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Abstract

We present a scaffolded discovery learning ap-
proach to introducing concepts in a Natural
Language Processing course aimed at com-
puter science students at liberal arts institu-
tions. We describe some of the objectives of
this approach, as well as presenting specific
ways that four of our discovery-based assign-
ments combine specific natural language pro-
cessing concepts with broader analytic skills.
We argue this approach helps prepare students
for many possible future paths involving both
application and innovation of NLP technology
by emphasizing experimental data navigation,
experiment design, and awareness of the com-
plexities and challenges of analysis.

1 Introduction

Discovery learning describes a pedagogical fram-
ing where, instead of introducing students to a skill
and then using assessments to explicitly practice
that skill, students are given a broad objective and
“discover” pertinent concepts and skills in pursuit of
that objective. Though pedagogical research yields
unimpressive results for pure discovery learning
(Mayer, 2004), several works support the effective-
ness of guided discovery learning (Alfieri et al.,
2011), where students are provided scaffolding for
how to develop their solutions and regular oppor-
tunities for feedback or validation. This type of
instructional approach offers the opportunity to ex-
ercise creativity and to take more ownership of their
own sensemaking process.

In this paper, we present a proof of concept of the
merits of scaffolded discovery learning by describ-
ing our implementation of four guided discovery
learning exercises1 to anchor the first four weeks
of an undergraduate natural language processing
course. We also detail why we have found this

1Materials for these four assignments are available for use
at https://github.com/DiscoverNLP.

scaffolded discovery learning approach especially
well-suited to an undergraduate NLP course.

2 Motivation

There are several strategic benefits to a discovery
learning approach for NLP. First, the traditional
computer science approach to NLP instruction
tends to emphasize programming and/or core algo-
rithms first (Bird, 2008), which requires students
to jump immediately into implementing widely ac-
cepted algorithms for particular tasks. While this
may lead to a more satisfying performance out-
come, it may miss the opportunity for students to
engage with why particular choices, such as how to
tokenize text or how to smooth an n-gram model,
actually make sense from a linguistic perspective.
These skills are important when transferring to new
domains, where the optimal choices might change
and require further assessment.

Second, the choice of which model is the mostly
“widely accepted” has been shown to change
rapidly. Examining the curricular recommenda-
tions made by the ACM/IEEE Joint Task Force
for Computing Curricula over time, we see speech
recognition and parsing as emphasized topics in
2001, but no specific discussion of n-gram mod-
els (ACM/IEEE, 2001). In contrast, probabilistic
models and ngrams appear in the 2013 version,
while speech recognition disappears as an empha-
sized topic and parsing remains on the syllabus in
vaguer terms (ACM/IEEE, 2013). While familiar-
ity with these different problem spaces is helpful
for building context and approaches to new prob-
lem domains, it is hard to predict if the depth of
knowledge required to fully implement a condi-
tional random field (CRF) or a deep neural net
for machine translation will be useful beyond the
next few years. In contrast, our discovery-learning
labs focus on how to set up experimental data and
protocols, select and interpret appropriate metrics,
use those metrics to investigate what textual phe-

https://github.com/DiscoverNLP
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nomena they actually embody, and react to that
knowledge with possible design interventions. We
have found these skills not only generalize better
across different models and problem domains, but
also dominate the actual time spent doing our NLP
work as researchers.

Third, this strategy of teaching is more com-
patible with the structure of the curricula at the
undergraduate-only institutions where we teach.
Upper-level courses such as natural language pro-
cessing have shallow prerequisites and students
have uneven backgrounds in math, computer sci-
ence and linguistics. This challenge is shared by
both computer science and linguistics undergrad-
uate programs (Bird, 2008) and graduate courses
aimed at an information studies audience (Hearst,
2005; Liddy and McCracken, 2005). Emphasiz-
ing skills of evaluation and model discovery over
detailed model analyses helps ensure that students
comfortable with data structures and some probabil-
ity will be able to succeed and develop meaningful
skills in the course. In our context, it has the ad-
ditional benefit of inviting a liberal arts approach
to critique the nature of what we evaluate in NLP
tasks, as well as to consider the implications of the
deployment of language technologies.

3 Learning Objectives

We present four labs as a central element of the first
four weeks of a natural language course. In devel-
oping these exercises, we emphasize three skills we
hope students develop through these assignments:
analysis of quantitative results, text exploration,
and generalizing concepts to new models. While
some of these fall into the classic “text processing
first” paradigm of course offered as an applied lin-
guistics approach by Bird (2008), it does not do
so at the exclusion of understanding the “why” of
related algorithms and models. Notably, none of
these skills specify particular models in natural lan-
guage processing, though the labs we present do
have some alignment with different classic NLP
course topics. This is a deliberate alternative ap-
proach: by de-emphasizing outcomes focused on
“knowing” particular algorithms and models, we
provide more opportunity to practice skills to ap-
proach and interpret new models that students may
choose to explore later in the course.

