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Abstract

We present a new method, SOLOIST,1 that
uses transfer learning and machine teaching
to build task bots at scale. We parameterize
classical modular task-oriented dialog systems
using a Transformer-based auto-regressive
language model, which subsumes different
dialog modules into a single neural model. We
pre-train, on heterogeneous dialog corpora,
a task-grounded response generation model,
which can generate dialog responses grounded
in user goals and real-world knowledge for
task completion. The pre-trained model can be
efficiently adapted to accomplish new tasks
with a handful of task-specific dialogs via
machine teaching, where training samples are
generated by human teachers interacting with
the system. Experiments show that (i) SOLOIST

creates new state-of-the-art on well-studied
task-oriented dialog benchmarks, including
CamRest676 and MultiWOZ; (ii) in the
few-shot fine-tuning settings, SOLOIST signif-
icantly outperforms existing methods; and
(iii) the use of machine teaching substantially
reduces the labeling cost of fine-tuning. The
pre-trained models and codes are available at
https://aka.ms/soloist.

1 Introduction

The increasing use of personal assistants and
messaging applications has spurred interest in
building task-oriented dialog systems (or task
bots) that can communicate with users through
natural language to accomplish a wide range of
tasks, such as restaurant booking, weather query,
flight booking, IT helpdesk (e.g., Zhou et al.,
2020; Adiwardana et al., 2020; Roller et al.,
2020b; Gao et al., 2020; Peng et al., 2020a). The

1TASK-ORIENTED DIALOG WITH A SINGLE PRE-TRAINED

MODEL. In this paper, SOLOIST refers to both the proposed bot
building method and the dialog model or system developed
using the method.

wide variety of tasks and domains has created
the need for a flexible task-oriented dialog devel-
opment platform that can support many different
use cases while remaining straightforward for
developers to use and maintain.

A typical task-oriented dialog system uses a
modular pipeline, which has four modules and
executes sequentially (Young et al., 2013; Gao
et al., 2019a), as shown in Figure 1(a). A natural
language understanding (NLU) module identifies
user intents and extracts associated information
such as slots and their values from users’ input. A
dialog state tracker (DST) infers the belief state
(or user goal) from dialog history. The belief state
is often used to query a task-specific database
(DB) to obtain the DB state, such as the number of
entities that match the user goal. The dialog state
and DB state are then passed to a dialog policy
(POL) to select the next system action. A natural
language generation (NLG) module converts the
action to a natural language response.

Most popular commercial tools for dialog
development employ the modular systems,
including Google’s Dialog Flow,2 Microsoft’s
Power Virtual Agents (PVA),3 Facebook’s
Wit.ai,4 Amazon’s Lex,5 and IBM’s Watson
Assistant.6 They are designed mainly to help
develop systems manually, namely, writing code,
crafting rules and templates. Unfortunately, even
with these tools, building dialog systems remains
a label-intensive, time-consuming task, requiring
rich domain knowledge, reasonable coding skill,
and expert experience. The cost of building dialog
systems at scale (i.e., tens of thousands of bots for
different tasks) can be prohibitively expensive.

2https://dialogflow.com/.
3https://powervirtualagents.microsoft.com/.
4https://wit.ai/.
5https://aws.amazon.com/lex/.
6https://www.ibm.com/watson/.
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Figure 1: Illustration of a traditional modular task-oriented dialog system, an example for the model input, and
the proposed model. The SOLOIST solution utilizes a single neural auto-regressive model in (c) to parameterize the
sequential dialog pipeline in (a), with input sequence represented in (b). Different from GPT-2, the SOLOIST model
learns to ground response generation in user goals and database/knowledge.

With the recent advances in neural approaches
to conversational AI (Gao et al., 2019a), research-
ers have been developing data-driven methods and
neural models for either individual dialog mod-
ules or end-to-end systems. For example, recent
attempts such as RASA (Bocklisch et al., 2017),
ConvLab (Lee et al., 2019b; Zhu et al., 2020), and
Conversation Learner (Shukla et al., 2020) are
made to allow the use of data-driven approaches
based on machine learning and machine teaching
to develop dialog modules. End-to-end trainable
dialog systems have also been studied (e.g., Wen
et al., 2017; Zhao and Eskenazi, 2016; Li et al.,
2017; Williams et al., 2017; Lei et al., 2018; Gao
et al., 2019a; Zhang et al., 2020b). Although these
methods have achieved promising results, they
require large amounts of task-specific labeled
data for training, which are rarely available for
new tasks in real-world applications.

In this paper, we propose a novel method
of building task bots at scale, SOLOIST, which
significantly eases the workflow of training and
deploying dialog systems for new tasks, compared
to existing tools and methods. Our approach is
inspired by the recent success of applying transfer
learning to natural language processing (NLP)
tasks: Big language models pre-trained on large
amounts of raw text (e.g., BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and UniLM
(Dong et al., 2019)) can be effectively fine-tuned
for a wide range of NLP tasks with few in-domain
labels. Recently, these pre-trained language mod-
els have also been employed to develop dialog
modules such as NLU and DST (Henderson
et al., 2020; Coope et al., 2020; Wu et al.,
2020a). The proposed SOLOIST uses a similar pre-
training-and-fine-tuning framework for building
end-to-end dialog systems. We parameterize a task

808



bot using a Transformer-based auto-regressive
language model, which subsumes different dialog
modules (i.e., NLU, DST, POL, and NLG) into a
single neural model. Task bot building proceeds in
two stages: (i) In the pre-training stage, initialized
using GPT-2 (Radford et al., 2019), we train a
Transformer-based, task-grounded, response gen-
eration model using large heterogeneous dialog
corpora. The model learns the primary task com-
pletion skills such as DST and POL, and can
generate dialog responses grounded in user goals
and real-world knowledge for task completion.
(ii) In the fine-tuning stage, we adapt the pre-
trained SOLOIST model to complete a specific
(new) task using a handful of task-specific dialogs
via machine teaching, where training samples are
generated by human teachers interacting with the
system (Zhu, 2015; Shukla et al., 2020).

