
Overview of Evaluation in Speech and Natural Lan-
guage Processing, page 409–414. Cambridge Uni-
versity Press, USA.

Dirk Hovy and Shannon L. Spruit. 2016. The social
impact of natural language processing. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 591–598, Berlin, Germany. Association
for Computational Linguistics.

David M. Howcroft, Anya Belz, Miruna-Adriana
Clinciu, Dimitra Gkatzia, Sadid A. Hasan, Saad
Mahamood, Simon Mille, Emiel van Miltenburg,
Sashank Santhanam, and Verena Rieser. 2020.
Twenty years of confusion in human evaluation:
NLG needs evaluation sheets and standardised def-
initions. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
169–182, Dublin, Ireland. Association for Computa-
tional Linguistics.

Karen Sparck Jones and Julia R Galliers. 1995. Evalu-
ating natural language processing systems: An anal-
ysis and review, volume 1083 of Lecture Notes in
Artificial Intelligence. Springer-Verlag Berlin Hei-
delberg.

Margaret King. 1996. Evaluating natural language
processing systems. Communications of the ACM,
39(1):73–79.

Thomas Kluyver, Benjamin Ragan-Kelley, Fer-
nando Pérez, Brian Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica Hamrick,
Jason Grout, Sylvain Corlay, Paul Ivanov, Damián
Avila, Safia Abdalla, and Carol Willing. 2016.
Jupyter notebooks – a publishing format for repro-
ducible computational workflows. In Positioning
and Power in Academic Publishing: Players, Agents
and Agendas, pages 87 – 90. IOS Press.

Zachary C. Lipton and Jacob Steinhardt. 2019. Trou-
bling trends in machine learning scholarship: Some
ml papers suffer from flaws that could mislead
the public and stymie future research. Queue,
17(1):45–77.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016.
How NOT to evaluate your dialogue system: An
empirical study of unsupervised evaluation metrics
for dialogue response generation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2122–2132, Austin,
Texas. Association for Computational Linguistics.

Jekaterina Novikova, Ondřej Dušek, Amanda Cer-
cas Curry, and Verena Rieser. 2017. Why we need
new evaluation metrics for NLG. In Proceedings
of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 2241–2252,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

90

Patrick Paroubek, Stéphane Chaudiron, and Lynette
Hirschman. 2007. Principles of evaluation in nat-
ural language processing. Traitement Automatique
des Langues, 48(1):7–31.

Carla Parra Escartín, Wessel Reijers, Teresa Lynn, Joss
Moorkens, Andy Way, and Chao-Hong Liu. 2017.
Ethical considerations in NLP shared tasks. In Pro-
ceedings of the First ACL Workshop on Ethics in Nat-
ural Language Processing, pages 66–73, Valencia,
Spain. Association for Computational Linguistics.

Ehud Reiter and Anja Belz. 2009. An investigation into
the validity of some metrics for automatically evalu-
ating natural language generation systems. Compu-
tational Linguistics, 35(4):529–558.

Philip Resnik and Jimmy Lin. 2010. Evaluation of
NLP systems. The handbook of computational lin-
guistics and natural language processing. Chapter
11., 57.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Stefan Riezler and John T. Maxwell. 2005. On some
pitfalls in automatic evaluation and significance test-
ing for MT. In Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for
Machine Translation and/or Summarization, pages
57–64, Ann Arbor, Michigan. Association for Com-
putational Linguistics.

Nathan Schneider. 2015. What I’ve learned about anno-
tating informal text (and why you shouldn’t take my
word for it). In Proceedings of The 9th Linguistic
Annotation Workshop, pages 152–157, Denver, Col-
orado, USA. Association for Computational Linguis-
tics.

Noah A Smith. 2011. Linguistic structure prediction.
Synthesis lectures on human language technologies,
4(2):1–274.

Anders Søgaard, Anders Johannsen, Barbara Plank,
Dirk Hovy, and Hector Martínez Alonso. 2014.
What’s in a p-value in NLP? In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning, pages 1–10, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Karen Sparck Jones. 1994. Towards better NLP sys-
tem evaluation. In Human Language Technology:
Proceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994.

Chris van der Lee, Albert Gatt, Emiel van Miltenburg,
Sander Wubben, and Emiel Krahmer. 2019. Best
practices for the human evaluation of automatically
generated text. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,

pages 355–368, Tokyo, Japan. Association for Com-
putational Linguistics.

Petra Wagner, Jonas Beskow, Simon Betz, Jens
Edlund, Joakim Gustafson, Gustav Eje Henter,
Sébastien Le Maguer, Zofia Malisz, Éva Székely,
Christina Tånnander, et al. 2019. Speech synthesis
evaluation—state-of-the-art assessment and sugges-
tion for a novel research program. In Proceedings of
the 10th Speech Synthesis Workshop (SSW10).

91

Proceedings of the Fifth Workshop on Teaching NLP, pages 92–95
June 10–11, 2021. ©2021 Association for Computational Linguistics

An Immersive Computational Text Analysis Course for Non-Computer
Science Students at Barnard College

Adam Poliak Jalisha Jenifer
Barnard College, Columbia University

{apoliak,jjenifer}@barnard.edu

Abstract

We provide an overview of a new Computa-
tional Text Analysis course that will be taught
at Barnard College over a six week period in
May and June 2021. The course is targeted to
non Computer Science at a U.S. Liberal Arts
college that wish to incorporate fundamental
Natural Language Processing tools in their re-
search and studies. During the course, stu-
dents will complete daily programming tuto-
rials, read and review contemporary research
papers, and propose and develop independent
research projects.

1 Introduction

As computing has become foundational to 21st cen-
tury literacy (Guzdial, 2019), students across many
disciplines are increasingly interested in gaining
computing literacy and skills. Barnard College is
meeting this increased demand through its Think-
ing Quantitatively and Empirically and Thinking
Technologically and Digitally requirements that re-
spectively aim for students “to develop basic com-
petence in the use of one or more mathematical,
statistical, or deductive methods” and “foster stu-
dents’ abilities to use advanced technologies for
creative productions, scholarly projects, scientific
analysis or experimentation.”1

This new 3-credit Computational Text Analysis
course will enable roughly 25 students to leverage
advanced NLP technologies in their work.2 The
goal of the course is to introduce students to the
tools and quantitative methods to discover, mea-
sure, and infer phenomena from large amounts
of text. Unlike a traditional Natural Language
Processing class, students will not implement key
algorithms from scratch. Rather, students will

1http://catalog.barnard.edu/
barnard-college/curriculum/
requirements-liberal-arts-degree/
foundations/

2https://coms2710.barnard.edu/

Week Topic

1 Bash, Python, & Math bootcamp
2 Words, Words, Words
3 Topic Modeling
4 Data Collection
5 Machine Learning
6 Advanced Topics & Final Projects

Table 1: Theme for each of the six weeks.

learn how to use existing python libraries like
nltk (Loper and Bird, 2002), gensim (Rehurek and
Sojka, 2011), spacy (Honnibal et al., 2020), and
sklearn (Pedregosa et al., 2011) to analyze large
amounts of textual data. Students will also gain
famillarity with webscraping tools and APIs often
used to collect textual data.

2 Course Design

Due to COVID-19 schedule changes, the course
will meet remotely for 95 minutes four days a week
over 6 weeks. Each week will revolve around a
class of methods used in computational text analy-
sis, shown in Table 1. Course meetings will begin
with a 30 minute lecture motivating and explaining
a specific concept or method. Corresponding read-
ings introducing these methods will be provided
before class. In the subsequent 30 minute interval,
we will collaboratively work through a Jupyter-
Notebook demonstrating the day’s concept using
real-world textual data.3 Both the lecture and col-
laborative demo will be recorded and available to
students after class. Students can use the remaining
35 minutes to begin and complete daily homework
tutorials where they will further experiment with
applying methods to provided real-world text.

3We will continue this practice from a previous online
Introductory Data Science class (https://coms1016.
barnard.edu/) where students found live coding demos
to be helpful.

92

Assignment Grade Percent

Daily Tutorials 20
Weekly Homework 30

Paper Reviews 15
Final Project 35

Table 2: Assignments and corresponding grade
weights.

2.1 Assignments

Students will complete four types of assignments
during the six week course to gain familiarity, com-
fort, and confidence applying computational tex-
tual analysis methods to large corpora (Table 2).
With an emphasis on learning by doing, complet-
ing daily tutorials independently will help stu-
dents solidify their understanding of the day’s ma-
terial while working through examples where these
methods have been successfully deployed. Daily
tutorials will primarily be graded using an auto-
grader. Many of the daily tutorials are adaptions
of notebooks from similar courses, e.g. Jonathan
Reeve’s Computational Literary Analysis course4

at Columbia University, Matthew Wilkens’s and
David Mimno’s Text Mining for History and Liter-
ature course5 at Cornell, and Christopher Hench’s
and Claudia von Vacano’s Rediscovering Text as
Data course6 at Berkeley.

Each week, students will be given a corpus and
a research question and will be tasked with using
the previous week’s methods to try answering the
specific research question. These weekly home-
works will give students freedom to experiment
with different methods and see how different de-
sign choices can have significant impacts. Table 3
outlines the theme and corpora for each weekly
homework. Students will be allowed to work on
these assignments in pairs. Completed notebooks
containing students’ code, figures, and a brief write-
up will be graded manually. To help prepare stu-
dents for final projects, feedback will include ques-
tions and comments related to both the technical
methods used and presentation.7

4https://icla2020b.jonreeve.com/
5https://github.com/wilkens-teaching/

info3350-f20
6https://github.com/henchc/

Rediscovering-Text-as-Data
7Daily tutorials and weekly homeworks will be publicly

available at https://github.com/BC-COMS-2710/
summer21-material. Solutions and autograders will be
available to other instructors wishing to adopt this course.

Theme Corpus

Readability U.S Presidential Inaugural Addresses
Document Similarity NYTimes Obituaries

Web Scraping Columbia Course Reviews
Machine Learning Political Tweets

Table 3: Themes and corresponding corpus for the four
week-long homeworks different assignments.

Students will complete five brief paper reviews
during the course. Each week, students will choose
from a set of research papers and write a brief re-
view of the paper. Each review will include a short
summary and a few sentences reflecting on their
opinion on the paper’s methods and findings. This
will help students appreciate the wide-ranging ap-
plicability of these methods and see more examples
where researchers in other fields have successfully
leveraged computational text analysis methods.

For their final projects, students will develop
their own research question based on a corpus that
they will collect. Students will apply at least two
methods covered in the course to answer their re-
search question. By the end of the fourth week,
students will propose their research question and
will begin to collect a corpus to study. Students
will present a brief progress update to the rest of
the class during the last scheduled course meeting
(Monday June 14th) and provide feedback to each
other. Students will use the official finals period to
incorporate feedback and submit a final write up
describing their research.

2.2 Computational Infrastructure

All assignments will be completed using Jupyter-
Labs hosted on a JupyterHub server maintained by
Columbia University IT at no cost to students. This
enables equal access for students who might not
have resources to store and process large amounts
of text. Additionally, this will ensure students use
the same library and tools versions.

2.3 Prerequisites

We strongly recommend students to have taken
at least one prior programming course. While we
make no assumptions about students prior program-
ming experience and we cover bash and python
basics, we believe having one prior programming
course will help students hit the ground running.
Furthermore, this allows us to cover more advanced
topics in depth. In future versions of the course tak-
ing place during a traditional 13-week semester, we

93

Figure 1: Statistics from 18 registered students who completed a pre-course interest form. Breakdown of students
by major (left) and year (right).

will consider removing this recommendation.

2.4 Textbooks
We will primarily use the recent Text Analysis in
Python for Social Scientists: Discovery and Ex-
ploration textbook (Hovy, 2021) because of its as-
sertion that “using off-the-shelf libraries . . . strips
away some of the complexity of the task, which
makes it a lot more approachable” thus enabling
“programming novices to use efficient code to try
out a research idea.” We will use select readings
from the NLTK book (Bird et al., 2009), the most
recent edition of Speech and Language Process-
ing (Jurafsky and Martin, 2000),8, An Introduction
to Text Mining: Research Design, Data Collec-
tion, and Analysis (Ignatow and Mihalcea, 2017),
and Melanie Walsh’s online Cultural Analytics &
Python textbook.9

3 Prospective Students

With summer course registration underway, 25 stu-
dents are currently registered for the course. Since
the course is under active development and students
come from a range of academic backgrounds, we
have asked students to complete a brief survey to
help us prepare and tailor the class as much as pos-
sible. Figure 1 shows results from the 12 students
who have completed the survey so far. While we
see interest from Computer Science students, most
of the students are programming novices – half of
the survey participants indicated they have no prior
programming experience outside of one or two pro-
gramming courses.10 Many students indicated they

8Specifically Chapters 4 and 5 for Machine Learning.
9https://melaniewalsh.github.io/

Intro-Cultural-Analytics/welcome.html
10The larger number of interested computer science students

might be due to the course being offered by the Computer

have corpora in mind that they are interested in
studying or that they plan on using these meth-
ods to enhance their undergraduate theses in other
fields.

4 Measuring STEM-Related Attitudes &
Beliefs

The beliefs and attitudes students possess about
learning play a significant role in their academic
performance (Elliot and Dweck, 2013). Given the
fact that our course is targeting non-computer sci-
ence majors, we are interested in seeing how the
academic attitudes held by participating students
relate to and change throughout their participation
in the course. We are particularly interested in mea-
suring students’ beliefs about the malleability of
their own intelligence, as these beliefs have been
shown to predict student motivation, engagement,
and performance in academic courses (De Castella
and Byrne, 2015). To measure the effect such be-
liefs on students in this course, we will adminis-
ter the self-theory implicit theories of intelligence
scale (De Castella and Byrne, 2015). We will also
measure students’ motivation for computer science
using an adapted version of the Science Motivation
Questionnaire (Glynn et al., 2007). We will have
students complete these surveys at the beginning
and end of the course, which will enable us to a)
measure whether students’ initial attitudes signif-
icantly relate to their performance in the course,
and b) measure whether participation in the course
leads to changes in student attitudes over time.

5 Conclusion

We described a new Computational Text Analysis
course that will be taught at Barnard College in

Science department.

94

May-June 2021. The broad goal of the course is
for students to gain technical skills allowing them
to successfully incorporate Natural Language Pro-
cessing methods into their respective fields and re-
search. We will rely on proven methods to measure
the effect the course has on students’ perception
of their abilities and skills. All material developed
for the course (slides, assignments, autograders)
will be available for instructors to adopt at their
institutions. An updated version of this paper will
be available on the first author’s webpage with re-
flections and lessons learned once the course is
completed.

Acknowledgements

We thank Maya Bickel for providing feedback and
debugging assignments. Additionally, we thank
Michael Weisner and his team at Columbia Univer-
sity Information Technology for helping maintain
the computational infrastructure for the course.

References
Steven Bird, Ewan Klein, and Edward Loper. 2009.

Natural language processing with Python: analyz-
ing text with the natural language toolkit. " O’Reilly
Media, Inc.".

Krista De Castella and Donald Byrne. 2015. My in-
telligence may be more malleable than yours: The
revised implicit theories of intelligence (self-theory)
scale is a better predictor of achievement, motiva-
tion, and student disengagement. European Journal
of Psychology of Education, 30(3):245–267.

Andrew J Elliot and Carol S Dweck. 2013. Handbook
of competence and motivation. Guilford Publica-
tions.

Shawn M Glynn, Gita Taasoobshirazi, and Peggy
Brickman. 2007. Nonscience majors learning sci-
ence: A theoretical model of motivation. Journal of
Research in Science Teaching: The Official Journal
of the National Association for Research in Science
Teaching, 44(8):1088–1107.

Mark Guzdial. 2019. Computing education as a foun-
dation for 21st century literacy. In Proceedings of
the 50th ACM Technical Symposium on Computer
Science Education, pages 502–503.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Dirk Hovy. 2021. Text Analysis in Python for Social
Scientists: Discovery and Exploration. Elements in
Quantitative and Computational Methods for the So-
cial Sciences. Cambridge University Press.

Gabe Ignatow and Rada Mihalcea. 2017. An introduc-
tion to text mining: Research design, data collection,
and analysis. Sage Publications.

Daniel Jurafsky and James H Martin. 2000. Speech
and language processing: An introduction to natural
language processing, computational linguistics, and
speech recognition.

Edward Loper and Steven Bird. 2002. Nltk: The natu-
ral language toolkit. In In Proceedings of the ACL
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Compu-
tational Linguistics. Philadelphia: Association for
Computational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Radim Rehurek and Petr Sojka. 2011. Gensim–python
framework for vector space modelling. NLP Centre,
Faculty of Informatics, Masaryk University, Brno,
Czech Republic, 3(2).

95

Proceedings of the Fifth Workshop on Teaching NLP, pages 96–98
June 10–11, 2021. ©2021 Association for Computational Linguistics

Introducing Information Retrieval for Biomedical Informatics Students

Sanya B. Taneja Richard D. Boyce William T. Reynolds Denis Newman-Griffis
University of Pittsburgh

Pittsburgh, PA, USA
{sbt12, rdb20, wtr8, dnewmangriffis}@pitt.edu

Abstract

Introducing biomedical informatics (BMI) stu-
dents to natural language processing (NLP) re-
quires balancing technical depth with practi-
cal know-how to address application-focused
needs. We developed a set of three activi-
ties introducing introductory BMI students to
information retrieval with NLP, covering doc-
ument representation strategies and language
models from TF-IDF to BERT. These activi-
ties provide students with hands-on experience
targeted towards common use cases, and intro-
duce fundamental components of NLP work-
flows for a wide variety of applications.

1 Introduction

Natural language processing (NLP) technologies
have become a fundamental tool for biomedical in-
formatics (BMI) research, with uses ranging from
mining new protein-protein interactions from sci-
entific literature to recommending medications in
clinical care. In most cases, however, the research
question at hand is a biological or clinical one, and
NLP tools are used off-the-shelf or lightly adapted
rather than being the focus of research and devel-
opment. When introducing BMI students to NLP,
instructors must therefore navigate a balance be-
tween the computational and linguistic insights be-
hind why NLP technologies work the way they do,
and practical know-how for the application-focused
settings where most students will go on to use NLP.

We developed a set of three activities designed to
expose introductory BMI students to the fundamen-
tals of NLP and provide hands-on experience with
NLP techniques. These activities were designed for
use in the Foundations of Biomedical Informatics
I course at the University of Pittsburgh, a survey
course which introduces students to core methods
and topics in biomedical informatics. The course
is required for all students in the Biomedical In-
formatics Training Program; students have a range

of experience in computer science, and no back-
ground in artificial intelligence or NLP is required.
The sequence of activities, implemented as Jupyter
notebooks, comprise a single assignment focused
on information retrieval, a common use case for
NLP in all areas of BMI research. The assignment
followed lectures focused on information retrieval,
word embeddings, and language models (presented
online in Fall 2020). §2 gives an overview of the
three activities, and we note directions for further
refinement of the activities in §3.

2 Assignment Details

Our set of three activities was designed with two
primary learning goals in mind:

• Expose introductory BMI students to funda-
mental strategies for text representation and
language models, geared towards information
retrieval in biomedical contexts; and

• Provide students with hands-on experience
creating NLP workflows using pre-built tools.

Our Jupyter notebooks provide a sequence of code
samples to analyze and execute, combined with
background questions to assess understanding of
the computational and linguistic insights behind
the NLP technologies students are using.

Notebook 1: Fundamentals of document
analysis. In this notebook, students were first
introduced to basic preprocessing tasks in NLP
workflows such as tokenization, stemming, cas-
ing, and stop-word removal. Using a corpus
from the Natural Language Toolkit (NLTK) (Bird
et al., 2009), the notebook demonstrated two in-
dexing techniques - inverted indexing and creation
of a weighted document-term matrix using term
frequency-inverse document frequency (TF-IDF).
Students then implemented a synthetic information
retrieval task involving a collection of 12 docu-
ments mapped to 20 queries as a reference set. The
students evaluated the information retrieval system

96

with synthetic results for two queries comprising
numeric values for each document in the query. Stu-
dents measured system performance using TREC
evaluation measures including recall, precision, in-
terpolated precision-recall average, and mean aver-
age precision. The evaluation measures were im-
plemented using the pytrec_eval library (Van Gysel
and de Rijke, 2018).

Notebook 2: Introduction to word embed-
dings. In this notebook, students were introduced
to word embeddings as a text representation tool
for NLP. The students first created embeddings
using singular value decomposition (SVD) of a co-
occurrence matrix using the corpus from Notebook
1. This established the idea of capturing semantic
similarity in texts as opposed to a tradition bag-of-
words model. The notebook then used pretrained
word2vec embeddings (Mikolov et al., 2013) to
demonstrate a more refined approach of SVD. The
students were able to visualize both the embedding
approaches in the notebook. This was particularly
important as most students did not have prior ex-
perience with embeddings and plotting the word
embeddings can lead to greater insight into the
variable semantic similarity that embedding repre-
sentations provide over lexical features.

Notebook 3: Introduction to BERT and clin-
icalBERT. As all the activities are designed for
introductory students, YouTube tutorials were used
to provide background on neural networks and de-
sign decisions in language models for students with
minimal background in NLP. Students were intro-
duced to NLP workflows and language models us-
ing the Transformers library. Transformers is an
open-source library developed by Hugging Face
that provides a collection of pretrained models and
general-purpose architectures for natural language
processing (Wolf et al., 2020), based on the Trans-
former architecture (Vaswani et al., 2017). This
includes BERT (Devlin et al., 2019) and clinical-
BERT (Alsentzer et al., 2019), which are used in
this notebook to implement Named Entity Recog-
nition and Medical Language Inference tasks.

The notebook guided the students through a
Medical Language Inference task to infer knowl-
edge from clinical texts. Language inference in
medicine is an important application of NLP as
clinical notes such as those containing past med-
ical history of a patient contain vital information
that is utilized by clinicians to draw useful infer-
ences (Romanov and Shivade, 2018). The task also

introduced BMI students to challenges unique to
applying NLP on clinical texts such as domain-
specific vocabulary, diversity in abbreviations, con-
tent structure, and named entity recognition with
clinical jargon. The students used the MedNLI
(Romanov and Shivade, 2018) dataset created from
MIMIC III (Johnson et al., 2016) clinical notes for
this task. Building on knowledge from the previous
notebooks, they implemented workflows to com-
pare the performance of BERT and clinicalBERT
models for prediction of labels in clinical texts.
The students were encouraged to understand the
importance of domain representation in pretraining
data and the process of fine-tuning NLP models for
domain-specific language.

3 Discussion

We designed three activities to demonstrate fun-
damental concepts and workflows for application
of NLP to introductory BMI students. While the
scope of NLP in the biomedical field is much larger
than one assignment, we developed the activities
to provide students with a modular workflow of
components that are applicable to other NLP ap-
plications besides information retrieval; i.e., text
preprocessing, indexing, execution, and evaluation.

One practical challenge for clinically-focused
exercises is the limited availability of benchmark
datasets. Most clinical datasets require Data Use
Agreements and individual training requirements
that are cumbersome for a classroom setting.Thus,
the first two notebooks use the NLTK corpus which
is a popular dataset for introducing NLP concepts
without the challenges present in clinical datasets.
While MIMIC (Johnson et al., 2016) is a valuable,
relatively accessible source for clinical text, avail-
able annotations for it are limited. Students can
thus be introduced to fine-tuning of language mod-
els for the specifics of medical language, but in-
structors must anticipate challenges in providing
train/test splits for supervised machine learning.

We further take advantage of popular pre-built
libraries (like Transformers) so that students can
focus on the application rather than constructing
neural networks. In an application-focused setting,
technical knowledge of neural NLP systems is less
necessary, but users of those systems still need to
understand what kinds of regularities they rely on
and when they may be unreliable. The activities
are thus designed to reflect the perspective of the
practical challenges that students will face when

97

working in biomedical NLP.
Finally, one important area we are investigat-

ing as we refine and extend these teaching mate-
rials is the ethical considerations of biomedical
AI technologies. The intersection of medical and
AI ethics poses several challenging questions for
designing, training, and applying AI technologies
in the biomedical setting (Char et al., 2018; Ke-
skinbora, 2019), and sensitive information often
described in medical text presents further ethical
questions for NLP systems (Lehman et al., 2021).
Thus, determining what BMI students have a re-
sponsibility to understand about the NLP tools they
use, and how we most effectively teach that infor-
mation in limited course time, is key to broadening
the responsible use of NLP in BMI research.

All materials presented in this paper are available
from https://github.com/dbmi-pitt/
bioinf_teachingNLP.

Acknowledgments

This work was supported in part by the National
Library of Medicine of the National Institutes of
Health under award number T15 LM007059.

References
Emily Alsentzer, John Murphy, William Boag, Wei-

Hung Weng, Di Jin, Tristan Naumann, and Matthew
McDermott. 2019. Publicly available clinical BERT
embeddings. In Proceedings of the 2nd Clinical
Natural Language Processing Workshop, pages 72–
78, Minneapolis, Minnesota, USA. Association for
Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. " O’Reilly
Media, Inc.".

Danton S Char, Nigam H Shah, and David Magnus.
2018. Implementing Machine Learning in Health
Care - Addressing Ethical Challenges. The New
England journal of medicine, 378(11):981–983.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North {A}merican Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Alistair EW Johnson, Tom J Pollard, Lu Shen,
H Lehman Li-Wei, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits,

Leo Anthony Celi, and Roger G Mark. 2016. Mimic-
iii, a freely accessible critical care database. Scien-
tific data, 3(1):1–9.

Kadircan H Keskinbora. 2019. Medical ethics consid-
erations on artificial intelligence. Journal of Clini-
cal Neuroscience, 64:277–282.

Eric Lehman, Sarthak Jain, Karl Pichotta, Yoav Gold-
berg, and Byron C. Wallace. 2021. Does bert pre-
trained on clinical notes reveal sensitive data? arXiv
preprint arXiv:2104.07762.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. arXiv preprint arXiv:1310.4546.

Alexey Romanov and Chaitanya Shivade. 2018.
Lessons from natural language inference in the clin-
ical domain. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1586–1596, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Christophe Van Gysel and Maarten de Rijke. 2018.
Pytrec_eval: An extremely fast python interface to
trec_eval. In SIGIR. ACM.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In I Guyon, U V Luxburg, S Bengio,
H Wallach, R Fergus, S Vishwanathan, and R Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

98

Proceedings of the Fifth Workshop on Teaching NLP, pages 99–103
June 10–11, 2021. ©2021 Association for Computational Linguistics

Contemporary NLP Modeling in Six Comprehensive
Programming Assignments

Greg Durrett∗ Jifan Chen Shrey Desai Tanya Goyal
Lucas Kabela Yasumasa Onoe Jiacheng Xu

Department of Computer Science
The University of Texas at Austin
gdurrett@cs.utexas.edu

Abstract

We present a series of programming assign-
ments, adaptable to a range of experience lev-
els from advanced undergraduate to PhD, to
teach students design and implementation of
modern NLP systems. These assignments
build from the ground up and emphasize full-
stack understanding of machine learning mod-
els: initially, students implement inference and
gradient computation by hand, then use Py-
Torch to build nearly state-of-the-art neural
networks using current best practices. Topics
are chosen to cover a wide range of model-
ing and inference techniques that one might
encounter, ranging from linear models suit-
able for industry applications to state-of-the-
art deep learning models used in NLP research.
The assignments are customizable, with con-
strained options to guide less experienced stu-
dents or open-ended options giving advanced
students freedom to explore. All of them can
be deployed in a fully autogradable fashion,
and have collectively been tested on over 300
students across several semesters.1

1 Introduction

This paper presents a series of assignments de-
signed to give a survey of modern NLP through the
lens of system-building. These assignments pro-
vide hands-on experience with concepts and imple-
mentation practices that we consider critical for stu-
dents to master, ranging from linear feature-based
models to cutting-edge deep learning approaches.
The assignments are as follows:

A1. Sentiment analysis with linear models (Pang
et al., 2002) on the Stanford Sentiment Tree-
bank (Socher et al., 2013).

∗Corresponding author. Subsequent authors listed alpha-
betically.

1See https://cs.utexas.edu/~gdurrett for
past offerings and static versions of these assignments; con-
tact Greg Durrett for access to the repository with instructor
solutions.

A2. Sentiment analysis with feedforward “deep
averaging” networks (Iyyer et al., 2015) using
GloVe embeddings (Pennington et al., 2014).

A3. Hidden Markov Models and linear-chain con-
ditional random fields (CRFs) for named en-
tity recognition (NER) (Tjong Kim Sang and
De Meulder, 2003), using features similar to
those from Zhang and Johnson (2003).

A4. Character-level RNN language modeling
(Mikolov et al., 2010).

A5. Semantic parsing with seq2seq models (Jia
and Liang, 2016) on the GeoQuery dataset
(Zelle and Mooney, 1996).

A6. Reading comprehension on SQuAD (Ra-
jpurkar et al., 2016) using a simplified ver-
sion of the DrQA model (Chen et al., 2017),
similar to BiDAF (Seo et al., 2016).

A1-A5 come with autograders. These train each
student’s model from scratch and evaluate perfor-
mance on the development set of each task, verify-
ing whether their code behaves as intended. The
autograders are bundled to be deployable on Grade-
scope using their Docker framework.2 These cod-
ing assignments can also be supplemented with con-
ceptual questions for hybrid assignments, though
we do not distribute those as part of this release.

Other Courses and Materials Several other
widely-publicized courses like Stanford CS224N
and CMU CS 11-747 are much more “neural-first”
views of NLP: their assignments delve more heav-
ily into word embeddings and low-level neural
implementation like backpropagation. By con-
trast, this course is designed to be a survey that

2For the CRF and seq2seq modeling assignments, a custom
framework must be used, as Gradescope autograders cannot
handle these. We grade these in a batch fashion on a single
instructional machine, which poses some logistical challenges.

99

Assignment Main Concepts Output Components
Linear FFNN Enc Dec Attn

A1: Sentiment (Linear) Classification, SGD, bag-of-words Binary �
A2: Sentiment (FFNNs) PyTorch, word embeddings Binary � �
A3: HMMs and CRFs for NER Structured prediction, dyn. prog. Tags �
A4: Language Modeling Neural sequence modeling Token seq � � � �
A5: Seq2seq Semantic Parsing Encoder-decoder, attention Token seq � � � � �
A6: Reading Comprehension QA, domain adaptation Span � � � �

Table 1: Breakdown of assignments. The concepts and model components in each are designed to build on one
another. A gray square indicates partial engagement with a concept, typically when students are already given the
needed component or it isn’t a focus of the assignment.

also covers topics like linear classification, genera-
tive modeling (HMMs), and structured inference.
Other hands-on courses discussed in prior Teach-
ing NLP papers (Klein, 2005; Madnani and Dorr,
2008; Baldridge and Erk, 2008) make some simi-
lar choices about how to blend linguistics and CS
concepts, but our desire to integrate deep learning
as a primary (but not the sole) focus area guides us
towards a different set of assignment topics.

2 Design Principles

This set of assignments was designed after we
asked ourselves, what should a student taking NLP
know how to build? NLP draws on principles from
machine learning, statistics, linguistics, algorithms,
and more, and we set out to expose students to a
range of ideas from these disciplines through the
lens of implementation. This choice follows the
“text processing first” (Bird, 2008) or “core tools”
(Klein, 2005) views of the field, with the idea that
students can study undertake additional study of
particular topic areas and quickly get up to speed
on modeling approaches given the building blocks
presented here.