Analysis of quantitative results. Our work aims
to support a progression not in terms of complex-
ity of models, but in the levels of critique students

apply to computational work on text. By build-
ing from some of the basic challenges of what it
means to read, process, and write text in a computer
through the development of increasingly complex
metrics, students naturally have the opportunity
to progress from making comments based on ini-
tially observed phenomena to making the case for
whether results are surprising using typical met-
rics of the field. Unlike work that primarily priv-
ileges meeting certain minimum accuracy thresh-
olds, these exercises intentionally include analyses
of unimpressive results, helping to emphasize im-
portant lessons about how seemingly large quantita-
tive differences don’t always indicate significance
in the vast, sparse universe of language.

Exploration of the text. Natural language pro-
cessing benchmarks often present results in ways
that obscure the contents of the data being evalu-
ated, especially in cases where test data is totally
hidden. Students new to the field of NLP often
do not have strong intuitions around how much
variation exists even in a limited problem domain.
Examining system inputs and outputs helps them
develop intuitions about language data and what it
means to be “unusual” in a highly sparse space. Our
discovery approach helps reinforce the importance
of including both quantitative experimental results
and qualitative discussions using examples about
model behavior with respect to the text, as both
contribute to an understanding of what a model has
(or hasn’t) done.

Thinking beyond individual models. An im-
portant component of practicing natural language
processing is implementing models and compar-
ing their performance. However, current “state of
the art” models often are built using a combina-
tion of different fairly detailed neural architectural
choices. Engaging with implementing these can re-
quire either many prerequisite courses, many days
of in-class time to establish working knowledge of
neural networks for sequential data, or a strategy of
teaching how to code the models that eschews why
to use these pieces. Further, with little confidence
that these models won’t be obsolete in two years, it
can be an expensive investment to set up curricular
materials for these topics without knowing whether
they will still merit reuse the next time the course
is offered. Because our approach de-emphasizes
the specific models implemented in favor of un-
derstanding broader skills around evaluation and
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comparison, we believe it will better prepare stu-
dents to teach themselves and to ask meaningful
research questions when approaching new work.

4 Course Format

The format of the two courses using these labs in-
clude both a lecture-focused larger class format
and a smaller discussion-based format. In both, stu-
dents are expected to read some text from the text-
book, Jurafsky and Martin (2020), supplemented by
papers on relevant NLP topics. Outside of course
readings, the lab work constitutes the vast majority
of the work completed outside of class for the first
half of the semester.

In both formats, we reserve one day a week for
specifically setting up and starting lab assignments.
Students attend “lab day” in order to start work
on the lab exercise for that week. The lab relies
on the concepts discussed in class. Though the
lab assignment is started during the lab period, the
expectation is that the lab work will be completed
outside of class and due the following week.

5 Lab Assignment Progression

The following subsections describe the progression
of four laboratory assignments intended for the first
four weeks of the course. Each lab assignment has
a learning outcome related to analytical skills in
natural language processing. Each of the four labs
presented also focuses on introducing content from
Jurafsky and Martin (2020).

These assignments are implemented in Python,
with starter code provided through GitHub. The
assignments can be coupled with autograders for
the code managed through Gradescope.2 When
used, the autograders (which account for less than
half the points in the student’s final write-up) can
serve as extra scaffolding, as they provide a useful
on-demand tool for students to check whether their
code is correct before writing their analysis.

Each lab is accompanied by an extensive lab
write-up, which breaks the exploration topic into
individual implementation goals, check-ins, and
questions for students to address as they venture
through the assignment. These are designed to
be self-contained: while references to concepts or
definitions described in the textbook reading may
appear, most formulas and terms specific to the
questions in the lab are re-introduced as part of the
write-up. The text alternates between providing

2https://www.gradescope.com/

textual definitions and descriptions, coding instruc-
tions, and analysis questions. As the lab progresses,
the questions grow more open-ended, culminating
in prompts to make sense of results and what they
signal about how well a model fits the text.

5.1 Lab 1: Regex Chatbot

In this lab, students develop a chatbot using reg-
ular expressions, either using Slack or Discord in
our class offerings.3 While the requirements of the
assignment are fairly basic (for instance, the reg-
ular expressions must use groups and quantifiers),
students are primarily graded on a write-up describ-
ing the chatbot and its performance. Students are
expected to document with screenshots examples
of conversations that worked well or poorly and to
analyze what sorts of features might be missing.

