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Abstract

We introduce Generative Spoken Language
Modeling, the task of learning the acoustic and
linguistic characteristics of a language from
raw audio (no text, no labels), and a set of
metrics to automatically evaluate the learned
representations at acoustic and linguistic lev-
els for both encoding and generation. We set
up baseline systems consisting of a discrete
speech encoder (returning pseudo-text units), a
generative language model (trained on pseudo-
text), and a speech decoder (generating a wave-
form from pseudo-text) all trained without
supervision and validate the proposed metrics
with human evaluation. Across 3 speech en-
coders (CPC, wav2vec 2.0, HuBERT), we find
that the number of discrete units (50, 100, or
200) matters in a task-dependent and encoder-
dependent way, and that some combinations
approach text-based systems.1

1 Introduction

An open question for AI research is creating sys-
tems that learn from natural interactions as infants
learn their first language(s): from raw uncurated
data, and without access to text or expert labels
(Dupoux, 2018). Natural Language Processing
(NLP) systems are currently far from this re-
quirement. Even though great progress has been
made in reducing or eliminating the need for ex-
pert labels through self-supervised training obj-
ectives (Brown et al., 2020; Peters et al., 2018;
Radford et al., 2019; Devlin et al., 2019; Liu et al.,
2019b; Dong et al., 2019; Lewis et al., 2020), the
basic units on which these systems are trained are
still textual. Young children learn to speak several

∗Equal contribution. ‡ Also at EHESS. † Also at INRIA.
§Work done while at FAIR.
1Evaluation code and trained models are here: https://

github.com/pytorch/fairseq/tree/master/examples
/textless nlp/gslm. Sample examples are here: https://
speechbot.github.io/gslm.

years before they can read and write, providing
a proof of principle that language can be learned
without any text. Being able to achieve ‘textless
NLP’ would be good news for the majority of the
world’s languages, which do not have large textual
resources or even a widely used standardized or-
thography (Swiss German, dialectal Arabic, Igbo,
etc.), and which, despite being used by millions of
users, have little chance of being served by cur-
rent text-based technology. It would also be good
for ‘high-resource’ languages, where the oral and
written forms often mismatch in terms of lexicon
and syntax, and where some linguistically rele-
vant signals carried by prosody and intonation are
basically absent from text. While text is still the
dominant form of language present on the web,
a growing amount of audio resources like pod-
casts, local radios, social audio apps, online video
games provide the necessary input data to push
NLP to an audio-based future and thereby expand
the inclusiveness and expressivity of AI systems.

Is it possible to build an entire dialogue sys-
tem from audio inputs only? This is a difficult
challenge, but breakthroughs in unsupervised
representation learning may address part of it. Un-
supervised learning techniques applied to speech
were shown to learn continuous or discrete repre-
sentations that capture speaker invariant phonetic
content (Versteegh et al., 2016; Dunbar et al.,
2020), despite themselves not being phonemic
(Schatz et al., 2021). Recent developments in
self-supervised learning have shown impressive
results as a pretraining technique (van den Oord
et al., 2017; Chung et al., 2019; Hsu et al., 2021),
to the extent that Automatic Speech Recognition
(ASR) on par with the state of the art from two
years back can be built with 5000 times less la-
belled speech (Baevski et al., 2020b), or even
no with no labelled speech at all (Baevski et al.,
2021). Of course, ASR still assumes access to text
to learn a language model (LM) and the mapping
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Figure 1: Setup of the baseline model architecture,
tasks, and metrics.

to the audio units. Here, we study the case where
the LM is directly trained from the audio units
without any recourse to text.

The high level idea (see Figure 1) is that auto-
matically discovered discrete units can be used to
encode speech into "pseudo-text" (speech-to-unit,
S2u), which is used in turn to train a generative lan-
guage model (unit-based language model, uLM)
and to train a speech synthesizer (unit-to-speech,
u2S). This enables learning an LM from scratch
without text, and use it to generate speech condi-
tionally or unconditionally, essentially replicating
what toddlers achieve before learning to read.
Early studies using discrete codes learned from
an autoencoder show the feasibility of such an
approach, but remain at a level of a demo (van den
Oord et al., 2017).

In this paper, we address one major conceptual
stumbling block which has, thus far, prevented
such early studies from having the transformative
impact they could have in language technology:
model evaluation. We contend that it will be
impossible to make progress in this area beyond
demos unless proper evaluation methods enabling
system comparison are etablished.

Evaluation for speech generation is difficult due
to the continuous, variable and multi-level nature
of the speech waveform, and the necessity both to
capture fine grained acoustic details to generate in-
telligible audio and to abstract away from them to
learn higher level language concepts. Text-based
models do not have this problem, since the in-
put is already expressed in terms of mid-level
discrete units (characters or words), and are typ-
ically evaluated with unsupervised metrics close

to the learning objectives like perplexity or log
likelihood. Here, such an approach is not directly
applicable even if we rely on discrete pseudo-text
units, since such metrics would depend in an
unknown fashion on their granularity (number, du-
ration, and distribution), making the comparison
of models that use different units infeasible.

Conceptually, generative spoken language mod-
els can be evaluated at two levels, the acoustic and
the language levels, and through two modes of op-
eration, encoding and generation, resulting in 2×2
tasks (see Table 1 and Figure 1). Acoustic Unit
Discovery (encoding at the acoustic level) consists
of representing speech in terms of discrete units
discarding non-linguistic factors like speaker and
noise. Spoken Language Modeling (encoding at
the language level) consists of learning the prob-
abilities of language patterns. Speech Resynthesis
(generation for acoustic modeling) consists of gen-
erating audio from given acoustic units. This boils
down to repeating in a voice of choice an input lin-
guistic content encoded with speech units. Speech
Generation (generation for language modeling)
consists of generating novel and natural speech
(conditioned on some prompt or not). Compared
to standard text generation, a critical and novel
component of the audio variant is clearly the dis-
covery of units since it conditions all the other
components. This is why we devote our analyses
of model architectures to the unit-to-speech com-
ponent specifically, and leave it for further work
to evaluate how the downstream components can
also be optimized for spoken language generation.