2.1 Covering Model Types

There are far too many NLP tasks and models to
cover in a single course. Rather than focus on ex-
posing students to the most important applications,
we instead designed these assignments to feature
a range of models along the following typological
dimensions.

Output space The prediction spaces of models
considered here include binary/multiclass (A1, A2),
structured (sequence in A3, span in A6), and natu-
ral language (sequence of words in A4, executable
query in A5). While structured models have fallen
out of favor with the advent of neural networks,
we view tagging and parsing as fundamental ped-

agogical tools for getting students to think about
linguistic structure and ambiguity, and these are
emphasized in our courses.

Modeling framework We cover generative mod-
els with categorical distributions (A3), linear
feature-based models including logistic regression
(A1) and CRFs (A3), and neural networks (A2, A4,
A5, A6). These particularly highlight differences
in training, optimization, and inference required
for these different techniques.

Neural architectures We cover feedforward net-
works (A2), recurrent neural encoders (A4, A5,
A6), seq2seq models (A5), and attention (A5, A6).
From these, Transformers (Vaswani et al., 2017)
naturally emerge even though they are not explic-
itly implemented in an assignment.

2.2 Other Desiderata

A major consideration in designing these assign-
ments was to enable understanding without
large-scale computational resources. Maintain-
ing simplicity and tractability is the major reason
we do not feature more exploration of pre-trained
models (Devlin et al., 2019). These factors are also
why we choose character-level language model-
ing (rather than word-level) and seq2seq semantic
parsing (rather than translation): training large au-
toregressive models to perform well when output
vocabularies are in the tens of thousands requires
significant engineering expertise. While we teach
students skills like debugging and testing models
on simplified settings, we still found it less painful
to build our projects around these more tractable
tasks where students can iterate quickly.

Another core goal was to allow students to build
systems from the ground-up using simple, un-
derstandable code. We build on PyTorch prim-
itives (Paszke et al., 2019), but otherwise avoid
using frameworks like Keras, Huggingface, or Al-

100

lenNLP. The code is also somewhat “underengi-
neered:” we avoid an overly heavy reliance on
Pythonic constructs like list comprehensions or
generators as not all students come in with a high
level of familiarity with Python.

What’s missing Parsing is notably absent from
these assignments; we judged that both chart
parsers and transition-based parsers involved too
many engineering details specific to these settings.
All of our classes do cover parsing and in some
cases have other hands-on components that engage
with parsing, but students do not actually build a
parser. Instead, sequence models are taken as an
example of structured inference, and other classifi-
cation tasks are used instead of transition systems.

From a system-building perspective, the biggest
omissions are pre-training and Transformers.
These can be explored in the context of final
projects, as we describe in the next section.

Finally, our courses integrate additional discus-
sion around ethics, with specific discussions sur-
rounding bias in word embeddings (Bolukbasi
et al., 2016; Gonen and Goldberg, 2019) and eth-
ical considerations of pre-trained models (Bender
et al., 2021), as well as an open-ended discussion
surrounding social impact and ethical considera-
tions of NLP, deep learning, and machine learn-
ing. These are not formally assessed at present, but
we are considering this for future iterations of the
course given these topics’ importance.

3 Deployment

These assignments have been used in four differ-
ent versions of an NLP survey course: an upper-
level undergraduate course, a masters level course
(delivered online), and two PhD-level courses. In
the online MS course, these constitute the only
assessment. For courses delivered in a tradi-
tional classroom format, we recommend choos-
ing a subset of the assignments and supplement-
ing with additional written assignments testing
conceptual understanding.

Our undergrad courses use A1, A2, A4, and a
final project based on A6. We use additional writ-
ten assignments covering word embedding tech-
niques, syntactic parsing, machine translation, and
pre-trained models. Our PhD-level courses use
A1, A2, A3, A5, and an independent final project.
The assignments also support further “extension”
options: for example, in A3, beam search is pre-
sented as optional and students can also explore

Assignment Eisenstein Jurafsky + Martin

A1 2, 4 4, 5
A2 3 7
A3 7 8
A4 6 7, 9
A5 12, 18 11, 15
A6 17.5 23.2

Table 2: Book chapters associated with each assign-
ment; gray indicates an imperfect match. Our courses
use a combination of Eisenstein, ad hoc lecture notes
on certain topics, and academic papers.

parallel decoding for the CRF or features for NER
to work better on German. For the seq2seq model,
they could experiment with Transformers or imple-
ment constrained decoding to always produce valid
logical forms.

We believe that A1 and A2 could be adapted
to use in a wide range of courses, but A3-A6 are
most appropriate for advanced undergraduates or
graduate students.

Syllabus Table 2 pairs these assignments with
readings in texts by Jurafsky and Martin (2021)
and Eisenstein (2019). See Greg Durrett’s course
pages for complete sets of readings.

Logistics We typically provide students around
2 weeks per assignment. Their submission either
consists of just the code or a code with a brief
report, depending on the course format. Students
collaborate on assignments through a discussion
board on Piazza as well as in person. We have
relatively low incidence of students copying code,
assessed using Moss over several semesters.

Pain Points Especially on A3, A4, and A5, we
come across students who find debugging to be a
major challenge. In the assignments, we suggest
strategies to verify parts of inference code indepen-
dently of training, as well as simplified tasks to test
models on, but some students find it challenging or
are unwilling to pursue these avenues. On a similar
note, students often do not have a prior on what
the system should do. It might not raise a red flag
that their code takes an hour per epoch, or gets 3%
accuracy on the development set, and they end up
getting stuck as a result. Understanding what these
failures mean is something we emphasize. Finally,
students sometimes have (real or perceived) lack of
background on either coding or the mathematical
fundamentals of the course; however, many such
students end up doing well in these courses as their
first ML/NLP courses.

101

Acknowledgments

We would like to acknowledge the additional gradu-
ate and undergraduate TAs for various offerings of
these courses: Christopher Crabtree, Uday Kusu-
pati, Shivangi Mahto, Abhilash Potluri, Shivang
Singh, Xi Ye, and Didi Zhou. Our thanks also
go out to all of the students who have taken these
courses, whose comments and experiences have
helped make them stronger. Thanks as well to the
anonymous reviewers for their helpful comments.

In the development of these materials, we con-
sulted courses and teaching materials by Emily
Bender, Sam Bowman, Chris Dyer, Mohit Iyyer,
Vivek Srikumar, and many others. We would also
like to thank Jacob Eisenstein, Dan Jurafsky, James
H. Martin, and Yoav Goldberg for their helpful
textbooks.

References
Jason Baldridge and Katrin Erk. 2008. Teaching com-

putational linguistics to a large, diverse student body:
Courses, tools, and interdepartmental interaction.
In Proceedings of the Third Workshop on Issues
in Teaching Computational Linguistics, pages 1–
9, Columbus, Ohio. Association for Computational
Linguistics.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
Dangers of Stochastic Parrots: Can Language Mod-
els Be Too Big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

Steven Bird. 2008. Defining a core body of knowledge
for the introductory computational linguistics cur-
riculum. In Proceedings of the Third Workshop on
Issues in Teaching Computational Linguistics, pages
27–35, Columbus, Ohio. Association for Computa-
tional Linguistics.

Tolga Bolukbasi, Kai-Wei Chang, James Zou,
Venkatesh Saligrama, and Adam Kalai. 2016.
Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings. In
Proceedings of the 30th International Conference on
Neural Information Processing Systems, NIPS’16,
page 4356–4364, Red Hook, NY, USA. Curran
Associates Inc.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to Answer Open-
Domain Questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1870–
1879, Vancouver, Canada. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jacob Eisenstein. 2019. Introduction to Natural Lan-
guage Processing. MIT Press.

Hila Gonen and Yoav Goldberg. 2019. Lipstick on a
pig: Debiasing methods cover up systematic gender
biases in word embeddings but do not remove them.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 609–614,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep Unordered Com-
position Rivals Syntactic Methods for Text Classi-
fication. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1681–1691, Beijing, China. Association for
Computational Linguistics.

Robin Jia and Percy Liang. 2016. Data Recombination
for Neural Semantic Parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Dan Jurafsky and James H. Martin. 2021. Speech and
Language Processing, 3rd Ed. Online.

Dan Klein. 2005. A core-tools statistical NLP course.
In Proceedings of the Second ACL Workshop on Ef-
fective Tools and Methodologies for Teaching NLP
and CL, pages 23–27, Ann Arbor, Michigan. Asso-
ciation for Computational Linguistics.

Nitin Madnani and Bonnie J. Dorr. 2008. Combining
open-source with research to re-engineer a hands-
on introductory NLP course. In Proceedings of
the Third Workshop on Issues in Teaching Compu-
tational Linguistics, pages 71–79, Columbus, Ohio.
Association for Computational Linguistics.

Tomas Mikolov, M. Karafiát, L. Burget, J. Černocký,
and S. Khudanpur. 2010. Recurrent neural network
based language model. In Interspeech.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment Classification using
Machine Learning Techniques. In Proceedings of
the 2002 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP 2002), pages 79–
86. Association for Computational Linguistics.

102

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning
Library. arXiv cs.CL 1912.01703.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2383–2392,
Austin, Texas. Association for Computational Lin-
guistics.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional atten-
tion flow for machine comprehension. arXiv cs.CL
1611.01603.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive Deep Models for
Semantic Compositionality Over a Sentiment Tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
In Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to Parse Database Queries Using Inductive Logic
Programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2 (AAAI).

Tong Zhang and David Johnson. 2003. A Robust Risk
Minimization based Named Entity Recognition Sys-
tem. In Proceedings of the Seventh Conference on
Natural Language Learning at HLT-NAACL 2003,
pages 204–207.

103

Proceedings of the Fifth Workshop on Teaching NLP, pages 104–107
June 10–11, 2021. ©2021 Association for Computational Linguistics

Interactive Assignments for Teaching Structured Neural NLP

David Gaddy, Daniel Fried, Nikita Kitaev, Mitchell Stern, Rodolfo Corona,
John DeNero and Dan Klein

University of California, Berkeley
{dgaddy,denero,klein}@berkeley.edu

Abstract

We present a set of assignments for a graduate-
level NLP course. Assignments are designed
to be interactive, easily gradable, and to give
students hands-on experience with several key
types of structure (sequences, tags, parse trees,
and logical forms), modern neural architec-
tures (LSTMs and Transformers), inference
algorithms (dynamic programs and approxi-
mate search) and training methods (full and
weak supervision). We designed assignments
to build incrementally both within each assign-
ment and across assignments, with the goal of
enabling students to undertake graduate-level
research in NLP by the end of the course.

1 Overview

Our course contains five implementation projects
focusing on neural methods for structured predic-
tion tasks in NLP. Over a range of tasks from lan-
guage modeling to machine translation to syntac-
tic and semantic parsing, the projects cover meth-
ods such as LSTMs and Transformers, dynamic
programming, beam search, and weak supervision
(learning from denotations). Our aim was to let stu-
dents incrementally and interactively develop mod-
els and see their effectiveness on real NLP datasets.
Section 2 describes the tasks and objectives of the
projects in more detail. Links to assignments are
available at https://sites.google.com/
view/nlp-assignments.

1.1 Target Audience
Our course is designed for early-stage graduate stu-
dents in computer science. We expect students to
have a good background in machine learning, in-
cluding prior experience with implementing neural
networks. Many of our students will go on to con-
duct research in NLP or related machine learning
disciplines. Some advanced undergraduates may
also join the course if they have sufficient back-
ground and an interest in NLP research.

1.2 Course Structure

Our course is 14 weeks long. The projects fill
nearly the entire semester, with roughly 2 weeks
given to complete each project. We used lectures to
cover the projects’ problems and methods at a high
level; however, the projects require students to be
relatively skilled at independent implementation.

1.3 Design Strategy

The content of our projects was chosen to cover key
topics along three primary dimensions: application
tasks, neural components, and inference mecha-
nisms. Our projects introduce students to some
of the core tasks in NLP, including language mod-
eling, machine translation, syntactic parsing, and
semantic parsing. Key neural network models for
NLP are also introduced, covering recurrent net-
works, attention mechanisms, and the Transformer
architecture (Vaswani et al., 2017). Finally, the
projects cover inference mechanisms for NLP, in-
cluding beam search and dynamic programming
methods like CKY.

All projects are implemented as interactive
Python notebooks designed for use on Google’s
Colab infrastructure.1 This setup allows students
to use GPUs for free and with minimal setup. The
notebooks consist of instructions interleaved with
code blocks for students to fill in. We provide
scaffolding code with less pedagogically-central
components like data loading already filled in, so
that students can focus on the learning objectives
for the projects. Students implement neural net-
work components using the PyTorch framework
(Paszke et al., 2019).

Each project is broken down into a series of
modules that can be verified for correctness be-
fore moving on. For example, when implement-
ing a neural machine translation system, the stu-
dents first implement and verify a basic sequence-

1colab.research.google.com

104

to-sequence model, then attention, and finally beam
search. This setup allows students to debug each
component individually and allows instructors to
give partial credit for each module. The modules
are designed to validate student code without wait-
ing for long training runs, with a total model train-
ing time of less than one hour per project.

Our projects are graded primarily with scripted
autograders hosted on Gradescope,2 allowing a
class of hundreds of students to be administered by
a small course staff. Grades are generally based on
accuracy on a held-out test set, where students are
given inputs for this set and submit their model’s
predictions to the grader. While students cannot
see their results on the held-out set until after the
due date, the assignments include specific targets
for validation set accuracies that can be used by
students to verify the correctness of their solutions.

Each project concludes with an open-ended sec-
tion where the students experiment with modifica-
tions or ablations to the models implemented and
submit a 1-page report describing the motivation
behind their contribution and an analysis of their re-
sults. This section gives students more of a chance
to explore their own ideas and can also help distin-
guish students who are putting in extra effort on
the projects.

2 Assignments

2.1 Project 0: Intro to PyTorch Mini-Project
This project serves primarily as an introduction to
the project infrastructure and to the PyTorch frame-
work. Students implement a classifier to predict the
most common part-of-speech tag for English word
types from the words’ characters. Students first
implement a simple neural model based on pooling
character embeddings, then a slightly more com-
plex model with character n-gram representations.
This project provides much more detailed instruc-
tions than later projects to help students who are
less familiar with deep learning implementation,
walking them through each step of the training and
modeling code.

2.2 Project 1: Language Modeling
This project introduces students to sequential out-
put prediction, using classical statistical methods
and auto-regressive neural modeling. Students im-
plement a series of language models of increasing
complexity and train them on English text. First

2www.gradescope.com

they implement a basic n-gram model, then add
backoff and Kneser-Ney smoothing (Ney et al.,
1994). Next, they implement a feed-forward neu-
ral n-gram model, and an LSTM language model
(Hochreiter and Schmidhuber, 1997). The last sec-
tion of this project is an open-ended exploration
where students can try any method to further im-
prove results, either from a list of ideas we provided
or an idea of their own.

2.3 Project 2: Neural Machine Translation
This project covers conditional language modeling,
using neural sequence-to-sequence models with at-
tention. Students incrementally implement a neural
machine translation model to translate from Ger-
man to English on the Multi30K dataset (Elliott
et al., 2016). This dataset is simpler than stan-
dard translation benchmarks and affords training
and evaluating an effective model in a matter of
minutes rather than days, allowing students to in-
teractively develop and debug models. Students
first implement a baseline LSTM-based sequence-
to-sequence model (Sutskever et al., 2014) without
attention, view the model’s predictions, and eval-
uate performance using greedy decoding. Then,
students incrementally add an attention mechanism
(Bahdanau et al., 2015) and beam search decoding.
Finally, students visualize the model’s attention
distributions.

2.4 Project 3: Constituency Parsing and
Transformers

This project covers constituency parsing, the Trans-
former neural network architecture (Vaswani et al.,
2017), and structured decoding via dynamic pro-
gramming. Students first implement a Transformer
encoder and validate it using a part-of-speech tag-
ging task on the English Penn Treebank (Marcus
et al., 1993). Then, students incrementally build
a Transformer-based parser by first constructing a
model that makes constituency and labeling deci-
sions for each span in a sentence, then implement-
ing CKY decoding (Cocke, 1970; Kasami, 1966;
Younger, 1967) to ensure the resulting output is a
tree. The resulting model, which is a small version
of the parser of Kitaev and Klein (2018), achieves
reasonable performance on the English Penn Tree-
bank in under half an hour of training.

2.5 Project 4: Semantic Parsing
This project introduces students to predicting ex-
ecutable logical forms and to training with weak

105

supervision. Students implement a neural seman-
tic parser for the GEOQA geographical question
answering dataset of Krishnamurthy and Kollar
(2013). This dataset contains English questions
about simple relational databases. To familiarize
themselves with the syntax and semantics of the
dataset, students first implement a simple execu-
tion method which evaluates a logical form on a
database to produce an answer. To produce logi-
cal forms from questions, students then implement
a sequence-to-sequence architecture with a con-
strained decoder and a copy mechanism (Jia and
Liang, 2016). Students verify their model by train-
ing first in a supervised setting with known logi-
cal forms, then finally train it only from question-
answer pairs by searching over latent logical forms.

3 Findings in Initial Course Offerings

An initial iteration of the course was taught to 60
students, and an offering for over 100 students is
in progress. Overall, we have found the projects to
be a great success.

In the first iteration of the course, 81% of stu-
dents completed the course and submitted all five
projects. From a mid-semester survey, students re-
ported taking 19.88 hours on average to complete
Project 1. We observed that students with no prior
experience programming with deep learning frame-
works took significantly longer on the projects and
required more assistance. In future semesters, we
intend to strengthen the deep learning prerequisites
required for the course to ensure adequate back-
ground for success.

The online project infrastructure worked with
minimal issues. While the Colab platform does
have the downside of timeouts due to inactivity, we
believe the use of free GPU resources outweighed
this cost. By encouraging students to download
checkpoints after training runs, they were able to
avoid re-training after each timeout. A handful of
students who spent very long stretches of time on
the projects in a single day reported having tem-
porary limits placed on GPU usage (e.g. after 8+
hours of continuous use), but these limits could
be circumvented by logging in with a separate ac-
count.

Most students were able to successfully com-
plete the majority of each assignment, but there
remained some point spread to distinguish perfor-
mance for grading (mean 94%, standard deviation
12%). Due to the use of autograding, instructor

code grading effort totaled less than several hours
per project. One aspect of grading that we are con-
tinuing to improve is the open-ended exploration re-
port, and we plan to better define and communicate
expectations in future semesters by introducing a
clear rubric for the report section.

Overall, these projects proved a valuable re-
source for the success of our course and for prepar-
ing students for NLP research. At the end of last
year’s course, one student submitted an extension
of their exploration work on one project to EMNLP
and presented at the conference.

References
Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua

Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015.

John Cocke. 1970. Programming languages and their
compilers: Preliminary notes.

Desmond Elliott, Stella Frank, Khalil Sima’an, and Lu-
cia Specia. 2016. Multi30K: Multilingual English-
German image descriptions. In Proceedings of the
5th Workshop on Vision and Language, pages 70–
74, Berlin, Germany. Association for Computational
Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Tadao Kasami. 1966. An efficient recognition
and syntax-analysis algorithm for context-free lan-
guages. Coordinated Science Laboratory Report no.
R-257.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686.

Jayant Krishnamurthy and Thomas Kollar. 2013.
Jointly learning to parse and perceive: Connecting
natural language to the physical world. Transac-
tions of the Association for Computational Linguis-
tics, 1:193–206.

Mitch Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

106

Hermann Ney, Ute Essen, and Reinhard Kneser. 1994.
On structuring probabilistic dependences in stochas-
tic language modelling. Computer Speech & Lan-
guage, 8(1):1–38.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. PyTorch: An imperative style,
high-performance deep learning library. Advances
in Neural Information Processing Systems, 32:8026–
8037.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in Neural Information Processing Systems,
27:3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems, 30:5998–6008.

Daniel H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
control, 10(2):189–208.

107

Proceedings of the Fifth Workshop on Teaching NLP, pages 108–111
June 10–11, 2021. ©2021 Association for Computational Linguistics

Learning about Word Vector Representations and Deep Learning through
Implementing Word2vec

David Jurgens
School of Information
University of Michigan
jurgens@umich.edu

Abstract

Word vector representations are an essential
part of an NLP curriculum. Here, we de-
scribe a homework that has students imple-
ment a popular method for learning word vec-
tors, word2vec. Students implement the core
parts of the method, including text preprocess-
ing, negative sampling, and gradient descent.
Starter code provides guidance and handles ba-
sic operations, which allows students to focus
on the conceptually challenging aspects. Af-
ter generating their vectors, students evaluate
them using qualitative and quantitative tests.

1 Introduction

NLP curricula typically include content on word
semantics, how semantics can be learned computa-
tionally through word vectors, and what are the vec-
tors’ uses. This document describes an assignment
for having students implement word2vec (Mikolov
et al., 2013a,b), a popular method that relies on
a single-layer neural network. This homework is
designed to introduce students to word vectors and
simple neural networks by having them implement
the network from scratch, without the use of deep-
learning libraries. The assignment is appropriate
for upper-division undergraduates or graduate stu-
dents who are familiar with python programming,
have some experience with the numpy library (Har-
ris et al., 2020), and have been exposed to concepts
around gradients and neural networks. Through
implementing major portions of the word2vec soft-
ware and using the learned vectors, students will
gain a deeper understanding of how networks are
trained, how to learn word vectors, and their uses
in downstream tasks.

2 Design and Learning Goals

This homework is designed to take place just be-
fore the middle stretch of the class, after lexical se-
mantics and machine learning concepts have been

introduced. The content is designed at the level of
an NLP student who (1) has some technical back-
ground and at least one advanced course in statistics
and (2) will implement or adapt new NLP meth-
ods. This level is deeper than what is needed for a
purely Applied NLP setting but too shallow for a
more Machine Learning focused NLP class, which
would likely benefit from additional derivations
and proofs around the gradient descent to solidify
understanding. The homework has typically been
assigned over a three to four week period; many
students complete the homework in the course of a
week, but the longer time frame enables students
with less background or programming experience
to work through the steps. The material prepares
students for advanced NLP concepts around deep
learning and pre-trained language models, as well
as provides intuition for what steps modern deep
learning libraries perform.

The homework has three broad learning goals.
First, the training portion of the homework helps
deepen students’ understanding of machine learn-
ing concepts, gradient descent, and develop com-
plex NLP software. Central to this design is hav-
ing students turn the equations in the homework
and formal descriptions of word2vec into software
operations. This step helps students understand
how to ground equations found in some papers into
the more-familiar language of programming, while
also building a more intuition for how gradient
descent and backpropagation work in practice.

Second, the process of software development
aids students in developing larger NLP software
methods that involve end-to-end development. This
goal includes seeing how different algorithmic soft-
ware designs work and are implemented. The speed
of training requires that students be moderately ef-
ficient in how they implement their software. For
example, the use of for loops instead of vector-
ized numpy operations will lead to a significant
slow down in performance. In class instruction and

108

tutorials detail how to write the relevant efficient
numerical operations, which help guide students
to identify where and how to selectively optimize.
However, slow code will still finish correctly al-
lowing students to debug for their initial implemen-
tations for correctness. This need for performant
code creates opportunities for students to practice
their performance optimizing skills.

Third, the lexical semantics portion of the home-
work exposes students to the uses and limitations
of word vectors. Through training the vectors, stu-
dents understand how statistical regularities in co-
occurrence can be used to learn meaning. Quali-
tative and quantitative evaluations show students
what their model has learned (e.g., using vector
analogies) and introduce them to concepts of poly-
semy, fostering a larger discussion on what can be
captured in a vector representation.

3 Homework Description

The homework has students implement two core as-
pects of the word2vec algorithm using numpy for
the numeric portions, and then evaluate with two
downstream tasks. The first aspect has students per-
form the commonly-used text preprocessing steps
that turn a raw text corpus into self-supervised train-
ing examples. This step includes removing low-
frequency tokens and subsampling tokens based on
their frequency. The second aspect focuses on the
core training procedure, including (i) negative sam-
pling for generating negative examples of context
words, (ii) performing gradient descent to update
the two word vector matrices, and (iii) computing
the negative log-likelihood. These tasks are bro-
ken into eight discrete steps that guide students in
how to do each aspect. The assignment document
includes links to more in-depth descriptions of the
method including the extensive description of Rong
(2014) and the recent chapter of Jurafsky and Mar-
tin (2021, ch. 6) to help students understand the
math behind the training procedure.

In the second part of the homework, students
evaluate the learned vectors in two downstream
tasks. The first task has students load these vec-
tors using the Gensim package (Rehurek and So-
jka, 2010) and perform vector arithmetic opera-
tions to find word-pair analogies and examine the
nearest-neighbors of words; this qualitative evalua-
tion exposes students to what is or is not learned by
the model. The second task is quantitative evalua-
tion that has students generate word-pair similarity

scores for the subset of the SimLex-999 (Hill et al.,
2015) present in their training corpus, which is up-
loaded to Kaggle InClass1 to see how their vectors
compare with others; this leaderboard helps stu-
dents identify a bug in their code (via a low-scoring
submission) and occasionally prompts students to
think about how to improve/extend their code to
attain a higher score.

Potential Extensions The word2vec method has
been extended in numerous ways in NLP to im-
prove its vectors (e.g., Ling et al., 2015; Yu and
Dredze, 2014; Tissier et al., 2017). This assignment
includes descriptions of other possible extensions
that students can explore, such as implementing
dropout, adding learning rate decay, or making use
of external knowledge during training. Typically, a
single extension to word2vec is included as a part
of the homework to help ground the concept in
code but without increasing the difficulty of the as-
signment. Students who are interested in deepening
their understanding can use these as starting points
to see how to develop their own NLP methods as a
part of a course project.

This assignment also provides multiple possibili-
ties for examining the latent biases learned in word
vectors. Prior work has established that pretrained
vectors often encode gender and racial biases based
on the corpora they are trained on (e.g., Caliskan
et al., 2017; Manzini et al., 2019). In a future ex-
tension, this assignment could be adapted to use
Wikipedia biographies as a base corpus and have
students identify how occupations become more as-
sociated with gendered words during training (Garg
et al., 2018). Once this bias is discovered, students
can discuss various methods for mitigating it (e.g.,
Bolukbasi et al., 2016; Zhao et al., 2017) and how
their method might be adapted to avoid other forms
of bias. This extension can help students critically
think about what is and is not being captured in
pretrained vectors and models.

4 Reflection on Student Experiences

Student experiences on this homework have been
very positive, with multiple students expressing a
strong sense of satisfaction at completing the home-
work and being able to understand the algorithm
and software backing word2vec. Several students
reported feeling like completing this assignment
was a great confidence boost and that they were

1https://www.kaggle.com/c/about/
inclass

109

now more confident in their ability to understand
NLP papers and connect algorithms, equations, and
code. The majority of student difficulties happen in
two sources. First, the vast majority of bugs happen
when implementing the gradient descent and cal-
culating the negative log-likelihood (NLL). While
only a few lines of code in total, this step requires
translating the loss function for word2vec (in the
negative sampling case) into numpy code. This
translation task appeared daunting at first for many
students, though they found creating the eventual
solution rewarding for being able to ground similar
equations in NLP papers. Two key components
for mitigating early frustration were (1) including
built-in periodic reports of the NLL, which help
students quickly spot whether there are numeric
errors that lead to infinity or NaN values and (2)
adding early-stopping and printing nearest neigh-
bors of instructor-provided words (e.g., “January”)
which should be thematically coherent after only
a few minutes of training. These components help
students quickly identify the presence of a bug in
the gradient descent.

The second student difficulty comes from the
text preprocessing steps. The removal of low-
frequency words and frequency-based subsampling
steps require students to have a solid distinction
of type versus token in practice in order to sub-
sample tokens (versus types). I suspect that be-
cause many of these routine preprocessing steps are
done for the student by common libraries (e.g., the
CountVectorizer of Scikit Learn (Pedregosa
et al., 2011)), these steps feel unfamiliar. Com-
mon errors in this theme were subsampling types
or producing a sequence of word types (rather than
tokens) to use for training.

References

Tolga Bolukbasi, Kai-Wei Chang, James Zou,
Venkatesh Saligrama, and Adam Kalai. 2016.
Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In
Proceedings of the 30th Conference on Neural
Information Processing Systems (NeurIPS).

Aylin Caliskan, Joanna J Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora contain human-like biases.
Science, 356(6334):183–186.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and
James Zou. 2018. Word embeddings quantify
100 years of gender and ethnic stereotypes. Pro-

ceedings of the National Academy of Sciences,
115(16):E3635–E3644.

Charles R Harris, K Jarrod Millman, Stéfan J van der
Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. 2020. Array programming
with numpy. Nature, 585(7825):357–362.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Dan Jurafsky and James H. Martin. 2021. Speech &
Language Processing, 3rd edition. Prentice Hall.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1299–1304.

Thomas Manzini, Lim Yao Chong, Alan W Black, and
Yulia Tsvetkov. 2019. Black is to criminal as cau-
casian is to police: Detecting and removing multi-
class bias in word embeddings. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 615–621.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. arXiv preprint arXiv:1310.4546.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.

Radim Rehurek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In In
Proceedings of the LREC 2010 workshop on new
challenges for NLP frameworks. Citeseer.

Xin Rong. 2014. word2vec parameter learning ex-
plained. arXiv preprint arXiv:1411.2738.

Julien Tissier, Christophe Gravier, and Amaury
Habrard. 2017. Dict2vec: Learning word embed-
dings using lexical dictionaries. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 254–263.

110

Mo Yu and Mark Dredze. 2014. Improving lexical
embeddings with semantic knowledge. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 545–550.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2017. Men also like
shopping: Reducing gender bias amplification using
corpus-level constraints. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2979–2989.

111

Proceedings of the Fifth Workshop on Teaching NLP, pages 112–114
June 10–11, 2021. ©2021 Association for Computational Linguistics

Naive Bayes versus BERT: Jupyter notebook assignments for an
introductory NLP course

Jennifer Foster and Joachim Wagner
School of Computing

Dublin City University
jfoster|jwagner@dcu.ie

Abstract

We describe two Jupyter notebooks that form
the basis of two assignments in an introductory
Natural Language Processing (NLP) module
taught to final year undergraduate students at
Dublin City University. The notebooks show
the students how to train a bag-of-words polar-
ity classifier using multinomial Naive Bayes,
and how to fine-tune a polarity classifier using
BERT. The students take the code as a starting
point for their own experiments.

1 Introduction

We describe two Jupyter1 notebooks that form the
basis of two assignments in a new introductory
Natural Language Processing (NLP) module taught
to final year students on the B.Sc. in Data Science
programme at Dublin City University. As part of a
prior module on this programme, the students have
some experience with the NLP problem of quality
estimation for machine translation. They have also
studied machine learning and are competent Python
programmers. Since this is the first Data Science
cohort, there are only seven students. Four graduate
students are also taking the module.