Preparation Students are expected to read the
regular expressions subsection of the J&M text-
book (§2.1). Students must also complete the first
portion and at least one challenge puzzle from a reg-
ular expressions puzzle game called Regex Golf.4.

Outcomes Having completed this assignment,
students should be able to develop and test Python
regular expressions, as well as to outline and illus-
trate a qualitative analysis of the capabilities and
limitations of a new model. This assignment also
encourages students to focus their time on thought-
ful analysis instead of optimal performance prior in-
troducing clear numerical metrics of performance.
For instance, the sample of a student write-up in
Figure 1 shows introspection related to a relatively
simple pig Latin bot on how punctuation adds wrin-
kles to the program. These observations about what
cases can lead to additional complexity help set up
how we attend to variation in case, punctuation,
Unicode, and more general human language vari-
ation in datasets for future labs. Though regular
expressions are technically covered in another re-
quired course in the CS major as a theory topic, we
find it important to solidify in an applied context,
as tokenization is a necessary part of processing
pipelines for the remainder of the course, a conclu-
sion we share with Hearst (2005).

3A side benefit of starting with this assignment is that, for
courses that use one of these systems for Q&A, it encourages
participation early among students.

4From Erling Ellinsen: https://alf.nu/
RegexGolf

https://www.gradescope.com/
https://alf.nu/RegexGolf
https://alf.nu/RegexGolf
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Figure 1: A sample student write-up for Lab 1 describing a case where their bot failed to generate formulaic pig
Latin and proposing improvements to address that case.

5.2 Lab 2: Tokenization and Segmentation
In this lab, students are first guided step-by-step
through the basics of making a tokenizer in order
to compute word frequencies in English texts from
Project Gutenberg. Reflections include discussion
of the effect of punctuation and lower-casing on
which words appear most frequently. From there,
students move on to improve a rule-based sentence
segmenter for several portions of the Brown corpus
using simple regular expressions. In this exercise,
students report their precision, recall, and F1 scores,
and reflect on which rules worked well, which did
not, and why. Throughout both pieces, students
explore the text, focusing on which text does not
behave as expected.

Preparation Students are expected to prepare
with textbook reading on text normalization (§2.2-
2.4) as well as classification metrics (§4.7).

Outcomes Having completed this assignment,
students should be able to perform standard string
manipulations in Python. Students also will iden-
tify behaviors in text collections that fall outside
typical prescriptive grammar rules, e.g. that sen-
tences in the Brown corpus may start with a lower-
case letter or end with a colon. Students are of-
ten tempted to add rules to their system for every
sentence boundary, even those that are due to an-
notation errors. The analysis portion of this lab
leads them to consider issues of overfitting for the
first time, since adding rules for those edge cases
leads to worse performance on held-out data. To
complete the lab, students will need to combine

these observations with quantitative results regard-
ing word frequencies and classification metrics to
describe what they have observed about their meth-
ods. Students will additionally reinforce Lab 1
skills of regular expression creation and identify-
ing strengths and weakness in new systems.

5.3 Lab 3: Zipf’s Law and N-gram Models

In this lab, students first look through the same
Project Gutenberg texts to assess how closely the
unigram frequency patterns match those projected
by Zipf’s law. Students then develop functions to
extract unigram, bigram and trigram frequencies
from the texts. They use these functions to compare
features found in an unrelated data set. In the last
offering of this course, we utilized the Hyperparti-
san news dataset (Kiesel et al., 2019) in order to un-
derstand how many types and tokens are unique to
hyperpartisan or non-hyperpartisan-labeled news.
Students explored these same evaluations on a ran-
dom reshuffling of the data to understand the mag-
nitude of “unique” attributes that can arise even
when comparing texts from the same source.

Preparation Students are expected to prepare
with textbook reading on n-gram language mod-
els (§3.1-3.4).

Outcomes Having completed this assignment,
students should be able to develop code to extract
n-gram frequencies from text and predict unigram
frequency distributions from Zipf’s law. This re-
quires interpreting relative and absolute frequen-
cies and their reasonable values: a common error
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(a) Properties of objects (b) Creators and creations

Figure 2: Two examples of alternate analogy tasks developed by students for Lab 4.

scenario as students attempt to compare empirical
versus theoretical behavior is to plot absolute theo-
retical word frequencies against relative empirical
word frequencies, as displayed in Figure 3. Further,
they should be able to provide qualitative and quan-
titative analysis of rare and common features and
their effect on different frequency statistics.