The major contributions of this paper are as
follows: (1) We introduce two novel evaluation
metrics for the generation mode of spoken lan-
guage modeling at the acoustic and language
levels respectively. Our key insight is to use
a generic pretrained ASR system to establish
model-independent assessments of the intelligibil-
ity (acoustic level) and meaningfulness (language
level) of the produced outputs. The ASR system
converts the generated waveform back to text,
enabling us to adapt standard text-based metrics
for these two levels. (2) We validate these met-
rics through comparison with human evaluation.
We show a high degree of concordance between
human and machine evaluations of intelligibility
and meaningfulness of generated audio. (3) We
show that these metrics can be predicted by sim-
pler ones geared to evaluate the encoding mode of
the spoken LM. Zero-shot metrics borrowed from
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Encoding Generation
Level Task Automatic metric Task Automatic metric Human

Language Spoken
LM

Spot-the-word,
Syntax-Acc

Speech
Gen.

AUC-of-VERT/PPX, cont-
BLEU, PPX@o-VERT

MMOS

Acoustic Acoustic
Unit Disc.

ABX-across,
ABX-within

Resynthesis PER-from-ASR,
CER-from-ASR

CER,
MOS

Table 1: Tasks and metrics proposed to evaluate encoding/generation quality of models at the acoustic
or language levels. Bold fonts highlights the main metric used for each category (Section 3 for details).

previous studies in the Zero Resource Speech
Challenges (Versteegh et al., 2016; Nguyen et al.,
2020) correlate well with their generative counter-
part, offering an easier proxy to rapidly iterate on
model selection. (4) We systematically study the
effect of the type of encoding units by factorially
crossing three recent speech-to-unit encoders—
CPC, Wave2vec 2.0, and HuBERT—with three
codebook sizes for the discrete units: 50, 100, 200.
We keep constant the rest of the system built from
out-of-the-box components (standard Transformer
for the uLM, Tacotron 2 for u2S). We show that
both the encoder type and the number of units mat-
ter, and that they matter differently depending on
the evaluation task. (5) We open source our evalu-
ation tools and models to help reproducibility and
comparability with future work.

In Section 3, we introduce the ASR, zero-shot
and human evaluation metrics, in Section 4 we pre-
sent the models, in Section 5, we analyze the re-
sults and discuss them in Section 6.

2 Related Work

Unsupervised Speech Representation Learning
aims to distill features useful for downstream
tasks, such as phone discrimination (Kharitonov
et al., 2021; Schneider et al., 2019) and semantic
prediction (Lai et al., 2021; Wu et al., 2020), by
constructing pretext tasks that can exploit large
quantities of unlabeled speech. Pretext tasks in
the literature can be roughly divided into two
categories: reconstruction and prediction. Recon-
struction is often implemented in the form of
auto-encoding (Hsu et al., 2017a), where speech
is first encoded into a low-dimensional space, and
then decoded back to speech. Various constraints
can be imposed on the encoded space, such as
temporal smoothness (Ebbers et al., 2017; Glarner
et al., 2018; Khurana et al., 2019, 2020), discrete-
ness (Ondel et al., 2016; van den Oord et al.,

2017), and presence of hierarchy (Lee and Glass,
2012; Hsu et al., 2017b).

Prediction-based approaches which task a mod-
el to predict information of unseen speech based
on its context, have gained increasing interest re-
cently. Examples of information include spectro-
grams (Chung et al., 2019; Wang et al., 2020; Chi
et al., 2021; Liu et al., 2020; Chung and Glass,
2020; Liu et al., 2020; Ling et al., 2020; Ling
and Liu, 2020), cluster indices (Baevski et al.,
2019; Hsu et al., 2021), derived signal processing
features (Pascual et al., 2019; Ravanelli et al.,
2020), and binary labels of whether a candidate
is the target unseen spectrogram (van den Oord
et al., 2018; Schneider et al., 2019; Baevski et al.,
2020a; Kharitonov et al., 2021; Baevski et al.,
2020b).

Speech Resynthesis. Recent advancements in
neural vocoders enabled generating natural sound-
ing speech and music (Oord et al., 2016; Kumar
et al., 2019; Kong et al., 2020). These are often
conditioned on the log mel-spectrogram for the
generation process. Learning low bitrate speech
representations in an unsupervised manner has
attracted attention from both the machine learn-
ing and the speech communities (Liu et al., 2019a;
Feng et al., 2019; Nayak et al., 2019; Tjandra et al.,
2019; Schneider et al., 2019; Baevski et al., 2020a;
Chen and Hain, 2020; Morita and Koda, 2020;
Tobing et al., 2020). These representations can
later be used for generation without text, which is
particularly important for low-resource languages
(Dunbar et al., 2019, 2020). van den Oord et al.
(2017) proposed a Vector-Quantized Variational
Auto-Encoder (VQ-VAE) model to learn discrete
speech units, which will be later used for speech
synthesis using a WaveNet model. Eloff et al.
(2019) suggested a VQ-VAE model followed
by a FFTNet vocoder model (Jin et al., 2018).
Tjandra et al. (2020) suggested using transformer
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(Vaswani et al., 2017) together with a VQ-VAE
model for unsupervised unit discovery, and van
Niekerk et al. (2020) combines vector quanti-
zation together with contrastive predictive coding
for acoustic unit discovery. Another line of work
uses representations from an ASR acoustic model
that are combined with identity and prosodic
information for voice conversion (Polyak et al.,
2020b,a, 2021b). In terms of evaluation, the Zero-
Resource challenge (Dunbar et al., 2019, 2020;
Nguyen et al., 2020) used bitrate together with
human evaluation. In this paper we additionally
introduce an ASR based evaluation metric.