The course textbook is the draft 3rd edition of
(Jurafsky and Martin, 2009).2 It is impossible to
teach the entire book in a twelve week module and
so we concentrate on the first ten chapters. The
following topics are covered:

1. Pre-processing

2. N-gram Language Modelling

3. Text Classification using Naive Bayes and Lo-
gistic Regression

4. Sequence Labelling using Hidden Markov
Models and Conditional Random Fields

5. Word Vectors
1https://jupyter.org/
2https://web.stanford.edu/~jurafsky/

slp3/

6. Neural Net Architectures (feed-forward, re-
current, transformer)

7. Ethical Issues in NLP

The course is fully online for the 2020/2021 aca-
demic year. Lectures are pre-recorded and there are
weekly live sessions where students anonymously
answer comprehension questions via zoom polls
and spend 20-30 minutes in breakout rooms work-
ing on exercises. These involve working out toy ex-
amples, or using online tools such as the AllenNLP
online demo3 (Gardner et al., 2018) to examine the
behaviour of neural NLP systems.

Assessment takes the form of an online end-of-
semester open-book exam worth 60% and three
assignments worth 40%. The first assignment is
worth 10% and involves coding a bigram language
model from scratch. The second and third assign-
ments are worth 15% each and involve experimen-
tation, using Google Colab4 as a platform. For both
assignments, a Jupyter notebook is provided to the
students which they are invited to use as a basis
for their experiments. We describe both of these in
turn.

2 Notebooks

We describe the assignment objectives, the note-
books we provide to the students5 and the experi-
ments they carried out.

2.1 Notebook One: Sentiment Polarity with
Naive Bayes

The assignment The aim of this assignment is
to help students feel comfortable carrying out text
classification experiments using scikit-learn (Pe-
dregosa et al., 2011). Sentiment analysis of movie
reviews is chosen as the application since it is a

3https://demo.allennlp.org/
4https://colab.research.google.com
5An updated version of the notebooks will be made avail-

able in the materials repository of the Teaching-NLP 2021
workshop.

112

familiar and easily understood task and domain, re-
quiring little linguistic expertise. We use the dataset
of Pang and Lee (2004) because its relatively small
size (2,000 documents) makes it quicker to train on.
The documents are provided in tokenised form and
have been split into ten cross-validation folds. We
provide a Jupyter notebook implementing a base-
line bag-of-words Naive Bayes classifier which
assigns a label positive or negative to a review. The
students are asked to experiment with this baseline
model and to attempt to improve its accuracy by
experimenting with

1. different learning algorithms, e.g. logistic re-
gression, decision trees, support vector ma-
chines, etc.

2. different feature sets, such as handling nega-
tion, including bigrams and trigrams, using
sentiment lexicons and performing linguistic
analysis of the input

They are asked to use the same cross-validation
set-up as the baseline system. Marks are awarded
for the breadth of experimentation, the experiment
descriptions, code clarity, average 10-fold cross-
validation accuracy and accuracy on a ‘hidden’ test
set (also movie reviews).

The notebook We implement document-level
sentiment polarity prediction for movie reviews
with multinomial Naive Bayes and bag-of-words
features. We first build and test the functionality to
load the dataset into a nested list of documents, sen-
tences and tokens, each document annotated with
its polarity label. Then we show code to collect the
training data vocabulary and assign a unique ID to
each entry. Documents are then encoded as bag-
of-word feature vectors in NumPy (Harris et al.,
2020), optionally clipped at frequency one to pro-
duce binary vectors. Finally, we show how to train
a multinomial Naive Bayes model with scikit-learn,
obtain a confusion matrix, measure accuracy and
report cross-validation results. The functionality is
demonstrated using a series of increasingly specific
Python classes.

What the students did Most students carried
out an extensive range of experiments, for the most
part following the suggestions we provided at the
assignment briefing and the strategies outlined in
the lectures. The baseline accuracy of 83% was
improved in most projects by about 3-5 points. The
algorithm which gave the best results was logistic

regression, whose default hyper-parameters worked
well. The students who reported the highest accu-
racy scores used a combination of token unigrams,
bigrams and trigrams, whereas most students di-
rectly compared each n-gram order. The students
were free to change the code structure, and indeed
some of them took the opportunity to refactor the
code to a style that better suited them.

2.2 Notebook Two: Sentiment Polarity with
BERT

The assignment The aim of this second assign-
ment is to help students feel comfortable using
BERT (Devlin et al., 2019). We provide a sample
notebook which shows how to fine-tune BERT on
the same task and dataset as in the previous assign-
ment. The students are asked to do one of three
things:

1. Perform a comparative error analysis of the
output of the BERT system(s) and the systems
from the previous assignment. The aim here is
to get the students thinking about interpreting
system output.

2. Using the code in this notebook and online
resources as examples, fine-tune BERT on a
different task. The aim here is to 1) allow the
students to experiment with something other
than movie review polarity classification and
explore their own interests, and 2) test their
research and problem-solving skills.

3. Attempt to improve the BERT-based system
provided in the notebook by experimenting
with different ways of overcoming the input
length restriction.

The notebook We exemplify how to fine-tune
BERT on the (Pang and Lee, 2004) dataset, using
Hugging Face Transformers (Wolf et al., 2020) and
PyTorch Lightning (Falcon, 2019). We introduce
the concept of subword units, showing BERT’s
token IDs for sample text input, the matching vo-
cabulary entries, the mapping to the original input
tokens and BERT’s special [CLS] and [SEP] to-
kens. Then, we show the length distribution of
documents in the data set and sketch strategies to
address the limited sequence length of BERT. We
implement taking 1) a slice from the start or 2) the
end of each document, or 3) combining a slice from
the start with a slice from the end of each document.
In doing so, we show the students how a dataset

113

can be read from a custom file format into the data
loader objects expected by the framework.

What the students did Of the ten students who
completed the assignment, three chose the first op-
tion of analysing system output and seven chose
the second option of fine-tuning BERT on a task
of their choosing. These included detection of
hate speech in tweets, sentence-level acceptability
judgements, document-level human rights viola-
tion detection, and sentiment polarity classification
applied to tweets instead of movie reviews. No stu-
dent opted for the third option of examining ways
to overcome the input length limit in BERT for the
(Pang and Lee, 2004) dataset.

3 Future Improvements

We surveyed the students to see what they thought
of the assignments. On the positive side, they found
them challenging and interesting, and they appreci-
ated the flexibility provided in the third assignment.
On the negative side, they felt that they involved
more effort than the marks warranted, and they
found the code in the notebooks to be unnecessar-
ily complicated. The object-oriented nature of the
code was also highlighted as a negative by some.
For next year, we plan to 1) streamline the code,
hiding some of the messy details, 2) reduce the
scope of the assignments, and 3) provide more
BERT fine-tuning example notebooks.

Acknowledgements

The second author’s contribution to this work was
funded by Science Foundation Ireland through
the SFI Frontiers for the Future programme
(19/FFP/6942). We thank the reviewers for their
helpful suggestions, and the DCU CA4023 students
for their hard work and patience!

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

WA et al. Falcon. 2019. Pytorch lightning. GitHub
repository.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Charles R. Harris, K. Jarrod Millman, Stéfan J.
van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fernández del
Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. 2020. Array programming with
NumPy. Nature, 585(7825):357–362.

Dan Jurafsky and James H. Martin. 2009. Speech and
language processing. Pearson Prentice Hall, Upper
Saddle River, N.J.

Bo Pang and Lillian Lee. 2004. A sentimental edu-
cation: Sentiment analysis using subjectivity sum-
marization based on minimum cuts. In Proceed-
ings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL-04), pages 271–
278, Barcelona, Spain.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

114

Proceedings of the Fifth Workshop on Teaching NLP, pages 115–124
June 10–11, 2021. ©2021 Association for Computational Linguistics

Natural Language Processing for Computer Scientists and
Data Scientists at a Large State University

Casey Kennington
Department of Computer Science

Boise State University
caseykennington@boisestate.edu

Abstract

The field of Natural Language Processing
(NLP) changes rapidly, requiring course offer-
ings to adjust with those changes, and NLP
is not just for computer scientists; it’s a field
that should be accessible to anyone who has a
sufficient background. In this paper, I explain
how students with Computer Science and Data
Science backgrounds can be well-prepared for
an upper-division NLP course at a large state
university. The course covers probability and
information theory, elementary linguistics, ma-
chine and deep learning, with an attempt to bal-
ance theoretical ideas and concepts with prac-
tical applications. I explain the course objec-
tives, topics and assignments, reflect on adjust-
ments to the course over the last four years, as
well as feedback from students.

1 Introduction

Thanks in part to a access to large datasets, in-
creases in compute power, and easy-to-use pro-
gramming programming libraries that leverage neu-
ral architectures, the field of Natural Language Pro-
cessing (NLP) has become more popular and has
seen more widespread adoption in research and in
commercial products. On the research side, the
Association for Computational Linguistics (ACL)
conference—the flagship NLP conference—and
related annual conferences have seen dramatic in-
creases in paper submissions. For example, in 2020
ACL had 3,429 paper submissions, whereas 2019
had 2,905, and this upward trend has been happen-
ing for several years. Certainly, lowering barriers
to access of NLP methods and tools for researchers
and practitioners is a welcome direction for the
field, enabling researchers and practitioners from
many disciplines to make use of NLP.

It is therefore becoming more important to better
equip students with an understanding of NLP to
prepare them for careers either directly related to
NLP, or which leverage NLP skills. In this paper,

I reflect on my experience setting up and main-
taining a class in NLP at Boise State University, a
large state university, how to prepare students for
research and industry careers, and how the class has
changed over four years to fit the needs of students.

The next section explains the course objectives.
I then explain challenges that are likely common to
many university student populations, how NLP is
designed for students with Data Science and Com-
puter Science backgrounds, then I explain course
content including lecture topics and assignments
that are designed to fulfill the course objectives. I
then offer a reflection on the three times I taught
this course over the past four years, and future plans
for the course.

2 Course Objectives

Most students who take an NLP course will not
pursue a career in NLP proper; rather, they take
the course to learn skills that will help them find
employment or do research in areas that make use
of language, largely focusing on the medium of text
(e.g., anthropology, information retrieval, artificial
intelligence, data mining, social media network
analysis, provided they have sufficient data science
training). My goal for the students is that they
can identify aspects of natural language (phonet-
ics, syntax, semantics, etc.) and how each can be
processed by a computer, explain the difference
between classification models and approaches, be
able to map from (basic) formalisms to functional
code, and use existing tools, libraries, and data sets
for learning while attempting to strike a balance
between theory and practice. In my view, there are
several aspects of NLP that anyone needs to grasp,
and how to apply NLP techniques in novel circum-
stances. Those aspects are illustrated in Figure 1.

No single NLP course can possibly account for
a level of depth in all of the aspects in Figure 1, but
a student who has taken courses or has experience
in at least two of the areas (e.g., they have taken a

115

Figure 1: Areas of content that are important for a
course in Natural Language Processing.

statistics course and have experience with Python,
or they have taken linguistics courses and have used
some data science or machine learning libraries)
will find success in the course more easily than
those with no experience in any aspect.

This introduces a challenge that has been ex-
plored in prior work on teaching NLP (Fosler-
Lussier, 2008): the diversity of the student pop-
ulation. NLP is a discipline that is not just for
computer science students, but it is challenging to
prepare students for the technical skills required in
a NLP course. Moreover, similar to the student pop-
ulation in Fosler-Lussier (2008), there should be
course offerings for both graduate and undergradu-
ate students. In my case, which is fairly common
in academia, as the sole NLP researcher at the uni-
versity I can only offer one course once every four
semesters for both graduate and undergraduate stu-
dents, but also students with varied backgrounds–
not only computer science. As a result, this is not a
research methods course; rather, it is more geared
towards learning the important concepts and techni-
cal skills surrounding recent advances in NLP. Oth-
ers have attempted to gear the course content and
delivery towards research (Freedman, 2008) giving
the students the opportunity to have open-ended as-
signments. I may consider this for future offerings,
but for now the final project acts as an open-ended
assignment, though I don’t require students to read
and understand recent research papers.

In the following section, I explain how we pre-
pare students of diverse backgrounds to succeed in
an NLP course for upper-division undergraduate
and graduate students.

3 Preparing Students with Diverse
Academic and Technical Backgrounds

Boise State University is the largest university in
Idaho, situated in the capital of the State of Idaho.
The university has a high number of non-traditional
students (e.g., students outside the traditional stu-
dent age range, or second-degree seeking students).
Moreover, the university has a high acceptance rate
(over 80%) for incoming first-year students. As is
the case with many universities and organizations,
a greater need for “computational thinking" among
students of many disciplines has been an important
driver of recent changes in course offerings across
many departments. Moreover, certain departments
have responded to the need and student interest in
machine learning course offerings. In this section,
we discuss how we altered the Data Science and
Computer Science curricula to meet these needs
and the implications these changes have had on the
NLP course.1

Data Science The Data Science offerings begin
with a foundational course (based on Berkeley’s
data8 content) that has only a very basic math pre-
requisite.2 It introduces and allows students to
practice Python, Jupyter notebooks, data analysis
and visualization, and basic statistics (including
the bootstrap method of statistical significance).
Several courses follow this course that are more
domain specific, giving the students options for
gaining practical experience in Data Science skills
relative to their abilities and career goals. One path
more geared towards students of STEM-related
majors (though not targeting Computer Science
majors) as well as some majors in the Humanities,
is a certificate program that includes the founda-
tional course, a follow-on course that gives students
experience with more data analysis as well as prob-
ability and information theory, an introductory ma-
chine learning course, and a course on databases.
The courses largely use Python as the programming
language of choice.

Computer Science In parallel to the changes
in Data Science-related courses, the Department
of Computer Science has seen increased enroll-
ment and increased request for machine learning-
related courses. The department offers several

1We do not have a Data Science department or major de-
gree program; the Data Science courses are housed in different
departments across campus.

2http://data8.org/

116

Figure 2: Two course paths that prepare students to succeed in the NLP course: Data Science and Computer Sci-
ence. Solid arrows denote pre-requisites, dashed arrows denote co-requisites. Solid outlines denote Data Science
and Computer Science courses, dashed outlines denote Math courses.

courses, though they focus on upper-division stu-
dents (e.g., artificial intelligence, applied deep
learning, information retrieval and recommender
systems). This is a challenge because the main
Computer Science curriculum focuses on procedu-
ral languages such as Java with little or no expo-
sure to Python (similar to the student population
reported in Freedman (2008)), forcing the upper-
division machine learning-related courses to spend
time teaching Python to the students. This cannot
be underestimated–programming languages may
not be natural languages, but they are languages
in that it takes time to learn them, particularly rele-
vant Python libraries. To help meet this challenge,
the department has recently introduced a Machine
Learning Emphasis that makes use of the Data Sci-
ence courses mentioned above, along with addi-
tional requirements for math and upper-division
Computer Science courses.

Preqrequisites Unlike Agarwal (2013) which at-
tempted and introductory course for all levels of
students, this course is designed for upper-division
students or graduate students. Students of either
discipline, Computer Science or Data Science, are
prepared for this NLP course, albeit in different
ways. Computer Scientists can think computation-
ally, have experience with a syntactic formalism,
and have experience with statistics. Data Science
students likewise have experience with statistics
as well as Python, including data analysis skills.
Though the backgrounds can be quite diverse, my
NLP course allows two prerequisite paths: all stu-
dents must take a statistics course, but Computer
Science students must take a Programming Lan-
guages course (which covers context free grammars
for parsing computer languages and now covers
some Python programming), and the Data Science
students must have taken the introductory machine

learning course. Figure 2 depicts the two course
paths visually.

4 NLP Course Content

In this section, I discuss course content including
topics and assignments that are designed to meet
the course objectives listed above. Woven into the
topics and assignments are the themes of ambiguity
and limitations, explained below.

4.1 Topics & Assignments

Theme of Ambiguity Figure 3 shows the topics
(solid outlines) that roughly translate to a single
lecture, though some topics require multiple lec-
tures. One main theme that is repeated through-
out the course, but is not a specific lecture topic
is ambiguity. This helps the students understand
differences between natural human languages and
programming languages. The Introduction to Lin-
guistics topic, for example, gives a (very) high-
level overviews of phonetics, morphology, syntax,
semantics, and pragmatics, with examples of am-
biguity for each area of linguistics (e.g., phonetic
ambiguity is illustrated by hearing someone say it’s
hard to recognize speech but it could be heard as
it’s hard to wreck a nice beach, and syntactic ambi-
guity is illustrated by the sentence I saw the person
with the glasses having more than one syntactic
parse).

Probability and Information Theory This
course does not focus only on deep learning,
though many university NLP offerings seem to
be moving to deep-learning only courses. There
are several reasons not to focus on deep learning
for a university like Boise State. First, students
will not have a depth of background in probabil-
ity and information theory, nor will they have a
deep understanding of optimization (both convex

117

and non-convex) or error functions in neural net-
works (e.g., cross entropy). I take time early in the
course to explain discrete and continuous probabil-
ity, and information theory. Discrete probability
theory is straight forward as it requires counting,
something that is intuitive when working with lan-
guage data represented as text strings. Continuous
probability theory, I have found, is more difficult
for students to grasp as it relates to machine learn-
ing or NLP, but building on students’ understand-
ing of discrete probability theory seems to work
pedagogically. For example, if we use continuous
data and try somehow to count values in that data,
it’s not clear what should be counted (e.g., using
binning), highlighting the importance of continu-
ous probability functions that fit around the data,
and the importance of estimating parameters for
those continuous functions–an important concept
for understanding classifiers later in the course. To
illustrate both discrete and continuous probability,
I show students how to program a discrete Naive
Bayes classifier (using ham/spam email classifica-
tion as a task) and a continuous Gaussian Native
Bayes classifier (using the well-known iris data set)
from scratch. Both classifiers have similarities, but
the differences illustrate how continuous classifiers
learn parameters.

Sequential Thinking Students experience prob-
ability and information theory in a targeted and
highly-scaffolded assignment. They then extend
their knowledge and program, from scratch, a part-
of-speech tagger using counting to estimate proba-
bilities modeled as Hidden Markov Models. These
models seem old-fashioned, but it helps students
gain experience beyond the standard machine learn-
ing workflow of mapping many-to-one (i.e., fea-
tures to a distribution over classes) because this is
a many-to-many sequential task (i.e., many words
to many parts-of-speech), an important concept to
understand when working with sequential data like
language. It also helps students understand that
NLP often goes beyond just fitting “models" be-
cause it requires things like building a trellis and
decoding a trellis (undergraduate students are re-
quired to program a greedy decoder; graduates are
required to program a Viterbi decoder). This is a
challenging assignment for most students, irrespec-
tive of their technical background, but grasping the
concepts of this assignment helps them grasp more
difficult concepts that follow.

Syntax The Syntax & Parsing assignment also
deserves mention. The students use any parser in
NLTK to parse a context free grammar of a fictional
language with a limited vocabulary.3 This helps
the students think about structure of language, and
while there are other important ways to think about
syntax such as dependencies (which we discuss in
the course), another reason for this assignment is
to have the students write grammars for a small
vocabulary of words in a language they don’t know,
but also to create a non-lexicalized version of the
grammar based on parts of speech, which helps
them understand coverage and syntactic ambiguity
more concretely.4 There is no machine learning
or estimating a probabilistic grammar here, just
parsing.

Semantics An important aspect of my NLP class
is semantics. I introduce them briefly to formal
semantics (e.g., first-order logic), WordNet (Miller,
1995), distributional semantics, and grounded se-
mantics. We discuss the merits of representing
language “meaning" as embeddings and the limi-
tations of meaning representations trained only on
text and how they might be missing important se-
mantic knowledge (Bender and Koller, 2020). The
Topic Modeling assignment uses word-level em-
beddings (e.g., word2vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014)) to represent
texts and gives them an opportunity to begin us-
ing a deep learning library (tensorflow & keras or
pytorch).

We then consider how a semantic representation
that has knowledge of modalities beyond text, i.e.,
images is part of human knowledge (e.g., what is
the meaning of the word red?), and how recent
work is moving in this direction. Two assignments
give the students a deeper understanding of these
ideas. The transfer learning assignment requires
the students to use convolutional neural networks
pre-trained on image data to represent objects in
images and train a classifiers to identify simple ob-
ject types, tying images to words. This is extended
in the Grounded Semantics assignment where a
binary classifier (based on the words-as-classifiers
model introduced in Kennington and Schlangen
(2015), then extended to work with images with
"real" objects in Schlangen et al. (2016)) is trained

3I opt for Tamarian: https://en.wikipedia.org/
wiki/Darmok

4I have received feedback from multiple students that this
was their favorite assignment.

118

Figure 3: Course Topics and Assignments. Colors cluster topics (green=probability and information theory,
blue=NLP libraries, red=neural networks, purple=linguistics, yellow=assignments). Courses have solid lines; topic
dependencies are illustrated using arrows. Assignments have dashed lines. Assignments are indexed with the topics
on which they depend.

for all words in referring expressions to objects in
images in the MSCOCO dataset annotated with re-
ferring expressions to objects in images (Mao et al.,
2016). Both assignments require ample scaffolding
to help guide the students in using the libraries and
datasets, and the MSCOCO dataset is much bigger
than they are used to, giving them more real-world
experience with a larger dataset.

Deep Learning An understanding of deep learn-
ing is obviously important for recent NLP re-
searchers and practitioners. One constant challenge
is determining what level of abstraction to present
neural networks (should students know what is hap-
pening at the level of the underlying linear alge-
bra, or is a conceptual understanding of parame-
ter fitting in the neurons enough?). Furthermore,
deep learning as a topic requires and understand-
ing of its limitations and at least to some degree
how it works “under the hood" (learning just how
to use deep learning libraries without understand-
ing how they work and how they “learn" from the
data is akin to giving someone a car to drive with-
out teaching them how to use it safely). This also
means explaining some common misconceptions

like how neurons in neural networks “mimic" real
neurons in human brains, something that is very
far from true, though certainly the idea of neural
networks is inspired from human biology. For my
students, we progress from linear regression to lo-
gistic regression (illustrating how parameters are
being fit and how gradient descent is different from
directly estimating parameters in continuous prob-
ability functions; i.e., maximum likelihood estima-
tion vs convex and non-convex optimization), build-
ing towards small neural architectures and feed-
forward networks. We also cover convolutional
neural networks (for transfer learning and grounded
semantics), attention (Vaswani et al., 2017), and
transformers including transformer-based language
models like BERT (Devlin et al., 2018), and how
to make use of them; understanding how they are
trained, but then only assigning fine-tuning for stu-
dents to experience directly. I focus on smaller
datasets and fine-tuning so students can train and
tune models on their own machines.

Final Project There is a "final project" require-
ment. Students can work solo, or in a group of
up to three students. The project can be anything

119

NLP related, but projects generally are realized as
using an NLP or machine/deep learning library to
train on some specific task, but others include meth-
ods for data collection (a topic we don’t cover in
class specifically, but some students have interest
in the data collection process for certain settings
like second language acquisition), as well as in-
terfaces that they evaluate with some real human
users. Scoping the projects is always the biggest
challenge as many students initially envision very
ambitious projects (e.g., build an end-to-end chat-
bot from scratch). I ask students to consider how
much effort it would take to do three assignments
and use that as a point of comparison. Throughout
the first half of the semester students can ask for
feedback on project ideas, and at the halfway point
in the semester, students are required to submit a
short proposal that outlines the scope and timeline
for their project. They have the second half of the
semester to then work through the project (with
a "checkpoint" part way through to inform me of
progress and needed adjustments), then they write
a project report on their work at the end of the
semester with evaluations and analayses of their
work. Graduate students must write a longer re-
port than the undergraduate students, and graduate
students are required to give a 10-minute presen-
tation on their project. The timeline here is crit-
ical: the midway point for beginning the project
allows students to have experience with classifica-
tion and NLP tasks, but have enough time to make
adjustments as they work on their project. For ex-
ample, students students attempt to apply BERT
fine-tuning after the BERT assignment even though
it wasn’t in their original project proposal.

Theme of Limitations As is the case with am-
biguity, limitations is theme in the course: lim-
itations of using probability theory on language
phenomena, limitations on datasets, and limitations
on machine learning models. The theme of limi-
tations ties into an overarching ethical discussion
that happens at intervals throughout the semester
about what can reasonably be expected from NLP
technology and whom it affects as more practical
models are deployed commercially.

The final assignment critical reading of the pop-
ular press is based on a course under the same
title taught by Emily Bender at the University of
Washington.5 The goal of the assignment is to

5The original assignment definition appears to no longer
be public.

learn to critically read popular articles about NLP.
Given an article, they need to summarize the article,
then scrutinize the sources using the following as
a guide: can they (1) access the primary source,
such as original published paper, (2) assess if the
claims in the article relate to what’s claimed by the
primary source, (3) determine if experimental work
was involved or if the article is simply offering
conjecture based on current trends, and (4) if the
article did not carry out an evaluation, offer ideas
on what kind of evaluation would be approrpriate
to substantiate any claims made by the article’s au-
thor(s). Then students should relate the headline of
the article to the main text and determine if reading
the headline provides an abstract understanding of
the article’s contents, and determine to what extent
the author identified limitations to the NLP technol-
ogy they were reporting on, what someone without
training in NLP might take away from the article,
and if the authors identified the people who might
be affected (negatively or positively) by the NLP
technology. This assignment gives students expe-
rience in recognizing the gap between the reality
of NLP technology, how it is perceived by others,
whom it affects, and its limitations.

We dedicate an entire lecture to ethics, and stu-
dents are also asked to consider the implications of
their final projects, what their work can and cannot
reasonably do, and who might be affected by their
work.6

Discussion Striking a balance between content
on probability and information theory, linguistics,
and machine learning is challenging for a single
course, but given the diverse student population
at a public state school, this approach seems to
work for the students. An NLP class should have at
least some content about linguistics, and framing
aspects of linguistics in terms of ambiguity gives
students the tools to think about how much they
experience ambiguity on a daily basis, and the fact
that if language were not ambiguous, data-driven
NLP would be much easier (or even unnecessary).
The discussions about syntax and semantics are
especially important as many have not considered
(particularly those who have not learned a foreign

6Approaching ethics from a framework of limitations I
think helps students who might otherwise be put off by a
discussion on ethics because it can clearly be demonstrated
that NLP models have not just technical limitations and those
limitations have implications for real people; an important
message from this class is that all NLP models have limita-
tions.

120

language) how much they take for granted when it
comes to understanding and producing language,
both speech and written text. The discussions on
how to represent meaning computationally (sym-
bolic strings? classifiers? embeddings? graphs?)
and how a model should arrive at those representa-
tions (using speech? text? images?) is rewarding
for the students. While most of the assignments and
examples focus on English, examples of linguistic
phenomena are often shown from other languages
(e.g., Japanese morphology and German declen-
sion) and the students are encouraged to work on
other languages for their final project.

Assignments vary in scope and scaffolding. For
the probability and information theory and BERT
assignments, I provide a fairly well-scaffolded tem-
plate that the students fill in, whereas most other
assignments are more open-ended, each with a set
of reflection and analysis questions.

4.2 Content Delivery

Class sizes vary between 35-45 students. Class
content is presented largely either as presentation
slides or live programming using Jupyter note-
books. Slides introduce concepts, explain things
outside of code (e.g., linguistics and ambiguity or
graphical models), but most concepts have concrete
examples using working code. The students see
code for Naive Bayes (both discriminative and con-
tiniuous) classifiers, I use Python code to explain
probability and information theory, classification
tasks such as spam filtering, name classification,
topic modeling, parsing, loading and prepossess-
ing datasets, linear and logistic regression, senti-
ment classification, an implementation of neural
networks from scratch as well as popular libraries.

While we use NLTK for much of the instruc-
tion following in some ways what is outlined in
Bird et al. (2008), we also look at supported NLP
Python libraries including textblob, flair (Akbik
et al., 2019), spacy, stanza (Qi et al., 2020), scik-
itlearn (Pedregosa et al., 2011), tensorflow (Abadi
et al., 2016) and keras (Chollet et al., 2015), py-
torch (Paszke et al., 2019), and huggingface (Wolf
et al., 2020). Others are useful, but most libraries
help students use existing tools for standard NLP
pre-processing like tokenization, sentence segmen-
tation, stemming or lemmatization, part-of-speech
tagging, and many have existing models for com-
mon NLP tasks like sentiment classification and
machine translation. The stanza library has models

for many languages. All code I write or show in
class is accessible to the students throughout the
semester so they can refer back to the code exam-
ples for assignments and projects. This of course
means that students only obtain a fairly shallow
experience for any library; the goal is to show them
enough examples and give them enough experience
in assignments to make sense of public documen-
tation and other code examples that they might
encounter.

The course uses two books, both which are avail-
able free online, the NLTK book,7 and an ongoing
draft of Jurafsky and Martin’s upcoming 3rd edi-
tion.8 The first assignment (Python & Jupyter in
Figure 3) is an easy, but important assignment: I
ask the students to go through Chapter 1 and parts
of Chapter 4 of the NLTK book and for all code ex-
amples, write them by hand into a Jupyter notebook
(i.e., no copy and pasting). This ensures that their
programming environments are setup, steps them
through how NLTK works, gives them immediate
exposure to common NLP tasks like concordance
and stemming, and gives them a way to practice
Python syntax in the context of a Jupyter notebook.
Another part of the assignment asks them to look
at some Jupyter notebooks that use tokenization,
counters, stop words, and n-grams, and asks them
questions about best practices for authoring note-
books (including formatted comments).9

Students can use cloud-based Jupyter servers
for doing their assignments (e.g., Google colab),
but all must be able to run notebooks on a local
machine and spend time learning about Python
environments (i.e., anaconda). Assignments are
submitted and graded using okpy which renders
notebooks and allows instructors to assign grading
to themselves or teaching assistants, and students
can see their grades and written feedback for each
assignment.10

4.3 Adjustments for Remote Learning
This course was relatively straightforward to adjust
for remote delivery. The course website and okpy
(for assignment submissions) are available to the
students at all times. I decided to record lectures
live (using Zoom) then make them available with

7http://www.nltk.org/book_1ed/
8https://web.stanford.edu/~jurafsky/

slp3/
9I use the notebooks listed here for this part of

the assignment https://github.com/bonzanini/
nlp-tutorial

10https://okpy.org/

121

semester Python Ling ML DL
Spring 2017 none none 10% none
Spring 2019 50% 30% 30% 10%
Spring 2021 80% 30% 60% 20%

Table 1: Impressions of preparedness for Python, Lin-
guistics (Ling), Machine Learning (ML), and Deep
Learning (DL).

transcripts to the students. This course has one
midterm, a programming assignment that is similar
in structure to the regular assignments. During
an in-person semester, there would normally be a
written final, but I opted to make the final be part
of their final project grade.

5 Reflection on Three Offerings over 4
years

Due to department constraints on offering required
courses vs. elective courses (NLP is elective), I
am only able to offer the NLP course in the Spring
semester of odd years; i.e., every 4 semesters. The
course is very popular, as enrollment is always
over the standard class size (35 students). Below
I reflect on changes that have taken place in the
course due to the constant and rapid change in the
field of NLP, in our undergraduate curriculum, and
the implications those changes had on the course.
These reflections are summarized in Table 1. As
I am, to my knowledge, the first NLP researcher
at Boise State University, I had to largely develop
the contents of the course on my own, requiring
adjustments over time as I better understand student
preparedness. At this point, despite the two paths
into the course, most students who take the course
are still Computer Science students.

Spring 2017 The first time I taught the course,
only a small percentage of the students had expe-
rience with Python. The only developed Python
library for NLP was NLTK, so that and scikit-learn
were the focus of practical instruction. I spent the
first three weeks of the course helping students gain
experience with Python (including Jupyter, numpy,
pandas) then used Python as a means to help them
understand probability and information theory. The
course focused on generative classification includ-
ing statistical n-gram language modeling with some
exposure to discriminative models, but no exposure
to neural networks.

