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Abstract

This report describes the course Evaluation of
NLP Systems, taught for Computational Lin-
guistics undergraduate students during the win-
ter semester 20/21 at the University of Pots-
dam, Germany. It was a discussion-based
seminar that covered different aspects of eval-
uation in NLP, namely paradigms, common
procedures, data annotation, metrics and mea-
surements, statistical significance testing, best
practices and common approaches in specific
NLP tasks and applications.

1 Motivation

“Alice soon came to the conclusion that it was a very
difficult game indeed.” 1

When the Queen of Hearts invited Alice to her
croquet-ground, Alice had no idea how to play
that strange game with flamingos and hedgehogs.
NLP newcomers may be as puzzled as her when
they enter the Wonderland of NLP and encounter
a myriad of strange new concepts: Baseline, F1
score, glass box, ablation, diagnostic, extrinsic and
intrinsic, performance, annotation, metrics, human-
based, test suite, shared task. . .

Although experienced researchers and practition-
ers may easily relate them to the evaluation of NLP

1Alice in Wonderland by Lewis Carroll, public domain.
Illustration by John Tenniel, public domain, via Wikimedia
Commons.

models and systems, for newcomers like undergrad-
uate students it is not simply a matter of looking
up their definition. It is necessary to show them
the big picture of what and how we play in the
croquet-ground of evaluation in NLP.

The NLP community clearly cares for doing
proper evaluation. From earlier works like the
book by Karen Spärck Jones and Julia R. Galliers
(1995) to the winner of ACL 2020 best paper award
(Ribeiro et al., 2020) and recent dedicated work-
shops, e.g. Eger et al. (2020), the formulation of
evaluation methodologies has been a prominent
topic in the field.

Despite its importance, evaluation is usually cov-
ered very briefly in NLP courses due to a tight
schedule. Teachers barely have time to discuss
dataset splits, simple metrics like accuracy, preci-
sion, recall and F1 Score, and some techniques like
cross validation. As a result, students end up learn-
ing about evaluation on-the-fly as they begin their
careers in NLP. The lack of structured knowledge
may cause them to be unacquainted with the multi-
faceted metrics and procedures, which can render
them partially unable to evaluate models critically
and responsibly. The leap from that one lecture to
what is expected in good NLP papers and software
should not be underestimated.

The course Evaluation of NLP Systems, which I
taught for undergraduate Computational Linguis-
tics students in the winter semester of 20/21 at
the University of Potsdam, Germany, was a read-
ing and discussion-based learning approach with
three main goals: i) helping participants become
aware of the importance of evaluation in NLP; ii)
discussing different evaluation methods, metrics
and techniques; and iii) showing how evaluation is
being done for different NLP tasks.

The following sections provide an overview of
the course content and structure. With some adap-
tation, this course can also be suitable for more
advanced students.
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Topic Content

Paradigms Kinds of evaluation and main steps, e.g. intrinsic and extrinsic,
manual and automatic, black box and glass box.

Common Procedures Overview about the use of measurements, baselines, dataset splits,
cross validation, error analysis, ablation, human evaluation and
comparisons.

Annotation How to annotate linguistic data, evaluate the annotation and how
the annotation scheme can affect the evaluation of a system’s
performance.

Metrics and Measurements Outline of the different metrics commonly used in NLP, what they
aim to quantify and how to interpret them.

Statistical Significance Testing Hypothesis testing for comparing the performance of two systems
in the same dataset.

Best Practices The linguistic aspect of NLP, reproducibility and the social impact
of NLP.

NLP Case Studies Group presentations about specific approaches in four NLP
tasks/applications (machine translation, natural language genera-
tion, dialogue and speech synthesis) and related themes (the history
of evaluation, shared tasks, ethics and ACL’s code of conduct and
replication crisis).

Table 1: Overview of the course content.