We show through a comprehensive empirical
study that SOLOIST is an effective method of build-
ing task bots at scale by successfully transferring
two capabilities from the pre-trained model to
a new task bot: (i) the capability of NLU and
NLG learned on raw text, and (ii) the capability
of grounding system responses in user goals
and real-world knowledge for task completion,
learned on the out-domain dialog corpora.

SOLOIST achieves state-of-the-art performance
on two well-studied task-oriented dialog bench-
marks, lifting the combined score by 10 points
in automatic evaluation, and the success rate by
20 points in human evaluation. In the few-shot
fine-tuning settings, SOLOIST adapts to the new
domain much more effectively than competing
methods, achieving a reasonable success rate
using less than 50 dialogs. The promising results
demonstrate the potential of the new method
for developing task bots at scale. Instead of
collecting, labeling data, and building one bot per
task, we can pre-train a task-grounded response
generation model, and adapt it to new tasks via
transfer learning and machine teaching.

2 SOLOIST

2.1 An Auto-Regressive Model for Dialog

The modular dialog system in Figure 1 constitutes
a data processing pipeline that produces a
sequence, through concatenating the input-output
pair of each module along the generation process.
Each consecutive pair in this sequence plays

the role of annotated data for the corresponding
module. Ideally, when the entire sequence is
available, the data generation process of a dia-
log system (NLU, DST, POL, NLG) can be for-
mulated as a single auto-regressive model.

GPT-2 (Radford et al., 2019) is a state-of-
the-art (SoTA) auto-regressive language model
trained on large amounts of open Web text data.
Although after being fine-tuned using conver-
sational data, GPT-2 can respond to users with
realistic and coherent continuations about any
topic of their choosing (Zhang et al., 2020c), the
generated responses are not useful for completing
any specific task due to the lack of grounding.
SOLOIST inherits GPT-2’s capability of produc-
ing human-like responses. Nevertheless, unlike
GPT-2, SOLOIST is pre-trained to generate re-
sponses grounded in user goals and real-world
knowledge for task completion. While GPT-2 is
a language model for text prediction, SOLOIST is a
stateful decision-making model for task comple-
tion, with the capabilities of tracking dialog states,
selecting best system actions, and so on. Thus,
SOLOIST is pre-trained using task-oriented dialog
sessions annotated with grounding information,
i.e., user goals, dialog belief states, DB states, and
system responses. Specifically, each dialog turn
in our training data is represented as:

x = (s, b, c, r), (1)

where s is the dialog history up to the current
dialog turn, b is the dialog belief state acquired
from human annotation, c is the DB state auto-
matically retrieved from a database using b, and r
is the delexicalized dialog response, from which
the system response in natural language can be
generated using some automatic post-processing.
Each item in x is by itself a sequence of tokens,
as illustrated by the examples in Figure 1(b).
Thus, it is natural to treat the concatenation of
them as a long sequence for model training, as
shown in Figure 1(c). We pre-train the SOLOIST

model using publicly available heterogeneous
dialog corpora with labels of belief states and DB
states. The pre-trained model can be fine-tuned to
any new task to generate responses grounded in
task-specific user goals and a database.

2.2 Task-Grounded Pre-Training
Given training data of N samples D = {xn}Nn=1,
our goal is to build a neural model parameterized
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by θ to characterize the sequence generation
probability pθ(x). We use a multi-task objective
for learning θ, where each task is a self-supervised
learning task.

To leverage the sequential structure of a
task-oriented dialog system, the joint probability
p(x) can be factorized in the auto-regressive
manner as:

p(x) = p(r, c, b, s) (2)
= p(r|c, b, s)︸ ︷︷ ︸

Grounded Response Generation

p(b|s)︸ ︷︷ ︸
Belief Prediction

p(s), (3)

where the factorization from (2) to (3) is based
on the fact that p(c|b, s) = p(c|b) = 1, because
the DB state c is obtained using a deterministic
database-lookup process given a belief state b
(e.g., via an API call). Note that (3) decomposes
the joint distribution modeling problem into two
sub-problems: belief state prediction p(b|s) and
grounded response generation p(r|c, b, s). Since
b and r are sequences, we can further factorize
them in the left-to-right auto-regressive manner,
respectively.

Task 1: Belief Prediction. For a belief state
sequence of length Tb, we define the objective of
predicting the belief state as:

LB = log p(b|s) =
Tb∑
t=1

log pθ(bt|b<t, s), (4)

where b<t indicates all tokens before t.

Task 2: Grounded Response Genera-
tion. A delexicalized response of length Tr,
r = [r1, · · · , rTr ], is generated by our model
token-by-token from left to right, grounded in
dialog history c, belief state b and DB state s. The
corresponding training objective is defined as

LR = log p(r|c, b, s) (5)

=

Tr∑
t=1

log pθ(rt|r<t, c, b, s).

Task 3: Contrastive Objective. A contrastive
objective is employed to promote the matched
items (positive samples x) while driving down
the mismatched items (negative samples x′). The
negative samples are generated from sequence x
by replacing some items inxwith probability 50%
with different items randomly sampled from the
dataset D. Since the special token [EOS] attends

all tokens in the sequence, the output feature on
[EOS] is the fused representation of all items.
We apply a binary classifier on top of the feature
to predict whether the items in the sequence are
matched (y = 1) or mismatched (y = 0). The
contrastive object is cross-entropy defined as:

LC=y log(pθ(x)) + (1−y) log(1− pθ(x
′)). (6)

We generate three types of negative samples x′,
each of which is chosen with probability 1/3: (i)
negative belief, where only the belief state item
is replaced (ii) negative response, where only the
response item is replaced (iii) negative belief +
response, where both the belief state and response
items are replaced.