3 Evaluation Methods

We present two sets of automatic evaluation met-
rics; the first one assesses the output of generative
speech models (ASR metrics, Section 3.1); the sec-
ond one, the encoded representations (zero-shot
probe metrics, Section 3.2). Finally, we present
the human evaluations (Section 3.3).

3.1 Generation: ASR Metrics
We present our new evaluation metrics for gen-
eration tasks. The first task, speech resynthesis,
involves S2u, which encodes input speech into
units and u2S, which decodes it back to speech. In
this task, we wish to evaluate intelligibility of the
resulting speech. The second task, speech genera-
tion, involves the full S2u→uLM→u2S pipeline,
and we wish to evaluate meaningfulness of the
generated speech. Our overall idea is to use ASR
to convert the generated speech back to text and
then use text-based metrics.

Speech Resynthesis Intelligibility: ASR-PER.
The ideal metric for intelligibility would be to use
humans to transcribe the resynthesized speech and
compare the text to the original input. An auto-
matic proxy can be obtained by using a state-of-
the-art ASR system pretrained on a large corpus
of real speech.2 Our main metric is Phone Error
Rate (PER), which only uses an acoustic-model
ASR, without fusing with an additional language
model (Chorowski and Jaitly, 2016). In prelim-
inary experiments we also experimented with a
full ASR with an LM and computed Word Error
Rate (WER) and Character Error Rate (CER) to
give partial credit. The latter is probably closer
to human intelligibility metrics, as humans cannot

2We use a BASE wav2vec 2.0 phoneme detection model
trained on LibriSpeech-960h with CTC loss from scratch.

turn off their lexicon or language model. We also
computed such metrics by training a fitted ASR
model for each resynthesis model on a specific
training corpus. The logic of this last test is that it
provides a more direct measure of the information
lost in the S2u→u2S pipeline, because it could
adapt to systematic errors introduced by the u2S
model. Since the scores between these different
approaches correlated highly, we only report here
the results on the PER for a pretrained ASR model
that is the simplest to deploy.

Speech Generation Quality and Diversity: AUC
on Perplexity and VERT. Text generation eval-
uation typically involves two axes: the quality of
the generated text (with automatic metrics like
mean perplexity or negative log likelihood com-
puted on a reference large language model) and the
diversity (with metrics like self-BLEU;3 Zhu et al.,
2018). Typically, there is a trade-off between these
two dimensions based on the temperature hyper-
parameter used for sampling from the language
model, whereby at low temperature, the system
outputs good sentences but not varied, and at
high temperatures, it outputs varied sentences, but
not very good. This results in model compari-
son being either based on 2D plots with lines
representing the trade-off between quality and di-
versity, or on aggregate metrics like the area under
the curve. Preliminary explorations (see Appendix
Section 7.2) with our models revealed two prob-
lems preventing a straightforward application of
such a scoring strategy.

First, we found that for some models, at a low
enough temperature, self-BLEU score stopped in-
creasing, but the systems started to repeat more and
more words within a sentence (e.g., ‘‘the property
the property the property’’). We therefore intro-
duce a new metric, auto-BLEU, that measures
within-sentence diversity. For a single utterance
u, auto-BLEU is calculated as the ratio of k-grams
s ∈ NGk(u) that are repeated at least once:

auto-BLEU(u, k) =

∑
s 11 [s ∈ (NGk(u)\s)]

|NGk(n)|
(1)

As with BLEU score, to obtain n-gram
auto-BLEU we calculate the geometric mean of
auto-BLEU(u, k) obtained for k ∈ [1, n] and
average over the set of generated utterances. By

3Higher self-BLEU scores indicate lower diversity of the
produced text.

1339



Figure 2: Comparison of diversity and perplexity
of the generated speech. We plot VERT vs. Median
perplexity. The blue diamond corresponds to the oracle
reference point. It defines two cut-offs on the curve:
VERT @oracle-PPX and PPX @oracle-VERT. The
green area corresponds to the AUC metric.

calculating the geometric mean of self- and auto-
BLEU, we obtain an aggregate metric which we
call VERT (for diVERsiTy). We used a bigram
version of self- and auto-BLEU.

Second, we found that critical temperatures for
which the output was reasonable were not con-
stant across models. This makes sense, because
temperature controls the probability of sampling
individual units, and the probabilistic distribution
and duration of these units depend on the models.
Here, we chose to use the oracle text as an anchor
to compute reference temperatures, that is, the
temperatures at which the perplexity or the VERT
score reach the values of the oracle text.

This gives us boundary conditions at which we
can compare (the perplexity at oracle diversity
and the diversity at oracle perplexity), as well as
a method to compute the area under curve (AUC)
between these two boundaries (see Figure 2). As
AUC decreases, the system gets closer to the ora-
cle point. Thus with AUC, lower is better.

To calculate perplexity of the generated ut-
terances, we use a pre-trained ASR4 to convert
speech to text, and an off-the-shelf Transformer
model trained on the English NewsCrawl dataset.5

3.2 Encoding: Zero-shot Probe Metrics

The purpose of the encoding metrics is to eval-
uate the quality of the learned representations at
each linguistic level along the pipeline linking the
S2u and the uLM. They are inspired by human
psycholinguistics and can be be thought of as
unit tests providing interpretation and diagnosis.