2 Course Content and Format

Table 1 presents an overview of the topics discussed
in the course. Details about the weekly reading lists
are available at the course’s website.2

The course happened 100% online due to the
pandemic. It was divided into two parts. In the
first half of the semester, students learned about the
evaluation methods used in general in NLP and, to
some extent, machine learning. After each meeting,
I posted a pre-recorded short lecture, slides and a
reading list about the next week’s content. The
participants had thus one week to work through
the material anytime before the next meeting slot.
I provided diverse sources like papers, blogposts,
tutorials, slides and videos.

I started the online meetings with a wrap-up and
feedback about the previous week’s content. Then,
I randomly split them into groups of 3 or 4 par-
ticipants in breakout sessions so that they could
discuss a worksheet together for about 45 minutes.
I encouraged them to use this occasion to profit
from the interaction and brainstorming with their

2https://briemadu.github.io/evalNLP/schedule

peers and exchange arguments and thoughts. After
the meeting, they had one week to write down their
solutions individually and submit it.

In the second half of the semester, they divided
into 4 groups to analyze how evaluation is being
done in specific NLP tasks. For larger groups, other
NLP tasks can be added. They prepared group
presentations and discussion topics according to
general guidelines and an initial bibliography that
they could expand. Students provided anonymous
feedback about each other’s presentations for me
and I then shared it with the presenters, to have the
chance to filter abusive or offensive comments.

The last lecture was a tutorial about useful met-
rics available in scikit-learn and nltk Python li-
braries using Jupyter Notebook (Kluyver et al.,
2016).

Finally, they had six weeks to work on a final
project. Students could select one of the following
three options: i) a critical essay on the development
and current state of evaluation in NLP, discussing
the positive and negative aspects and where to go
from here; ii) a hands-on detailed evaluation of
an NLP system of their choice, which could be,

https://briemadu.github.io/evalNLP/schedule
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for example, an algorithm they implemented for
another course; or iii) a summary of the course in
the format of a small newspaper.

3 Participants

Seventeen bachelor students of Computational Lin-
guistics attended the course. At the University of
Potsdam, this seminar falls into the category of
a module called Methods of Computational Lin-
guistics, which is intended for students in the 5th

semester of their bachelor course. Still, one student
in the 3rd and many students in higher semesters
also took part.

By the 5th semester, students are expected to
have completed introductory courses on linguis-
tics (phonetic and phonology, syntax, morphology,
semantics and psycho- and neurolinguistics), com-
putational linguistics techniques, computer science
and programming (finite state automata, advanced
Python and other courses of their choice), introduc-
tion to statistics and empirical methods and founda-
tions of mathematics and logic, as well as varying
seminars related to computational linguistics.

Although there were no formal requirements for
taking this course, students should preferably be
familiar some common tasks and practices in NLP
and the basics of statistics.

4 Outcomes

I believe this course successfully introduced stu-
dents to several fundamental principles of evalua-
tion in NLP. The quality of their submissions, espe-
cially the final project, was, in general, very high.
By knowing how to properly manage flamingos
and hedgehogs, they will hopefully be spared the
sentence “off with their head!” as they continue
their careers in NLP. The game is not very difficult
when one learns the rules.

Students gave very positive feedback at the end
of the semester about the content, the literature
and the format. They particularly enjoyed the op-
portunity to discuss with each other, saying it was
good to exchange what they recalled from the read-
ing. They also stated that what they learned con-
tributed to their understanding in other courses and
improved their ability to document and evaluate
models they implement. The course was also useful
for them to start reading more scientific literature.

In terms of improvements, they mentioned that
the weekly workload could be reduced. They also
reported that the reading for the week when we

covered statistical significance testing was too ad-
vanced. Still, they could do the worksheet since it
did not dive deep into the theory.

The syllabus, slides and suggested readings are
available on the course’s website.3 The references
here list the papers and books used to put together
the course and has no ambition of being exhaus-
tive. In case this course is replicated, the references
should be updated with the most recent papers. I
can share the worksheets and guidelines for the
group presentation and the project upon request.
Feedback from readers is very welcome.
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