
There Once Was a Really Bad Poet, It Was Automated but
You Didn’t Know It

Jianyou Wang1, Xiaoxuan Zhang1, Yuren Zhou2, Christopher Suh1, Cynthia Rudin1,2

Duke University {1Computer Science, 2Statistics} Department, United States
jw542@duke.edu, zhangxiaoxuanaa@gmail.com

yuren.zhou@duke.edu, csuh09@gmail.com, cynthia@cs.duke.edu

Abstract

Limerick generation exemplifies some of the
most difficult challenges faced in poetry
generation, as the poems must tell a story
in only five lines, with constraints on rhyme,
stress, and meter. To address these challenges,
we introduce LimGen, a novel and fully
automated system for limerick generation that
outperforms state-of-the-art neural network-
based poetry models, as well as prior
rule-based poetry models. LimGen consists
of three important pieces: the Adaptive
Multi-Templated Constraint algorithm that
constrains our search to the space of realistic
poems, the Multi-Templated Beam Search
algorithm which searches efficiently through
the space, and the probabilistic Storyline
algorithm that provides coherent storylines
related to a user-provided prompt word. The
resulting limericks satisfy poetic constraints
and have thematically coherent storylines,
which are sometimes even funny (when we
are lucky).

1 Introduction

A limerick is a short and catchy 5-line poem that
tells a funny, crude, or ironic story. It has strict
structural constraints such as an AABBA rhyming
scheme, a 99669 syllable count, and an anapestic
meter pattern (Legman, 1988). Writing limericks
is a challenging task even for human poets, who
have to carefully choose, optimize, and even
invent new words to satisfy all of the constraints
while incorporating creativity and humor.

Prior to this paper, there has not been a suc-
cessful attempt at realistic automatic limerick
generation. Perhaps this is because the task is
challenging: Large-scale neural networks often
fail to generate decent limericks because the
amount of available human-written limericks to
learn from is much smaller than other forms of

poetry, and because limericks must follow strict
structural, meter, and rhyming constraints. Tra-
ditional methods for generating limericks instead
hard-code the constraints into a template, so that
the constraints are obeyed but the generated poems
are all extremely similar (resembling Mad Libs,
where one fills words into a single template).

In this paper, we introduce a novel system
of algorithms for automatic limerick generation,
denoted as LimGen. LimGen takes a user-specified
prompt word and produces a creative and diverse
set of limericks related to the prompt. Table 1
shows some of LimGen’s output.

LimGen is a rule-based search method. Its main
components are: (1) Adaptive Multi-Templated
Constraints (AMTC), which constrain LimGen’s
search to a space of realistic limericks, leverag-
ing knowledge from limerick sentence structures
extracted from human poets; (2) the novel Multi-
Templated Beam Search (MTBS), which searches
the space in a way that fosters diversity in gen-
erated poems; and (3) the probabilistic Storyline
algorithm, which provides coherent storylines that
are thematically related to the prompt word.

LimGen relies on the part-of-speech (POS)
limerick templates extracted from a small training
set and uses a pre-trained language model to fill
words into the templates. We used the 345M ver-
sion of pre-trained GPT-2 (Radford et al., 2019),
which performs extremely well in unconstrained
text generation. However, it is important to note
that a language model such as GPT-2, powerful
though it may be, is only a plugin module for Lim-
Gen. Without LimGen, GPT-2 alone is completely
incapable of generating limericks.

Through our experiments, we demonstrate that
LimGen creates a new benchmark for limerick
generation, outperforming both traditional rule-
based algorithms and encoder-decoder style neu-
ral networks across a variety of metrics, including

605

Transactions of the Association for Computational Linguistics, vol. 9, pp. 605–620, 2021. https://doi.org/10.1162/tacl a 00387
Action Editor: Micha Elsner. Submission batch: 10/2020; Revision batch: 1/2021; Published 7/2021.

c© 2021 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:jw542@duke.edu
mailto:zhangxiaoxuanaa@gmail.com
mailto:yuren.zhou@duke.edu
mailto:csuh09@gmail.com
mailto:cynthia@cs.duke.edu
https://doi.org/10.1162/tacl_a_00387

(a) prompt: ‘‘money’’

There was a greedy man named Todd,
Who lost all his money in a fraud.
When he returned to work,
He was robbed by his clerk,
And never could buy a cod.