4We use a LARGE wav2vec 2.0 model, trained on
LibriSpeech-960h with CTC loss from scratch. Its decoder
uses the standard KenLM 4-gram language model.

5https://github.com/pytorch/fairseq/tree
/master/examples/language model.

We entirely draw on evaluations from the Zero
Resource challenge series (Versteegh et al., 2016;
Dunbar et al., 2019; Nguyen et al., 2020)6 for com-
parability with published work and refer to these
challenges for details. These metrics are ‘‘zero-
shot’’ because they do not require training any
classifier, and are either based on distances over
embeddings, or on computing probabilities over
entire utterances. When they have hyperparam-
eters, these are selected using a validation set.

For acoustic-level evaluation, we use the
between-speaker ABX score to quantify how
well-separated phonetic categories are. Briefly,
it consists of estimating the probability that two
tokens of the same category A (x and a) are closer
to one another than a token of A (x) and of B (b).
The categories are triphones that only differ in the
middle phoneme (like bit and bet) and the score
is averaged over all possible such pairs. For the
across-speaker ABX, a and b are spoken by the
same speaker and x by a different one, requiring
feature invariance over a speaker change. We also
include the bitrate, which has been used in the
TTS-without-T challenges (Dunbar et al., 2019)
to quantify the efficiency of the discrete units used
to resynthetize speech. It is simply the entropy of
the sequence of units divided by the total duration.

For language-level evaluation, we use spot-
the-word accuracy from the Zero Resource 2021
Benchmark (Nguyen et al., 2020). It consists of
detecting the real word from a pair of short utter-
ances like ‘brick’ vs. ‘blick’, matched for unigram
and bigram phoneme frequency to ensure that
low-level cues do not make the task trivial. This
task can be done by computing the probability
(or pseudo-probability) of the utterances from the
uLM. The test set (sWUGGY) consists of 5,000
word-pseudoword pairs generated by the Google
TTS API, filtered for the word being present
in the LibriSpeech 960h training set (Panayotov
et al., 2015). The ZR21 benchmark also uses
higher level metrics, notably, syntactic (based
on the sBLIMP dataset), which we did not use
because the baselines were too close to chance.

3.3 Human Evaluation Metrics

As above, we asked humans to evaluate two
aspects of speech generation: intelligibility and
meaningfulness. Intelligibility was assessed using
two metrics: i) Mean Opinion Scores (MOS) in

6www.zerospeech.com.
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which raters were asked to evaluate subjectively
how intelligible a given audio sample is; and
ii) Character Error Rate (CER) computed from
written transcriptions providing an objective in-
telligibility test. As for meaningfulness, we set up
a meaningfulness-MOS (MMOS) in which raters
were asked to evaluate how natural (considering
both grammar and meaning) a given sample is. For
both subjective tests, raters evaluate the samples
on a scale of 1–5 with an increment of 1.

For the MMOS, we had to select a temperature
to sample from. Preliminary experiments showed
that humans preferred lower temperatures (yield-
ing also less diverse outputs). Here, we settled on
selecting the temperature on a model-by-model
basis by constructing a continuation task: We take
the 1,000 shortest utterances from LibriSpeech
test-clean that are at least 6 seconds long, and
use the first 3 seconds as prompts for the uLM
(after transcribing them into pseudo-texts). For
each prompt, we generated 10 candidate continua-
tions of the same length (in seconds) as the utter-
ance which we took the prompt from. We varied
temperature (0.3, 0.4, . . . , 1.4, 1.5, 1.7, 1.9,
2.1, 2.3, 2.5, 3.0), and selected the one yielding
the maximal BLEU-2 score with the reference
sentence (after ASR). These temperatures were
typically between the two boundary temperatures
described above.

We evaluated 100 samples from each of the
evaluated methods while we enforced at least 15
raters for each sample. The CrowdMOS package
(Ribeiro et al., 2011) was used for all subjective
experiments using the recommended recipes for
detecting and discarding inaccurate scores. The
recordings for the naturalness test were generated
by the LM unconditionally and conditionally from
a 3 seconds prompt. Participants were recruited
using a crowd-sourcing platform.

4 Proposed Systems

Here, we present our S2u (Section 4.1), uLM
(Section 4.2), and u2S (Section 4.3) components.

4.1 Speech-to-Unit Models

We selected 3 recent state-of-the-art unsupervised
Encoders, which we used ‘out of the box’: we did
not retrain them nor change their hyperparameters.
We also included a log Mel filter-bank baseline
(80 filters, computed every 10 ms). We then dis-
cretized the embeddings using k-means. We only

give a high level description of these models, and
refer to the original publications for details.

CPC. Contrastive Predictive Coding (van den Oord
et al., 2017) as applied to speech consists of
two components: an encoder and a predictor. The
encoder produces an embedding z from speech
input. The predictor predicts the future states
of the encoder based on the past, and the system
is trained with a contrastive loss. We use the CPC
model from Rivière and Dupoux (2020), which
was trained on a ‘‘clean’’ 6k hour sub-sample
of the LibriLight dataset (Kahn et al., 2020;
Rivière and Dupoux, 2020). We extract a represen-
tation from an intermediate layer of the predictor,
which provides a 256-dimensional embedding
(one per 10ms), as in the original paper.

wav2vec 2.0. Similar to CPC, this model uses
an encoder and a predictor, which is trained con-
trastively to distinguish positive and negative
samples from discretized and masked segments
of the encoder’s output. We use the LARGE vari-
ant of pretrained wav2vec 2.0 (Baevski et al.,
2020b) trained on 60k hours of LibriLight dataset
(Kahn et al., 2020). This model encodes raw au-
dio into frames of 1024-dimensional vectors (one
per 20ms). To choose the best layer, we extracted
frozen representations of the 10-hour LibriLight
subset from every layer of the model and trained
a linear classifier with the CTC loss to predict the
phonetic version of the text labels. Layer 14 ob-
tained the lowest PER on LS dev-other (a similar
approach was done in Baevski et al. [2021], which
in this case selected Layer 15).