Full Pre-Training Objective. θ is learned via
maximizing the log-likelihood over the train-
ing dataset D, using a joint objective that
combines (4), (5) and (6):

Lθ(D) =

|D|∑
n=1

(LB(xn)+LR(xn)+LC(xn)). (7)

Figure 1(c) illustrates the model architecture and
learning objectives. The model is auto-regressive
in a left-to-right manner, with each of the three
training tasks labeled on its corresponding output
(i.e., sub-sequence separated by a special token).

Implementation Details. Each dialog turn in
training data is processed to form a sequence
of tokens consisting of four items (s, b, c, r).
For example, the dialog turn of Figure 1 (b) is
represented as follows, where different items are
rendered in different colors.

User: I would like to find an expensive restau-
rant that severs Chinese food. System: sure,
which area do you prefer ? User: How about
in the north part of town. => Belief State:
Restaurant { pricerange = expensive, food =
Chinese, area = north } < EOB > DB: Restau-
rant 1 match < EOKB > The [restaurant name]
is a great [value food] restaurant. Would you
like to book a table there ? < EOS >

This sequence, tokenized using byte pair encod-
ings (Sennrich et al., 2016), can be readily used for
multi-task training, as shown in Figure 1(c). The
implementation of SOLOIST is based on Hugging-
face PyTorch Transformer (Wolf et al., 2020). The
task-grounded pre-training of SOLOIST uses the
public 117M-parameter GPT-2 as initialization.
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Name #Dialog #Utterance Avg. Turn #Domain

task-grounded pre-training:
Schema 22,825 463,284 20.3 17
Taskmaster 13,215 303,066 22.9 6

fine-tuning:
MultiWOZ2.0 10,420 71,410 6.9 7
CamRest676 676 2,744 4.1 1
Banking77 – 25,716 – 21
Restaurant-8k – 8,198 – 1

Table 1: Dialog corpora. The datasets in the upper
block are used for task-grounded pre-training, and
the datasets in the lower block are for fine-tuning.

Adam (Kingma and Ba, 2014) with weight
decay is used for pre-training. Table 1 shows the
dialog corpora (Kim et al., 2019; Rastogi et al.,
2020; Byrne et al., 2019) used for task-grounded
pre-training. To ensure there is no overlap bet-
ween pre-training and fine-tuning datasets, we ex-
clude the data akin to MultiWOZ (Budzianowski
et al., 2018), CamRest676 (Wen et al., 2017),
Banking77 (Casanueva et al., 2020), Restaurant-
8k (Coope et al., 2020).

2.3 Fine-Tuning and Machine Teaching

When deploying SOLOIST to a new task, we collect
task-specific x in the same format as that used
for pre-training as (1). When x is available, the
conventional fine-tuning procedure is utilized: we
use the same multi-task objective of (7) to update
θ to adapt the model to complete the new task
using labeled task-specific dialogs.

In real applications, annotated task-specific
data is often unavailable, or noisy/incomplete
beforehand. One may deploy the dialog system
and acquire high-quality task-specific labels (e.g.,
belief state and system response) for each dialog
turn using machine teaching. Machine teaching
is an active learning paradigm that focuses
on leveraging the knowledge and expertise of
domain experts as ‘‘teachers’’. This paradigm
puts a strong emphasis on tools and techniques
that enable teachers—particularly non-data
scientists and non-machine-learning experts—to
visualize data, find potential problems, and
provide corrections or additional training inputs
in order to improve the system’s performance
(Simard et al., 2017; Zhu, 2015; Williams and
Liden, 2017; Shukla et al., 2020).

We proceed fine-tuning using Conversation
Learner (Shukla et al., 2020), a machine teaching

tool, in the following steps: (i) Dialog authors
deploy the pre-trained SOLOIST model for a specific
task. (ii) Users (or human subjects recruited for
system fine-tuning) interact with the system and
generate human-bot dialog logs. (iii) Dialog
authors revise a dozen of training samples by se-
lecting representative failed dialogs from the logs,
correcting their belief and/or responses so that the
system can complete these dialogs successfully, as
illustrated in Figure 2. The corrected task-specific
dialog turns are used to fine-tune the model.

Implementation Details. To adapt a pre-trained
SOLOIST to a new task in our experiments, we
always fine-tune SOLOIST using a small amount
of pre-collected task-specific dialogs, and then
continue to fine-tune it via machine teaching,
as detailed in Section 3.3. Training examples
are truncated to ensure a maximal length of
512. The pre-trained models are fine-tuned with
a mini-batch of 6 on 8 Nvidia V100 until no
progress is observed on validation data or up to
10 epochs. Nucleus sampling (Holtzman et al.,
2019) is used for decoding, where the sampling
top-p ranges from 0.2 to 0.5 for all our models.
The best setup of hyper-parameters is selected
through grid-search on the validation set. For the
machine teaching experiment,pre-trained models
are fine-tuned with SGD on a single Nvidia V100.

3 Experiments

This section evaluates the proposed SOLOIST to
answer three questions: Q1: How does SOLOIST

perform on standard benchmarks compared to
SoTA methods? Q2: Does SOLOIST meet the goal
of effectively generalizing to new domains in the
few-shot fine-tuning setting? Q3: how effective
machine teaching is for fine-tuning? Note that
we employ the conventional fine-tuning method
without machine teaching for a fair comparison
when studying Q1 and Q2.