(b) prompt: ‘‘cunning’’
There was a magician named Nick,
Who fooled all his family in a trick.
When he returned to hide,
He was found by his bride,
And killed with a magical lipstick.

Table 1: LimGen examples.

emotional content, grammar, humor, sensibleness
and storyline quality. Furthermore, although Lim-
Gen is not yet on par with human poets, our
experiments show that 43% of LimGen’s output
cannot be distinguished from human-written lim-
ericks even when directly compared with actual
human limericks.

The main contributions of this paper are the
multi-template-guided LimGen system and its
MTBS search algorithm. Equipped with AMTC,
LimGen is the first fully automated limerick gen-
eration system that has the ability to write creative
and diverse limericks, outperforming existing
state-of-the-art methods. Our diversity-fostering
beam search (MTBS) is on par with some of
the best beam search algorithms in terms of its
ability to optimize limerick quality, and it does a
significantly better job at fostering diversity than
other methods. The code for LimGen as well as the
complete list of machine-generated limericks used
in our experiments are available online (Wang
et al., 2020).

From a broader perspective, we have shown that
rule-based poetry generation systems that follow a
multi-templated approach, as implemented via the
AMTC in this work, can perform better than large-
scale neural network systems, particularly when
the available training data are scarce. Our work
indicates that a computational system can exhibit
(what appears to be) creativity using domain-
specific knowledge learned from limited samples
(in our case, POS templates extracted from
human-written poems). Although we only use
templates to capture the part-of-speech structure
of limericks, in general, templates can represent
any explicit or latent structures that we wish to

leverage. Other NLP applications (e.g., biography
generation, machine translation, image caption-
ing, machine translation) have also seen revived
interest in template-guided approaches (Wiseman
et al., 2018; Yang et al., 2020; Deshpande et al.,
2019; Wang et al., 2019). Thus, it is conceivable
that the general framework of LimGen, including
AMTC and the MTBS algorithm, can be applied
to other forms of poetry generation, as well as
broader domains in NLP.

2 Related Literature

To the best of our knowledge, Poevolve (Levy,
2001), which combines an RNN with an evolu-
tionary algorithm, and the stochastic hill climbing
algorithm proposed by Manurung et al. (2000)
are the only other serious attempts at limerick
generation in the past 20 years. Unfortunately,
their implementations did not result in readable
limericks, as can be seen in Section 4.3.

Traditional rule-based methods in poetry gener-
ation are able to enforce hard constraints, such as
rhyming dictionaries or POS templates (Gervás,
2000, 2001; Colton et al., 2012; Yan et al., 2016).
LimGen is also rule-based, though it has substan-
tially more flexibility and diversity than Colton
et al.’s (2012) approach, which follows a single
POS template during poetry generation. Needless
to say, the use of adaptive multi-templates makes
AMTC the bedrock of LimGen.

Neural language models have recently been
able to produce free-style (unconstrained) English
poetry with moderate success (Hopkins and Kiela,
2017; Liu et al., 2018). In Chinese poetry gener-
ation (Zhang and Lapata, 2014; Yi et al., 2018b;
Wang et al., 2016; Yi et al., 2018a), research
has been so successful that it has spurred further
efforts in related areas such as sentiment and style-
controllable Chinese quatrain generation (Yi et al.,
2020; Yang et al., 2018; Chen et al., 2019). How-
ever, their large-scale neural network models take
advantage of the Chinese quatrain database, which
has more than 150k training examples. In contrast,
LimGen uses less than 300 limericks. Most modern
poetry-generation systems are encoder-decoder
style recurrent networks (e.g., character-level and
word-level LSTMs) with modifications such as
various forms of attention mechanisms. Lau et al.
(2018) integrated these techniques and proposed
Deep-speare, which represents the state-of-the-
art for Shakespearean sonnet generation. In our

606

experiments, we have adapted and re-trained
Deep-speare for limerick generation. Empirically,
it cannot compete with LimGen.

For handling rhyming constraints, unlike
Ghazvininejad et al. (2016) and Benhart et al.
(2018), who generate the last word of each line
before generating the rest of the line, our pro-
posed Storyline algorithm selects a probability
distribution for the last word of each line.