HuBERT. Unlike CPC and wav2vec 2.0 that
use a contrastive loss, HuBERT is trained with a
masked prediction task similar to BERT (Devlin
et al., 2019) but with masked continuous audio
signals as inputs. The targets are obtained through
unsupervised clustering of raw speech features or
learned features from earlier iterations, motivated
by DeepCluster (Caron et al., 2018). We use the
BASE 12 transformer-layer model trained for two
iterations (Hsu et al., 2021) on 960 hours of
LibriSpeech (Panayotov et al., 2015). This model
encodes raw audio into frames of 768-dimensional
vectors (one per 20 ms) at each layer and we extract
those from the 6th layer as in the original paper.

LogMel. As a baseline, we consider a Log Mel
Filterbank encoder using 80 frequency bands.
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Quantization. We use k-means to convert con-
tinuous frame representations into discrete repre-
sentation by training on LibriSpeech clean-100h
(Panayotov et al., 2015). We experiment with
codebooks that have 50, 100, and 200 units.

4.2 Unit-Language Model

We use the Transformer model as implemented
in fairseq (Ott et al., 2019). We use the trans-
former lm big architecture: It has 12 layers, 16
attention heads, embedding size of 1024, FFN size
of 4096, and dropout probability of 0.1, and we
train it as a causal LM on sequences of pseudo-text
units. Each sample contains up to 3,072 units. We
use sampling with temperature for generation.

All language models are trained on a ‘‘clean’’
6k hours sub-sample of LibriLight used in
(Rivière and Dupoux, 2020), transcribed with
corresponding discrete units. In preliminary ex-
periments, we found that removing sequential rep-
etitions of units improves performance, hence we
apply it universally.7 We hypothesize that this sim-
ple modification allows us to use Transformer’s
limited attention span more efficiently, as in Hsu
et al., 2020.

4.3 Unit-To-Speech Model

We adapt the Tacotron-2 model (Shen et al., 2018)
such that it takes pseudo-text units as input and
outputs a log Mel spectrogram. To enable the
model to synthesize arbitrary unit sequences, in-
cluding those representing incomplete sentences,
we introduce two modifications. First, we append
a special ‘‘end-of-input’’ (EOI) token to the in-
put sequence, hinting the decoder to predict the
‘‘end-of-output’’ token when attending to this new
token. However, this modification alone may not
be sufficient, as the decoder could still learn to
ignore the EOI token and correlate end-of-output
prediction with the learned discrete token that
represents silence as most of the speech contains
trailing silence. To address this, we train the model
using random chunks of aligned unit sequence and
spectrogram, and append the EOI token to unit se-
quence chunks, such that the audio does not always
end with silence. We implement chunking in the
curriculum learning fashion, where the chunk size
gradually grows (starting with 50 frames with an
increment of 5 per epoch) to increase the diffi-

7For example, a pseudo-text 10 11 11 11 21 32
32 32 21 becomes 10 11 21 32 21.

culty of the task. For waveform generation, we use
the pre-trained flow-based neural vocoder Wave-
Glow (Prenger et al., 2019). This model outputs
the time-domain signal given the log Mel spectro-
gram as input. All u2S models were trained on LJ
Speech (LJ) (Ito and Johnson, 2017).

5 Results

In Figure 3, we report the overall results of our
models and our LogMel baseline as a function of
the number of quantized units on our main auto-
mated and human metrics. More detailed results
follow in the following sections, including two
character-based toplines: one uses the oracle tran-
scripts for training the LM, the other uses tran-
scripts produced by the pre-trained ASR model.

5.1 Results on the Resynthesis Task

Overall resynthesis results are shown in the bot-
tom middle and right cells of Figure 3 for our
main automatic (PER) and human scores (MOS),
respectively, averaged across the LS and LJ eval-
uation sets. We observe that across all models,
increasing the number of units uniformly leads
to better scores suggesting that the u2S compo-
nent can take benefit from extra details of the
input to produce a more realistic output. HuBERT
and CPC seem to be giving the best results, for
both humans and models better capturing pho-
netic information than other models at equival-
ent bitrates.

More detailed results are in Table 2, separat-
ing the scores for the LJ and LS resynthesis, and
adding extra automatic metrics (CER) and human
metrics (human CER). On PER, we found a do-
main effect: Resynthesizing input from LJ Speech
yields lower PER than from LibriSpeech on all
unsupervised models. From the viewpoint of the
encoder, LJ Speech is out-of-domain; therefore,
one would expect that the units are making more
errors than for the trained LibriSpeech. On the
other hand, the u2S component has learned from
LJ Speech encoded with these units, and might
have learned to compensate for these lower qual-
ity units. When LibriSpeech is offered as input,
the u2S component cannot adapt to this nominally
better input and ends up yielding lower quality
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Figure 3: Overall results with automatic and human metrics. The results are presented in terms of bitrate for 4
encoders (LogMel, CPC, HuBERT, and wav2vec 2.0) varying in number of units (50, 100, 200). For definition of
the tasks and metrics, see Table 1 and Figure 1. Negative human opinion scores are shown for ease of comparison
with automatic metrics (lower is better). The generation metrics have been averaged across LS and LJ (PER and
MOS; resynthesis task) and across prompted and unprompted conditions (AUC and MMOS; speech generation
task). The Log Mel Fbank based systems were not evaluated by humans in the speech generation task.

outputs. This observation is worth further explo-
ration, as other metrics like CER (using an LM)
and human evaluations only replicated this for the
models with the lowest score (like LogMel and
wav2vec). The automatic PER and CER scores
and the human MOS and CER scores all correlate
well with one another across the 4× 3 models and
baselines. Within the LJ or LS domain, the Pear-
son r ranged from .95 to .99; across domains it was
less good (from .79 to .96), illustrating again the
existence of a domain effect. Not shown here, we
reached similar conclusions with our fitted-ASR
metrics, but with less good score and correlations.
Table 2 also shows the results of the two toplines
(original text+TTS and ASR+TTS). Interestingly,
our best models come within 3% absolute in PER
or CER compared to these toplines, are quite close
to them in terms of MOS and even beat them in
terms of human CER.