The datasets used for this lab are too large for
naïve file-reading solutions that load the whole file
into memory at once. Students learn to iteratively
process the data, which prepares them for working
with large files in later labs and course projects. As
they work with these files, students gain some prac-
tice leveraging existing libraries (such as lxml5,
spaCy (Honnibal et al., 2020), and matplotlib
(Hunter, 2007)) to process text and plot data.

5.4 Lab 4: Word Embeddings

In this lab, students use GloVe embeddings (Pen-
nington et al., 2014) to experiment with relation-
ships between word vectors, including word simi-
larities and word analogies. Students first practice
loading in text vectors and saving them as a com-
pressed numpymatrix. Subsequently, they develop
code to rank similar words for a selection of related
words, as well as to test whether certain relations
(e.g. gender, number, comparative vs superlative)
have consistent vector differences as rendered in
2d plots using PCA. Finally, students develop their
own relations and word lists to test the consistency
of this method.

Preparation Students are expected to prepare
with textbook reading on vectors space models
(§6.1-6.5) and their evaluation (§6.10-6.12). Sec-

5https://lxml.de/

Figure 3: An incorrect plot for Lab 3, caused by a stu-
dent conflating relative and absolute frequencies. Au-
tograders and lab check-in points allow students to en-
gage with these points of confusion while still catching
errors before students write their analyses.

tion 6.8 on word2vec or an introduction to GloVe
may boost confidence.

Outcomes Having completed this assignment,
students should be able to perform mathematical
operations common to vector space models, such
as computing cosine similarity, vector norms, and
average vector differences. Students will know how
to use numpy operations to speed up computation
(Harris et al., 2020) and dimensionality reduction
to visualize higher-dimensional behavior. Addition-
ally, students should know how to develop and test
a hypothesis about word vector geometries using
appropriate metrics, visualizations, and qualitative
insights. These hypotheses can lead to broader un-
derstanding of what types of relationships work
well as word embedding analogies, too, including

https://lxml.de/
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how relationships that are not one-to-one may fail
(Figure 2a) and how polysemy adds wrinkles to
word analogies (Figure 2b).

6 Observations

In many ways, this format has helped us to feel
liberated in how we approach topics later in the
semester. In the most recent offering of the course,
for instance, the latter half focuses on student
projects and presentations on student-determined
topics covering a range of popular tasks like ma-
chine translation and question answering and more
wide-ranging topics like text-to-speech systems and
computational social science. In other semesters,
the course has continued with structured weekly (or
bi-weekly) lab assignments, often culminating in
a lab assignment that introduces a shared task that
students then work on as a final project. Overall,
we find that the foundational skills introduced in
the first four weeks prepare students well for all of
these paths through the rest of the course.

This approach admittedly releases the opportu-
nity to do a deeper technical dive with the class
into modern models; while students tend to discuss
LSTMs, BERT, and other popular modern models,
they are not expected to fully present these topics in
their presentations. While we had initially worried
about whether this would provide too little infras-
tructure to make sense of neural models, we have
been happy with how students use the skills we
emphasized earlier to uncover known controversies
in the field of NLP. We have witnessed advanced
discussions initiated by the students about topics
such as how strong baselines can be in question-
answering datasets, the possible shortcomings of
metrics such as BLEU, ROUGE, and PYRAMID,
and what it would mean to reach human parity for
machine translation.

Taking a discovery approach is not without risks,
especially when students may get stuck or con-
fused. We have learned some lessons about where
more guidance may be needed for students. First,
unsurprisingly, file I/O often can be remarkably
picky, and we have found that the I/O portions of
these labs can be fairly brittle when students make
choices that may have been reasonable in previous
classes with fairly rudimentary file processing. Fur-
ther illustration around ways to load and save data,
manipulate numpy and spaCy objects, and other-
wise use libraries can greatly reduce time students
spend stuck on smaller bugs instead of NLP ques-

tions. Additionally, students often ask a number
of questions about how much analysis is sufficient
and which aspects to focus on, often not finding en-
gagement with the text intuitive. Sample write-ups
from the first lab or two may help illustrate this, as
well as more development on the prompts for the
write-up to elicit thoughtful analyses.

7 Conclusions

We hope that the description of this class for-
mat and assignment progression helps motivate
the feasibility of a discovery-based approach to
teaching natural language processing. We are
delighted to share the initial assignment instruc-
tions, lab files, and student Gradescope image
publicly on Github at https://github.com/
DiscoverNLP, with additional files for autograd-
ing through Gradescope available on request.
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