3.1 Experimental Setup

Dialog Datasets for Fine-Tuning. We validate
the end-to-end dialog system performance of
SOLOIST on two well-studied datasets. (i) Cam-
Rest676 (Wen et al., 2017) is a single-domain task-
oriented dialog corpus. It contains 408/136/136
dialogs for training/validation/testing, respec-
tively. Following Lei et al. (2018), we delexicalize
each token that occurs in the ontology with its slot
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Figure 2: Illustration of the machine teaching process using conversion learner. The human-bot conversion log in
(a) can be edited via correcting its belief state in (b), and selecting/inserting a more appropriate response in (c).

names such as restaurant name, phone number, and
postcode. (ii) MultiWOZ dataset (Budzianowski
et al., 2018) is a multi-domain task-oriented dialog
dataset. It contains 8438/1000/1000 for train-
ing/validation/testing, respectively. Each dialog
session contains 1 to 3 domains, such as Attrac-
tion, Hotel, Hospital, Police, Restaurant, Train,
and Taxi. MultiWOZ is inherently challenging
due to its multi-domain setting and diverse lan-
guage styles.

Automatic Evaluation Metrics. Following
Budzianowski et al. (2018), Inform, Success,
and BLEU scores are reported. The first two metrics
relate to the dialogue task completion—whether
the system has provided an appropriate entity
(Inform) and then answered all the requested
attributes (Success). BLEU evaluates how
natural the generated responses are compared
to that generated by human agents. A com-
bined score (Combined) is also reported using
Combined = (Inform+ Success)× 0.5+ BLEU

as an overall quality measure.

Baselines. We compare SOLOIST with several
strong baselines, which hold SoTA on the Cam-
Rest676 or MultiWOZ datasets. (i) Multi-Action
Data Augmentation (DAMD) (Zhang et al.,
2020b) is a modular system, where each di-
alog module is implemented using a neural
network, and the whole system is trained in an
end-to-end manner. (ii) Sequicity (Lei et al.,
2018) is similar to DAMD except that it
does not use multi-action data augmentation.
(iii) GPT fine-tuning (Budzianowski and Vulić,
2019) is fine-tuned on GPT-2 to generate re-

sponses based on the dialog state and history.
(iv) ARDM (Wu et al., 2019b) utilizes GPT-2
as the pre-trained model to learn to generate
role-aware responses given dialog context. The
model has to work with a separate dialog state
tracker for task completion. (v) HDSA (Chen
et al., 2019) is a modular dialog system, which gen-
erates responses using a BERT-based dialog pol-
icy and graph structure dialog act representations.

3.2 End-to-End Evaluation

CamRest676. Table 2 shows the result and lists
annotations used by different models. SOLOIST

achieves the best scores in all the metrics. ARDM
performs similarly to SOLOIST in terms of Success
and BLEU. However, ARDM cannot track dialog
states and requires a separately trained state
tracker to accomplish tasks. GPT-2 fine-tuned
with task-specific data works reasonably well but
lags behind SOLOIST by a large margin. Sequicity,
which uses a jointly trained model with belief
state and policy annotations, underperforms
SOLOIST. This result also shows that, compared
to other end-to-end models, SOLOIST not only
achieves better performance but requires lower
labeling cost for fine-tuning due to the use of
task-grounded pre-training.

MultiWOZ. The result is shown in Table 3.
SOLOIST achieves the best performance in terms of
Inform, Success, and Combined, lifting the pre-
vious SoTA by a significant margin (e.g., about 10
points improvement in Combined over DAMD).
SOLOIST also outperforms the method of Ham et al.
(2020), where GPT-2 is fine-tuned and applied
for end-to-end dialog modeling. Compared to the
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Model
Annotations Evaluation Metrics

Belief State Policy Inform ↑ Success ↑ BLEU ↑ Combined ↑

Sequicity (Lei et al., 2018) � � 92.30 85.30 21.40 110.20
Sequicity (w/o RL) � � 94.00 83.40 23.40 112.10
GPT fine-tuning (Budzianowski and Vulić, 2019) – 86.20 19.20 –
ARDM1 (Wu et al., 2019b) – 87.10 25.20 –
SOLOIST � 94.70 87.10 25.50 116.40

1ARDM is not fully E2E, as it requires a rule-based dialog state tracker.

Table 2: End-to-End evaluation on CamRest676. Results of existing methods are from Wu et al.
(2019b).

Model
Annotations Evaluation Metrics

Belief State Policy Inform ↑ Success ↑ BLEU ↑ Combined ↑

Sequicity (Lei et al., 2018) � � 66.41 45.32 15.54 71.41
HRED-TS (Peng et al., 2019) � � 70.00 58.00 17.50 81.50
Structured Fusion (Mehri et al., 2019b) � � 73.80 58.60 16.90 83.10
DSTC8 Track 1 Winner 1 (Ham et al., 2020) � � 73.00 62.40 16.00 83.50
DAMD (Zhang et al., 2020b) � � 76.40 60.40 16.60 85.00
SOLOIST � 85.50 72.90 16.54 95.74

1The result of DSTC8 Track 1 Winner is produced by adapting their code to our setting.

Table 3: End-to-end evaluation on MultiWOZ.

classical modular dialog systems such as DAMD,
SOLOIST uses a much simpler architecture and
requires much lower labeling effort. For example,
SOLOIST requires only the belief states, while
DAMD requires additional annotations for task
definition (i.e., defining the intents, slots, and the
corresponding value ranges) and dialog acts.

3.3 Few-Shot Evaluation

It is desirable for task bots to effectively gener-
alize to new tasks with few task-specific training
samples. Thus, the few-shot fine-tuning setting
is a more realistic setting for evaluating dialog
systems. Unfortunately, the existing task-oriented
dialog benchmarks typically contain for each
task hundreds to thousands of dialogs. Therefore,
we re-organize CamRest676 and MultiWOZ
to simulate the few-shot fine-tuning setting for
end-to-end evaluation.7 We sample from the
MultiWOZ dataset the dialog tasks that contain
only one domain. Attraction, Train,
Hotel, and Restaurant domains are used.
We do not use the domains of Police, Taxi,
and Hospital, as they do not require explicitly
tracking dialog states for task completion. For
each domain, we randomly sample 50 dialog
sessions for training and validation and 200 dialog
sessions for testing. The only exception is the

7We will release the re-organized datasets.