Beyond poetry generation, templates are often
used in other NLP tasks. For biography gen-
eration, Wiseman et al. (2018) noted that a
template-guided approach is more interpretable
and controllable. Yang et al. (2020) stated that
templates are beneficial for guiding text trans-
lation. For fostering diversity in generated text,
Deshpande et al. (2019) found that a part-of-
speech template-guided approach is faster and
can generate more diverse outputs than the non-
templated diverse beam search of Vijayakumar
et al. (2018). LimGen’s MTBS generates diverse
results by design; it also addresses the problem
of degradation of performance when beam size
grows larger, which has been a challenge noted
in several prior works (Cohen and Beck, 2019;
Vinyals et al., 2016; Koehn and Knowles, 2017).

Since all rule-based constraints in LimGen are
easily enforced by a filtering function, it does not
need to borrow any advanced techniques from the
area of constrained text generation (e.g., Hokamp
and Liu, 2017; Anderson et al., 2017; Post and
Vilar, 2018; Yan et al., 2016) where constraints
are more complicated.

3 Methodology

We first introduce terminology in Section 3.1. We
present LimGen along with AMTC in Section 3.2.
We present the MTBS algorithm in Section 3.3,
and present our Storyline algorithm in Section 3.4.

3.1 Terminology

We first introduce some useful notation for
the concepts of (partial) line, (partial) template,
language model, filtering function, and scoring
function.

LimGen’s entire vocabulary is W with size |W|.
For word w ∈ W, its POS is w.pos. The first t
words of a complete line si forms a partial line
s
(t)
i . We store many partial lines s(t)i with length t

in a setS(t) = {s(t)i }i. A new wordw concatenated
to s

(t)
i becomes s(t+1)

i = (s
(t)
i , w). A (partial) tem-

plate is a sequence of POS tags. The (partial) tem-
plate of line s is s.pos = (w1.pos, . . . , wn.pos).
A language model L processes a (partial) line and
gives a probability distribution for the next word.
We use D(t) to denote the probability distribution
at step t. The filtering function F filters out words
that do not satisfy meter and stress constraints by
setting the probability mass of these words in D(t)

to zero. Since limericks have a specific meter and
stress pattern, words that break this pattern are
filtered out by F .

The scoring function for lines is denoted H(·),
which is the average negative log likelihood given
by the language model. Although our search
algorithm generally aims to maximize H(·), the
language model’s scoring mechanism may not be
aligned with poetic quality; sometimes a slightly
lower scoring poem has better poetic qualities
than a higher scoring one. Thus we may find a
better poem by sifting through LimGen’s output,
rather than choosing the highest scoring poem.

3.2 Adaptive Multi-Templated Constraint
(AMTC)

Because the number of limericks that exist in
available databases is so limited, we cannot
expect that a neural network would learn the
POS constraints for a valid limerick. Instead, we
use rule-based POS constraints, which are useful
in that they ensure the output adheres to the
known structure of poetry. The use of adaptive
multi-templates makes the poems more diverse
and interesting by providing LimGen with greater
flexibility in pursuing many different templates.

It may seem natural to choose multiple tem-
plates and have the limerick generation process
follow each one of them in parallel, but this is
inefficient; instead, we start generating from one
template, keeping also the set of templates that
agree with what we have generated so far. This
way, we generate each line by combining a set of
related templates. Specifically, AMTC constrains
LimGen to consider word w for partial line s(t)

only if the template of s(t+1) = (s(t), w) matches
with a human-written template up to the first t+1
tokens. Therefore, the more templates we extract
from real poems, the higher the degree of freedom
we offer LimGen.