Spring 2019 Between 2017 and 2019, several
important papers showing how transformer net-
works can be used for robust language modeling
were gaining in momentum, resulting in a shift to-
wards altering and understanding their limitations
(so called BERTology, see Rogers et al. (2020) for
a primer). This, along with the fact that changes
in the curriculum gave students better experience
with Python, caused me to shift focus from gen-
erative models to neural architectures in NLP and
to shift to cover word-level embeddings more rig-
orously. I spent the second half of the semester
introducing neural networks (including multi-layer
perceptrons, convolutional, and recurrant architec-
tures) and giving students assignments to give them
practice in tensorflow and keras. After the 2017
course, I changed the pre-requisite structure to re-
quire our programming languages course instead of
data structures. This led to greater pareparedness
in at least the syntax aspect of linguistics.

Spring 2021 In this iteration, I shifted focus from
recurrant to attention/transformer-based models
and assignmed a BERT fine-tuning assignment on a
novel dataset using huggingface. I also introduced
pytorch as another option for a neural network li-
brary (I also spend time on tensorflow and keras).
This shift reflects a shift in my own research and
understanding of the larger field, though exposure
to each library is only partial and somewhat ab-
stract. I note that students who have a data science
background will likely appreciate tensorflow and
keras more as they are not as object-oriented than
pytorch, which seems to be more geared towards
students with Computer Science backgrounds. Stu-
dents can choose which one they will use (if any)
for their final projects. More students are gaining
interest in machine learning and deep learning and
are turning to MOOC courses or online tutorials,
which has led in some degree to better prepara-
tion for the NLP course, but often students have
little understanding about the limitations of ma-
chine learning and deep learning after completing
those courses and tutorials. Moreover, students
from our university have started an Artificial In-
telligence Club (the club started in 2019; I am the
faculty advisor), which has given the students guid-
ance on courses, topics, and skills that are required
for practical machine learning. Many of the NLP
class students are already members of the AI Club,
and the club has members from many academic
disciplines.

122

5.1 Student Feedback
I reached out to former students who took the class
to ask for feedback on the course. Specifically, I
asked if they use the skills and concepts from the
NLP class directly for their work, or if the skills
and concepts transferred in any way to their work.
Student responses varied, but some answered that
they use NLP directly (e.g., to analyze customer
feedback or error logs), while most responded that
they use many of the Python libraries we covered
in class for other things that aren’t necessarily NLP
related, but more geared towards Data Science. For
several students, using NLP tools helped them in
research projects that led to publications.

6 Conclusions & Open Questions

With each offering, the NLP course at Boise State
University is better suited pedagogically for stu-
dents with some Data Science or Computer Science
training, and the content reflects ongoing changes
in the field of NLP to ensure their preparation. The
topics and assignments cover a wide range, but as
students have become better prepared with Python
(by the introduction of new prerequisite courses
that cover Python as well as changing some courses
to include assignments in Python), more focus is
spent on topics that are more directly related to
NLP.

Though I feel it important to stay abreast of the
ongoing changes in NLP and help students gain
the knowledge and skills needed to be successful
in NLP, an open question is what changes need to
be made, and a related question is how soon. For
example, I think at this point it is clear that neu-
ral networks are essential for NLP, though it isn’t
always clear what architectures should be taught
(e.g., should we still cover recurrant neural net-
works or jump directly to transformers?). It seems
important to cover even new topics sooner than
later, though a course that is focused on research
methods might be more concerned with staying up-
to-date with the field, whereas a course that is more
focused on general concepts and skills should wait
for accessible implementations (e.g., huggingface
for transformers) before covering those topics.

With recordings and updated content, I hope
to flip the classroom in the future by assigning
readings and watching lectures before class, then
use class time for working on assignments.11

11This worked well for the Foundations of Data Science
course that I introduced to the university; the second time I

Much of my course materials including note-
books, slides, topics, and assignments can be found
on a public Trello board.12

Acknowledgements

I am very thankful for the anonymous reviewers for
giving excellent feedback and suggestions on how
to improve this document. I hope that it followed
those suggestions adequately.

References
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In 12th {USENIX} symposium
on operating systems design and implementation
({OSDI} 16), pages 265–283.

Apoorv Agarwal. 2013. Teaching the basics of NLP
and ML in an introductory course to information sci-
ence. In Proceedings of the Fourth Workshop on
Teaching NLP and CL, pages 77–84, Sofia, Bulgaria.
Association for Computational Linguistics.

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
Flair: An easy-to-use framework for state-of-the-art
nlp. In NAACL 2019, 2019 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59.

Emily M Bender and Alexander Koller. 2020. Climb-
ing towards NLU: On Meaning, Form, and Under-
standing in the Age of Data. In Association for Com-
putational Linguistics, pages 5185–5198.

Steven Bird, Ewan Klein, Edward Loper, and Jason
Baldridge. 2008. Multidisciplinary instruction with
the natural language toolkit. In Proceedings of
the Third Workshop on Issues in Teaching Compu-
tational Linguistics, pages 62–70, Columbus, Ohio.
Association for Computational Linguistics.

François Chollet et al. 2015. Keras. https://
keras.io.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv.

taught the course, I flipped it and used class time for students
to work on assignments, which gave me a better indication of
how students were understanding the material, time for one-
on-one interactions, and fewer issues with potential cheating.

12https://trello.com/b/mRcVsOvI/
boise-state-nlp

123

Eric Fosler-Lussier. 2008. Strategies for teaching
“mixed” computational linguistics classes. In Pro-
ceedings of the Third Workshop on Issues in Teach-
ing Computational Linguistics, pages 36–44, Colum-
bus, Ohio. Association for Computational Linguis-
tics.

Reva Freedman. 2008. Teaching NLP to computer
science majors via applications and experiments.
In Proceedings of the Third Workshop on Issues
in Teaching Computational Linguistics, pages 114–
119, Columbus, Ohio. Association for Computa-
tional Linguistics.

C. Kennington and D. Schlangen. 2015. Simple learn-
ing and compositional application of perceptually
groundedword meanings for incremental reference
resolution. In ACL-IJCNLP 2015 - 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing of the Asian Feder-
ation of Natural Language Processing, Proceedings
of the Conference, volume 1.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan L Yuille, and Kevin Murphy. 2016.
Generation and comprehension of unambiguous ob-
ject descriptions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 11–20.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed Represen-
tations of Words and Phrases and their Composition-
ality. In Proceedings of NIPS.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-

cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D Manning. 2020. Stanza:
A python natural language processing toolkit
for many human languages. arXiv preprint
arXiv:2003.07082.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A Primer in BERTology: What we know
about how BERT works. arXiv.

David Schlangen, Sina Zarriess, and Casey Kenning-
ton. 2016. Resolving References to Objects in Pho-
tographs using the Words-As-Classifiers Model. In
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1213–
1223.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

124

Proceedings of the Fifth Workshop on Teaching NLP, pages 125–130
June 10–11, 2021. ©2021 Association for Computational Linguistics

On Writing a Textbook on Natural Language Processing

Jacob Eisenstein
Google Research

jeisenstein@google.com

Abstract

There are thousands of papers about natural
language processing and computational lin-
guistics, but very few textbooks. I describe
the motivation and process for writing a col-
lege textbook on natural language processing,
and offer advice and encouragement for read-
ers who may be interested in writing a text-
book of their own.

1 Introduction

As natural language processing reaches ever-
greater heights of popularity, its students can
learn from blogs and tutorials, videos and online
courses, podcasts, social media, open source soft-
ware projects, competitions, and more. In this envi-
ronment, is there still any room for textbooks? This
paper describes why you might write a textbook
about natural language processing, how to do it,
and what I learned from writing one.

Summary of the book. This paper will not focus
on the details of my textbook (Eisenstein, 2019),
but I offer a brief summary for context. My main
goal was to create a text with a formal and co-
herent mathematical foundation in machine learn-
ing, which would explain a broad range of tech-
niques and applications in natural language pro-
cessing. The first section of the book builds up the
mathematical foundation from linear classification
though neural networks and unsupervised learn-
ing. The second section extends this foundation to
structure prediction, with classical algorithms for
search and marginalization in sequences and trees,
while also introducing some ideas from morphol-
ogy and syntax. The third section treats the special
problem of semantics, which distinguishes natu-
ral language processing from other applications of
machine learning. This section is more method-
ologically diverse, ranging from logical to distri-
butional semantics. The final section treats three

of the primary application areas: machine transla-
tion, information extraction, and text generation.
Altogether this comprises nineteen chapters, which
is more than could be taught in a single semester.
Rather, the teacher or student can select subsets of
chapters depending on whether they wish to empha-
size machine learning, linguistics, or applications.
The preface sketches out a few paths through the
book for various types of courses.

2 Motivation and related work

In this section, I offer some reasons for writing a
textbook, compare textbooks with alternative edu-
cational formats, and provide a few words of en-
couragement for prospective authors.

2.1 Why you might want to write a textbook

The first requirement is that you expect to enjoy the
type of work involved: reading the most impactful
papers in the field, synthesizing and curating the
ideas these papers contain, and presenting them in
a way that is accessible and engaging for students.
One of the main contributions of a textbook over
the original research material is the unification of
terminology and mathematical notation, so it will
help if you have strong opinions about this and
an impulse toward consistency. Finally, writing a
good textbook requires reading great textbooks to
understand what makes them work, and I enjoyed
having a reason to spend more time with some of
my favorites (e.g., MacKay, 2003; Blackburn and
Bos, 2005; Cover and Thomas, 2012; Sipser, 2012;
Murphy, 2012).

A more respectable reason to write a textbook
is to clarify and amplify your vision for the field.
The writing process forces you to try to understand
things from multiple perspectives and to identify
connections across diverse methods, problems, and
concepts. If you are an opinionated researcher or
teacher, there are probably ideas that you think
haven’t gotten the credit they deserve or haven’t

125

been presented in the right way. Maybe you think
students should know more about some method or
set of problems: for example, I felt that learning
to think about NLP by doing paper-and-pencil ex-
ercises could help students avoid wasting a lot of
time writing code that was conceptually flawed. A
textbook is the perfect vehicle for grinding such
axes, as long as you don’t take it too far and you
keep the focus on what will benefit the reader.

One more reason to write a textbook is that we
really do need them: only a small handful of NLP
textbooks have ever been written. It is true that the
textbook market is somewhat “winner-take-all”: it
is easiest to build a course around a textbook that
is already widely in use, and hard to get teachers
to change their materials. But different types of
courses and students have different needs, and ma-
ture fields have dozens of books that target each of
these audiences. Compared with the difficulty of
finding a niche among the thousands of research pa-
pers written each year, a well-written NLP textbook
is almost guaranteed to offer something valuable to
a large number of readers.

2.2 Why I did it
Honesty requires some additional introspection
about my real motivations. The project started
because I felt unprepared to teach many topics in
natural language processing, and could think of
no better preparation than writing out some notes
and derivations in my own words. I find it hard
to focus on lectures that are based on slides, and I
have noticed that many students seem to have the
same difficulty. So I tried to write notes that would
enable me to teach from a whiteboard.1

A second motivation was to create a resource
for my students. When I started teaching in 2012,
there was really only one textbook that was suf-
ficiently complete and contemporary to offer in
a college-level NLP course: Jurafsky and Martin
(2008, J&M).2 But as an incoming faculty mem-
ber, I was particularly eager to train graduate stu-
dents as potential research assistants, and J&M was
less mathematical than I would have liked for this
purpose. My first approach was to have students
read contemporary research papers and surveys,

1A specific inspiration to my early notes were the teach-
ing materials from Michael Collins, e.g., http://www.cs.
columbia.edu/~mcollins/loglinear.pdf.

2There are also some outstanding books that were either
too old (Manning and Schütze, 1999) or not quite aligned with
my goals for the course (e.g., Bender, 2013; Bird et al., 2009;
Goldberg, 2017; Smith, 2011).

but this requires training, and students struggled
with inconsistencies in notation and terminology
across papers. I needed something that would give
students a bridge to contemporary research, and
decided I would have to write it myself.

These reasons added up to a set of course notes
that I posted on Github, but not a textbook. Af-
ter periodic nudges from editors over a period of
several years (see Table 1), and some experience
reviewing books and book proposals, I finally de-
cided to submit a proposal of my own in 2017. At
this time I was close to submitting my tenure ma-
terials, and writing a book seemed like a welcome
change of pace. I had become friends with a group
of professors in the humanities and social sciences
who were sweating over their own book projects at
the time, and I envied their focus on solo long-term
work, which seemed so different from my life of
bouncing from one student-led project to the next.
And finally, I flattered myself to think that I would
be able to write the book quickly from the material
that I had amassed in five years of teaching — read
on to learn whether this prediction was accurate.
Overall, the book arose from a combination of im-
postor syndrome and irrational optimism, a recipe
that may be at the heart of many writing projects.

2.3 Why not do something else?

When people find out that you are writing a text-
book, you may receive suggestions for all sorts
of better ways to communicate the same informa-
tion. In the 2010s, there was great interest in online
courses — particularly at Georgia Tech, which was
then my home university — and I was urged to pro-
duce videos for such a course on natural language
processing. Another possibility would have been to
write a blog, which would be easier to keep current
than a textbook, and would permit readers to post
comments and questions (e.g., Ruder, 2021). Go-
ing further, tools like Jupyter notebooks (Kluyver
et al., 2016) offer exciting new ways to combine
writing, math, and code. Some intrepid authors
have even written entire textbooks as collections
of these interactive documents (e.g., VanderPlas,
2016). With all these alternatives, why write a tra-
ditional textbook on “dead trees,” (as one of my
students put it)? Some reasons are more personal
and others are practical. Here are three:

Longevity. Although much of the textbook will
be obsolete in a few years, some parts may stand
the test of time; there are topics for which I still

126

turn to my copy of Manning and Schütze (1999).
Even if my book does not offer the best explana-
tion of anything that anyone cares about in twenty
years, I am glad to know that people will probably
be able to read it if they want to. With more in-
novative online media, there is no such guarantee.
Course videos may be available far into the future,
but they are difficult to produce well, requiring an
entirely different set of skills than the amateur type-
setting capabilities that most academics acquire in
the course of their studies.

Quality. The publication process brings in several
people who help you write the best possible book:
an editor who helps you choose the material and
the high-level approach, reviewers who make sure
the presentation is clear and correct, and a copy
editor who finds writing errors. Perhaps because
textbooks are rare, I also found that colleagues were
very generous when asked to lend their expertise.

Finality. The field of natural language processing
will surely continue to grow and evolve, and online
media offers the temptation to try to keep pace with
these changes. But if you agree to be bound by the
conventional publishing process, there will come
a day where you send a file to the publisher and
are unable to make any further changes. While
some authors seem to be happy (or at least willing)
to continually revise through many editions over
several decades (e.g., Russell and Norvig, 2020), I
wanted the option to move on to other things.

While textbooks can be expensive, open access
online editions are increasingly typical. In my case,
I was able to negotiate a free online edition in ex-
change for a small portion of the royalties.

2.4 Yes, you
Before committing, I confessed to my prospective
editor one of my deepest fears about the project: the
best-known textbooks on natural language process-
ing (Manning and Schütze, 1999; Jurafsky and Mar-
tin, 2008) were written by true luminaries. Who
was I to try to compete with them? Being a crafty
and experienced editor, she replied that perhaps
those authors were not so luminous before their
textbooks, and wouldn’t I like to write one and
join them in the firmament? Although I am not so
crafty, even I could see through this ploy. What
ultimately gave me the courage to proceed was the
realization that if I didn’t write this particular text-
book, then no one else would. AI summer was then

coming into full bloom, and the true luminaries
had plenty of other things to keep them occupied.
In any case, there is no minimum amount of lumi-
nosity required for writing a textbook: publishers
will ask that you give some evidence that you know
what you’re talking about, but the main criterion is
to have a compelling vision for a book that hasn’t
been written yet.

3 Methodology

Publishers seem keenly aware of the need for more
textbooks in natural language processing and in
AI more generally, and I found several editors that
were eager to talk at conferences. I selected MIT
Press because of their track record in publishing
some of my favorite computer science textbooks.
Other factors that you may wish to consider are the
length of the review and production process, and
the publisher’s position towards open access. I was
lucky to get feedback on the contract from another
editor and from colleagues who have written books
in other fields, but I did not think of negotiating
with regard to electronic editions and translations.
Fortunately the publisher was generous on these
points, as they turned out to be a significant frac-
tion of the revenue for the book. In any case, in the
current environment of high demand for AI exper-
tise, the financial compensation is not competitive
with other uses of the same amount of time. You
may find that it makes more sense to negotiate on
aspects of the book and publishing process, such
as length, open access, and support.

The publisher requires four main inputs from the
author: a proposal, a complete draft for review, a
“finished version” for copy editing and composition,
and markup of page proofs. In the rest of the sec-
tion, I’ll describe how I approached each of these
inputs. A timeline is given in Table 1.

3.1 Proposal

The publisher required a proposal with two com-
plete chapters (which were entirely rewritten later),
a detailed table-of-contents for the rest of book,
and a discussion of the imagined readership and
the books that readers currently have to choose
from. You will also give an estimate for some fac-
tors that affect the price: how long the book will be,
how many figures to include, and whether color is
required; and you will be asked to provide a time-

127

Fall 2012 Started teaching natural language processing and writing lecture notes.
July 2014 First contact with an editor.
2014-2017 Periodic nudges from the editor to please finish my book proposal someday.
March 2017 Book proposal done and sent out for review.
May 2017 Book proposal reviewed and accepted.
June 2017 Signed agreement with publisher.
Summer 2017-2018 Did most of the writing.
Early summer 2018 Solicited informal reviews of chapters from subject experts.
June 2018 Manuscript draft sent out for formal reviews.
Summer 2018 Wrote most of the exercises while awaiting reviews.
July 2018 Received reviews, started revisions.
November 2018 Revised manuscript sent out for production.
Winter 2019 Received and reviewed copy edits.
May 2019 Received and reviewed page proofs.
Summer 2019 I was supposed to make slide decks while waiting for the book to come out.
October 2019 Book is published.

Table 1: A rough timeline. Key inputs from section 3 are highlighted in bold.

line, which no one takes too seriously.3 As with
anything else, it helps to see other proposals that
have been successful, and you may ask your editor
for positive examples. I spent a significant amount
of time on the example chapters, and relatively lit-
tle on the proposal itself, although it did help me
to identify the overall structure of the book.

3.2 Draft

If the proposal is accepted, it’s time to start writing.
The purpose of this stage is to produce something
that can be sent to the reviewers. In my case, the
editor did not require the exercises or figures to be
done at this stage; I have heard that other presses
will solicit reviews on a chapter-by-chapter basis.
After getting to a complete draft of each chapter,
I also solicited informal reviews from friends and
colleagues, which both improved the content and
gave me far more confidence about the chapters
that did not align with my expertise.

At first I tried to schedule the writing to align
with teaching — for example, writing the chapter
on parsing while teaching the same unit — but I
wasn’t able to keep up, and several chapters had
to be left to the following summer. I hesitate to
offer much writing advice to this audience, but
I will pass along one thing I learned from Mark
Liberman, when I asked how he was such a prolific
blogger:4 it’s possible to learn to write well if you

3As my editor put it, “if missing deadlines was a crime,
the prisons would be full of authors.”

4https://languagelog.ldc.upenn.edu

constrain yourself to write quickly, but it’s much
more difficult to learn to write quickly while con-
straining yourself to write well. So write quickly,
and eventually the quality will catch up.

One regret about this stage is that I did not adopt
the publisher’s formatting templates. I had already
written many pages of course notes, and when I
couldn’t immediately get them to compile against
the publisher’s format, I decided to put this off until
later. Naturally that only made things much more
difficult in the end, and I didn’t use all that much
of my original material anyway.

There are several reasons why my estimate of
the completeness of the original course notes was
too optimistic. While teaching, you are likely to
emphasize the aspects of the subject that you know
best. This means that the remaining parts to write
are exactly those that are most difficult for you.
In the classroom, you can rely on interactive tech-
niques such as dialog and demonstrations to over-
come weaknesses in the exposition of technically-
challenging material, but the textbook must stand
alone. Finally, the requirements for consistency,
clarity, and accuracy of attribution in a textbook are
much higher than the standard that I had reached in
my course notes, and although the difference may
seem small to many readers, it represents quite a
lot of work for the writer. In total, I kept hardly any
of the original text, although I was able to reuse the
high-level structure of roughly half of the chapters.

128

3.3 Revision(s)

The reviews were generally positive, but one re-
viewer was quite critical of the early chapters; al-
though the publisher didn’t require it, I made sub-
stantial changes based on this feedback. At this
point I also tried to add a few notes about very
recent work, such as BERT (Devlin et al., 2019),
which appeared on arXiv while I was doing the revi-
sions. Had the original reviews been more negative,
the publisher might have required another round be-
fore accepting my revisions, but luckily this wasn’t
required in my case. The reviewers were very help-
ful, but I am skeptical that any of them read the
whole thing, and I recommend seeking external
reviews, especially for the later chapters that the
reviewers are likely to skip or skim.

3.4 Proofs

The remaining steps involve details of the writing
style and typesetting. At this stage I handed over
the source documents to the production team, and
could only communicate by adding notes to a PDF.
This may be less of a technical requirement and
more an incentive to prevent authors from introduc-
ing significant new content. The copy editing stage
identified many writing problems, but the copy ed-
itor was unable to check the math. The publisher
offered to pay for a math editor, but I was unable to
find someone willing to do it. Fortunately, many of
the mathematical errors had already been identified
by students of my course. This stage also involved
a bit of haggling about minor issues like whether
it would be necessary for citations to include page
numbers from conference proceedings, and when
it was appropriate to use a term of art that violated
the house style, such as “coreference” instead of
“co-reference.”

Once the copy edits are complete, a LaTeX pro-
fessional was able to compile the document using
the publisher’s format. This created a number of
problems with the typesetting of the math, which
were somewhat painstaking to check and resolve,
and which could have been avoided if I had used
the publisher’s templates from the beginning. At
this point the publisher is highly resistant to any
changes to the content, but I did get them to fix
some glaring errors that I found at the last minute.

4 Evaluation

What worked. It is difficult to be objective about
a project of this scope. I am always happy to learn

that the book is being used in a course or for self-
study, and was thrilled about translations into Chi-
nese and Korean. The text seems best suited to
classes that are similar to mine, where the primary
goal is to train future researchers, who need a math-
ematical foundation in the discipline. I have been
told that the exercises are particularly helpful, and
I have received many requests for solutions, which
I am happy to provide to teachers. There have been
fewer reports of errors than I had expected, which
I attribute to the careful reading of several classes
of students while I was teaching from the unpub-
lished notes.5 Offering the PDF online seems to
have been an essential factor in the adoption of the
textbook, especially given that the most popular
alternative (J&M) is also freely available.

What could have been better. By the time the
book appeared in print, there had been a number of
significant changes in both the theory and practice
of natural language processing. While this was ex-
pected, it is nonetheless hard not to be disappointed
not to have put more emphasis on the topics that
increased in importance — I’ll say a bit more on
this in the final section. Some readers feel that the
term “introduction” in the title is misleading with
regard to the amount of mathematical background
that is expected. While the text assumes only mul-
tivariate calculus (and attempts to be clear about
this expectation), the pace of the opening chapters
is difficult for students who are out of practice. My
editor was probably correct that adoption would
be greater if I provided slides that professors could
teach from, but I couldn’t bring myself to make
time for this tedious task after finishing the book.

5 Future work

As the field of natural language processing contin-
ues to progress, it is tempting to update the text-
book with the latest research developments. For
example, multilinguality and multimodality would
deserve significantly more emphasis in a second
edition, and a revision would have to reflect the
maturation of applications such as question answer-
ing and dialog. But while some changes could be
addressed by adding or modifying a few chapters,
others — particularly the shift from conventional
supervised learning to more complex methodolo-
gies like pretraining, multi-task learning, distilla-

5I maintain an errata page at https://github.
com/jacobeisenstein/gt-nlp-class/blob/
master/notes/errata.md

129

tion, and prompt-based learning — seem to require
a more fundamental rethinking of the book’s un-
derlying structure, particularly in a textbook that
emphasizes a coherent mathematical foundation.
Any such revisions would have to grow out of class-
room teaching experience, which did so much to
determine the shape of the first edition.

Acknowledgments. Thanks to William Cohen,
Slav Petrov, and the anonymous reviewers for feed-
back.

References
Emily M Bender. 2013. Linguistic fundamentals for

natural language processing: 100 essentials from
morphology and syntax, volume 6 of Synthesis lec-
tures on human language technologies. Morgan &
Claypool Publishers.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. O’Reilly
Media, Inc.

Patrick Blackburn and Johan Bos. 2005. Represen-
tation and inference for natural language: A first
course in computational semantics. CSLI Publica-
tions.

Thomas M Cover and Joy A Thomas. 2012. Elements
of Information Theory. John Wiley & Sons.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jacob Eisenstein. 2019. Introduction to natural lan-
guage processing. MIT press.

Yoav Goldberg. 2017. Neural network methods for nat-
ural language processing. Synthesis lectures on hu-
man language technologies, 10(1):1–309.

Dan Jurafsky and James H Martin. 2008. Speech and
language processing, 2nd edition. Prentice Hall.

Thomas Kluyver, Benjamin Ragan-Kelley, Fer-
nando Pérez, Brian Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica Hamrick,
Jason Grout, Sylvain Corlay, Paul Ivanov, Damián
Avila, Safia Abdalla, Carol Willing, and Jupyter
development team. 2016. Jupyter notebooks — a
publishing format for reproducible computational
workflows. In Positioning and Power in Academic
Publishing: Players, Agents and Agendas, pages
87–90. IOS Press.

David J. C. MacKay. 2003. Information theory, infer-
ence and learning algorithms. Cambridge university
press.

Christopher Manning and Hinrich Schütze. 1999.
Foundations of statistical natural language process-
ing. MIT press.

Kevin P Murphy. 2012. Machine learning: a proba-
bilistic perspective. MIT press.

Sebastian Ruder. 2021. Recent advances in lan-
guage model fine-tuning. https://ruder.io/
recent-advances-lm-fine-tuning/.

Stuart Russell and Peter Norvig. 2020. Artificial intel-
ligence: a modern approach, 4th edition. Pearson.

Michael Sipser. 2012. Introduction to the Theory of
Computation. Cengage learning.

Noah A Smith. 2011. Linguistic structure prediction.
Synthesis lectures on human language technologies,
4(2):1–274.

Jake VanderPlas. 2016. Python data science handbook:
Essential tools for working with data. O’Reilly Me-
dia, Inc.

130

Proceedings of the Fifth Workshop on Teaching NLP, pages 131–137
June 10–11, 2021. ©2021 Association for Computational Linguistics

Learning How To Learn NLP: Developing Introductory Concepts
Through Scaffolded Discovery

Alexandra Schofield
Harvey Mudd College
xanda@cs.hmc.edu

Richard Wicentowski
Swarthmore College

rwicent1@swarthmore.edu

Julie Medero
Harvey Mudd College
julie@cs.hmc.edu

Abstract

We present a scaffolded discovery learning ap-
proach to introducing concepts in a Natural
Language Processing course aimed at com-
puter science students at liberal arts institu-
tions. We describe some of the objectives of
this approach, as well as presenting specific
ways that four of our discovery-based assign-
ments combine specific natural language pro-
cessing concepts with broader analytic skills.
We argue this approach helps prepare students
for many possible future paths involving both
application and innovation of NLP technology
by emphasizing experimental data navigation,
experiment design, and awareness of the com-
plexities and challenges of analysis.

1 Introduction

Discovery learning describes a pedagogical fram-
ing where, instead of introducing students to a skill
and then using assessments to explicitly practice
that skill, students are given a broad objective and
“discover” pertinent concepts and skills in pursuit of
that objective. Though pedagogical research yields
unimpressive results for pure discovery learning
(Mayer, 2004), several works support the effective-
ness of guided discovery learning (Alfieri et al.,
2011), where students are provided scaffolding for
how to develop their solutions and regular oppor-
tunities for feedback or validation. This type of
instructional approach offers the opportunity to ex-
ercise creativity and to take more ownership of their
own sensemaking process.

In this paper, we present a proof of concept of the
merits of scaffolded discovery learning by describ-
ing our implementation of four guided discovery
learning exercises1 to anchor the first four weeks
of an undergraduate natural language processing
course. We also detail why we have found this

1Materials for these four assignments are available for use
at https://github.com/DiscoverNLP.

scaffolded discovery learning approach especially
well-suited to an undergraduate NLP course.

2 Motivation

There are several strategic benefits to a discovery
learning approach for NLP. First, the traditional
computer science approach to NLP instruction
tends to emphasize programming and/or core algo-
rithms first (Bird, 2008), which requires students
to jump immediately into implementing widely ac-
cepted algorithms for particular tasks. While this
may lead to a more satisfying performance out-
come, it may miss the opportunity for students to
engage with why particular choices, such as how to
tokenize text or how to smooth an n-gram model,
actually make sense from a linguistic perspective.
These skills are important when transferring to new
domains, where the optimal choices might change
and require further assessment.

Second, the choice of which model is the mostly
“widely accepted” has been shown to change
rapidly. Examining the curricular recommenda-
tions made by the ACM/IEEE Joint Task Force
for Computing Curricula over time, we see speech
recognition and parsing as emphasized topics in
2001, but no specific discussion of n-gram mod-
els (ACM/IEEE, 2001). In contrast, probabilistic
models and ngrams appear in the 2013 version,
while speech recognition disappears as an empha-
sized topic and parsing remains on the syllabus in
vaguer terms (ACM/IEEE, 2013). While familiar-
ity with these different problem spaces is helpful
for building context and approaches to new prob-
lem domains, it is hard to predict if the depth of
knowledge required to fully implement a condi-
tional random field (CRF) or a deep neural net
for machine translation will be useful beyond the
next few years. In contrast, our discovery-learning
labs focus on how to set up experimental data and
protocols, select and interpret appropriate metrics,
use those metrics to investigate what textual phe-

131

nomena they actually embody, and react to that
knowledge with possible design interventions. We
have found these skills not only generalize better
across different models and problem domains, but
also dominate the actual time spent doing our NLP
work as researchers.

Third, this strategy of teaching is more com-
patible with the structure of the curricula at the
undergraduate-only institutions where we teach.
Upper-level courses such as natural language pro-
cessing have shallow prerequisites and students
have uneven backgrounds in math, computer sci-
ence and linguistics. This challenge is shared by
both computer science and linguistics undergrad-
uate programs (Bird, 2008) and graduate courses
aimed at an information studies audience (Hearst,
2005; Liddy and McCracken, 2005). Emphasiz-
ing skills of evaluation and model discovery over
detailed model analyses helps ensure that students
comfortable with data structures and some probabil-
ity will be able to succeed and develop meaningful
skills in the course. In our context, it has the ad-
ditional benefit of inviting a liberal arts approach
to critique the nature of what we evaluate in NLP
tasks, as well as to consider the implications of the
deployment of language technologies.