Domain Attra. Train Hotel Rest. CamRest676

#Train 50 50 50 50 20
#Valid 50 50 50 50 136
#Test 100 200 200 200 136

Table 4: Data statistics for domains used in few-
shot evaluation. Attra. denotes Attraction
domain and Rest. means Restaurant.

Model
CamRest676

Inform ↑ Success ↑ BLEU ↑

Sequicity (Lei et al., 2018) 60.61 66.11 11.15
SOLOIST w/o pre-training 73.88 72.22 13.11
SOLOIST 85.82 84.22 19.18
SOLOISTL 88.05 84.79 18.88

Table 5: End-to-end evaluation on CamRest676
in the few-shot fine-tuning setting.

Attraction domain, which has 100 sessions
for testing. For CamRest676, we randomly sam-
ple 20 sessions. Details are shown in Table 4.

Table 5 and 6 report the end-to-end perfor-
mance in the few-shot fine-tuning settings on
CamRest676 and MultiWOZ, respectively. On
all the domains, SOLOIST obtains substantially
better performance in all the metrics. Removing
task-grounded pre-training significantly hurts
the performance of SOLOIST, although SOLOIST
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Model Attraction Train Hotel Restaurant

Inform ↑ Success ↑ BLEU ↑ Inform ↑ Success ↑ BLEU ↑ Inform ↑ Success ↑ BLEU ↑ Inform ↑ Success ↑ BLEU ↑

DAMD (Zhang et al., 2020b) 70.00 15.00 6.90 75.00 39.50 6.20 62.50 20.50 7.60 68.00 19.50 10.50
SOLOIST w/o pre-training 65.66 46.97 5.85 59.00 44.00 7.07 62.50 40.00 7.70 75.50 44.50 11.00
SOLOIST 86.00 65.00 12.90 80.81 64.65 9.96 74.50 43.50 8.12 81.00 55.50 12.80
SOLOISTL 86.00 68.00 14.60 81.31 74.24 11.90 75.00 51.50 10.09 84.00 62.50 13.17

Table 6: End-to-end evaluation on MultiWOZ in the few-shot fine-tuning setting.

Model 1% 5% 10% 20%

Inform ↑ Success ↑ BLEU ↑ Inform ↑ Success ↑ BLEU ↑ Inform ↑ Success ↑ BLEU ↑ Inform ↑ Success ↑ BLEU ↑

DAMD (Zhang et al., 2020b) 34.40 9.10 8.10 52.50 31.80 11.60 55.30 30.30 13.00 62.60 44.10 14.90
SOLOIST w/o pre-training 46.10 24.40 10.39 63.40 38.70 11.19 64.90 44.50 13.57 70.10 52.20 14.72
SOLOIST 58.40 35.30 10.58 69.30 52.30 11.80 69.90 51.90 14.60 74.00 60.10 15.24

Table 7: End-to-end evaluation on MultiWOZ with varying sizes of task-specific training data for
fine-tuning.

Model Attraction Train Hotel Restaurant

Inform ↑ Success ↑ BLEU ↑ Inform ↑ Success ↑ BLEU ↑ Inform ↑ Success ↑ BLEU ↑ Inform ↑ Success ↑ BLEU ↑

SOLOIST 45.00 19.00 7.67 67.68 58.08 7.13 33.50 22.50 8.70 50.50 10.00 8.61
SOLOIST +Extra 63.00 41.00 11.08 65.15 57.58 9.74 41.50 19.00 7.96 44.50 27.00 9.77
SOLOIST +Teach 78.00 45.00 11.90 68.18 63.64 9.45 46.50 22.50 7.68 53.00 32.00 9.81

Table 8: Machine teaching results. SOLOIST is trained with 10 examples for each domain. SOLOIST+Teach
indicates continual training with 5 dialogs recommended by CL with human teacher corrections.
SOLOIST+Extra indicates continual training using 5 randomly sampled dialogs with full annotations.

without task-grounded pre-training still consis-
tently outperforms DAMD in all the domains.
SOLOIST without task-grounded pre-training is
conceptually similar to Ham et al. (2020),
but is architecturally simpler and needs fewer
annotations. The result verifies the importance of
task-grounded pre-training on annotated dialog
corpora, allowing SOLOIST to learn how to track
dialog and database states to accomplish a task.
To study the impact of using larger model size, we
build a large version of SOLOIST, SOLOISTL, which
is task-grounded pre-trained on the same data
but using GPT-2medium with 345M parameters as
initialization. SOLOISTL consistently outperforms
SOLOIST by a large margin. It indicates that
a larger model is a better few-shot learner,
exhibiting stronger generalization ability with
limited in-domain data. We leave it to future work
to significantly scale up SOLOIST.

We conduct experiments to fine-tune SOLOIST

by varying the percentage of task-specific training
samples, ranging from 1% (80 examples) to
20% (1600 examples), on the MultiWOZ dataset.
As shown in Table 7, SOLOIST consistently
outperforms DAMD for a wide range of dataset
sizes, and the improvement is more substantial
when smaller numbers of in-domain examples are
used for fine-tuning.