5.2 Results on the Generation Task

The upper mid and right cells of Figure 3 show
generation results averaging across the uncondi-
tional and conditional conditions, on automatic

and human evaluations, respectively. The main
result is that there is both an effect of number of
units and of system. As for resynthesis, 50 units is
always worst, but contrary to resynthesis, 200 units
is not always better. Overall, the results on gen-
eration are congruent with the idea that speech
generation both requires good scores on language
modeling and on speech synthesis. The best re-
sults for a particular model are then a compromise
between the number of units that give both scores
to either of these tasks. In terms of systems, the
best one here is HuBERT. Regarding human eval-
uations, they show similar patterns with a clear
dispreference for 50 units, and either 100 or 200
being better.

Detailed results are shown in Table 3 with
separate statistics for conditional and uncon-
ditional generation and additional results with
PPX@o-VERT and VERT@o-PPX. As expected,
the perplexity metric improved with prompts, but
not the diversity score. The human results are
congruent with the automatic scores, although
they tend to prefer more units, perhaps showing
that they cannot fully dissociate their judgment
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Systems End-to-end ASR-based metrics Human Opinion
S2u Nb Bit- PER↓ PER↓ CER↓ CER↓ MOS↑ MOS↑ CER↓ CER↓
architect. units rate (LJ) (LS) (LJ) (LS) (LJ) (LS) (LJ) (LS)
Toplines
original wav – – – – 4.83 4.30 8.88 6.73
orig text+TTS 7.78 7.92 8.87 5.14 4.02 4.03 13.25 10.73
ASR + TTS 27 9.45 8.18 9.48 5.30 4.04 4.06 15.98 11.56
Baselines
LogMel 50 214.8 27.72 49.38 27.73 52.05 2.41 2.07 43.78 66.75
LogMel 100 292.7 25.83 45.58 24.88 48.71 2.65 2.01 37.39 62.72
LogMel 200 373.8 19.78 45.16 17.86 46.12 2.96 2.16 23.33 62.6
Unsupervised
CPC 50 159.4 10.87 17.16 10.68 12.06 3.63 3.51 13.97 19.92
CPC 100 213.1 10.75 15.82 9.84 9.46 3.42 3.68 13.53 14.73
CPC 200 279.4 8.74 14.23 9.20 8.29 3.85 3.54 9.36 14.33
HuBERT-L6 50 125.7 11.45 16.68 11.02 11.85 3.69 3.49 14.54 13.14
HuBERT-L6 100 168.1 9.53 13.24 9.31 7.19 3.84 3.68 13.02 11.43
HuBERT-L6 200 211.3 8.87 11.06 8.88 5.35 4.00 3.85 11.67 10.84
wav2vec-L14 50 141.3 24.95 33.69 25.42 32.91 2.45 2.87 46.82 54.9
wav2vec-L14 100 182.1 14.58 22.07 13.72 17.22 3.50 3.32 23.76 28.1
wav2vec-L14 200 226.8 10.65 16.34 10.21 10.50 3.83 3.51 13.14 15.27

Table 2: Results on the resynthesis task for 3 unsupervised models plus one LogMel baseline and 3
unit sizes. Bitrates are in bit/sec, PER are for a pretrained phone recognition model without lexicon and
LM, CER are derived from a full ASR model (lower is better). Human MOS (upper is better) and CER
(computed from transcription, lower is better) are provided (the 95% confidence interval was on average
.32 for MOS and 1.8 for human CER).

of meaning from their judgment of intelligibility.
The three metrics correlate well with one another
(r between .86 and .99) and correlate with their
counterpart across task (prompted vs. unprompted:
r between .82 and .99). Human evaluations cor-
related well with the automatic metrics (AUC:
r = .87; PPX: r = .92; VERT: r = 0.75).

5.3 Results for Zero-shot Probe Metrics

In Table 4, we show the results for zero-shot
metrics across the different models and baselines.
Overall, the performance depends on the linguistic
levels while remaining above chance. While per-
formance is excellent at the acoustic level (6.5%
error for the best model on ABX-across), it is
intermediate at the lexical level (31.3% error for
the best model on spot-the-word). Not shown,
the syntactic test is close to chance (42% error
for the best model on the sBLIMP test). These
values are worse than the ASR-topline (3.1% and
29%, for lexicon and syntax, resp.), showing room
for improvement.

The metrics correlate well: The ABX score
predicts the lexical score (r = 0.85) and the
syntax score (r = 0.71). Across the different
models, CPC gets the best units (ABX score) and
HuBERT gets the best LM scores. In addition, we
see a clear effect of number of units (Figure 3). For
wav2vec, the performances on all metrics increase
with more units, whereas, for CPC and HuBERT
a U-shaped pattern emerges on most metrics, with
best scores for units of intermediate sizes. It is
interesting that the models with the highest bitrate
do not always have the best results. This means
that encoding too much acoustic information can
be detrimental to linguistic encoding in the uLM.
See Appendix Section 7.1 showing that ABX
has good correlations with automatic and human
metrics (r > .88).