3 Learning Objectives

We present four labs as a central element of the first
four weeks of a natural language course. In devel-
oping these exercises, we emphasize three skills we
hope students develop through these assignments:
analysis of quantitative results, text exploration,
and generalizing concepts to new models. While
some of these fall into the classic “text processing
first” paradigm of course offered as an applied lin-
guistics approach by Bird (2008), it does not do
so at the exclusion of understanding the “why” of
related algorithms and models. Notably, none of
these skills specify particular models in natural lan-
guage processing, though the labs we present do
have some alignment with different classic NLP
course topics. This is a deliberate alternative ap-
proach: by de-emphasizing outcomes focused on
“knowing” particular algorithms and models, we
provide more opportunity to practice skills to ap-
proach and interpret new models that students may
choose to explore later in the course.

Analysis of quantitative results. Our work aims
to support a progression not in terms of complex-
ity of models, but in the levels of critique students

apply to computational work on text. By build-
ing from some of the basic challenges of what it
means to read, process, and write text in a computer
through the development of increasingly complex
metrics, students naturally have the opportunity
to progress from making comments based on ini-
tially observed phenomena to making the case for
whether results are surprising using typical met-
rics of the field. Unlike work that primarily priv-
ileges meeting certain minimum accuracy thresh-
olds, these exercises intentionally include analyses
of unimpressive results, helping to emphasize im-
portant lessons about how seemingly large quantita-
tive differences don’t always indicate significance
in the vast, sparse universe of language.

Exploration of the text. Natural language pro-
cessing benchmarks often present results in ways
that obscure the contents of the data being evalu-
ated, especially in cases where test data is totally
hidden. Students new to the field of NLP often
do not have strong intuitions around how much
variation exists even in a limited problem domain.
Examining system inputs and outputs helps them
develop intuitions about language data and what it
means to be “unusual” in a highly sparse space. Our
discovery approach helps reinforce the importance
of including both quantitative experimental results
and qualitative discussions using examples about
model behavior with respect to the text, as both
contribute to an understanding of what a model has
(or hasn’t) done.

Thinking beyond individual models. An im-
portant component of practicing natural language
processing is implementing models and compar-
ing their performance. However, current “state of
the art” models often are built using a combina-
tion of different fairly detailed neural architectural
choices. Engaging with implementing these can re-
quire either many prerequisite courses, many days
of in-class time to establish working knowledge of
neural networks for sequential data, or a strategy of
teaching how to code the models that eschews why
to use these pieces. Further, with little confidence
that these models won’t be obsolete in two years, it
can be an expensive investment to set up curricular
materials for these topics without knowing whether
they will still merit reuse the next time the course
is offered. Because our approach de-emphasizes
the specific models implemented in favor of un-
derstanding broader skills around evaluation and

132

comparison, we believe it will better prepare stu-
dents to teach themselves and to ask meaningful
research questions when approaching new work.

4 Course Format

The format of the two courses using these labs in-
clude both a lecture-focused larger class format
and a smaller discussion-based format. In both, stu-
dents are expected to read some text from the text-
book, Jurafsky and Martin (2020), supplemented by
papers on relevant NLP topics. Outside of course
readings, the lab work constitutes the vast majority
of the work completed outside of class for the first
half of the semester.

In both formats, we reserve one day a week for
specifically setting up and starting lab assignments.
Students attend “lab day” in order to start work
on the lab exercise for that week. The lab relies
on the concepts discussed in class. Though the
lab assignment is started during the lab period, the
expectation is that the lab work will be completed
outside of class and due the following week.

5 Lab Assignment Progression

The following subsections describe the progression
of four laboratory assignments intended for the first
four weeks of the course. Each lab assignment has
a learning outcome related to analytical skills in
natural language processing. Each of the four labs
presented also focuses on introducing content from
Jurafsky and Martin (2020).

These assignments are implemented in Python,
with starter code provided through GitHub. The
assignments can be coupled with autograders for
the code managed through Gradescope.2 When
used, the autograders (which account for less than
half the points in the student’s final write-up) can
serve as extra scaffolding, as they provide a useful
on-demand tool for students to check whether their
code is correct before writing their analysis.

Each lab is accompanied by an extensive lab
write-up, which breaks the exploration topic into
individual implementation goals, check-ins, and
questions for students to address as they venture
through the assignment. These are designed to
be self-contained: while references to concepts or
definitions described in the textbook reading may
appear, most formulas and terms specific to the
questions in the lab are re-introduced as part of the
write-up. The text alternates between providing

2https://www.gradescope.com/

textual definitions and descriptions, coding instruc-
tions, and analysis questions. As the lab progresses,
the questions grow more open-ended, culminating
in prompts to make sense of results and what they
signal about how well a model fits the text.

5.1 Lab 1: Regex Chatbot

In this lab, students develop a chatbot using reg-
ular expressions, either using Slack or Discord in
our class offerings.3 While the requirements of the
assignment are fairly basic (for instance, the reg-
ular expressions must use groups and quantifiers),
students are primarily graded on a write-up describ-
ing the chatbot and its performance. Students are
expected to document with screenshots examples
of conversations that worked well or poorly and to
analyze what sorts of features might be missing.

Preparation Students are expected to read the
regular expressions subsection of the J&M text-
book (§2.1). Students must also complete the first
portion and at least one challenge puzzle from a reg-
ular expressions puzzle game called Regex Golf.4.

Outcomes Having completed this assignment,
students should be able to develop and test Python
regular expressions, as well as to outline and illus-
trate a qualitative analysis of the capabilities and
limitations of a new model. This assignment also
encourages students to focus their time on thought-
ful analysis instead of optimal performance prior in-
troducing clear numerical metrics of performance.
For instance, the sample of a student write-up in
Figure 1 shows introspection related to a relatively
simple pig Latin bot on how punctuation adds wrin-
kles to the program. These observations about what
cases can lead to additional complexity help set up
how we attend to variation in case, punctuation,
Unicode, and more general human language vari-
ation in datasets for future labs. Though regular
expressions are technically covered in another re-
quired course in the CS major as a theory topic, we
find it important to solidify in an applied context,
as tokenization is a necessary part of processing
pipelines for the remainder of the course, a conclu-
sion we share with Hearst (2005).

3A side benefit of starting with this assignment is that, for
courses that use one of these systems for Q&A, it encourages
participation early among students.

4From Erling Ellinsen: https://alf.nu/
RegexGolf

133

Figure 1: A sample student write-up for Lab 1 describing a case where their bot failed to generate formulaic pig
Latin and proposing improvements to address that case.

5.2 Lab 2: Tokenization and Segmentation
In this lab, students are first guided step-by-step
through the basics of making a tokenizer in order
to compute word frequencies in English texts from
Project Gutenberg. Reflections include discussion
of the effect of punctuation and lower-casing on
which words appear most frequently. From there,
students move on to improve a rule-based sentence
segmenter for several portions of the Brown corpus
using simple regular expressions. In this exercise,
students report their precision, recall, and F1 scores,
and reflect on which rules worked well, which did
not, and why. Throughout both pieces, students
explore the text, focusing on which text does not
behave as expected.

Preparation Students are expected to prepare
with textbook reading on text normalization (§2.2-
2.4) as well as classification metrics (§4.7).

Outcomes Having completed this assignment,
students should be able to perform standard string
manipulations in Python. Students also will iden-
tify behaviors in text collections that fall outside
typical prescriptive grammar rules, e.g. that sen-
tences in the Brown corpus may start with a lower-
case letter or end with a colon. Students are of-
ten tempted to add rules to their system for every
sentence boundary, even those that are due to an-
notation errors. The analysis portion of this lab
leads them to consider issues of overfitting for the
first time, since adding rules for those edge cases
leads to worse performance on held-out data. To
complete the lab, students will need to combine

these observations with quantitative results regard-
ing word frequencies and classification metrics to
describe what they have observed about their meth-
ods. Students will additionally reinforce Lab 1
skills of regular expression creation and identify-
ing strengths and weakness in new systems.

5.3 Lab 3: Zipf’s Law and N-gram Models

In this lab, students first look through the same
Project Gutenberg texts to assess how closely the
unigram frequency patterns match those projected
by Zipf’s law. Students then develop functions to
extract unigram, bigram and trigram frequencies
from the texts. They use these functions to compare
features found in an unrelated data set. In the last
offering of this course, we utilized the Hyperparti-
san news dataset (Kiesel et al., 2019) in order to un-
derstand how many types and tokens are unique to
hyperpartisan or non-hyperpartisan-labeled news.
Students explored these same evaluations on a ran-
dom reshuffling of the data to understand the mag-
nitude of “unique” attributes that can arise even
when comparing texts from the same source.

Preparation Students are expected to prepare
with textbook reading on n-gram language mod-
els (§3.1-3.4).

Outcomes Having completed this assignment,
students should be able to develop code to extract
n-gram frequencies from text and predict unigram
frequency distributions from Zipf’s law. This re-
quires interpreting relative and absolute frequen-
cies and their reasonable values: a common error

134

(a) Properties of objects (b) Creators and creations

Figure 2: Two examples of alternate analogy tasks developed by students for Lab 4.

scenario as students attempt to compare empirical
versus theoretical behavior is to plot absolute theo-
retical word frequencies against relative empirical
word frequencies, as displayed in Figure 3. Further,
they should be able to provide qualitative and quan-
titative analysis of rare and common features and
their effect on different frequency statistics.

The datasets used for this lab are too large for
naïve file-reading solutions that load the whole file
into memory at once. Students learn to iteratively
process the data, which prepares them for working
with large files in later labs and course projects. As
they work with these files, students gain some prac-
tice leveraging existing libraries (such as lxml5,
spaCy (Honnibal et al., 2020), and matplotlib
(Hunter, 2007)) to process text and plot data.

5.4 Lab 4: Word Embeddings

In this lab, students use GloVe embeddings (Pen-
nington et al., 2014) to experiment with relation-
ships between word vectors, including word simi-
larities and word analogies. Students first practice
loading in text vectors and saving them as a com-
pressed numpymatrix. Subsequently, they develop
code to rank similar words for a selection of related
words, as well as to test whether certain relations
(e.g. gender, number, comparative vs superlative)
have consistent vector differences as rendered in
2d plots using PCA. Finally, students develop their
own relations and word lists to test the consistency
of this method.

Preparation Students are expected to prepare
with textbook reading on vectors space models
(§6.1-6.5) and their evaluation (§6.10-6.12). Sec-

5https://lxml.de/

Figure 3: An incorrect plot for Lab 3, caused by a stu-
dent conflating relative and absolute frequencies. Au-
tograders and lab check-in points allow students to en-
gage with these points of confusion while still catching
errors before students write their analyses.

tion 6.8 on word2vec or an introduction to GloVe
may boost confidence.

Outcomes Having completed this assignment,
students should be able to perform mathematical
operations common to vector space models, such
as computing cosine similarity, vector norms, and
average vector differences. Students will know how
to use numpy operations to speed up computation
(Harris et al., 2020) and dimensionality reduction
to visualize higher-dimensional behavior. Addition-
ally, students should know how to develop and test
a hypothesis about word vector geometries using
appropriate metrics, visualizations, and qualitative
insights. These hypotheses can lead to broader un-
derstanding of what types of relationships work
well as word embedding analogies, too, including

135

how relationships that are not one-to-one may fail
(Figure 2a) and how polysemy adds wrinkles to
word analogies (Figure 2b).

6 Observations

In many ways, this format has helped us to feel
liberated in how we approach topics later in the
semester. In the most recent offering of the course,
for instance, the latter half focuses on student
projects and presentations on student-determined
topics covering a range of popular tasks like ma-
chine translation and question answering and more
wide-ranging topics like text-to-speech systems and
computational social science. In other semesters,
the course has continued with structured weekly (or
bi-weekly) lab assignments, often culminating in
a lab assignment that introduces a shared task that
students then work on as a final project. Overall,
we find that the foundational skills introduced in
the first four weeks prepare students well for all of
these paths through the rest of the course.

This approach admittedly releases the opportu-
nity to do a deeper technical dive with the class
into modern models; while students tend to discuss
LSTMs, BERT, and other popular modern models,
they are not expected to fully present these topics in
their presentations. While we had initially worried
about whether this would provide too little infras-
tructure to make sense of neural models, we have
been happy with how students use the skills we
emphasized earlier to uncover known controversies
in the field of NLP. We have witnessed advanced
discussions initiated by the students about topics
such as how strong baselines can be in question-
answering datasets, the possible shortcomings of
metrics such as BLEU, ROUGE, and PYRAMID,
and what it would mean to reach human parity for
machine translation.

Taking a discovery approach is not without risks,
especially when students may get stuck or con-
fused. We have learned some lessons about where
more guidance may be needed for students. First,
unsurprisingly, file I/O often can be remarkably
picky, and we have found that the I/O portions of
these labs can be fairly brittle when students make
choices that may have been reasonable in previous
classes with fairly rudimentary file processing. Fur-
ther illustration around ways to load and save data,
manipulate numpy and spaCy objects, and other-
wise use libraries can greatly reduce time students
spend stuck on smaller bugs instead of NLP ques-

tions. Additionally, students often ask a number
of questions about how much analysis is sufficient
and which aspects to focus on, often not finding en-
gagement with the text intuitive. Sample write-ups
from the first lab or two may help illustrate this, as
well as more development on the prompts for the
write-up to elicit thoughtful analyses.

7 Conclusions

We hope that the description of this class for-
mat and assignment progression helps motivate
the feasibility of a discovery-based approach to
teaching natural language processing. We are
delighted to share the initial assignment instruc-
tions, lab files, and student Gradescope image
publicly on Github at https://github.com/
DiscoverNLP, with additional files for autograd-
ing through Gradescope available on request.

8 Acknowledgements

We would like to thank the students at both
Swarthmore College and Harvey Mudd College
who participated in and gave feedback to this class,
including the students who gave permission for
their work to be shared in this paper.

References
ACM/IEEE Joint Task Force on Computing Cur-

ricula. 2001. Computing curricula 2001.
https://www.acm.org/education/
curricula-recommendations.

ACM/IEEE Joint Task Force on Computing Cur-
ricula. 2013. Computing curricula 2013.
https://www.acm.org/education/
curricula-recommendations.

Louis Alfieri, Patricia J Brooks, Naomi J Aldrich, and
Harriet R Tenenbaum. 2011. Does discovery-based
instruction enhance learning? Journal of Educa-
tional Psychology, 103(1):1.

Steven Bird. 2008. Defining a core body of knowledge
for the introductory computational linguistics cur-
riculum. In Proceedings of the Third Workshop on
Issues in Teaching Computational Linguistics, pages
27–35, Columbus, Ohio. Association for Computa-
tional Linguistics.

Charles R. Harris, K. Jarrod Millman, Stéfan J.
van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fernández del

136

Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. 2020. Array programming with
NumPy. Nature, 585(7825):357–362.

Marti Hearst. 2005. Teaching applied natural language
processing: Triumphs and tribulations. In Proceed-
ings of the Second ACL Workshop on Effective Tools
and Methodologies for Teaching NLP and CL, pages
1–8, Ann Arbor, Michigan. Association for Compu-
tational Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python. Zenodo.

J. D. Hunter. 2007. Matplotlib: A 2d graphics en-
vironment. Computing in Science & Engineering,
9(3):90–95.

Dan Jurafsky and James H Martin. 2020. Speech and
Language Processing, 3rd (draft) edition. Prentice
Hall.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 task 4: Hyperpartisan news detection. In
Proceedings of the 13th International Workshop on
Semantic Evaluation, pages 829–839, Minneapo-
lis, Minnesota, USA. Association for Computational
Linguistics.

Elizabeth Liddy and Nancy McCracken. 2005. Hands-
on NLP for an interdisciplinary audience. In Pro-
ceedings of the Second ACL Workshop on Effective
Tools and Methodologies for Teaching NLP and CL,
pages 62–68, Ann Arbor, Michigan. Association for
Computational Linguistics.

Richard E Mayer. 2004. Should there be a three-strikes
rule against pure discovery learning? American Psy-
chologist, 59(1):14.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

137

Proceedings of the Fifth Workshop on Teaching NLP, pages 138–148
June 10–11, 2021. ©2021 Association for Computational Linguistics

The Online Pivot: Lessons Learned from Teaching a Text and Data
Mining Course in Lockdown, Enhancing online Teaching with Pair

Programming and Digital Badges

Beatrice Alex
Literatures, Languages and Cultures

University of Edinburgh
Edinburgh

Scotland, UK
balex@ed.ac.uk

Clare Llewellyn
Social and Political Science

University of Edinburgh
Edinburgh

Scotland, UK
clare.llewellyn@ed.ac.uk

Pawel Michal Orzechowski Maria Boutchkova
University of Edinburgh Business School

University of Edinburgh
Scotland, UK

Pawel.Orzechowski@ed.ac.uk Maria.Boutchkova@ed.ac.uk

Abstract

In this paper we provide an account of how
we ported a text and data mining course on-
line in summer 2020 as a result of the COVID-
19 pandemic and how we improved it in a sec-
ond pilot run. We describe the course, how
we adapted it over the two pilot runs and what
teaching techniques we used to improve stu-
dents’ learning and community building on-
line. We also provide information on the re-
lentless feedback collected during the course
which helped us to adapt our teaching from
one session to the next and one pilot to the
next. We discuss the lessons learned and pro-
mote the use of innovative teaching techniques
applied to the digital such as digital badges
and pair programming in break-out rooms for
teaching Natural Language Processing courses
to beginners and students with different back-
grounds.

1 Introduction

It was spring 2020 and it felt like we were in crisis
mode. We wanted to teach a text and data mining
(TDM) pilot course but because of social distancing
measures we could not do it in a physical classroom.
We had to learn new ways of interacting online and
using a multitude of different technologies and we
needed to do it fast. We had been planning this
course for a while before Covid-19 hit. We were
designing a TDM for Humanities and Social Sci-
ence students but because of the situation we had to
adapt the way we delivered it. Rather than hybrid
teaching as intended, accommodating in-classroom,

online synchronous and online asynchronous stu-
dents, we had to fully commit to online methods
in a matter of a few weeks. We decided to plunge
headlong into the digital teaching world.

The easiest way would have been to post videos
of a traditional style lectures – it is very tempting
to take this approach. We felt, however, that it was
important that we maintained what is good about
teaching when everyone is in the same room, the
collaboration, its social aspects, the feedback, all
of which you lose when a student sits on their own
in a room watching a pre-recorded lecture.

We decided to run a TDM boot camp to virtually
test our new course which we were planning as part
of the Edinburgh Futures Institute (EFI) postgrad-
uate programme.1 We wanted to not only teach
fundamental methods for text mining corpora to
programming novices but also teach ourselves how
to become better practitioners in teaching in an
online world.

In this paper, we will describe our methods and
experience for porting an in-person TDM course
into the online world. In the next section we will
present related publications on teaching Natural
Language Processing or TDM courses. We then
describe the academic backgrounds of the teaching
team (Section 3.1) and provide an overview of our
course (Section 3.2). Sections 3.3 and 3.4 explain
how we taught and adapted it in two online pilot
runs delivered in June and September 2020. We

1EFI is a new institute at the University of Edinburgh
which will support interdisciplinary research and teaching for
the whole institution. https://efi.ed.ac.uk

138

provide information on how we collected relentless
feedback during and after each course and include a
detailed account of one participant of the first pilot
and how it has affected her teaching (Section 4).
Finally, we summarise what we learned from these
experiences (Section 5) and lay out future plans for
our TDM course (Section 6).

2 Related Work

There are two aspects that we consider of impor-
tance in relation to this work, the course content,
Natural Language Processing (NLP), and the en-
vironment, teaching online during a pandemic. In
this section we explore both topics.

NLP educators choose which aspects to teach
based on multiple constraints such as class length,
student experience, recent advancements, program
focus, and even personal interest.

Our TDM course is fundamentally designed to
be cross-disciplinary as we are teaching NLP and
coding to students from multiple schools and back-
grounds including linguistics, social sciences and
business. Jurgens and Li (2018) point out that
NLP courses are designed to reflect, amongst other
things, the background and experience of the stu-
dents. Agarwal (2013) explains that in courses
such as these the majority of students, who he calls
“newbies in Computer Science”, have never pro-
grammed before. He highlights that we can in-
crease experience through homework tasks which
we did both before the course and in-between each
session. Hearst (2005) states that in these circum-
stances it is not important to place too much em-
phasis on the theoretical underpinnings of NLP but
to focus on providing instructions for students on
what is possible and how they can use it on their
own in the future. We based our approach on using
the NLTK2 and spaCy3 Python libraries as well as
used examples inspired by Bird et al. (2009, 2005).
We aim to explain how text analysis works step-by-
step using clear and simple examples. We thereby
aspire to develop and broaden humanities and so-
cial science students’ data-driven training and give
them an understanding of how things work inside
the box, something for which there is still a sig-
nificant need in their core disciplines (McGillivray
et al., 2020).

Teaching text analysis to non-computer scientists
has been explored in texts such as Hovy (2020). For

2https://www.nltk.org
3https://spacy.io

our course we had to consider the variety of back-
grounds and experiences that this would encompass
and needed to use a pre-course learning task and
office hours to provide a more level knowledge
starting point. We also had to design the course to
keep more advanced students engaged while not
intimidating learners who may find it more chal-
lenging. We used core material to explain principle
concepts (such as tokens, tokenisation, and part-
of-speech (POS) tagging etc.) but with a hands-on
approach. We avoided too much technical detail
and put the material in the context of projects we
have worked on ourselves to demonstrate how each
analysis step becomes useful in practice.

As we taught our TDM course online in the con-
text of a worldwide pandemic, we also report on
related work in the area of online teaching, and with
respect to the challenges in which we are teaching.
Massive open online courses (MOOC) generally
focus on providing online access to learning re-
sources to a large number and wide range of partic-
ipants. This has led to a desire to automate teaching
and innovate digital interaction techniques in order
to engage with large numbers of students. Whilst
our intention was to teach a limited number of stu-
dents, we hoped to use and draw upon innovation
in this area in order to improve the experience for
our students. E-learning and technology should
not be seen as an attempt to replace or automate
human teaching, although this can often be a fear
articulated by teachers. In a discussion of automa-
tion within teaching Bayne (2015) argues that we
can design online teaching and still place human
communication at the centre with technology en-
hancing the learning of the student. Bayne suggests
that the human teacher, the student and the tech-
nology can be intertwined. We asked students to
engage with digital objects and the technology to
enhance their learning journey. As teachers we
do not merely support the digital learner but we
remain at the centre of teaching the course.

Fawns et al. (2019) point out that online learning
is a key growth area in higher education, which is
even more true since the pandemic started, but that
it is harder to form relationships in online courses.
Therefore, we saw it as important to develop online
dialogue between students in order to form com-
munities which can improve these relationships.
Building a community online can be harder but it is
possible. We tried to achieve this through using a
combination of traditional learning such as lectures

139

and task-based learning such as pair programming
exercises. Online learning tends to be interrupted
as we are in our homes or elsewhere and have re-
sponsibilities that can take us away from the on-
line space, bandwidth issues, dropping children at
school, flatmates interrupting, phone calls, even the
door bell ringing. Our teaching practices needed to
be accepting of and adapted to this context.

Ross et al. (2013) discuss the issues of presence
and distance in online learning. Interruptions in
students’ concentration are a common event when
learning online and we must use resilience strate-
gies to maintain a ‘nearness’ to our students. This
includes recognising that these events are normal
and that engaging is an effort, identifying affinities
and creating a socialness, valuing that distraction
can change our perspective and this is helpful and
designing openings, events that allow and encour-
age student to come together and engage. Whilst
designing the course we kept these ideas in focus
in order to allow us to develop and enhance our
online relationships and our students’ learning.

3 A Virtual Learning Experience

3.1 The Team

Our team is made up of three early career aca-
demics at the University of Edinburgh. Two teach-
ing fellows have a background in Natural Language
Processing with PhDs in Computational Linguis-
tics. The third teaching fellow has a PhD in Com-
puter Science and frequently teaches programming
to different types of audiences, including business
students as well as students outside of higher edu-
cation. The author list of this paper also includes
a fourth (last) author who was a participant of our
first pilot, is a lecturer herself, and who has pro-
vided us with useful feedback for future iterations
of this course (see Section 4.2).

3.2 Course Overview

In our data-driven society, it is increasingly essen-
tial for people throughout the private, public and
third sectors to know how to analyse the wealth of
information society creates each day. Our TDM
course gives participants who have no or very lim-
ited coding experience the tools they need to inter-
rogate data. This course is designed to teach non-
coders how to analyse textual data using Python
as the main programming language. It takes them
through the required steps needed to be able to
analyse and visualise information in large sets of

textual document collections, or corpora.
The course takes place over three three-hour ses-

sions and each session introduces participants to a
new topic through a short lecture. The topics build
on the previous sessions and at the end of each ses-
sion there is time for discussion and feedback. In
the first session we start with Python for reading in
and processing text and teach how individual doc-
uments are loaded and tokenised. We work with
plain text files but do raise the issue that textual
data can be stored in different formats. However, to
keep things simple we do not cover other formats
in detail in the practical sessions.

In the second session we show how this is done
using much larger sets of text and add in visualisa-
tions. We used two data sets as examples, the Med-
ical History of British India (of Scotland, 2019)
made available by the National Library of Scot-
land4 and the inaugural addresses of all American
Presidents from 1789 to 2017. We show how par-
ticipants can create concordance lists, token fre-
quency distributions in a corpus and over time as
well as lexical dispersion plots and how they can
perform regular expression searches using Python.
In this session we also explain that textual data can
be messy and that a lot of time can be spent on
cleaning and preparing data in a way that is most
useful for further analysis. For example, we point
students at stop words and punctuation in the re-
sults and explain how to filter them when creating
frequency-based visualisations.

During the third session we cover POS-tagging
and named entity recognition. This last session
concludes with a lesson on visualisations of text
and derived data by means of text highlighting,
frequency graphs, word clouds and networks (see
some examples in Figure 1). The underlying NLP
tools used for this course are NLTK 3 and spaCy
which are widely use for NLP research and develop-
ment. This is also where we put some of the course
material in context of our own research to show
how it can be applied in practice in a real project.
For example, we mentioned our previous work on
collecting topic-specific Twitter datasets for further
analysis (Llewellyn et al., 2015), on geoparsing
historical and literary text (Clifford et al., 2016;
Alex et al., 2019a) and on named entity recognition
for radiology reports (Alex et al., 2019b; Gorinski
et al., 2019).

4https://data.nls.uk/
data/digitised-collections/
a-medical-history-of-british-india/

140

Figure 1: Visualisations of text explorations created by the students.

In the two pilots, we ran this course over three
afternoon sessions on Monday, Wednesday and
Friday, with an office hour on the days in-between
to sort out any potential technical issues and answer
questions. The main learning outcome is that by
the end of the course the participants will have
acquired initial TDM skills which they can use in
their own research and build on by taking more
advanced NLP courses or tutorials. A main goal of
this course is to teach the material in a clear step-
by-step way so all Python code and the examples
are specific to each task but do not go in-depth
into complicated programming concepts which we
believe would confuse complete novices.

3.3 Pilot 1

In the first pilot we wanted to test the content of
this course but also different methods for teaching
online. We are all likely to be teaching virtually
more often in the future even once the pandemic
subsides. For example, EFI was planning to run hy-
brid courses to students across the world, even prior

to COVID-19. In this new world, we believe that
online and hybrid teaching is here to stay alongside
teaching students in the classroom. Higher educa-
tion will need to determine their offer of different
experiences to students be they on site or partici-
pating online synchronously or asynchronously.

We limited the first pilot to 25 participants. The
backgrounds of students who signed up for our
course were mixed coming from Law, Linguistics
and Business. Everyone was either a student or
a member of staff at the University of Edinburgh,
where we had advertised the course, including ev-
ery level from professor to undergraduate, joining
from around the world. Some students even partic-
ipated from different time zones.

On each day we started with a short presenta-
tion discussing the TDM theory of what was being
taught in the practical session that followed. In the
first pilot this was a live lecture, not recorded, allow-
ing us to adapt the content to questions that came
up during the course. When one teacher spoke
the other two managed the video chat, answer-

141

ing questions or dealing with specific problems
from students, and raising questions to the speaker.
This was something we found was essential as it
was very easy to lose flow and get distracted with-
out this help. We learned then that it would have
been extremely challenging to teach this course
live online single-handedly and after each session
expressed appreciation that there were three of us
helping each other.

We used a variety of technologies provided by
the university. Learn,5 our in-house virtual learn-
ing environment (VLE), was used to provide access
to course materials. We met with students virtu-
ally using the Blackboard Collaborate software6

which is accessible through Learn. Aside from the
video itself, we used text chat, the virtual white-
board, polls, the ability to raise a hand, breakout
groups, file sharing, and screen sharing, all func-
tionalities which have become second nature after
a year of pandemic but which when we ran the
first pilot were for the most part still fairly unfamil-
iar to many participants. We also used Noteable,7

the University of Edinburgh’s in-house notebook
platform, to provide a virtual programming envi-
ronment (VPE) with Jupyter Notebooks,8 and used
GitHub9 to provide students access to the course
material and code. We note that the students did
not have to learn how to use GitHub, which would
be a big ask for coding novices, but merely had to
paste the GitHub link of the corresponding material
into Noteable which then automatically loaded the
material in the form of a notebook.

Each day the students were given two sets of
worked through problems using the VPE which
they used directly through the VPL in their own
browser. We found this to be a really important tool
for everyone as it reduced the need for students to
download and set up software on different operat-
ing systems and alleviated us from doing a lot of
technical support to get students set up and running
for all the practical parts of the course.

During the sessions the students were given a
link to a GitHub repository from which they could
pull new notebooks onto the VPE at the beginning
of each session. The notebooks include a combi-

5https://www.learn.ed.ac.uk
6https://help.blackboard.com/Learn/

Instructor/Interact/Blackboard_
Collaborate

7https://noteable.edina.ac.uk
8https://jupyter.org
9https://github.com

nation of explanations, code to run and mini or ex-
tended programming tasks. For each approximately
hour-long coding session students were assigned a
random buddy and which they were put in a break-
out room within the Collaborate video call. By now
we are used to teaching and/or learning online and
have likely experienced joining break-out rooms
but at the time when we ran the first pilot most of
our participants had never been in a break-out room
before. So that experience took some getting used
to. We described it as feeling like being put in a
separate room with your buddy. You can chat and
share screens without being overheard by other
people. If the students got stuck on a particular
coding problem or line of code and could not solve
the issue together, they could raise a virtual hand
and an instructor would drop into the room to help
and answer questions or resolve programming is-
sues. We also regularly popped into the rooms to
see how everyone was doing, something which was
well received by the students.

One of our team members is a strong proponent
of pair programming (Williams et al., 2000; Hanks
et al., 2011), where two students work together on
a single machine to solve problems. This allows
each pair of students to learn from each other as
well as from their teacher(s) and thereby helps to
broaden participation and to dispel the myth that
programmers work on their own (Williams, 2006).
We wanted to see if it was possible to take this
approach into a virtual teaching environment. In
addition to the students learning TDM skills, it
also provided an opportunity for social interaction
which was particularly welcome when we first pi-
loted our course at the tail end of the first wave
of COVID-19 in the UK and after weeks of strict
lockdown with no or little opportunity to meet and
interact with people outside one’s own household.

One advantage of Blackboard Collaborate is that
instructors are able to see visually when the people
in break-out rooms are chatting to each other. This
helped us to gauge if students embraced our pair
programming experiment or if they preferred to
work quietly "side-by-side" but connected virtually.

