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Abstract

Dependency parsing is increasingly the pop-
ular parsing formalism in practice. This as-
signment provides a practice exercise in im-
plementing the shift-reduce dependency parser
of Chen and Manning (2014). This parser
is a two-layer feed-forward neural network,
which students implement in PyTorch, provid-
ing practice in developing deep learning mod-
els and exposure to developing parser models.

1 Introduction

Deep learning methods are ubiquitous in nearly
all areas of NLP. However, some applications for
these models require extensive training or data that
make implementing the model in a classroom in-
feasible without additional computational support.
This homework introduces a simple-yet-powerful
network for performing dependency parsing us-
ing the shift-reduce parser of Chen and Manning
(2014). This three-layer network is efficient to train,
making it suitable for development by all students,
exposes students to dependency parsing, and helps
connect how a neural network can be used in prac-
tice. Through the assignment, students implement
the network, the training procedure, and explore
how the parser operates.

2 Design and Learning Goals

This exercise is designed for an advanced under-
graduate or graduate-level course in NLP. The mate-
rial is appropriate for students who have previously
covered simple neural networks and are learning
about dependency parsing. The exercise contains
extensive scaffolding code that simplifies the train-
ing process by turning the CoNLL treebank data
(Nivre et al., 2007) into training examples for the
students and computing the unlabeled attachment
score (UAS) for evaluating the model. The tech-
nical depth of the material is likely too involved
for an Applied NLP or Linguistics-focus setting;

the material could be re-purposed for an early exer-
cise in a Machine-learning focused course with the
addition of more content on network design. Stu-
dents typically have three weeks to complete the
assignment, with the majority finishing the main
tasks within a week. Through doing the exercise,
students practice building neural models and un-
derstanding how the core training procedure is im-
plemented in PyTorch (Paszke et al., 2019, e.g.,
what is a loss function and an optimizer), which
enables them to design, extend, or modify a variety
of PyTorch implementations for later assignments
and course projects.

The assignment has the following three broad
learning objectives. First, the exercise is an in-
troduction to developing neural models using the
PyTorch library. The relatively simple nature of
the network reduces the scope of design (e.g.,
compared with implementing an RNN or LSTM),
which allows students to understand how to con-
struct a basic network, use layers, embeddings,
and loss functions. Further, because the model
can be trained efficiently, this allows students to
complete the entire assignment on a laptop that is
several years old, which reduces the overhead of
needing students to gain access to GPUs or more
advanced computing. Through the exercise, stu-
dents experiment with changing different network
hyperparameters and designs and measuring their
effect on performance. These simple modifications
allow students to build confidence and gain intu-
ition on which kinds of modifications may improve
performance—or dramatically slow training time.

Second, students gain familiarity with how to
use pre-trained embeddings in downstream appli-
cations. The dependency parser makes use of
these embeddings for its initial word representa-
tions and the assignment provides an optional ex-
ercise to have students try embeddings from differ-
ent sources (e.g., Twitter-based embeddings) or no
pre-training at all in order to see how these affect
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performance and convergence time. This learning
objective helps bridge the conceptual material to
later pre-trained language models like BERT if they
have not been introduced earlier.

Third, students should gain a basic familiarity
with dependency parsing and how a shift-reduce
parser works. Shift-reduce parsing is a classic tech-
nique (Aho and Ullman, 1973) and has been widely
adopted for multiple parsing tasks beyond syntax,
such as semantic parsing (Misra and Artzi, 2016) or
discourse parsing (Ji and Eisenstein, 2014). This as-
signment helps students understand the basic struc-
tures for parsing (e.g., the stack and buffer) to see
how neural approaches can be used in practice.
The concepts in the homework are connected to
textbook material in Chapter 14 of Speech & Lan-
guage Processing (Jurafsky and Martin, 2021, 3rd
ed.), which provides additional examples and defi-
nitions.

3 Homework Description

This homework has students implement two key
components of the Chen and Manning (2014)
parser in PyTorch, using extensive scaffolding code
to handle the parsing preparation. First, students
implement the feed-forward neural network, which
requires using three common elements of neural
networks in NLP: multiple layers, embeddings, and
a custom activation function. These elements pro-
vide conceptual scaffolding for later implementa-
tions on attention and recurrent layers in networks.
Second, students implement the main training loop,
which requires students to understand how the loss
is computed and gradient descent is applied. This
second step is found in nearly all code using net-
works built from scratch (or built upon pre-trained
parameters) and enables students to learn this pro-
cess in a simplified setting for use later. These
two components are broken into multiple discrete
steps to help students figure out where to start in
the code.

The second part of the homework has students
explore the parser in two ways. First, students ex-
amine the parsing data structures and report the
full parse of a sentence of their choice; this explo-
ration has students consider the steps required for a
successful parse. As a part of this exploration, stu-
dents are required to report a parse that is incorrect;
this latter task requires students to understand what
is a correct dependency parse and diagnose what
steps the parser has taken to introduce the error.

In some iterations, we have asked the students to
report on an error introduced from a non-projective
parse of their choice, though some students found
it difficult to come up with an example of their own.
Second, students are asked to extend the network in
some way of their choice (e.g., add a layer or add
dropout). This extension helps introduce additional
design components and build intuition.

4 Potential Extensions

Prior parts of the course examine word vectors and
this parsing exercise includes an optional exten-
sion to allow students to see their effect in practice.
Here, we provide students with multiple pre-trained
vectors from different domains (e.g., Twitter and
Wikipedia) and ask them to report on convergence
times and accuracy. Students may also optionally
freeze these embeddings to test how well their in-
formation can generalize. Since training data are
known to contain biases that affect downstream
performance (e.g., Garimella et al., 2019), one ad-
ditional extension could be to test how particular
embeddings perform better or worse on parsing
text from specific groups.

After implementing the model, the assignment
has students explore the parsing outputs and in-
termediate state, which provides some grounding
for how shift-reduce works in practice. However,
due to the focus on learning PyTorch, the parsing
component of the exercise is less in-depth; a more
parsing-focus variant of this assignment could have
students perform the CoNLL-to-training-data con-
version in order to see how dependency trees can
be turned into a sequence of shift-reduce opera-
tions and how such a process introduces errors for
non-projective parses.

5 Reflection on Student Experiences

In two iterations of the homework, students have
reported the exercise helped demystify deep learn-
ing and make the concepts accessible. Once the
model was implemented and working, some stu-
dents were surprisingly active in trying different
model designs; these students reported feeling ex-
cited that making these simple extensions could be
so easy, which encouraged them to try implement-
ing deep learning models in their course projects.

The initial version of this homework did not
include any parsing introspection. Students ex-
pressed feeling like the homework was more about
building a network than learning about parsing. As
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a result, the second iteration added more diagnos-
tics for students to see what the parser is doing
and the exploration component. This addition was
intentionally simple to avoid substantially expand-
ing the scope of the assignment. However, adding
more parsing-oriented tasks remains an active area
of development for this homework.
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