6 Discussion and Conclusion

We introduced Generative Spoken Language Mod-
eling as a new unsupervised task bridging the gap
between speech and natural language processing
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Systems Generation based metrics Human Opinion
Encoder Nb unconditional prompt uncond. prompt
architect. units PPX↓ VERT↓ AUC↓ PPX↓ VERT↓ AUC↓ MMOS↑ MMOS↑
Controls
oracle text 154.5 19.43 – 154.5 19.43 – 4.02 4.26
ASR + LM 178.4 21.31 0.18 162.8 20.49 0.04 3.91 4.38
Baseline
LogMel 50 1588.97 – 1083.76 – – – – –
LogMel 100 1500.11 95.50 510.26 – – – – –
LogMel 200 1539.00 – 584.16 – – – – –
Unsupervised
CPC 50 374.26 46.26 19.68 323.9 39.92 18.44 3.31 3.61
CPC 100 349.56 41.797 15.74 294.7 42.93 14.06 3.65 3.65
CPC 200 362.84 40.28 16.46 303.5 43.42 26.67 3.58 3.67
HuBERT-L6 50 376.33 43.06 19.27 339.8 45.85 21.03 3.53 3.00
HuBERT-L6 100 273.86 31.36 5.54 251.2 33.67 5.88 3.95 3.53
HuBERT-L6 200 289.36 33.04 7.49 262.4 34.30 6.13 4.01 4.32
wav2vec-L14 50 936.97 – 307.91 1106.3 – 330.8 2.26 1.91
wav2vec-L14 100 948.96 79.51 208.38 775.1 – 205.7 2.28 1.92
wav2vec-L14 200 538.56 61.06 61.48 585.8 – 91.07 2.64 3.04

Table 3: Results on the generation task for three unsupervised models plus the LogMel baseline and
3 unit sizes. PPX@-o-VERT and VERT@o-PPX are reported as PPX and VERT. ‘-’ : missing or non
calculable results. Human MMOS are also provided (the 95% confidence interval was on average .29
for uncond. and .61 for cond.).

Metrics S2u uLM
Nb ABX ABX spot-the- accept.

System units with.↓ acr.↓ word↓ judg.↓
Toplines
ASR+LM – – 3.12 29.02
Baselines
LogMel 50 23.95 35.86 48.52 46.78
LogMel 100 24.33 37.86 48.12 46.83
LogMel 200 25.71 39.65 49.62 47.76
Unsupervised
CPC 50 5.50 7.20 32.18 45.43
CPC 100 5.09 6.55 31.72 44.35
CPC 200 5.18 6.83 37.40 45.19
HuBERT-L6 50 7.37 8.61 32.88 44.06
HuBERT-L6 100 6.00 7.41 31.30 42.94
HuBERT-L6 200 5.99 7.31 36.52 47.03
wav2vec-L14 50 22.30 24.56 51.92 45.75
wav2vec-L14 100 18.16 20.44 50.24 45.97
wav2vec-L14 200 16.59 18.69 44.68 45.70

Table 4: Results for zero-shot probe metrics for
3 unsupervised models plus one LogMel baseline
and 3 unit sizes. ABX within and across speakers,
spot-the-word, and acceptability judgments are
error rates (lower is better); chance is 50%.

and related it conceptually to previously studied
unsupervised tasks: Acoustic Unit Discovery, Spo-
ken Language Modeling, Discrete Speech Re-
synthesis, and Text Generation. We introduced a
suite of metrics, baselines, and first results on Lib-

rilight that sets the playing field for future work.
For comparability, we open source our evaluation
stack and the best of our baseline models.

Our main contributions are as follows. (1) We
established a set of easy to use automatic ASR-
based metrics for model comparison at two criti-
cal levels for this task: intelligibility of the speech
output and meaningfulness in terms of higher
linguistic content. We assessed the first through
ASR-based PER and CER metrics; and the sec-
ond using text-generation-based metrics (AUC for
PPX/VERT). (2) We found that these two sets
of metrics correlated well with human judgment
and (3) that they can be approximated with their
inference-mode counterparts, which are faster to
compute using zero-shot probe tasks. (4) Applying
these metrics to pipeline models based on current
speech representation learning models and out-
of-the-box LM and TTS components, we found
that our basic premise is fulfilled: It is possible
to train a language model from quantized units de
rived from audio and using it to generate new
speech. The generated speech is English-sounding,
with recognizable phonemes and words and lo-
cally acceptable syntax (see transcribed examples
in the Appendix and audio snippets here:https://
speechbot.github.io/gslm). Our automatic
metrics confirm the quality of the representations
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and outputs at the acoustic/phonetic level, but
show that improvements are needed at the lan-
guage level. It is to be expected that performance
will increase with larger training sets beyond our
6k hours, as has been noted in the case of text.
(5) We also uncovered specific issues regard-
ing the number of quantized units. For speech
resynthesis, the optimum number of units was al-
ways 200 by a large margin, reflecting the well
known bitrate/intelligibility trade-off (Dunbar
et al., 2019). However, for language modeling,
this was not necessarily the case, as the more
detailed acoustic information may introduce too
numerous phonetic details that have no impact at
the level of lexical and syntactic representations.
(6) Finally, we found that the choice of units also
affected the temperature parameter which is used
to control the trade-off between quality and di-
versity in text-based language model. To address
this effect, we proposed a method to normalize
the temperature by using an oracle text to build
perplexity and diversity anchor points.

Obviously, this is only a first step towards
building textless NLP applications that could be
applied to any language, even low resource ones.
To reach this long term goal, three important
challenges need to be addressed.