After each practical session we pulled everyone
back into the shared room and asked participants
to fill in a quick survey to give us feedback. We
answered any questions, had a quick break, and
then moved onto the next notebook with a new
buddy. We wrapped up each session with a short
Q&A and another round of feedback.

142

3.4 Pilot 2

By the time of the second pilot in September 2020,
we had gotten a lot more used to online meetings
and two members of the teaching team had trained
in a summer course on hybrid teaching called An
Edinburgh Model for Teaching Online. This time
we allowed 30 participants to sign up with over
half of them from Scottish Government and the
commercial sector, alongside university students
and staff.

The main change we made to our first pilot, with-
out altering the course content, is that we restruc-
tured the course material into teaching with digital
badges (Gibson et al., 2015; Muilenburg and Berge,
2016) which are used in gamification of educa-
tion (Dicheva et al., 2015; Ostashewski and Reid,
2015). The principles that guided us were: flexi-
bility, compartmentalisation and empowering the
learner. Each badge is built around a Threshold
concept (Land et al., 2005), a core step or skill (a
‘eureka’ moment) that opens the doors to further
learning. Using a clear name and symbol, each
badge signposts students’ takeaways and how it fits
within the top level learning journey (see Figure 2).

The macro-structure in which badges form our
course is complemented by a micro-structure of
each badge: background theory and instructional
content, code-along videos, notebooks with worked
examples, exercises of increasing difficulty, relent-
less feedback, pair work and mini coding prob-
lems (with solutions). Badges build on top of
each other, forming branches and enabling op-
tional, further learning. Additionally, the modular
micro-structure, enables easier switching between
platforms or teaching modes (e.g. videos versus
slides) and multiplies the benefits of improvements.
Badges proved to be a promising format for deliv-
ering teaching of this course, especially in times of
change, disruption and pivoting.

We wanted to give us and our course participants
more flexibility, so we recorded all of the short
lectures presented at the start of each badge and
situated before each coding session in the course.
This allowed students to come back to the recorded
lecture materials later-on. It also gave us more
flexibility answering questions in the chat, solving
technical issues in the background and discussing
the running of a given badge in a teaching team
break-out room while participants were watching
the video lecture.

Figure 2: The badges used in our TDM course. We cre-
ated them using Android Material Design Icons which
are open source under Apache License 2.0.

4 Feedback

4.1 Relentless Feedback

In both pilots we collected relentless feedback.
This feedback loop helped us to address questions
raised and go over things that were unclear. We
found it was really important to be flexible and
adapt to what the students wanted. The twice-a-
session mini-feedback form was really helpful for
that and we made it very clear which parts of the
course on day 2 and 3 were in response to partici-
pants’ feedback (see feedback analysis in Figure 3).

For example, a comments we received in the
first pilot was that the students would prefer a quick
recap of the previous session, which we then started
doing and was a great way to link sessions and
get the course material fresh in everyone’s minds.
Given the feedback, we also worked through the
first section of a notebook together, so everyone
had a clear idea of what to do.

The relentless feedback and our response is
one of the reasons we believe we had such a
high participant retention rate which we were very
pleased about. The pilots was free of charge, non-
compulsory and ran over three afternoons. At least
two thirds of the students who joined at the start of
the week completed the last session on Friday.

We received constructive criticism but overall
had very positive feedback on the course which,
especially after the first pilot, made us feel very
motivated having just had completed teaching our
first online course. One participant thought it was
“Fantastic!” in our final feedback survey. Another
wrote “The pair learning is excellent! Jupiter [sic]
notebooks are a great tool. The real-time interac-
tivity is super rewarding.” Others reported that the

143

“Fantastic! The pair learning is excellent! Jupiter notebooks
are a great tool. The real time interactivity is super reward-
ing.”

Figure 3: Feedback analysis for all surveys over the course of the boot camp and a quote from one student (with
permission to share). We asked students to record difficulty of the course, their progress and learning, their mood
and how they felt about their collaboration in pairs as key performance indicators (KPIs) throughout the course.

lecturers and the “humour and playfulness of the
examples” made the course “really great, especially
for someone completely new to coding.” Yet an-
other person commented that they would use the
skills they learned in gathering data for their under-
graduate dissertation about their research project.

4.2 Detailed Student Feedback

The following account is a more detailed reaction
to our course provided by one of the student who
participated in the first pilot of the TDM course
and who we include as an author on this paper:

I was one of the mature students on the first
pilot of the TDM Workshop – an academic myself
with quantitative methods and coding experience
in Stata and MatLab but not in Python, nor any
previous experience with text mining or natural
language processing.

I appreciated the feedback requests at the end
of each session via Microsoft Office forms and the

immediate showcasing of the results for the whole
class. Whenever there were bandwidth issues, the
teaching team coordinated instantaneously and
took over from each other.

The part of the course that taught me the most
were the pair breakout rooms where we worked
through computational Jupyter notebooks. The an-
notation of the exercises was invaluable, as were
the videos showing one of the instructors working
through a notebook themselves and importantly
running into an error and explaining how we use
the error message as guidance to fix the code. Dur-
ing the breakout sessions having the three instruc-
tors drop in and answer any questions was an excel-
lent balance of allowing the students independence
while also feeling supported. Working with dif-
ferent partners every time was also very valuable.
When taking an active role and talking through
the lines of code and my understanding of the out-
come, I was able to check in with my partner and

144

Figure 4: Whiteboard with feedback generated by students in the course.

be exposed to their style and approach to learning.
Similarly, when taking the passive role and witness-
ing their way to working through a computational
notebook, I could take away ideas of how to ex-
plain my thinking and understanding of the code in
different ways.

The distribution of new material via GitHub was
very efficient. The interactions via the virtual white-
board created playfulness and joy in the learning
process. Although I did not participate in the sec-
ond pilot and was not exposed to the Badges, I see
them as another element of enhancing the playful-
ness of the process.

The TDM Workshop I participated in took place
relatively early in the pandemic before "Zoom fa-
tigue" had set it and participants were excited to
engage. A year later, full-time students appear to
have become more resistant to engaging in voice
and/or visual participation.

There were some points that required improve-
ment, for example typos in the annotation of the
computational notebooks or some time being eaten
up by technical troubleshooting. However, even
these created an atmosphere of immediacy, flexibil-
ity and a sense of "We are all in this together".

Overall, I benefited immensely from taking the
first pilot. Not only do I now have an idea of text
mining tools and how to use them but I was also in-
spired by and adopted the computational notebooks

in my own teaching of Investments in the Autumn of
2020. I also implemented regular feedback, which I
felt provided the element of playfulness and joy, in
an even more interactive platform with gifs, word-
clouds and animations (using Mentimeter10).

5 Lessons Learned

Despite on-the-whole positive comments, we still
found teaching in an online environment quite odd.
We felt that we lost the sense of whether the stu-
dents were engaged, learning and enjoying the ex-
perience because most participants had their cam-
eras switched off so we could not see their faces or
body language. The feedback did help, even simply
asking students to ‘raise your hand if you can hear
me’, but it still remains odd to us to talk to a blank
screen without seeing everyone.

We did not get everything right. The technology
did not always work but luckily one teaching team
member is quite experienced in fixing software-
related issues. We would have struggled without
it. Initially we also did not give enough thought to
accessibility; we just assumed the software would
deal with that - it did not. We learned that we
have to ask all students before the course if they
might have issues in accessing course materials or
video calls and make time to deal with any technical
issues that could arise as a result.

10https://www.mentimeter.com

145

We learned that students can be shy when it
comes to talking to each other and putting on their
webcams. We found ice breaker questions upfront,
can be answered playfully on a whiteboard, very
helpful for putting students at ease and have some
fun. We used some simple things that made a lot
of difference. We played music in the room before
the class so when students joined, they knew we
were there and that their speakers were on. We
made extensive use of the virtual whiteboard to
gather anonymous feedback really fast in addition
to frequent short surveys (see Figure 4). We also
included questions in the notebooks that buddies
had to work on together to encourage discussion.
The notebooks contained essential TDM coding
tasks and more complex tasks for the curious. This
allowed some students to extend their learning with-
out others feeling they were left behind.

We also found that the amount of content that we
could cover grew as the course went on. There were
initial issues with the technology which needed
fixing and as we were all getting used to the new
way of teaching. The conversation also became
more natural as time went on. At first it was quite
odd to drop into the break-out rooms but by the
second session this became easier and we were
all chatting a lot more. The majority of students
really liked the pair programming, they liked the
flexibility and the content. They really felt they
were part of the course in a way that is not always
experienced online.

As instructors, we found that teaching in this
way, switching between modes, lecturing, answer-
ing the chat, live coding and responding to issues is
really cognitively challenging. It is hard work and
cannot easily be done by one individual. The tech-
nologies we use are complex and can fail but they
are for the most part intuitive and provide a wide
range of ways to teach and interact. We learned
that online teaching is exhausting but done right it
can still be really rewarding. We all enjoyed the
interactions and felt part of a little community. Af-
ter the course we did a debriefing and each wrote
down three things we liked about the course and
something we wished we could have achieved (see
page Appendix on 11).

We, the TDM course teachers on this paper, have,
in the same way as the author who participated
in the course, benefited immensely from what we
learned through these pilots before delving into our
online teaching in the first term of 2020/21.

6 Summary and Future Work

In this paper, we have reflected of how we ported
a TDM course online as a result of the global pan-
demic caused by COVID-19. We described the
content of the course and how we adapted it over
two pilot runs. We particularly found different fea-
tures of Blackboard Collaborate useful for teaching,
especially the use of a virtual whiteboard and divid-
ing the class up into break-out rooms. Students re-
sponded positively to learning in pairs and to course
materials broken down into digital badges. Finally,
the relentless feedback we collected throughout
each session and after the course helped us as teach-
ers to improve the course and how we teach it. To
make a course like this a good learning experience,
it is really important to build community and get
students to talk not just to the teachers but to each
other as they would in a classroom.

Being caught in lockdown encouraged us to in-
novate, and our experience demonstrates what is
possible to achieve virtually despite the limitations.
Experiencing the learning in a classroom is difficult
to replicate online, however, we are confident that
these types of virtual environments will play a role
in education beyond this pandemic, to complement
and enhance traditional learning.

Going forward we would like to experiment
with teaching this course in different ways: asyn-
chronously to students joining from different time
zones, to much larger groups to understand where
the limits are in terms of number of participants
given staff capacity, or in a writer-retreat type setup
where the instructors touch base with students sev-
eral times during the day. We will also look at
how this course can be pivoted back to on-campus
teaching for students who can join in person and
once the current pandemic slows down, lockdown
restrictions are relaxed and on-campus teaching re-
sumes. We are pleased to announce that this course
will be part of the post-graduate programme taught
at EFI.

Acknowledgements

We thank Professor Laura Cram for supporting us
in the long-term development of this course as part
of EFI’s PGT training programme. Our course
was built on and expands material developed for a
Library Carpentries course11 with the support of
the Centre for Data, Culture and Society.12 We

11http://librarycarpentry.org/lc-tdm/
12https://www.cdcs.ed.ac.uk

146

would also like to thank Siobhan Dunn and her
colleagues at EFI for managing the registration for
our courses and Marco Rossi at the University of
Edinburgh Business School’s Student Development
Team for offering the course to their students.

References
Apoorv Agarwal. 2013. Teaching the basics of NLP

and ML in an introductory course to information sci-
ence. In Proceedings of the Fourth Workshop on
Teaching NLP and CL, pages 77–84, Sofia, Bulgaria.
Association for Computational Linguistics.

Beatrice Alex, Claire Grover, Richard Tobin, and Jon
Oberlander. 2019a. Geoparsing historical and con-
temporary literary text set in the City of Edinburgh.
Language Resources and Evaluation, 53(4):651–
675.

Beatrice Alex, Claire Grover, Richard Tobin, Cathie
Sudlow, Grant Mair, and William Whiteley. 2019b.
Text mining brain imaging reports. Journal of
Biomedical Semantics, 10(1):1–11.

Sian Bayne. 2015. Teacherbot: interventions in au-
tomated teaching. Teaching in Higher Education,
20(4):455–467.

Steven Bird, Ewan Klein, and Edward Loper. 2005.
NLTK tutorial: Introduction to natural language pro-
cessing. Creative Commons Attribution.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: Analyz-
ing text with the natural language toolkit. " O’Reilly
Media, Inc.".

Jim Clifford, Beatrice Alex, Colin M Coates, Ewan
Klein, and Andrew Watson. 2016. Geoparsing his-
tory: Locating commodities in ten million pages of
nineteenth-century sources. Historical Methods: A
Journal of Quantitative and Interdisciplinary His-
tory, 49(3):115–131.

Darina Dicheva, Christo Dichev, Gennady Agre, and
Galia Angelova. 2015. Gamification in education: A
systematic mapping study. Journal of Educational
Technology & Society, 18(3):75–88.

Tim Fawns, Gill Aitken, and Derek Jones. 2019.
Online learning as embodied, socially meaningful
experience. Postdigital Science and Education,
1(2):293–297.

David Gibson, Nathaniel Ostashewski, Kim Flintoff,
Sheryl Grant, and Erin Knight. 2015. Digital badges
in education. Education and Information Technolo-
gies, 20(2):403–410.

Philip John Gorinski, Honghan Wu, Claire Grover,
Richard Tobin, Conn Talbot, Heather Whalley,
Cathie Sudlow, William Whiteley, and Beatrice
Alex. 2019. Named entity recognition for electronic

health records: A comparison of rule-based and ma-
chine learning approaches. ArXiv.

Brian Hanks, Sue Fitzgerald, Renée McCauley, Laurie
Murphy, and Carol Zander. 2011. Pair programming
in education: A literature review. Computer Science
Education, 21(2):135–173.

Marti A Hearst. 2005. Teaching applied natural lan-
guage processing: Triumphs and tribulations. In
Proceedings of the Second ACL Workshop on Effec-
tive Tools and Methodologies for Teaching NLP and
CL, pages 1–8.

Dirk Hovy. 2020. Text Analysis in Python for Social
Scientists: Discovery and Exploration. Cambridge
University Press.

David Jurgens and Lucy Li. 2018. A Look In-
side the Pedagogy of Natural Language Processing.
25/09/2018. Accessed on 23/04/2021.

Ray Land, Glynis Cousin, Jan HF Meyer, and Peter
Davies. 2005. Threshold concepts and troublesome
knowledge (3): implications for course design and
evaluation. Improving student learning diversity
and inclusivity, 4:53–64.

Clare Llewellyn, Claire Grover, Beatrice Alex, Jon
Oberlander, and Richard Tobin. 2015. Extracting
a topic specific dataset from a Twitter archive. In
International Conference on Theory and Practice of
Digital Libraries, pages 364–367. Springer.

Barbara McGillivray, Beatrice Alex, Sarah Ames,
Guyda Armstrong, David Beavan, Arianna Ciula,
Giovanni Colavizza, James Cummings, David
De Roure, Adam Farquhar, et al. 2020. The chal-
lenges and prospects of the intersection of humani-
ties and data science: A white paper from The Alan
Turing Institute.

Lin Y Muilenburg and Zane L Berge. 2016. Digi-
tal badges in education: Trends, issues, and cases.
Routledge.

National Library of Scotland. 2019. A Medical History
of British India. Accessed on 23/04/2021.

Nathaniel Ostashewski and Doug Reid. 2015. A his-
tory and frameworks of digital badges in education.
In Gamification in education and business, pages
187–200. Springer.

Jen Ross, Michael Sean Gallagher, and Hamish
Macleod. 2013. Making distance visible: Assem-
bling nearness in an online distance learning pro-
gramme. International Review of Research in Open
and Distributed Learning, 14(4):51–67.

Laurie Williams. 2006. Debunking the nerd stereotype
with pair programming. Computer, 39(5):83–85.

Laurie Williams, Robert R Kessler, Ward Cunningham,
and Ron Jeffries. 2000. Strengthening the case for
pair programming. IEEE software, 17(4):19–25.

147

A Appendix: Three Stars and a Wish

Clare:

F I liked that we were all willing to try anything and
go beyond our comfort zone and fail

F I liked the way we naturally supported each other
and took different roles, and swapped those roles

F I enjoyed learning the technology – something I
thought I’d hate!

/* I wish we could find a way to make the students
more interactive, chat, turn their cameras on.

Pawel:

F Relentless feedback: asking 30s pulse-checking
questionnaires twice a day; we used Office Forms.

F Staff room: easy and persisting internal comms
channel within the course development team; we used
Teams.

F Poetic licence: the person who created the final version
of the notes was allowed to make adjustments to the
content, so they fit the format.

/* Our greatest ally was the tech that just worked. I wish
we could also provide core hybrid experience of being in
the same room.

Beatrice:

F Great team of people, great combination of skills

F Brilliant to see feedback from students coming in

F I learned a lot about teaching online

/* I wish I could witness the learning better online.

148

Proceedings of the Fifth Workshop on Teaching NLP, pages 149–159
June 10–11, 2021. ©2021 Association for Computational Linguistics

Teaching NLP outside Linguistics and Computer Science classrooms:
Some challenges and some opportunities

Sowmya Vajjala
National Research Council, Canada

sowmya.vajjala@nrc-cnrc.gc.ca

Abstract

NLP’s sphere of influence went much be-
yond computer science research and the de-
velopment of software applications in the past
decade. We see people using NLP methods
in a range of academic disciplines from Asian
Studies to Clinical Oncology. We also notice
the presence of NLP as a module in most of
the data science curricula within and outside
of regular university setups. These courses
are taken by students from very diverse back-
grounds. This paper takes a closer look at
some issues related to teaching NLP to these
diverse audiences based on my classroom ex-
periences, and identifies some challenges the
instructors face, particularly when there is no
ecosystem of related courses for the students.
In this process, it also identifies a few chal-
lenge areas for both NLP researchers and tool
developers.

1 Introduction

Until a few years ago, it was common to see NLP
courses predominantly taught in either Computer
Science or Linguistics departments, attended pri-
marily by students from both the departments. In
the past few years, there has been an increasing
interest in NLP across disciplines. This is also re-
flected in the arrival of focused NLP courses such
as "Clinical NLP"1 and "Introduction to Computa-
tional Literary Analysis"2.

This trend is by no means specific to NLP
alone. There has been a growing interest in in-
cluding courses related to computing/programming
in many liberal arts and sciences departments over
the past few years. Guzdial (2021) lists three rea-
sons why many departments want such courses for
their students: to support new discoveries through
computational methods; to use new modes of in-
teractive communication through apps, simulated

1https://www.coursera.org/learn/
clinical-natural-language-processing

2https://icla2020.jonreeve.com/

environments etc.; to study the cultural, social and
political influence of models and how to improve
them. This need resulted in the creation of data sci-
ence programs open for all students from various
colleges/departments. Naturally, the introduction
of such programs started discussion around what
should be included in such generic data science
introductory curricula (Krishnamurthi and Fisler,
2020). An introductory course in NLP is com-
monly offered either as an elective or as a part of
the main coursework in most such data science
course/minor/certificate programs in universities.
Such a course is also a common component in in-
dustry facing certification programs offered outside
of university settings.

However, popular textbooks and course mate-
rials on NLP are not created taking these diverse
audiences and their motivations into consideration.
They cover a range of topics in depth, requiring
a deeper technical background that students com-
ing from diverse academic backgrounds may not
possess. While there are some recent efforts to
write books focused to specific groups of students
(Jockers, 2014; Hovy, 2020), they tend to focus on
a smaller subset of topics within NLP.

Further, most courses and textbooks focus on the
algorithms, with much less attention given to other
essentials such as data collection, text extraction,
pre-processing and other practical issues one will
encounter when working on new research problems
(and datasets), or while deploying NLP systems in
some application scenario. Considering that many
students take these courses with goals unrelated to
performing NLP research later (e.g., using NLP in
their disciplinary research, working for a software
company, etc.), this lack of appropriate materials
can be seen as a potential gap between current
NLP teaching and what is required. Additionally,
while research progress feeds into the development
of course syllabi, we don’t see the opposite i.e.,
teaching experiences informing NLP research.

149

In this background, this paper summarizes my
experiences with teaching multiple NLP courses to
a diverse student body (STEM, humanities, social
sciences) both at undergrad and graduate level, and
identifies some challenge areas for classroom in-
struction. At the same time, it also identifies some
relatively understudied problems in NLP research
and some issues to consider for tool developers. In
short, the contributions of the paper can be summa-
rized as follows:

• It identifies the challenges of teaching a range
of student audiences outside of linguistics and
computer science departments.

• It identifies a few challenge areas for NLP
research and practice, which should be ad-
dressed to further the use of NLP methods
and techniques beyond computer science and
related disciplines.

The rest of this paper is organized as follows:
Section 2 gives a brief overview of existing work
on teaching NLP to put this paper’s contributions
in context. Section 3 describes the NLP courses I
taught with diverse goals and for diverse audiences,
in detail. The next section then identifies some chal-
lenges in terms of teaching for all these different
contexts (Section 4). Section 5 elaborates on how
these teaching experiences help us identify some
challenge areas for NLP researchers as well as tool
developers. Section 6 summarizes and concludes
the paper.

2 Teaching NLP - A short review

Since the first Teaching NLP workshop almost two
decades ago, there has been some discussion in the
community on various issues related to NLP ped-
agogy through the TeachCL/TeachingNLP work-
shop series,3 and other events such as Teach4DH.4.
Published work on teaching NLP can be broadly
classified into four groups:

1. Sharing insights about building new CL pro-
grams in various intra- and inter-disciplinary
contexts (e.g., Lonsdale, 2002; Dale et al.,
2002; Koit et al., 2002; Baldridge and Erk,
2008; Zinsmeister, 2008; Reiter et al., 2017)

3https://www.aclweb.org/anthology/
venues/teachingnlp/

4https://teach4dh.github.io/

2. Focused discussion about the challenges in
the design of single courses, sometimes tar-
geting a broader/diverse audience (e.g., Liddy
and McCracken, 2005; Xia, 2008; Madnani
and Dorr, 2008; Agarwal, 2013; Navarro-
Colorado, 2017)

3. Development and usage of specific
tools/games/strategies for teaching NLP (e.g.,
Bontcheva et al., 2002; Lin, 2008; Bird et al.,
2008; Hockey and Christian, 2008; Levow,
2008; Barteld and Flick, 2017)

4. Discussion around the design of linguistic
problems for North American Computational
Linguistics Open Competition (NACLO)5 and
other events (e.g., Bozhanov and Derzhanski,
2013; Littell et al., 2013).

However, to my knowledge, there hasn’t been
much discussion on the gap between what we
learn in the classroom versus how you use it later
(whether in research or practice), how we should
adapt the syllabus depending on the audience for
the course, and on how teaching experiences can
potentially inform NLP research and practice. I
addressed these issues in this paper, based on my
experiences with teaching NLP.

3 Description of NLP Courses

This section describes the teaching scenarios in
which I taught NLP between 2016-2021, which
form the basis for the observations discussed in
this paper. Full semester courses described be-
low were taught at an American university during
2016-18, and the online, compact courses were
taught at two German universities during 2020-21.
All classrooms were small in size (< 30 students)
and there were no teaching assistants. Inspired by
Bird (2008)’s classification of student’s background
and goals for using NLTK 6, and Fosler-Lussier
(2008)’s grouping of students taking NLP courses,
a grouping of my NLP teaching contexts, is shown
in Table 1, taking student background and course
goals into consideration. The "General" courses,
as the name indicates, target a broader audience,
while "Focused" courses were created to address
specific student needs.

The rest of this section presents a detailed
overview about the courses taught under these

5https://nacloweb.org/
6Table 3.1 in http://www.nltk.org/book/ch00.

html

150

General Focused
Undergrad A non-technical course

intended to give an
overview of language
and computers, open
for all disciplines

An introductory course
taught as a part of data
science curriculum for
Liberal Arts and Sci-
ences (LAS) majors

Grad/Advanced
undergrad

Two general NLP
courses with a focus
on various algorithms
and applications

Two introductory NLP
courses for specific
graduate groups (ap-
plied linguists and
economists)

Table 1: NLP Teaching Contexts in terms of student groups

groups. I hope to achieve the following goals
through this long overview:

1. share some insights about what to in-
clude/exclude in the syllabus/exercises, when
we are developing a new NLP course for a
non-traditional audience

2. provide a useful context to the challenges that
will be discussed later in the paper.

3.1 Undergrad-General (U-Gen):

I taught one course7 which could be classified as
a general undergraduate course that is open for all.
This is based on the textbook by Dickinson et al.
(2012), which is used to teach several such "Lan-
guage and Computers" courses around the world.
Students in this course came from all years of un-
dergraduate curriculum, but were dominated by
freshmen and sophomores from Sciences and En-
gineering. The course had an opt-in programming
component for enthusiastic students, but otherwise,
generic enough that all freshmen undergraduate
students from any discipline can follow.

Syllabus: The topics covered followed the
book’s structure, with more contemporary informa-
tion. For example, the topic "tutoring systems" in-
cluded a discussion of software such as DuoLingo,
and the topic "dialog systems" included discussion
on virtual assistants such as Siri, Cortana etc. The
focus in using these tools in this classroom is to
explain how such systems work, and evaluate their
performance in real world contexts, rather than on
teaching how to build such systems. Two sessions
were spent on giving a non-technical overview of

7https://github.com/nishkalavallabhi/
LING120-Fall2017/

NLP with some discussion on recent trends and on
the broader impact of NLP on other areas of study.

Evaluation: The assignments in this course re-
quired students to explore a few existing NLP
tools/demos (e.g., corenlp.run) or browse existing
corpora (e.g., corpus.byu.edu). The students also
did a group presentation that involved using a read-
ily available day to day software which has some
NLP component and summarizing its performance
with concrete examples and qualitative measures.
The final exam for this course had two parts: the
first part required the students to write a report
performing a error analysis of two commercial sys-
tems doing the same task (e.g., machine translation,
speech recognition, etc.) and the second part asked
them to write a perspective essay on the impact of
language technologies on the society.

3.2 Undergrad-Focused (U-Focused)

I taught one course8 which was one of the electives
in an undergraduate data science minor program.
This was open to students from all departments un-
der the school of Liberal Arts & Sciences. It was
taught twice and attracted students from a wide
range of disciplines including, but not limited to:
Literature, Sociology, Journalism, Management,
World Languages, Linguistics and Computer Sci-
ence.

Syllabus: The goal of this course was to intro-
duce students to methods of discovering language
patterns in text documents and applying them to
solve practical text analysis problems in their dis-
ciplines. The course required students to write a
few programs, although the knowledge of program-

8https://github.com/nishkalavallabhi/
LING410X-Spring18

151

ming was not a pre-requisite. Since many of these
students were getting familiarized with using R as
a part of their curricula (for statistics courses), and
I viewed it as a language in which they can make
some progress without having to gain expertise
in programming simultaneously, the course was
taught in R. Relevant programming concepts and
data structures were introduced in the context of
the topics of the course, on the fly. Jockers (2014)
was used as the main textbook for this course, since
it assumed no programming background from its
target audience (Literature students), and it used R.

In terms of course organization, a few sessions
were spent on introducing students to the basics
of installing and using R, specifically with the
goal of working with textual data in mind. The
next topic discussed methods to collect, extract and
clean texts/corpora. This was followed by teach-
ing about doing basic exploratory corpus analysis
along with keyword and key phrase extraction ap-
proaches. The next topics focused on text classifi-
cation and topic modeling - both of which are the
most commonly used methods with textual data
across disciplines. The final topic for the course
discussed various means of visualizing textual data.

Evaluation: The course included assignments
that followed the topic structure, and required stu-
dents to write small R programs to extract text
patterns, scrape data from different forms of doc-
uments (e.g., webpages, twitter), extracting key-
words, ngrams etc., following step by step process
making alterations to pre-written code for training
a text classifier and a topic model, and building ba-
sic visualizations of textual data (e.g., word clouds,
dispersion plots etc). All assignments relied on
learning to use existing R libraries instead of fo-
cusing on building everything from scratch. The
students did a group presentation which involved
visualizing textual data. The final exam consisted
of doing a small project and submitting the term
paper. The students were required to pick an inter-
esting dataset for a problem they encountered in
their own discipline, and use one of the methods
they learnt in the course.

3.3 Grad/Advanced undergrad-General
(G-Gen)

I taught two courses that are the closest to a typical
Natural Language Processing course taught in uni-
versities across the world: the first course followed
the standard structure in traditional textbooks, and

the second course focused specifically on how to
do NLP in the absence of large annotated datasets.
Students in both courses primarily consisted of
advanced undergrad or graduate students coming
from linguistics and computer science, with vary-
ing degrees of background in programming, lin-
guistics, and computer science. All students passed
at least one programming course prior to attending
these courses.

Statistical NLP: The course’s objective was to
teach some of the common algorithms and tech-
niques that form the foundation for modern day
NLP. Accordingly, starting with regular expres-
sions and language models, the topics we dealt with
included part of speech tagging, parsing, discourse,
information extraction, text classification and other
NLP applications, and ended with introducing text
embedding representations along with an overview
of neural network architectures. Jurafsky and Mar-
tin (2008) and Goldberg (2017) were used as the
prescribed textbooks. Assignments focused on im-
plementing some of the popular NLP algorithms
from scratch, and final project involved modeling
one of the common tasks such as text classification
or information extraction using existing datasets
and producing a technical report describing the
same.

NLP without data9 : The objective of this
course was to address a real world scenario that
is not typically addressed in NLP courses - how do
we apply NLP methods in the absence of annotated
training data. Hence, after giving a broad overview
of NLP and its uses both in real world and for other
disciplines, and discussing in detail about NLP sys-
tem development pipeline and text representation,
the course focused on the following topics:

1. Corpus collection, text extraction and ex-
ploratory analysis

2. Automatically labeling data and performing
data augmentation

3. Working with small datasets and transfer
learning

This course was taught remotely, as a compact,
intensive 1 month online course in January 2021 (
9 hours per week, for 3 weeks) due to the current

9https://github.com/nishkalavallabhi/
SfSCourseJan2021

152

pandemic situation. It primarily relied on a collec-
tion of blog posts, research papers, code tutorials
and python notebooks from various sources, as no
available textbook specifically addressed this topic.
It had two assignments, which required students to
explore the usage of existing NLP tools to perform
given tasks and to "generate" labeled data for infor-
mation extraction, and write up a report evaluating
their approaches with some error analysis. There
was a group presentation, where students had to
pick from a selected collection of recent research
articles on the course’s topics. Finally, there was an
optional term paper (for extra credits), where the
students can pick a resource scarce NLP scenario
and apply what they learnt in this course to address
it.

3.4 Grad/Adv.undergrad-Focused
(G-Focused)

I taught two introductory NLP courses that were
specific to graduate students - one for applied lin-
guistics Masters/PhD students and the other for
Economics Masters/PhD students.

NLP for Applied Linguists Applied linguistics
graduate program in the university where this
course was taught consisted of students study-
ing corpus linguistics, computer assisted language
teaching/learning, and technical communication.
Since the use of language processing tools in these
areas is increasing day by day, the goal of this
course was to teach some text processing meth-
ods that can be directly applicable in their dis-
sertation research. Accordingly, the course intro-
duced various NLP techniques from regular expres-
sions to using parsers, in the context of technolo-
gies for language learning and corpus analysis e.g.,
spelling/grammar checkers, pattern extractors for
corpus analysis etc. Bird et al. (2008) and Jurafsky
and Martin (2008) were used as the textbooks for
this course, along with Church (1994).