3.4 Machine Teaching Results

The machine teaching module of Conversational
Learner (CL) (Shukla et al., 2020) allows human
teachers (dialog authors) to select and visualize
dialogs, find potential problems, and provide
corrections or additional training samples to
improve the bot’s performance. We use CL to
evaluate the effectiveness of machine teaching
for task bot fine-tuning. In our experiment, we
first sample 10 dialogs from each domain to
fine-tune SOLOIST as described in Section 3.3. The
result is presented in the first row of Table 8.
We then deploy the model to interact with human
users via CL. The row of SOLOIST+Teach shows
the result of machine teaching, where a human
teacher has manually corrected 5 dialogs, which
are recommended by CL using a ranking heuristic
based on perplexity. The corrections are utilized
to continually fine-tune the deployed system.

Table 8 shows that SOLOIST+Teach consistently
improves Combined by a large margin compared
with that without human teaching. SOLOIST+Extra
is used as an ablation baseline, where 5 randomly
selected dialogs with full annotations from
experts are added as extra examples to fine-tune
the model. It shows lower performance than
machine teaching. Figure 3 demonstrates the
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Figure 3: Machine teaching performance of different
iterations in Restaurant domain. Machine teaching
with CL achieves near 1.5X efficiency gain (i.e., the
1st iteration used 15 dialogs while the 3rd iteration
has 25 dialogs) and boosts performance by 10 points
compared with that without teaching.

performance of SOLOIST in Restaurant by
repeating the above machine teaching process in
multiple iterations. We observe that in the second
iteration of machine teaching SOLOIST+Teach
improves Combined by more than 8 points while
SOLOIST+Extra achieves 5 points higher. The result
demonstrates the effectiveness of our two-step
fine-tuning scheme to deploy SOLOIST for a new
task (domain). In terms of machine teaching cost,
taking the restaurant domain as an example,
we assume that one slot-value pair of belief state
correction counts as one edit and a response
correction counts as ten edits. The total numbers
of edits for SOLOIST+Teach and SOLOIST+Extra are
61 and 396, respectively, suggesting that machine
teaching reduces the labeling cost by 6×.

3.5 Component-Wise Evaluation

This section evaluates SOLOIST on two NLU tasks
(i.e., intent classification and slot filling), the DST
task and the response generation task. We show
that although SOLOIST is an end-to-end dialog
model, it also performs well on these component
tasks.

Intent Classification The task is to classify
a user utterance into one of several pre-defined
classes (intents). We follow the experiment setting
of Casanueva et al. (2020). The last hidden state of
SOLOIST is used as the sequence representation for
classification. Several baseline methods are used
for comparison. BERT-fixed and BERT-tuned are
fine-tuned on BERT, with BERT parameters fixed

Model
Banking77

10 30 Full

BERT-Fixed 67.55 80.07 87.19
BERT-Tuned 83.42 90.03 93.66
USE 84.23 89.74 92.81
ConveRT 83.32 89.37 93.01
USE+ConveRT 85.19 90.57 93.36
SOLOIST 78.73 89.28 93.80

Table 9: Intent classification accuracy scores (5
runs average) on Banking77 with varying number
of training examples (10, 30 examples for each
intent, and full training examples. The baseline
results are cited from Casanueva et al. (2020).

and updated during fine-tuning, respectively. A
linear classifier with a softmax layer is added
on top of BERT for classification. Universal
Sentence Encoder and ConveRT are sentence
encoders tailored for modeling sentence pairs,
and are trained for optimizing the conversational
response selection task. The results in Table 9
show that SOLOIST is comparable with SoTA intent
classification models. SOLOIST is the best per-
former when the full dataset is used for fine-tuning
but its performance deteriorates more quickly
than USE+ConveRT when fewer samples are
used for fine-tuning. It is interesting to investigate
whether incorporating intent classification tasks
in task-grounded pre-training can boost SOLOIST’s
performance. We leave it to future work.

Slot Filling. We follow the experiment setting of
Coope et al. (2020) and formulate slot filling as a
turn-based span extraction problem. The results in
Table 10 show that SOLOIST performs significantly
better than the SoTA method Span-ConveRT, a
variant of ConveRT designed explicitly for slot
filling. The gap is wider when fewer examples are
used for training. For example, when 64 samples
are used for training, SOLOIST outperforms Span-
ConveRT by 20 points in F1 score.

Dialog State Tracking. We compare the dialog
state tracking capability of SOLOIST with several
strong baselines on MultiWOZ 2.0 and 2.1. The
results in Table 11 show that SOLOIST achieves the
best performance on MultiWOZ2.1 and similar
performance to DST-Picklist (Zhang et al., 2020a),
which requires pre-defined task ontology to guide
state tracking. In comparison with Simple-TOD
(Hosseini-Asl et al., 2020) that is based on GPT-2,
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Fraction SOLOIST Span-ConveRT V-CNN-CRF Span-BERT

1 (8198) 0.98 0.96 0.94 0.93
1/2 (4099) 0.95 0.94 0.92 0.91
1/4 (2049) 0.93 0.91 0.89 0.88
1/8 (1024) 0.89 0.89 0.85 0.85
1/16 (512) 0.84 0.81 0.74 0.77
1/32 (256) 0.79 0.64 0.57 0.54
1/64 (128) 0.74 0.58 0.37 0.42
1/128 (64) 0.61 0.41 0.26 0.30

Table 10: Average F1 scores across all slots
for Restaurant-8K with varying training set frac-
tions. Numbers in parentheses represent training
set sizes. The baseline results are quoted from
Coope et al. (2020).

SOLOIST obtains 1.13% higher joint goal accu-
racy. We attribute the gain to the task-grounded
pre-training that equips SOLOIST with task comple-
tion skills including dialog state tracking.