First, even though we did compare three dif-
ferent encoders and obtained different results, we
cannot conclude that one encoder is definitely su-
perior to the others. Our point here was merely
to use previously published pretrained encoders,
and study systematically the effect of number of
units on these encoders. A fuller study including
a wider set of encoders and a proper hyperparam-
eter search (including the selection of the embed-
ding layer and the clustering algorithm) would be
needed in order to determine which of them is
most appropriate for speech generation.

Second, it is to be expected that to further
improve generation results, more needs to be done
than applying this pipeline to larger training sets.
Contrary to text, speech unfolds through time and
varies continuously in phonetic space. Speech also
contains multilayered representations (phonetic,
prosodic, speaker identity, emotions, background
noise, etc.). However, both our TTS and our LM
were out-of-the-box systems typically used for text
applications. More work is needed to adapt these
architectures to the richness and variability of the
speech signal (see Polyak et al., 2021a, for first
steps towards integrating prosody into discrete

units). The metrics and baselines we introduced
here provide landmarks against which we will
measure future progress.

Third, the automatic metrics that we defined
here depend on textual resources to build the
evaluation ASR and LM models, and on lin-
guistic resources to build the zero-shot metrics.
How could this ever be applied to low-resource
languages? Note that the linguistic resources we
require are used only for model selection, not
model training. Our metrics allow for fast itera-
tions in architecture and hyperparameter search,
but the overall algorithm is totally unsupervised.
Therefore, an important next step is to extend this
work to other languages, in order to find a com-
mon architecture/hyperparameter set that gives
good results in held-out languages (high or low
resource). The hope is that once good learning
models are tuned using a diverse sample of high
resource languages, the same models could be
deployed in languages where no such resources
are available, and work in a purely unsupervised
fashion.
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7 Appendix

7.1 Zero-shot Metrics Correlation Results
In Figure A1, we present the Pearson correlations
between the zero-shot metrics and the human
and automatic metrics on downstream tasks. The
fact that the ABX metric correlates well with these
downstream metrics makes it a useful proxy metric
for preliminary model and unit size selection, as
it is much less costly than generating TTS output
and running human or ASR evaluations.

7.2 Effect of Temperature on Outputs
In this section, we describe preliminary ex-
periments we conducted to test the effects of

temperature on the generated outputs. As shown
in Table A1, the temperature defined qualitatively
4 operating zones. With the lowest temperature,
we get repetitive outputs, where the system keeps
repeating the same few words. At a slightly higher
temperature, the system outputs complete sen-
tences, but they are sampled from a narrow set
of topics. At the highest temperature, the sys-
tem utters an unstructured bag of words. In the
mid-temperature range, we observe relatively co-
herent and varied outputs. This is the range we
want to select for our systems. As described in
Figure 2, the lowest bound was set by using
the oracle PPX (temperature range between 0.2
and 0.65. across unsupervised models) and the
highest bound by using the oracle VERT (tem-
perature range between 1.1 to 1.4). In Figure A2
we present human opinion results for samples
from these two temperatures, plus an extra mean
temperature falling in between. Humans typically
preferred the lower temperature.

In Figure A3, we illustrate the continuation
method for selecting a single temperature
for human meaningfulness judgments in a
model-neutral way, as explained in Section 3.3.
It consists of generating possible continuations of
each prompt and computing the BLEU-2 score8

with oracle continuation. The temp@cont tem-
perature is defined as the temperature maximizing
this score. Computing these estimates with 10
continuations gave continuation temperatures
varying between 0.5 and 0.9 across models and
unit sizes. These are the temperatures we used for
the MMOS results reported in the main paper.

8We used NLTK to compute BLEU (Bird et al., 2009).

1352

https://doi.org/10.1109/ICASSP40776.2020.9053541
https://doi.org/10.1109/ICASSP40776.2020.9053541
https://doi.org/10.21437/Interspeech.2020-3094
https://doi.org/10.21437/Interspeech.2020-3094
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080


Figure A1: Patterns of correlations between the zero-shot metrics and the automatic and human metrics.
Color scale indicates strength of the Pearson correlation coeficient (we used negative MOS and MMOS to enforce
less is better for all metrics).

Temp Example

Very low temperature samples (stuttering zone)
0.3 the property by james resell red for liberata or by jason downy the property

by jason downy the property the property the property the property
0.3 and to take in another path and to take in another path and to take in an-

other path and to take in another path and to take in another path and to
take in another path and take in a

Low temperature samples (obsessive zone)
0.7 chapter nineteen of the life of the upper part of the ocean this is ali

bravos recording only bravos recordings are in the public domain i for more
information or to volunteer

0.7 this is a lipper vox are courting oliver vox or courting are in the public
domain for afraid art to volunteer pleases it lipper vox dot or this

Mid temperature samples
1.0 but it is attendant from the people to defend himself from this information

pride of the potential in criminal activity a curiosity and impetuosity of
the world a war soon acquired

1.0 finally we ought to have a strong plan a without positively the best type of
the public with which we ascend it or extend it our business and as we are a
persons of the most strong designs and other affairs of the case we

High temperature samples (babble zone)
1.5 ation of pure blue he said at once a licking streamy at her warm spot of half

performed note was a raging oath let it as bir of amole in mood strolling er
crass

1.5 at the swing here as to motions out of the events not time and abe he was any
stump headed and flow any he’s the kiln are tama why do ye take the floor

Table A1: Unconditional uLM (trained on CPC-100 units) samples, transcribed by ASR, at different
temperatures.
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Figure A2: MMOS for unconditional (no prompt)
and conditional generated speech sampled at the three
reference temperatures (oracle VERT, oracle PPX, and
average temperature) (preliminary experiments).

Figure A3: Method for selecting the continuation
temperature for MMOS judgments.
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