The course had five assignments which involved
writing small programs covering the topics of the
course, and a group project, followed by a one-to-
one oral exam to assess student understanding of
the relevance of the course to their area of study.

NLP for Economists10: This was originally
planned to be a one week intensive course, but was
taught online over three weeks due to the pandemic
situation in Fall 2020. It also included instruction

10https://econnlpcourse.github.io/

on Python fundamentals. The syllabus for the topic
comprised of four broad topics:

1. Introduction: An overview of NLP and its use-
fulness in Economics; Python fundamentals

2. Python & textual data, which focused on data
collection, text extraction, pre-processing and
text representation

3. NLP methods for economics, covering ex-
ploratory corpus analysis, text classification,
topic modeling, and giving an overview of
others such as information extraction and text
summarization

4. NLP in Economics - research paper readings
and discussion

The students had to do 3 assignments covering
the first three topics which involved writing small
python programs to use existing tools and write an
analysis of how they work for their domain data.
They also did a group presentation picking a paper
that used NLP methods to address research ques-
tions in economics, chosen most often from their
own disciplinary journals, instead of NLP confer-
ences. Students also had to submit a term paper
which involved creation of a problem statement
describing a new economics problem that can be
addressed using NLP methods. No specific text-
book was used for the course, although several
recommendations were listed in the syllabus. The
course videos and slides, and links to publicly avail-
able online content were the primary materials for
the course, as there was no appropriate textbook
available to suit the needs of this audience.

As it can be seen from all the above course de-
scriptions, the courses addressed a range of au-
diences, and accordingly, differed in the way the
course was organized as well as the topics that
were covered. Most of these courses can be called
"non-traditional" NLP courses, considering their
contents and intended audience. In the following
section, I will elaborate on some of the general and
course specific challenges I faced in the design and
delivery of these courses.

4 Challenges for Teaching

While all the courses received generally good stu-
dent feedback towards the end, there are several
issues that could have been managed better. Some
of these issues arise because I am teaching a di-
verse, non-conventional NLP audience, and hence,

153

we don’t have readily available solutions yet. Each
course, of course, comes with its own challenges.
In this section, I will discuss some of the more gen-
eral teaching challenges I faced across all courses,
and how I addressed them.

Student goals and Course Contents: For many
of the courses described in the previous section,
the students did not have an ecosystem of related
courses in their curriculum because there are no
NLP focused research groups or teaching programs
in the university. For all except G-Gen courses,
any NLP course is potentially a one off course that
covers programming, NLP, and anything remotely
concerned with computing for the students. The
student goals accordingly are related to either just
fulfilling a course requirement, or gaining some
quick actionable insights that they can use right
away, or show relevant skills when they apply for a
job soon. In this background, I found it particularly
challenging to adapt the syllabi such that they get
readily usable practical skills, along with a solid
foundation to explore the topics further on their
own if needed.

An approach that seemed to work is to tie each
concept of the course to a practical use case (either
a software application or some research problem in
another discipline) and give assignments that are
closer to their real-world scenarios. In the U-Gen
course, group activities involving apps the students
regularly use such as Duolingo, Google Search,
Siri etc generated a lot of interesting questions in
the class. In the G-Focused courses, providing an
overview about relevant disciplinary research that
uses NLP, and encouraging discussions about how
the students can use NLP in their research turned
out to be useful. The NACLO exercises helped
to introduce the challenges while working with
textual data, in a way that holds students’ attention
and generated interesting discussions, in all the
four cells in Table 1.

Faculty goals and Course Contents: As men-
tioned above, many students lacked the eco-system
of related courses (all except G-Gen). Thus, a
lot of surrounding topics that are not typically a
part of NLP courses had to be covered in these
classes. Specifically, these topics revolved around
concepts of software programming, and the math-
ematics needed to understand some of the basic
NLP methods. Two questions I constantly grap-
pled with in terms of my own teaching goals for

U-Focused and G-Focused courses courses were -
how much mathematics/programming/linguistics
should be included? how can I encourage good
programming/software engineering practices while
still focusing on teaching the students to solve NLP
related problems?

For the first question, keeping mathematics
and linguistics to the bare minimum, situating
all programming related exercises in the context
of NLP/textual data, and providing additional re-
sources/tutorials for those interested in knowing
more math/linguistics behind NLP helped . For
the second question, I tried to write clean, well-
commented code for classroom examples as much
as possible, and showed variations of writing the
same piece of code, on top of the exercises in the
prescribed textbook, discussing why we may chose
one over the other. I also encouraged students to
review each other’s submissions and post discus-
sions about programming in the forum for some of
these courses. Both these teaching strategies cre-
ated some awareness about programming practices
among the students.

However, there were always students who
wanted more/less of math/linguistics/programming
during the classroom session itself, or in the form of
assignments, especially in G-Gen and G-Focused
courses. Some students felt enough challenged,
some were overwhelmed. This issue is by no means
specific to my experiences, and has been docu-
mented in past work on teaching NLP too (Brew
et al., 2005; Koit et al., 2002). I addressed this
by providing optional, additional (ungraded) pro-
gramming exercises and reading materials in all the
courses.

In terms of programming practices, I found it
particularly challenging to introduce the idea of ver-
sion control for code for students in U-Focused and
G-Focused classrooms. The students without prior
background in any form of programming found it
difficult to understand Git. I emphasized its impor-
tance and spent a small amount of time discussing
why version control is useful, and how to do it, and
provided a few tutorial references. While none of
the students used version control during the courses,
I hope that as they gain more experience, they will
understand its relevance and adopt in practice.

Textbooks and the real world: If we ask our-
selves - what will the students do with what they
learn in these courses, provided they manage to
stick to NLP?, we can think about three options: a)

154

pursue further studies/research focused on NLP b)
pursue further studies/research in their own disci-
pline, using NLP methods in their work c) work in
a company on NLP projects. Among these, we can
safely assume that the last two are the most likely
scenarios for the audience I taught.

In my experience as a software engineer and as
a data scientist in industry, and while collaborating
with researchers from other disciplines, some of
the most common issues I encountered are:

• How do we collect and label the data needed
to train NLP models?

• How can we do a clean and accurate extraction
of text from various file formats?

• What are the efficient ways of selecting mod-
els going beyond standard intrinsic evaluation
measures (e.g., considering external measures,
deployment costs, maintenance issues etc)

Most of this issues are also commonly experienced
by NLP researchers, if they work on a new problem
or on creating a new corpus resource. Yet, none of
these issues are discussed even cursorily in avail-
able/standard NLP textbooks, which means that the
students have to rely on a lot of online blogs and
other resources.

I addressed these issues by including topics such
as: what does a NLP system development pipeline
look like? and how is NLP used beyond CS re-
search and software development scenarios? in
the introductory "NLP overview" sessions itself in
G-Gen classrooms, introducing the students to the
challenges one faces at each step. In the rest of
the course too, I addressed these issues in more
detail as needed, providing code examples, and in-
cluding real-world case studies. Particularly, one
course described in this paper, "NLP without an-
notated dataset", entirely focused on the first issue
mentioned earlier.

In U-Focused and G-Focused classrooms, I
added a detailed overview of how NLP is used
in various disciplines as a research method, and
organized student group discussions with contem-
porary research papers in these disciplines. Even
in the relatively simpler U-Gen course scenario,
we ran into the issue of the existing textbook be-
ing outdated, which required me to look for new
materials on the topic. As mentioned earlier, I ad-
dressed this issue by introducing discussions and
assignments on more contemporary developments
about the textbook’s topics.

I found it particularly challenging to cover all
of these aspects in one course, while also giving
enough background in core NLP topics, though. In
future, it would be useful to develop some struc-
tured reading material/tutorials/workbooks that can
serve as goto sources on these topics, rather than
asking the students to just explore on their own
from a wide range of available material on the web.

Graded Resources: Another recurring chal-
lenge I ran into relates to the availability of appro-
priate textbooks. While I found introductory text-
books that suited some of the classes, the students
in the G-Focused group repeatedly mentioned the
lack of a progressively difficult self-learning path.
As they rightly pointed out, we either have intro-
ductory books which gave a basic idea of selected
topics (e.g., Jockers, 2014), or very advanced text-
books (e.g., Jurafsky and Martin, 2008), but noth-
ing in between. The issue of lack of resources was
also highlighted by Hearst (2005) in the context
of teaching an applied NLP course. Although this
was to some extent addressed by some of the more
practically oriented books published by O’Reilly
Media11 and Manning Publications12, they still ad-
dressed industry facing scenarios, which did not
always account for these students’ needs.

Teaching diverse audience: All except the G-
Gen courses described in this paper had either stu-
dents coming from diverse disciplines, or a ho-
mogeneous group belonging to a non-STEM disci-
pline. In such cases, it is important that the students
understand the relevance of the course to their own
discipline. This can be challenging, if we, as the
instructors, don’t know what are some interesting
challenges in the various disciplines. The need to
target courses to the student background was also
discussed in the past in Baldridge and Erk (2008).
To this end, I had several informational chats with
the faculty members from these disciplines, to un-
derstand the use cases for NLP in their research,
apart from reading research that used NLP methods
in the respective disciplines. This was definitely
useful in making NLP more relevant to the stu-
dent groups. Co-teaching such courses with faculty
from other disciplines is an idea to explore in fu-
ture, provided the class is homogeneous, and both
instructors are willing to invest time and energy
into learning the methods of the other discipline.

11https://www.oreilly.com/
12https://www.manning.com/

155

These are some of the challenges I faced in teach-
ing NLP and how I addressed them. However, all
these issues are by no means completely answered,
and more discussion is needed in this direction.
Teaching NLP workshops, and sharing of teaching
resources (and anecdotes) can be a starting point
towards addressing these issues.

5 Challenges beyond the Teaching
context

Generally, we see some discussion about how re-
search informs teaching and the choice of topics
in a course. We may notice the evolution of the
standard Natural Language Processing course over
the past two decades, in terms of the topics cov-
ered13. We also see a lot of discussion around
challenges encountered in teaching itself, as seen
in the Teaching NLP papers in the past. However,
when teaching to outside audience, we can uncover
hitherto under-studied research questions that are
potentially more relevant while doing NLP outside
of computer science and linguistics. I will focus on
such issues in this section, by splitting it into two
groups: NLP research and tool development.

5.1 NLP Research
The questions raised by the students in G-Focused
courses identified some under-studied issues in con-
temporary NLP research, which are described be-
low:

Predictions and Causality: In NLP, we gener-
ally work with various representations of textual
data, and build predictive models. Though there is
an increasing body of research on understanding
the predictions, it is not common to see a causal
analysis. However, in some disciplines, such causal
relationship is important for any prediction. While
teaching an economics classroom, we repeatedly
ran into these discussions about drawing causal
inference for a text classifier or a topic modeling
decision. These led a student to a question - will
NLP ever be really useful in economics research
beyond being a fancy new technique?

There is some existing work that uses causal
analysis along with NLP methods in economics
literature (Gentzkow et al., 2019), but there is not
much within NLP research in that direction, fo-
cusing on specific applications. Although there is
some recent interest among NLP researchers on

13NLP Pedagogy interviews by David Jurgens and Lucy
Lishorturl.at/bntR5

causal inference (Veitch et al., 2020; Keith et al.,
2020), we do not yet have off the shelf teaching
resources to incorporate such aspects into the class-
room, to my knowledge. More NLP research and
inter-disciplinary collaborations in this direction
may lead to the creation of the much needed teach-
ing and software resources to address this important
issue in future.

Text as secondary data: Unlike typical NLP fo-
cused problems, text is a form of secondary data
for many other disciplines (e.g., economics, again).
Thus, their expectation is that the primary source
of information for model predictions should come
from the primary data sources. While discussing
feature representations for text, we repeatedly ran
into the issue of how to effectively combine these
different feature representations coming from pri-
mary and secondary sources. It is certainly possible
to concatenate representations or create multimodal
representations and let the model figure out feature
importance, as we commonly do in NLP research.
However, the students questioned this approach
and asked for methods to develop models such that
their primary feature representations were given
importance over textual representation.

I am not aware of a commonly used approach
for the same, that can be incorporated directly in a
course through theory or practical exercises. How-
ever, I believe we should acknowledge that the stu-
dents are more familiar with research methods from
their own disciplines and want to use NLP within
that framework, rather than completely switch to
"the NLP way" of building models. New research
on using text representation as a secondary feature
vector along with primary features may be a step
in the direction of addressing this issue.

Construct validity of text representations:
Construct validity refers to whether a feature ac-
tually measures what it is supposed to measure.
In language testing literature, construct validity
is frequently studied in the context of automated
language assessment software. In the Applied Lin-
guistics graduate course, we discussed automatic
essay scoring and spelling/grammar correction sys-
tems briefly, as use cases of NLP in language as-
sessment and teaching. During these discussions,
the students, who typically came from a language
assessment background, questioned the lack of tra-
ditional steps such as exploratory analyses to un-
derstand the corpus, and evaluating the construct

156

validity of the feature representations we use in
NLP. While we see some discussion around these
issues in the context of real world NLP system
development (e.g., Sheehan, 2017; Beigman Kle-
banov and Madnani, 2020), we don’t see much
discussion about such issues in research describing
the development of new NLP methods or in NLP
textbooks. As we see NLP being used more and
more outside its typical contexts, perhaps, it is time
for us as NLP researchers to consider these issues
while analyzing models and their performance.

All these are important problems beyond teach-
ing NLP, for NLP researchers in general, and in the
inter-disciplinary research context in particular. As
Connolly (2020) suggests, supplementing comput-
ing related courses with methods, and perspectives
from social sciences may give new insights for
NLP researchers into addressing these issues. This
will benefit teaching NLP contexts beyond the tra-
ditional audience, and also enrich NLP research in
future.

5.2 Tool Development

In all the courses taught outside of classrooms dom-
inated by STEM students (i.e., all except G-Gen),
I frequently ran into the issue of insufficient docu-
mentation for NLP tools the students want to use.
From my personal experience, this situation is con-
stantly improving. Yet, it is far from ideal. Despite
being actively involved with using various NLP
tools in daily life, it is not uncommon for many of
us to face some challenges with software usage.

This is even harder for those without that back-
ground with DIY software. Especially, tools that
work across all commonly used operating systems
are not very easy to find, but are essential when we
want to use them in classrooms. It was particularly
challenging even as an instructor, while teaching
the data science minor course which used R. Since
the students preferred to use their own machines,
it was not possible to enforce a common operating
system/library versions setup. So, I addressed this
issue by guiding the students with links to videos
on installation of various tools on all common oper-
ating systems where possible, and using alternative
libraries where this did not work. Other issues
the students raised were about the lack of proper
graphical user interfaces and visualization methods
for NLP tools. While I could not offer any clear
solutions for these issues, tool developers should
perhaps keep a broader, potentially non-technical

users in mind when they release and document their
tools in future.

What is described in this section is merely a
snapshot of some of the teaching NLP challenges
that go beyond the teaching context, and need the
attention of other members of the NLP community -
researchers and tool developers. The list mentioned
in this section is by no means exhaustive, and more
discussion is needed in this direction especially
in the current situation where NLP is taught and
used by many disciplines beyond linguistics and
computer science.

6 Conclusion

In this paper, I summarized my experiences with
teaching NLP courses for diverse groups of under-
graduate and graduate students and identified a few
challenge areas for teaching such courses. I also
discussed few challenge areas for NLP researchers
and tool developers, addressing which can help im-
prove both teaching NLP and the ease of applying
NLP in research areas beyond linguistics and com-
puter science. It should be acknowledged though,
that this discussion is more qualitative than quan-
titative in nature. Perhaps doing a survey of the
students of such courses a couple of years later
about how they are using NLP compared to what
they learnt in a classroom could be one way to
measure these observations in a more quantitative
manner. I hope that this paper will contribute to the
growing body of work on NLP Teaching, and also
lead to further discussion on an increased focus
on the inter-disciplinarily relevant aspects of NLP
teaching, research and practice.

Acknowledgements

Firstly, I thank the workshop committee for or-
ganizing this workshop. Comments from all the
three anonymous reviewers, and my colleagues -
Rebecca Knowles, Gabriel Bernier-Colborne and
Taraka Rama were immensely useful in bringing
the paper from the first draft to the final version
- I thank them all for their time and thoughts on
this paper. Finally, I thank the students in all these
courses, and the three universities (Iowa State Uni-
versity, USA; Ludwig Maximilian University of
Munich, Germany; Eberhard Karls University of
Tübingen, Germany) that gave me the opportunities
to teach them.

157

References
Apoorv Agarwal. 2013. Teaching the basics of nlp and

ml in an introductory course to information science.
In Proceedings of the Fourth Workshop on Teaching
NLP and CL, pages 77–84.

Jason Baldridge and Katrin Erk. 2008. Teaching com-
putational linguistics to a large, diverse student body:
courses, tools, and interdepartmental interaction. In
Proceedings of the Third Workshop on Issues in
Teaching Computational Linguistics, pages 1–9.

Fabian Barteld and Johanna Flick. 2017. Lea-linguistic
exercises with annotation tools. In Teach4DH@
GSCL, pages 11–16.

Beata Beigman Klebanov and Nitin Madnani. 2020.
Automated evaluation of writing – 50 years and
counting. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7796–7810, Online. Association for Computa-
tional Linguistics.

Steven Bird. 2008. Defining a core body of knowledge
for the introductory computational linguistics cur-
riculum. In Proceedings of the Third Workshop on
Issues in Teaching Computational Linguistics, pages
27–35.

Steven Bird, Ewan Klein, Edward Loper, and Jason
Baldridge. 2008. Multidisciplinary instruction with
the natural language toolkit. In Proceedings of
the Third Workshop on Issues in Teaching Compu-
tational Linguistics, pages 62–70, Columbus, Ohio.
Association for Computational Linguistics.

Kalina Bontcheva, Hamish Cunningham, Valentin
Tablan, Diana Maynard, and Oana Hamza. 2002.
Using GATE as an environment for teaching NLP.
In Proceedings of the ACL-02 Workshop on Effec-
tive Tools and Methodologies for Teaching Natural
Language Processing and Computational Linguis-
tics, pages 54–62, Philadelphia, Pennsylvania, USA.
Association for Computational Linguistics.

Bozhidar Bozhanov and Ivan Derzhanski. 2013.
Rosetta stone linguistic problems. In Proceedings
of the Fourth Workshop on Teaching NLP and CL,
pages 1–8, Sofia, Bulgaria. Association for Compu-
tational Linguistics.

Chris Brew, Markus Dickinson, and Detmar Meurers.
2005. “language and computers”: Creating an in-
troduction for a general undergraduate audience. In
Proceedings of the Second ACL Workshop on Effec-
tive Tools and Methodologies for Teaching NLP and
CL, pages 15–22.

Kenneth Ward Church. 1994. Unix™ for poets. Notes
of a course from the European Summer School
on Language and Speech Communication, Corpus
Based Methods.

Randy Connolly. 2020. Why computing belongs
within the social sciences. Communications of the
ACM, 63(8):54–59.

Robert Dale, Diego Mollá Aliod, and Rolf Schwit-
ter. 2002. Evangelising language technology: A
practically-focussed undergraduate program. In Pro-
ceedings of the ACL-02 Workshop on Effective Tools
and Methodologies for Teaching Natural Language
Processing and Computational Linguistics, pages
27–32, Philadelphia, Pennsylvania, USA. Associa-
tion for Computational Linguistics.

Markus Dickinson, Chris Brew, and Detmar Meurers.
2012. Language and computers. John Wiley &
Sons.

Eric Fosler-Lussier. 2008. Strategies for teaching
“mixed” computational linguistics classes. In Pro-
ceedings of the Third Workshop on Issues in Teach-
ing Computational Linguistics, pages 36–44.

Matthew Gentzkow, Bryan Kelly, and Matt Taddy.
2019. Text as data. Journal of Economic Literature,
57(3):535–74.

Yoav Goldberg. 2017. Neural network methods for nat-
ural language processing. Synthesis lectures on hu-
man language technologies, 10(1):1–309.

Mark Guzdial. 2021. What liberal arts and sciences
students need to know about computing.

Marti A Hearst. 2005. Teaching applied natural lan-
guage processing: Triumphs and tribulations. In
Proceedings of the Second ACL Workshop on Effec-
tive Tools and Methodologies for Teaching NLP and
CL, pages 1–8.

Beth Ann Hockey and Gwen Christian. 2008. Zero
to spoken dialogue system in one quarter: Teach-
ing computational linguistics to linguists using reg-
ulus. In Proceedings of the Third Workshop on Is-
sues in Teaching Computational Linguistics, pages
80–86, Columbus, Ohio. Association for Computa-
tional Linguistics.

Dirk Hovy. 2020. Text Analysis in Python for Social
Scientists: Discovery and Exploration. Cambridge
University Press.

Matthew L Jockers. 2014. Text Analysis with R for Stu-
dents of Literature. Springer.

Dan Jurafsky and James Martin. 2008. Speech & lan-
guage processing. Pearson Education.

Katherine Keith, David Jensen, and Brendan O’Connor.
2020. Text and causal inference: A review of us-
ing text to remove confounding from causal esti-
mates. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5332–5344, Online. Association for Computa-
tional Linguistics.

Mare Koit, Tiit Roosmaa, and Haldur Õim. 2002.
Teaching computational linguistics at the University
of Tartu: Experience, perspectives and challenges.
In Proceedings of the ACL-02 Workshop on Effec-
tive Tools and Methodologies for Teaching Natural

158

Language Processing and Computational Linguis-
tics, pages 85–90, Philadelphia, Pennsylvania, USA.
Association for Computational Linguistics.

Shriram Krishnamurthi and Kathi Fisler. 2020. Data-
centricity: a challenge and opportunity for com-
puting education. Communications of the ACM,
63(8):24–26.

Gina-Anne Levow. 2008. Studying discourse and di-
alogue with SIDGrid. In Proceedings of the Third
Workshop on Issues in Teaching Computational Lin-
guistics, pages 106–113, Columbus, Ohio. Associa-
tion for Computational Linguistics.

Elizabeth Liddy and Nancy McCracken. 2005. Hands-
on NLP for an interdisciplinary audience. In Pro-
ceedings of the Second ACL Workshop on Effective
Tools and Methodologies for Teaching NLP and CL,
pages 62–68, Ann Arbor, Michigan. Association for
Computational Linguistics.

Jimmy Lin. 2008. Exploring large-data issues in the
curriculum: A case study with MapReduce. In Pro-
ceedings of the Third Workshop on Issues in Teach-
ing Computational Linguistics, pages 54–61, Colum-
bus, Ohio. Association for Computational Linguis-
tics.

Patrick Littell, Lori Levin, Jason Eisner, and Dragomir
Radev. 2013. Introducing computational concepts in
a linguistics olympiad. In Proceedings of the Fourth
Workshop on Teaching NLP and CL, pages 18–26,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Deryle Lonsdale. 2002. A niche at the nexus: situating
an NLP curriculum interdisciplinarily. In Proceed-
ings of the ACL-02 Workshop on Effective Tools and
Methodologies for Teaching Natural Language Pro-
cessing and Computational Linguistics, pages 46–
53, Philadelphia, Pennsylvania, USA. Association
for Computational Linguistics.

Nitin Madnani and Bonnie J. Dorr. 2008. Combining
open-source with research to re-engineer a hands-
on introductory NLP course. In Proceedings of
the Third Workshop on Issues in Teaching Compu-
tational Linguistics, pages 71–79, Columbus, Ohio.
Association for Computational Linguistics.

Borja Navarro-Colorado. 2017. A quick intensive
course on natural language processing applied to lit-
erary studies. In Teach4DH@ GSCL, pages 37–42.

Nils Reiter, Sarah Schulz, Gerhard Kremer, Ro-
man Klinger, Gabriel Viehhauser, and Jonas Kuhn.
2017. Teaching computational aspects in the dig-
ital humanities program at university of stuttgart–
intentions and experiences. Humanities, 1:6.

Kathleen M Sheehan. 2017. Validating automated mea-
sures of text complexity. Educational Measurement:
Issues and Practice, 36(4):35–43.

Victor Veitch, Dhanya Sridhar, and David Blei. 2020.
Adapting text embeddings for causal inference. In
Conference on Uncertainty in Artificial Intelligence,
pages 919–928. PMLR.

Fei Xia. 2008. The evolution of a statistical NLP
course. In Proceedings of the Third Workshop on Is-
sues in Teaching Computational Linguistics, pages
45–53, Columbus, Ohio. Association for Computa-
tional Linguistics.

Heike Zinsmeister. 2008. Freshmen’s cl curriculum:
the benefits of redundancy. In Proceedings of the
Third Workshop on Issues in Teaching Computa-
tional Linguistics, pages 19–26.

159

Proceedings of the Fifth Workshop on Teaching NLP, pages 160–170
June 10–11, 2021. ©2021 Association for Computational Linguistics

Teaching NLP with Bracelets and Restaurant Menus:
An Interactive Workshop for Italian Students

Ludovica Pannitto
University of Trento

ludovica.pannitto@unitn.it

Lucia Busso
Aston University

l.busso@aston.ac.uk

Claudia Roberta Combei
University of Bologna

claudiaroberta.combei@unibo.it

Lucio Messina
Independent Researcher

lucio.messina@autistici.org

Alessio Miaschi
University of Pisa

alessio.miaschi@phd.unipi.it

Gabriele Sarti
University of Trieste
gsarti@sissa.it

Malvina Nissim
University of Groningen
m.nissim@rug.nl

Abstract

Although Natural Language Processing (NLP)
is at the core of many tools young people
use in their everyday life, high school cur-
ricula (in Italy) do not include any computa-
tional linguistics education. This lack of ex-
posure makes the use of such tools less re-
sponsible than it could be and makes choos-
ing computational linguistics as a university
degree unlikely. To raise awareness, curios-
ity, and longer-term interest in young people,
we have developed an interactive workshop de-
signed to illustrate the basic principles of NLP
and computational linguistics to high school
Italian students aged between 13 and 18 years.
The workshop takes the form of a game in
which participants play the role of machines
needing to solve some of the most common
problems a computer faces in understanding
language: from voice recognition to Markov
chains to syntactic parsing. Participants are
guided through the workshop with the help
of instructors, who present the activities and
explain core concepts from computational lin-
guistics. The workshop was presented at nu-
merous outlets in Italy between 2019 and 2021,
both face-to-face and online.

1 Introduction

Have you used Google this week? This question
would kick off the activity that we describe in this
paper every time we delivered it. And a number of
follow-up comments would generally appear. What
for? Translating, getting some help for homework,
looking for info, writing collaboratively - and get-
ting spelling correction!

In our workshops, we talk to groups of teenagers
– even if someone has not personally used any of

those tools on a daily basis, it is utmost unlikely that
they have never interacted with a vocal assistant,
wondered how their email spam filter works, used
text predictions, or spoken to a chat-bot. Also,
applications that do not require a proactive role
of the user are growing: most of us, for example,
are subject to targeted advertising, profiled on the
content we produce and share on social media.

Natural Language Processing (NLP) has grown
at an incredibly fast pace, and it is at the core of
many of the tools we use every day.1 At the same
time, though, awareness of its underlying mecha-
nisms and the scientific discussion that has led to
such innovations, and even NLP’s very existence
as a scientific discipline is generally much less
widespread and is basically unknown to the general
public (Grandi and Masini, 2018).

A concurrent cause to this lack of awareness re-
sides in the fact that in more traditional high-school
formal education systems, such as the Italian one,
“young disciplines" such as Linguistics and Com-
puter Science tend to be overlooked. Grammar,
that in a high-school setting is the closest field to
Linguistics, is rarely taught as a descriptive disci-
pline; oftentimes, it is presented as a set of norms
that one should follow in order to speak and write
correctly in a given language. While this approach
has its benefits, it is particularly misleading when
it comes to what actual linguistic research is about.
Similarly, Computer Science is often misread by
the general public as an activity that deals with
computers, while aspects concerning information
technology and language processing are often ne-

1In this discussion, and throughout the paper, we conflate
the terms Natural Language Processing and Computational
Linguistics and use them interchangeably.

160

glected. This often leads to two important conse-
quences. First, despite the overwhelming amount
of NLP applications, students and citizens at large
lack the basic notions that would allow them to
fully understand technology and interact with it in
a responsible and critical way. Second, high-school
students might not be aware of Computational Lin-
guistics as an option for their university degree.
Oftentimes, students that enrol in Humanities de-
grees are mainly interested in literature and they
only get acquainted with linguistics as discipline
at university. At the same time, most Computer
Science curricula in Italian higher education rarely
focus on natural language-based applications. As a
result, Computational Linguistics as such is practi-
cally never taught before graduate studies.

As members of the Italian Association for Com-
putational Linguistics (AILC, www.ai-lc.it)
we have long felt the need to bridge this knowl-
edge gap, and made dissemination a core goal of
the Association. As a step in this direction, we
have developed a dissemination activity that cov-
ers the basic aspects of what it means to process
and analyze language computationally. This is the
first activity of its kind developed and promoted by
AILC, and to the best of our knowledge, among the
first in Italy at large.

This contribution describes the activity itself, the
way it was implemented as a workshop for high
school students in the context of several dissemina-
tion events, and how it can serve as a blueprint to
develop similar activities for yet new languages.

2 Genesis and Goals

We set to develop an activity whose main aim
would be to provide a broad overview of language
modeling, and, most importantly, to highlight the
open challenges in language understanding and
generation.

Without any ambition to present and explain the
actual NLP techniques to students, we rather fo-
cused on showing how language, which is usually
conceptualized by the layperson as a simple and
monolithic object, is instead a complex stratifica-
tion of interconnected layers that need to be disen-
tangled in order to provide a suitable formalization.

In developing our activity, we took inspiration
from the word salad Linguistic Puzzle, as pub-
lished in Radev and Pustejovsky (2013):

Charlie and Jane had been passing notes in
class, when suddenly their teacher Mr. John-

son saw what was going on. He rushed to
the back of the class, took the note Charlie
had just passed Jane, and ripped it up, drop-
ping the pieces on the floor. Jane noticed
that he had managed to rip each word of
the message onto a separate piece of paper.
The pieces of paper were, in alphabetical
order, as follows: dog, in, is, my, school,
the. Most likely, what did Charlie’s note
originally say?

The problem includes a number of follow up
questions that encourage the student to reflect upon
the boundaries of sentence structure. In particular,
we found that the word salad puzzle would give us
the opportunity to introduce some of the core as-
pects of Computational Linguistics’ research. Ap-
proaching the problem with no previous knowledge
helps raising some crucial questions, such as: what
are the building blocks of our linguistic ability that
allow us to perform such a task?, how much knowl-
edge can we extract from text alone?, what does
linguistic knowledge look like?

Since the workshop here presented is the first
activity of this kind in the Italian context, we took
inspiration from games and problems such as those
outlined in Radev and Pustejovsky (2013) and used
for the North American Computational Linguis-
tics Olympiads, similar to the ones described in
Van Halteren (2002) and Iomdin et al. (2013). Par-
ticularly, we were inspired by the institution of
(Computational) Linguistic Olympiads in making
our workshop a problem-solving game with dif-
ferent activities, each related to a different aspect
of computational language processing. Linguistic
Olympiads are now an established annual event in
many parts of the world since they first took place
in Moscow in 1965. In these competitions students
(generally of high-school age) are faced with lin-
guistic problems of varying nature, that require
participants to use problem-solving abilities to un-
cover underlying patterns or rules in the data. For
an in-depth discussion of the history and diffusion
of Linguistic Olympiads in the world, see Derzhan-
ski and Payne (2010) and Littell et al. (2013).