Context-to-Response. In this task, systems
need to generate responses given the ground-truth
belief state and DB search result (Wen et al.,
2017). The results on MultiWOZ 2.0 are shown in
Table 12. SOLOIST achieves the best performance
in terms of Inform and Success but performs
slightly worse in BLEU. The Combined score of
SOLOIST is comparable with the current SoTA
method DAMD. However, DAMD uses the labels
of dialog act on both the user and system sides,
which demands significantly higher labeling
efforts than SOLOIST for model training. HDSA
achieves the best BLEU score. Compared with
HDSA, SOLOIST is much simpler and able to
perform better in terms of Combined. SOLOIST

outperforms ARDM in Combined. It is worth
mentioning that ARDM cannot perform dialog
state tracking and requires an extra dialog state
tracker to accomplish tasks. These results show
that SOLOIST can learn dialog policies accurately
and generate natural language responses in the
multi-domain scenario.

3.6 Human Evaluation Results
We conduct human evaluation to assess the
quality of SOLOIST interacting with human users.
Following the evaluation protocol in the DSTC8
track 1 challenge (Kim et al., 2019), we host the
best performed SOLOIST on the validation set in
MultiWOZ domain in the back-end as bot services
and crowdsource the work to Amazon Mechanical
Turk. For each dialog session, we present Turks
a goal with instructions. Then Turks are required

Model Joint Goal Accuracy ↑

MWoz2.0 MWoz2.1

MDBT (Ramadan et al., 2018) 15.57 –
GLAD (Zhong et al., 2018) 35.57 –
GCE (Nouri and Hosseini-Asl, 2018) 36.27 –
FJST (Eric et al., 2020) 40.20 38.00
HyST (Goel et al., 2019) 44.24 –
SUMBT (Lee et al., 2019a) 46.65 –
TOD-BERT (Wu et al., 2020a) – 48.00
Neural Reading (Gao et al., 2019b) 41.10 –
TRADE (Wu et al., 2019a) 48.62 45.60
COMER (Ren et al., 2019) 48.79 –
NADST (Le et al., 2020) 50.52 49.04
DSTQA (Zhou and Small, 2019) 51.44 51.17
SOM-DST (Kim et al., 2020) 51.38 52.57
DST-Picklist (Zhang et al., 2020a) 53.30 –
MinTL (Lin et al., 2020) 52.10 53.62
SST (Chen et al., 2020) 51.17 55.23
Tripy (Heck et al., 2020) – 55.29
Simple-TOD (Hosseini-Asl et al., 2020) – 55.72
SOLOIST 53.20 56.85

Table 11: Dialog state tracking results on
MultiWOZ 2.0 and 2.1.

to converse with SOLOIST to achieve the goal
and judge the overall dialog experience at the
end of a session using four metrics. (i) Success
evaluates task completion. (ii) Under. (language
understanding score) ranging from 1 (bad) to 5
(good) indicates the extent to which the system
understands user inputs. (ii) Appr. (response
appropriateness score) scaling from 1 (bad) to
5 (good) denotes whether the response is appro-
priate and human-like. (iv) Turns is the average
number of turns in a dialog overall successful
dialog sessions. Turks are further required to write
down a justification of giving a specific rating. In
total, 120 dialog sessions are gathered for analysis.

Table 13 shows the human assessment results
on MultiWOZ. The results are consistent with the
automatic evaluation. SOLOIST achieves substan-
tially better performance than other systems over
all the metrics. Moreover, SOLOIST outperforms
the DSTC8 Track 1 Winner by a much larger
margin in Success (+20 points) in human
evaluation than that in automatic evaluation (+10
points in Table 3). We attribute this to the fact that
Turks use more diverse language to interact with
the target bots in interactive human evaluation
than that in the pre-collected MultiWOZ dataset
and the use of heterogeneous dialog data for
task-grounded pre-training makes SOLOIST a more
robust task bot than the others. In many test cases
against SOLOIST, Turks comment that they feel
like they are talking to a real person.
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Model Annotations Evaluation Metrics

Belief State Policy Inform ↑ Success ↑ BLEU ↑ Combined ↑
Baseline (Budzianowski et al., 2018) � 71.29 60.94 18.80 84.93
TokenMoE (Pei et al., 2019) � 75.30 59.70 16.81 84.31
GPT fine-tuning (Budzianowski and Vulic, 2019) � 70.96 61.36 19.05 85.21
Structured Fusion (Mehri et al., 2019b) � � 82.70 72.10 16.34 93.74
LaRL (Zhao et al., 2019) � 82.80 79.20 12.80 93.80
MD-Sequicity (Zhang et al., 2020b) � � 86.60 71.60 16.68 95.90
HDSA (Chen et al., 2019) � � 82.90 68.90 23.60 99.50
ARDM (Wu et al., 2019b) 87.40 72.80 20.60 100.70
DAMD (Zhang et al., 2020b) � � 89.20 77.90 18.60 102.15
SOLOIST � 89.60 79.30 18.03 102.49

Table 12: Context-to-response evaluation on MultiWOZ.

Model Success ↑ Under. ↑ Appr. ↑ Turns ↓

SOLOIST 91.67 4.29 4.43 18.97
DSTC8 Track 1 Winner 68.32 4.15 4.29 19.51
DSTC8 2nd Place 65.81 3.54 3.63 15.48
DSTC8 3rd Place 65.09 3.54 3.84 13.88
DSTC8 Baseline 56.45 3.10 3.56 17.54

Table 13: Human evaluation results. The results
except SOLOIST are quoted from Li et al. (2020b).

Figure 4 depicts a dialog example where a user
interacts with SOLOIST to complete a multi-domain
task. The user starts the conversation by asking
for a recommendation of a museum in the center
of town. SOLOIST identifies the user intent, and
provides a recommendation based on the search
result from an attraction DB. Then, the user wants
to book a table in a restaurant in the same area.
We can see that through the conversation, SOLOIST

develops belief state, which can be viewed as the
system’s understanding of what the user needs
and what is available in the DB. Based on the
belief state and DB state, SOLOIST picks the next
action, either asking for clarification or providing
the user with information being requested. This
example also demonstrates that SOLOIST is able to
deal with some NLU challenges displayed often
in human conversations, such as co-reference
resolution. For example, SOLOIST understands that
the ‘‘same area’’ at Turn 5 refers to ‘‘centre of
town’’, and then identifies a proper entity from the
restaurant booking DB to make the reservation.