In the choice of algorithms to include in our
dissemination activity, we decided to leave aside
neural networks and instead focus on traditional
statistical approaches, both for historical reasons
and for the fact that these convey more clearly the
distinction between different layers of linguistic in-
formation and their roles in language modeling. A

161

Activity � Aim
1. Get to know a (computational) linguist 10’ collaboratively build a definition for linguistics as a

study field
2. Are computers able to hear? 15’ familiarize with the concept of simulation of humans’

speech perception abilities
3. Are computers able to read? 30’ introduce corpora as sources of linguistic knowledge

and statistical patterns as structural aspects of lan-
guage

4. Do computers know grammar? 30’ introduce human annotation and meta-linguistic
knowledge as powerful research tools

5. Becoming a computational linguist 5’ evaluate pros and cons of the two presented ap-
proaches, future directions and discuss about what’s
needed to become a computational linguist

Table 1: Sections of the activity, with their planned duration and a broad aim for each of them.

brief discussion of most recent NLP technologies,
including the application of neural networks, is in-
cluded in the final part of the workshop (Sec. 3.5).

The activity is targeted at students in their last
year of middle school (13 years of age) or older.
While we believe 13 is a good entry point, there
isn’t an actual upper-bound, since the activity can
be enjoyed by people of any older age (though
in practice participation was mainly offered to
schools, with the oldest students being 18-19). We
thought this would be the appropriate target audi-
ence of this workshop for two main reasons. On
the one hand, we believe that coming to the activity
with a richer metalinguistic background, typically
acquired during the first Italian school cycle, would
be beneficial for the attendees to better grasp the
differences between the scientific approach to lan-
guage and the more prescriptive approach they are
exposed to in school. On the other hand we also
conceived the activity as a way of helping students
in their future study choices: we therefore included
both students attending their last year of middle
school and therefore about to choose a high school
curriculum as well as high school students, the lat-
ter in order to provide them with more options for
their university choices.

3 The activity

We planned our dissemination activity for a 90
minutes time slot, divided into five parts, as detailed
in Table 1.

3.1 Get to know a (computational) linguist
The first 15 minutes of the workshop are organized
both as an ice-breaker activity for the attendees,

and as a brief introduction to linguistics and com-
putational linguistics more specifically.

During the introduction we tried to demystify
some common misconceptions about linguistics,
(i.e., a linguist knows many languages, linguists get
sometimes confused with speech therapists, a lin-
guist will correct my grammar, etc.): we presented
participants with a list of possible definitions, and
they had to identify appropriate ones. We broadly
defined linguistics as the study of language as a bio-
logical, psychological, and cultural object. Compu-
tational Linguistics was then introduced both as a
commercial and engineering-oriented field, as well
as a purely scientific research discipline.2

We also briefly discussed linguistic questions
with participants as an example of the kind of prob-
lems that a linguist tries to approach during their re-
search activity. These included: "How many ways
of pronouncing n do we have in Italian?", "Do num-
bers from one to ten exist in all languages?".

For the following parts of the activity, the intro-
duction to each sub-part was dedicated to a reflec-
tion upon what it means for us humans to hear,
read and understand grammar, and whether there
is a difference when the same tasks are performed
by computers.

3.2 Are computers able to hear?

As vocal assistants such as Alexa, Siri, Google
Home etc. have become increasingly popular, we
chose them as tangible examples of NLP technolo-
gies to kick-off the games. The aim of this section

2We relied on the definition reported in https:
//www.thebritishacademy.ac.uk/blog/
what-computational-linguistics/.

162

of the workshop was to demonstrate two points:

• computers do not necessarily solve linguistic
tasks the way we solve them; they are there-
fore simulating our abilities without replicat-
ing them;

• consequently, the concepts of easy and diffi-
cult tasks have to be carefully revised when
applied to language models.

We introduced the McGurk effect (McGurk and
MacDonald, 1976), to clarify how hearing lan-
guage is a complex task in itself, involving a broad
set of aspects beyond simple sound perception,
such as the visual system as well as the expec-
tations regarding the upcoming input. Computers
on the other hand hear on the basis of an audio
signal that is processed (Figure 1), at least in the
most traditional and well-established architectures,
without access to higher level linguistic knowledge
or information from the communicative context.

We then briefly presented speech recognition as a
direct optimization task (i.e., given an audio signal,
find the word in a given database that maximises the
probability of being associated to that signal) and
introduced one of the major challenges that speech
recognition models are still facing, namely the abil-
ity to adapt to different speech styles (i.e., speakers
of different language varieties and dialects, non-
native speakers, speakers with impairments etc.).

In order to further demonstrate this, we tested
the attendees’ ability to adapt their hearing skills
to different speech varieties by making them hear
conversations in various Italian regional accents.3

While we asked attendees to guess the name of
the region of the speakers, the actual aim was to
show how we easily adapt to understand speech,
differently from speech recognition systems.

3.3 Are computers able to read?
From this moment on, the attendees worked on
written text. The activity described in this section
was aimed at showing how salient aspects related
to language structure can be derived from the sta-
tistical properties of language.

Following the “Word Salad” puzzle (Radev and
Pustejovsky, 2013), the ability of reading was pre-
sented as follows: given a set of words, are we
able to rearrange them in a plausible sentence-like
order? We demonstrated how this is an easy task

3Conversations were extracted from corpus CLIPS (Al-
bano Leoni et al., 2007).

Figure 1: Representation of the audio signal for the ital-
ian word destra (en. right). This was used to show how
information coming from audio signals can be repre-
sented in a way that easily allows the computer to per-
form a pattern matching task, but would be impossible
to process for humans.

for human beings, when one deals with a language
they are familiar with (Figure 2), while, generally
one may not be able to perform the same task in
case of unknown languages (Figure 3), where each
possible ordering seems equally plausible.

Figure 2: A set of Italian words (from the top left cor-
ner, en. is, garden, in, my, the, dog): when asked to re-
arrange them into a sentence, participants would first
come up with the most likely ordering (i.e., il mio cane
è nel giardino, en. my dog is in the garden) and if
prompted they would then produce more creative sen-
tences (i.e., il cane nel giardino è mio, en. the dog in
the garden is mine). They would however never con-
sider ungrammatical sequences as possible sentences.

We therefore gave the attendees a deck of un-
known, mysterious tokens (left card in Figure 4)
and asked them to come up with the most plausi-
ble sentence that contained all of them. The cards
represented either Italian or English words (par-
ticipants were divided into two teams, each one
dealing with a different masked language) which
had however been transliterated into an unknown
alphabet. While this was obviously an impossible
task to solve, it gave us the opportunity to introduce
a notion of probability in the linguistic realm. We
cast it as the expectation that we humans bear on

163

Figure 3: The figure depicts the same situation as Fig-
ure 2, this time with non-words.

Figure 4: Example cards, both showing a word. Left:
a card for the first activity, with a button loop to thread
it in a sentence. Right: a card for the second activity,
with part of speech (number) at the bottom.

the appearance of a specific linguistic sequence,
and the subsequent need for a source of linguistic
knowledge to implement the same notion.

When asked to perform the same task on the
words of Figure 2, participants produced sentences
in a quite consistent order, and the most prototyp-
ical sentences (e.g., il mio cane è nel giardino,
en. my dog is in the garden) were usually elicited
before some less typical ones (e.g., il cane nel gi-
ardino è mio, en. the dog in the garden is mine),
while agrammatical sentences (i.e., random permu-
tations) were never produced.

We justified their responses by explaining that
humans accumulate a great amount of linguistic
knowledge throughout their lifetime that helps
them refine these expectations, while machines are
instead in principle unbiased towards having any
specific preference. This observation allowed us to
introduce participants to the notion of corpus as a
large collection of linguistic data that mimics the
amount of data we are exposed to as humans.

Each team was then provided with a corpus writ-
ten in an unknown language (approximately 60 sen-
tences hand-crafted by transliterating a portion of
the “Snow White” tale into a mysterious alphabet
Figure 5). Concurrently, we introduced a simple
algorithm to tell apart sentence-like orderings of
the provided tokens from the random ones.

The algorithm, which we called The bracelet
method (Figure 6), is based on the Markov Chain

Figure 5: The figure shows one of the corpora that was
given to participants, 5 A3 tables containing approx.
60 transliterated sentences from the “Snow White”
fairy tale, and tokens with buttonholes that had to be
searched in the corpus and threaded into sentences.

procedure: in a scenario similar to that of lining
pearls up to form a bracelet, participants could
decompose the task of forming up a sentence into
smaller tasks. To make the operation more concrete,
we equipped each card with a button loop as shown
in Figure 4: this way cards could be physically
threaded together to form a sentence.

The first step consisted in choosing the first word,
for the beginning of the sentence. Since partic-
ipants were facing a language they didn’t know,
they were not aware of language structures nor of
the meaning of the tokens. In such a situation, they
could decide whether it was plausible to use a given
word at the beginning of a sentence just by look-
ing up in the corpus sentences that began the same
way. If they found at least one sentence that began
with the same word, it meant that that was a licit
position and they could use it to start the sentence.

The activity continued as follows: sticking to the
bracelet metaphor, participants needed to select and
insert the following "pearl" into the thread: ideally
the pearl should pair well with the previous one, as
we might want to avoid colour mismatch (e.g., it
is well known that blue and green do not go well
together). The metaphor highlights therefore a core
aspect that holds true for language as well, namely
that we can condition our choice on a variable num-
ber of previous choices, and this will influence the
complexity of the obtained pattern.

The activity resulted in a number of sentence-
bracelets, as shown in Figure 7, that were then kept
aside to be translated at the end of the workshop.

3.4 Do computers know grammar?

While the previous game highlighted the impor-
tance of statistical information in NLP, in accor-

164

Figure 6: The bracelet method applied on the Italian
words è, mio, giardino, nel (en. is, my, garden, in). The
algorithm is based on bigram co-occurrences, so the
choice for each word is based solely on the previously
chosen one. Colors indicate probabilities, which are
computed based only on the previously chosen word
cane (en. dog). The first token, il (en. the), appears
grayed as it is ignored for the choice.

Figure 7: The figure shows the result of a bracelet
sequence: tokens are threaded together based on co-
occurrences in the corpus.

dance with the overall aim of the activity, we also
wanted to introduce some of the algorithms that are
more deeply rooted in the linguistic tradition.

In order to do so, we introduced the notion of
grammar as a descriptive abstraction over a set of
examples. Out of the linguistic context, to exem-
plify this notion of grammar metaphorically, we
presented participants with a set of possible restau-
rant menus (Figure 8), and encouraged them to
come up with the general rule that the restaurant
owner must have had in mind when choosing those
combinations. All menus were built as a traditional
Italian full meal, composed by two main dishes and
a dessert. We perpetuated the metaphor showing
how, once a set of rules is defined, these can be
used both to decide if a new menu is likely to be
part of the same set (Figure 9) and also to generate
new meals (Figure 10).

This metaphor, which was readily grasped by
most participants, was useful to show how different
components can be combined together in a mean-

Figure 8: Each block in the image corresponds to a pos-
sible Italian full meal, consisting of: first course (e.g.
fusilli al pomodoro), second course (e.g. pollo agli as-
paragi) and dessert (e.g. pannacotta).

Figure 9: Step-by-step process to assess the validity of
a given menu. In the top-right corner the rules for cre-
ating a full meal are shown . Categories are defined re-
cursively until each course that constitute the full menu
is obtained and therefore reduced to the initial category
of a pasto (en. meal).

Figure 10: Process flow for creating a new meal from
the initial category pasto (en. meal) up to the leaves
containing terminal symbols such as penne, funghi,
pollo etc. (en., a type of pasta, mushrooms, chicken).
The rules used to generate are the same used for the
reduction process, reported in Figure 9.

ingful way, as it happens in grammar. Before mov-
ing back to the corpus, we showed them what a
formal grammar of the menus could look like.

We had previously annotated the corpus with
165

syntactic and morpho-syntactic information (i.e.,
part of speech), as shown in Figures 5 and 12. We
therefore asked participants to extract from the cor-
pus a possible grammar, namely a set of attested
rules and use them to generate a new sentence.

In order to write the grammar, participants were
given several physical materials: felt strips repro-
ducing the colors of the annotation, a deck of cards
with numbers (identifying parts of speech) and a
deck of “=” symbols (Figure 11).

Figure 11: A set of rules extracted during the activity
from the corpus. Each rule is made of felt strips for
phrases, cards with numbers indicating parts of speech,
and “=” cards.

With a new deck of words (Figure 4, right panel),
not all of which present in the corpus, participants
had to generate a sentence using the previously
composed rules.

3.5 Becoming a computational linguist

At this point, participants had created a number
of sentences by means of the two techniques de-
scribed above. It is now time to discover that the
mysterious languages they worked on were actually
English and Italian. This was achieved in practice
by superimposing a Plexiglas frame on the A3 cor-
pus pages (Figure 13): the true nature of the cor-
pora was this way revealed as the participants could
see the original texts (in Italian and English) and
translate the sentences they had created previously.

The outcome of the activity stimulated discus-
sion amongst the participants, highlighting pros
and cons of each approach and how could they be
integrated into real-life technologies. Our work-
shop ended with a brief description of more recent
NLP technologies and their commercial applica-
tions, such as recommender systems, automatic
translation, text completion, etc.

Since the target audience consisted mostly of
middle- and high-school students, we offered an
overview of what it takes to become a computa-

Figure 12: Example of categories (it. Categorie), e.g.
phrases and POS tags, and rules (it. Regole) for the sen-
tence "lo specchio rispose a la regina" (en. the mirror
answered to the queen).

Figure 13: A trial session of the workshop (the picture
shows some of the tutors explaining the game to AILC
members): the original language of the corpus has just
been revealed by superimposing Plexiglas supports on
the corpus tables.

tional linguist and where one could study computa-
tional linguistics in Italy.

4 The workshop in action

The activity – here outlined in its complete and
original form – was presented in various outlets
during the last year and a half.

It was initially designed for the 2019 edition of
the “Bergamo Scienza” Science Festival4, where it
was presented live to over 450 participants in the
course of two weeks. A simplified "print-and-play"
version of the workshop was also presented at the
2020 edition of the SISSA5 Student Day.

Due to the Covid-19 pandemic, all other pre-
sentations of the activity had to be moved online.
Transposing the workshop crucially meant striving
to maintaining the interactive nature of the activi-
ties without the possibility of meeting face to face.

4https://festival.bergamoscienza.it/
5https://www.sissa.it/

166

To do so, we integrated our original presentation on
Google slides with the interactive presentation soft-
ware Mentimeter6 - which we used for questions,
polling and quizzes. The corpus and tokens were
presented via a web interface created especially for
this purpose7.

The interface presented the masked corpus, com-
plete with POS tags and syntactic annotations. For
the bracelet activity participants were automatically
assigned a number of tokens which they could use
to build a sentence by simply dragging and drop-
ping them. (Figures 14 and 15).

This online version was crafted in the first place
to be presented at “Festival della Scienza”8 (Fig-
ure 16), a science festival primarily aimed at school
students held each year in Genoa, where multi-
ple 45’ sessions of the workshop were run over
the course of two days. The fourth activity (Sec-
tion 3.4) involved "bootstrapping" syntactic rules
based only on our color-based annotation. To
simplify online interaction, we only used the un-
masked Italian version of the corpus and partic-
ipants played collectively, helping each other to
build sentences and grammatical rules: rules were
collected through a Mentimeter poll, while a sen-
tence was generated in a guided demonstration by
the presenter of the workshop.

Overall, the workshop transposed really well
online, and was extremely well-received in this ver-
sion as well. The online modality also allowed us
to present it to a more vast and varied audience
than just students: a version for the general pub-
lic was presented at European Researchers’ Night
(Bright Night9) at the University of Pisa, thanks to
a collaboration with the Computational Linguistics
Laboratory10 and ILC-CNR11 in November 2020,
a dedicated session was run for the High school
ITS Buzzi12 (Prato, Italy) in December 2020, and
during the second edition of the Science Web Fes-
tival13 in April 2021.

5 Reusability: this activity as a blueprint

As mentioned in Section 1, our activity was in-
spired by a collection of English-language prob-

6https://www.menti.com/
7A demo of the interface can be found at https://

donde.altervista.org/
8http://www.festivalscienza.it
9https://www.bright-night.it/

10http://colinglab.humnet.unipi.it/
11http://www.ilc.cnr.it/
12https://www.tulliobuzzi.edu.it/
13https://www.sciencewebfestival.it/

lems created for students participating in the Com-
putational Linguistics Olympiad (Radev and Puste-
jovsky, 2013).

We adapted the original activity to the Italian
language and context. While we tried to choose
widely shared linguistic principles to communi-
cate, the operation of adapting the game to a dif-
ferent language obviously requires language spe-
cific choices and details, which would have to be
re-evaluated when porting the activity to yet new
languages. Particularly, since the materials have
been developed for Italian, it might be the case
that transposition is not straightforward for some
languages. However, we believe that the general
structure of our workshop can serve as a blueprint
for extension to new languages. For this reason
all the relevant materials are made available in a
dedicated repository. The repository includes both
scripts to reproduce our activity as well as a gen-
eral set of insights/recommendations regarding the
structure and principles of the workshop.

All of the scripts necessary to produce the ma-
terials used in the game’s workflow in a different
language are made available in our open-access
repository14. To get the activity into production
using the scripts provided, one only needs to create
an annotated corpus in the target language.

Our specific choice of “Snow White” as a cor-
pus is motivated by the fact that the story can be
phrased in a fairly repetitive formulation, with two
advantages. One is that enough bigrams are present
that enable the generation of new sentences with
the bracelet method. The other one is that the story
contains recognizable characters (e.g., the dwarfs,
the evil queen etc.), so that, when the unmasked
text is revealed, the process results intuitively trans-
parent. Such characteristics are desirable for the
activity, and should be kept in mind when choosing
a new text for a new language.

In addition to sharing scripts, we are sharing here
the core structure and principles the workshop re-
lies on, which can be reproduced when replicating
the activity also for a different language.

Parts 1&2 At the beginning of the workshop (see
Section 3.2) we show the limits of current tech-
nologies, in particular in terms of adaptability. To
this end, we exploited diatopic variations, such
as Italian regional accents, since this is an aspect
readily available to Italian students. In the con-

14https://bitbucket.org/melfnt/
malvisindi

167

Figure 14: Interface of the online website used for the "bracelet" game (section 3.3) during the online workshops.
Players can collaboratively drag and drop their card from the bottom left panel to form sentences in the top-left
panel. The corpus is shown in the right panel.

Figure 15: After the games the website shows the translation of the corpus (see for example line 1) and cards.

text of other languages, the same concept could be
however shown by different means, such as the in-
fluence of jargon or minority languages, or simply
differences in accuracy depending on, age or other
socio-demographic and socio-cultural variables.

Part 3 The next part of the activity (Section 3.3)
is the most easily reproducible in a different lan-
guage as it only exploits statistical co-occurrences
as a cue for linguistic structure. The only pre-
requisite here is the availability of a sufficiently
standardized tokenization for the language of inter-
est. As described above, we masked the language
through a transliteration system: this was achieved
either substituting words with sequences of sym-

bols, or with non-words. In the case of non-words,
these were generated by manually defining a series
of phonotactic constraints for Italian, which should
be adapted to the target language.

The main message to be conveyed through this
activity is that language is a complex system; we
did this disentangling semantics from the purely
symbolic tier, which is the one computers most
commonly manipulate.

Part 4 The following part of the activity (Sec-
tion 3.4) focuses on the expressive power residing
in the definition of auxiliary categories as descrip-
tors of linguistic evidence. We achieved this by sim-
plifying a constituent-based annotation for our cor-

168

Figure 16: The picture was taken during a workshop session at “Festival della Scienza” in Genoa, in October 2020.
Due to the COVID-19 pandemic, students were participating remotely. The left panel shows the tutor handling
grammatical categories (colored cards for syntactic phrases and letters for parts of speech); the right panel shows a
screenshot of the slides employed during the activity. Students could see both panels as slides were streamed while
a webcam was capturing the tutor’s movements.

pus: having continuous constituents easily allowed
for the physical implementation of re-writing rules
(i.e., participants had some physical constituents
and tokens that could be used to simulate the gen-
eration process). We built categories in order to
extract from the text a simple regular grammar,
and we were especially careful about the fact that
both the Italian and the English corpus showed a
similar structure and therefore complexity level.
More specifically, we restricted to five types of
higher-level categories that acted as phrases (i.e.,
sentence, noun phrase, verb phrase, prepositional
phrase, subordinate clause): this is of course a huge
simplification and, for the sake of the activity, we
overlooked some relevant linguistic phenomena.

We reckon that this approach might not be
portable to languages that exhibit a flexible word
order, so alternative solutions should be sought.

Part 5 The last section of the activity was dedi-
cated to a discussion on the presented methods for
language generation.

After that and depending on the audience, we
presented some options to pursue studies in Compu-
tational Linguistics in Italy, which would of course
have to be adapted to the target social context. Lay
publications concerned with Computational Lin-
guistics are also unfortunately not very common
in Italy, therefore we took the opportunity to pro-
vide participants with some suggestions for further
readings (Masini and Grandi, 2017).

6 Looking back and ahead

In the previous sections we described an interactive
workshop designed to illustrate the basic princi-
ples of Computational Linguistics to young Italian

students. It is the first activity of its kind to be de-
signed by the Italian Association for Computational
Linguistics and among the first dissemination activ-
ities in Italy for Computational Linguistics directed
to young students.

The activity had the broad aim of increasing
awareness towards applications based on language
technology, and introduce students to the study of
language as a scientific discipline.

We run the activity in both face-to-face and, due
to COVID-19, online form: generally speaking, we
received enthusiastic feedback both from younger
participants and from the more general public. We
adapted the activity to a variety of formats and time-
slots, ranging from 30 to 90 minutes: the amount
of time required to approach the game and get ac-
quainted with the concepts is of course variable,
and depends on the participants’ background and
on the level of engagement that is expected of them.
Generally speaking 45 minutes are enough for a
presentation including some interaction with the
audience, especially in the online setting, but at
least 90 minutes are needed for the participants to
fully experiment with the hands-on activity.

We want to specifically stress how time is a cen-
tral ingredient in the activity. While the game-
related aspects remained engaging and fun even
in the shortened, online versions, in order to fully
grasp the mechanisms underlying the presented al-
gorithms longer sessions would be needed. In fact,
we often felt that more time would be beneficial for
a deeper discussion about language as an object of
study itself, and about language as data on which
theories can be built. In particular, shorter time-
slots or less guided activities enhance the risk of

169

participants approaching the challenge as a puzzle
that they can solve regardless of linguistic knowl-
edge. This is because the approach to language we
are presenting is entirely new to our audience, and
not only to the younger students.

Although we did not have a formal system in
place to collect systematic feedback, the overall
response across venues and conditions has been
extremely positive.15 Curiosity and engagement
of participants remained high both onsite and on-
line, and we received many questions on several
aspects of Natural Language Processing and neural
networks, as well as concerning its role in Artificial
Intelligence at large.

The participants’ enthusiastic questions gave us
many ideas for future dissemination activities. In
fact, the technological world is advancing fast and
we firmly believe that it is necessary to spread more
awareness on the inner workings of AI-based tech-
nologies, to develop a society-level conscience to
approach them in a critical way.

The activity described in this paper was targeted
at middle to high-school students as well as the gen-
eral public. It would be interesting to engage with
a younger audience as well, as communicating the
study and (computational) modelling of language
to them would raise awareness towards language
studies as a scientific discipline.

For our activity, we took inspiration from one of
the problems proposed in Radev and Pustejovsky
(2013). Puzzles such as the ones presented at the
Computational Linguistics Competitions are a great
way to introduce both important challenges and the
methodology to solve them, as they stimulate stu-
dents to investigate linguistic aspects in a bottom-
up fashion. Organizing the competition in Italy
would represent a bigger project for our associa-
tion, to be addressed in the coming years.

Acknowledgements

The workshop has been developed with help and
support from many parties. We would like to thank
them all here. First and foremost, all the partici-
pants that enthusiastically played along and made
the activity a success. Along with them, four tutors
and science animators helped us greatly in putting
our ideas into practice. We are also grateful to Berg-
amoScienza, Festival della Scienza, Science Web

15Following one reviewer’s suggestion, we have imple-
mented such a system for our latest presentation at the Science
Web Festival 2021 as a Google form that we circulated among
participants at the end of the presentation.

Festival for hosting the activity during the festivals,
to ILC-CNR “Antonio Zampolli" and ColingLab
(University of Pisa) for hosting us during the Eu-
ropean Researchers’ Night, and to the Scuola In-
ternazionale Superiore di Studi Avanzati (SISSA)
and ITI Tullio Buzzi. We are also grateful to Dr.
Mirko Lai, who has collaborated on the develop-
ment of the web interface for the online versions of
our activity. We would like to thank AILC (Italian
Association of Computational Linguistics) for en-
couraging us to design the activity and supporting
us throughout the process. Last but not least, we
thank the true hero of our workshop: GingerCat. 16

References
Federico Albano Leoni, Francesco Cutugno, and Re-

nata Savy. 2007. Clips (corpora e lessici di ital-
iano parlato e scritto). Linguistica computazionale:
ricerche monolingui e multilingui.

Ivan A Derzhanski and Thomas Payne. 2010. The lin-
guistics olympiads: Academic competitions in lin-
guistics for secondary school students. Linguistics
at school: language awareness in primary and sec-
ondary education, pages 213–26.

Nicola Grandi and Francesca Masini. 2018. Perché la
linguistica ha bisogno di divulgazione (e viceversa).
In N. Grandi and F. Masini, editors, La linguistica
della divulgazione, la divulgazione della linguistica.
Atti del IV Convegno Interannuale SLI nuova serie,
pages 5–12. SLI, Roma.

Boris Iomdin, Alexander Piperski, and Anton Somin.
2013. Linguistic problems based on text corpora.
In Proceedings of the Fourth Workshop on Teaching
NLP and CL, pages 9–17.

Patrick Littell, Lori Levin, Jason Eisner, and Dragomir
Radev. 2013. Introducing computational concepts in
a linguistics olympiad. In Proceedings of the Fourth
Workshop on Teaching NLP and CL, pages 18–26.

Francesca Masini and Nicola Grandi. 2017. Tutto ciò
che hai sempre voluto sapere sul linguaggio e sulle
lingue. Caissa Italia.

Harry McGurk and John MacDonald. 1976. Hearing
lips and seeing voices. Nature, 264(5588):746–748.

Dragomir Radev and James Pustejovsky. 2013. Puzzles
in logic, languages and computation: the red book.
Springer.

Hans Van Halteren. 2002. Teaching nlp/cl through
games: The case of parsing. In Proceedings of the
ACL-02 Workshop on Effective Tools and Methodolo-
gies for Teaching Natural Language Processing and
Computational Linguistics, pages 1–9.

16https://icons8.com/illustrations/
style--ginger-cat-1

170

Author Index

Adewumi, Oluwatosin, 1
Agirrezabal, Manex, 80
Aksenov, Sergey, 13
Alex, Beatrice, 138
Alonso, Pedro, 1
Amblard, Maxime, 34
Apishev, Murat, 13
Artemova, Ekaterina, 13

Baglini, Rebekah, 28
Boutchkova, Maria, 138
Boyce, Richard, 96
Busso, Lucia, 52, 160

Chen, Jifan, 99
Combei, Claudia Roberta, 52, 160
Corona, Rodolfo, 104
Couceiro, Miguel, 34

Delbrouck, Jean-Benoit, 55
DeNero, John, 104
Desai, Shrey, 99
Durrett, Greg, 99

Eisenstein, Jacob, 125

Faridghasemnia, Mohamadreza, 1
Foster, Jennifer, 112
Fried, Daniel, 104
Friedrich, Annemarie, 49

Gaddy, David, 104
Goyal, Tanya, 99

Hiippala, Tuomo, 46
Hjorth, Hermes, 28

Jenifer, Jalisha, 92
Jurgens, David, 62, 108

Kabela, Lucas, 99
Kennington, Casey, 115
Kirianov, Denis, 13
Kitaev, Nikita, 104
Klein, Dan, 104
Kovács, György, 1

Liwicki, Marcus, 1
Llewellyn, Clare, 138

Madureira, Brielen, 87
Manning, Emma, 65
Medero, Julie, 131
Messina, Lucio, 52, 160
Miaschi, Alessio, 52, 160
Mokayed, Hamam, 1

Newman-Griffis, Denis, 96
Nissim, Malvina, 52, 160

Onoe, Yasumasa, 99
Orzechowski, Pawel, 138

Pannitto, Ludovica, 52, 160
Plank, Barbara, 59
Poliak, Adam, 92

Rakesh, Sumit, 1
Reynolds, William, 96

Saini, Rajkumar, 1
Sarkisyan, Veronica, 13
Sarti, Gabriele, 52, 160
Schneider, Nathan, 65
Schofield, Alexandra, 131
Serikov, Oleg, 13
Smith, Ronnie, 70
Stern, Mitchell, 104

Taneja, Sanya, 96

Vajjala, Sowmya, 149

Wagner, Joachim, 112
Wicentowski, Richard, 131

Xu, Jiacheng, 99

Zeldes, Amir, 65
Zesch, Torsten, 49

171

	Program
	Pedagogical Principles in the Online Teaching of Text Mining: A Retrospection
	Teaching a Massive Open Online Course on Natural Language Processing
	Natural Language Processing 4 All (NLP4All): A New Online Platform for Teaching and Learning NLP Concepts
	A New Broad NLP Training from Speech to Knowledge
	Applied Language Technology: NLP for the Humanities
	A Crash Course on Ethics for Natural Language Processing
	A dissemination workshop for introducing young Italian students to NLP
	MiniVQA - A resource to build your tailored VQA competition
	From back to the roots into the gated woods: Deep learning for NLP
	Learning PyTorch Through A Neural Dependency Parsing Exercise
	A Balanced and Broadly Targeted Computational Linguistics Curriculum
	Gaining Experience with Structured Data: Using the Resources of Dialog State Tracking Challenge 2
	The Flipped Classroom model for teaching Conditional Random Fields in an NLP course
	Flamingos and Hedgehogs in the Croquet-Ground: Teaching Evaluation of NLP Systems for Undergraduate Students
	An Immersive Computational Text Analysis Course for Non-Computer Science Students at Barnard College
	Introducing Information Retrieval for Biomedical Informatics Students
	Contemporary NLP Modeling in Six Comprehensive Programming Assignments
	Interactive Assignments for Teaching Structured Neural NLP
	Learning about Word Vector Representations and Deep Learning through Implementing Word2vec
	Naive Bayes versus BERT: Jupyter notebook assignments for an introductory NLP course
	Natural Language Processing for Computer Scientists and Data Scientists at a Large State University
	On Writing a Textbook on Natural Language Processing
	Learning How To Learn NLP: Developing Introductory Concepts Through Scaffolded Discovery
	The Online Pivot: Lessons Learned from Teaching a Text and Data Mining Course in Lockdown, Enhancing online Teaching with Pair Programming and Digital Badges
	Teaching NLP outside Linguistics and Computer Science classrooms: Some challenges and some opportunities
	Teaching NLP with Bracelets and Restaurant Menus: An Interactive Workshop for Italian Students