4 Related Work

Dialog Systems. Dialog systems are typically
grouped into two categories, task-oriented sys-

Figure 4: An interactive example.

tems and social chatbots (e.g., Chen et al., 2017;
Gao et al., 2019a; Roller et al., 2020a; Zhou et al.,
2020). Recently many variants have been devel-
oped to extend the scope of dialog systems, includ-
ing empathetic dialog systems (Ma et al., 2020;
Zhou et al., 2018), chatbots for sentiment analysis
(Li et al., 2020c), dialog systems with common-
sense knowledge (Young et al., 2018; Shuster
et al., 2020), or using audio features (Young et al.,
2020). In this paper, we focus on end-to-end
dialog models for task-oriented systems.

Pre-Trained Language Models. Recent ad-
vances on self-supervised learning have witnessed
the blooming of large-scale pre-trained language
models (e.g., Devlin et al., 2019; Radford et al.,
2019; Dong et al., 2019), which achieve
SoTA performance on a variety of language under-
standing and generation tasks. The closest to
SOLOIST are GPT-2 (Radford et al., 2019) and
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its variants that ground language generation
in the prescribed control codes such as CTRL
(Keskar et al., 2019) and Grover (Zellers et al.,
2019), or latent variables such as Optimus
(Li et al., 2020a).

Recently, pre-trained language models have
been adopted to develop task-oriented and chit-
chat dialog systems. To name a few examples of
chit-chat dialog systems: DialoGPT (Zhang et al.,
2020c), TransferTransfo (Wolf et al., 2019) and
CGRG (Wu et al., 2020b) adapt GPT-2 using
human conversational data for response genera-
tion. Plato (Bao et al., 2020) pre-trains a discrete
latent variable model for response generation.
Meena (Adiwardana et al., 2020) and BST (Roller
et al., 2020b) pre-train large models on conver-
sational data and have demonstrated expressive
performance in generating social chit-chat dialogs.
For task-oriented dialogs, Mehri et al. (2019a)
explores different pre-training methods for dialog
context representation learning. TOD-BERT
(Wu et al., 2020a) adapts the pre-trained BERT
to achieve strong performance on four dialog
sub-tasks. ConveRT (Henderson et al., 2020)
pre-trains a model on Reddit data for intent clas-
sification and response selection. Span-ConveRT
(Coope et al., 2020) extends the framework to
entity extraction. SC-GPT (Peng et al., 2020b)
uses a pre-trained language model to convert a
dialog act to a natural language response. All these
works use the pre-training and fine-tuning frame-
work. However, they follow the modular archi-
tecture of task bots, and the pre-trained models
are used for improving individual dialog modules
such as NLU and DST. SOLOIST generalizes these
methods to the entire dialog pipeline, building an
end-to-end dialog system.

End-to-End Trainable Dialog Systems. The
end-to-end dialog systems based on neural
models have been studied in Wen et al. (2017); Li
et al. (2017); Lei et al. (2018); Xu et al. (2019).
Although these methods have achieved promising
results, they are designed for specific domains,
rendering difficulties in generalizing to multi-
domains such as MultiWOZ. Dialog models that
can handle multi-domain tasks are studied in (Pei
et al., 2019; Budzianowski and Vulić, 2019; Mehri
et al., 2019b; Zhao et al., 2019; Wu et al., 2019b;
Zhang et al., 2020b; Peng et al., 2017). However,
these works require large amounts of in-domain
labels to achieve good performance. In contrast,

SOLOIST can effectively adapt to a new task in the
few-shot fine-tuning settings.

The most related work to ours is Ham et al.
(2020), which is the first attempt to fine-tune GPT-
2 to build end-to-end dialog models. Hosseini-Asl
et al. (2020) take a similar approach, and is a
concurrent work of SOLOIST. However, SOLOIST

differs from these two methods in two major
aspects. The first is the use of task-grounded
pre-training that allows SOLOIST to learn primary
task completion skills, such as tracking dialog
states and select system actions. These skills can
be easily reused and adapted (e.g., via few-shot
fine-tuning) to solve new dialog tasks, leading
to a much higher task success rate, as reported
in Section 3. The second is that the annotation
cost required for training SOLOIST is much lower
than that of Ham et al. (2020) or Hosseini-Asl
et al. 2020. Training SOLOIST requires only belief
states as labels. But training of Ham et al. (2020)
and Hosseini-Asl et al. (2020) requires labeling
each dialog turn with dialog acts. In addition,
while SOLOIST is end-to-end trainable, the other
two models are not and need heuristic rules to
handle different database search conditions.

5 Conclusion

SOLOIST is a method of building task bots
at scale with transfer learning and machine
teaching. Unlike GPT-2, SOLOIST is pre-trained
in a task-grounded manner. So, it can generate
responses grounded in user goals and real-world
knowledge for task completion. Experiments
show that SOLOIST creates new SoTA on two
popular task-oriented dialog benchmarks, and
that SOLOIST outperforms existing methods by a
large margin in the few-shot fine-tuning settings
where only a limited number of task labels are
available for fine-tuning.

We hope that SOLOIST can inspire dialog
researchers and developers to comprehensively
explore the new paradigm for building task bots
based on task-grounded pre-training and fine-
tuning via machine teaching, and improving the
recipe we present in this paper, namely, formulat-
ing task-oriented dialog as a single auto-regressive
language model, pre-training a task-grounded re-
sponse generation model on heterogeneous dia-
log corpora, and adapting the pre-trained model
to new tasks through fine-tuning using a handful
task-specific examples via machine teaching.
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