607

Algorithm 3.1 LimGen with AMTC
� In Section 3.4 the Storyline Algorithm describes how storylines
are integrated with LimGen to generate last words of each line.
Initialize S(0) ← {[]};
for t = 0, 1, 2, . . . do

� S̃(t+1) will store all candidate partial lines of length t+ 1

� S(t+1) will store the chosen partial lines by MTBS
Initialize S(t+1) ← ∅, S̃(t+1) ← ∅;
for s

(t)
i ∈ S(t) do
� Filter the distribution L(s(t)i) given by GPT-2
� for meter and stress match
D(t+1)

i ← F(L(s(t)i));
for wk ∈ W with D(t+1)

i (wk) > 0 do
� AMTC ensures partial template is always the
� prefix of a viable human template

If [s(t)i , wk] satisfies AMTC:
� if wk is the last word (i.e., [s(t)i , wk]’s template
� matches a human template), where Storyline
� Algorithm contributes to generation of wk

Concat [s(t)i , wk], union with S̃(t+1);
end for

end for
� Find top N lines using multi-templated beam search

s̃
(t+1)
1 , . . . , s̃t+1

N ← MTBS(S̃(t+1));
Union with S(t+1);

end for
Output St+1

We present the entire LimGen system with
AMTC in Algorithm 3.1.

We illustrate LimGen with the example in
Figure 1. At the 3rd step of generating the second
line, set S(3) contains partial lines s

(3)
1 =‘‘who

ate a’’ and s
(3)
2 =‘‘who bought a’’, which share

the same partial template ‘‘WHO VBD A’’. The
probability distributions for the fourth words are
D(4)

1 = L(s(3)1) and D(4)
2 = L(s(3)2). One can see

how LimGen with AMTC does not follow a single
template using the example in Figure 1 since the
partial template ‘‘WHO VBD A’’ branches into
two distinct partial templates ‘‘WHO VBD A JJ’’
and ‘‘WHO VBD A NN’’.

After F filters out all unsatisfactory words that
break the syllable or stress pattern, we obtain
two filtered distributions D̃1

(4)
= F(D(4)

1) and

D̃2
(4)

= F(D(4)
2). We then filter out words that

do not satisfy the AMTC. The concatenation step
in LimGen saves all possible partial lines into a
temporary set S̃(4).

The MTBS algorithm then finds N diverse and
high-scoring candidate lines from S̃(4) and saves
them into S(4). In the next section, we present the
MTBS algorithm in detail.

3.3 Multi-Templated Beam Search (MTBS)
At iteration t, suppose we have a set of partial
lines S(t) with size N . Let S̃(t+1) be the set of
all possible one-word extensions of these partial
lines. Given the scoring function H(·), a standard
beam search would sort S̃(t+1) in descending
order and keep the top N elements. In limerick
generation using standard beam search, we also
observed the phenomenon documented by Li
and Jurafsky (2016) that most of the completed
lines come from a single highly-valued partial
line. As mentioned before, the innovation of
MTBS over previous diverse beam search papers
(Li and Jurafsky, 2016; Vijayakumar et al., 2018)
is that it calculates a diversity score between
(partial) templates (runtime O(N 2)), which is
more computationally efficient than an approach
that assigns a notion of diversity between individ-
ual lines (runtime O(N |W|), N � |W|, where
N is the total number of templates and |W|
is the vocabulary size). Our proposed diversity
score also more accurately captures the diversity
between generated lines. The intuition is that if
two generated lines have very different templates,
they are usually fundamentally different in terms
of the progression of the story.

We use a weighted hamming distance to mea-
sure the difference between (partial) templates of
the same length, denoted as ‘‘diversity score.’’
Before formally defining diversity score, we cal-
culate the weights of each POS category. For
each POS category, we take the inverse of its
percentage of occurrence within all those nth line
templates (e.g., second line templates) extracted
from the nth line of one of our human-written lim-
ericks from the database. (The POS weights are
only calculated once, before we start generating
the nth line.) We then use the softmax to transform
them into weights for each POS, which measure
how rare these POS categories are. The softmax
nonlinear transformation softly clips the large
weights of outlier POS categories that appear only
once or twice. More formally we have:
Definition 1 (Part-of-Speech Weight). Let P be
the set of all POS categories that occur in all the
nth line complete-line templates extracted from
the limerick database. |P | is its size. For pi ∈ P ,
the proportion of pi is qi =

#pi occurrences∑
pj∈P

#pj occurrences ,

and the weights of {pi}1≤i≤|P | are defined as

{w(pi)}1≤i≤|P | = softmax
({

1/qi
}
1≤i≤|P |

)
.

608

Figure 1: General framework of LimGen.

Algorithm 3.2 Multi-Templated Beam Search
(MTBS)

� The following describes MTBS at iteration t

Input S̃(t+1)

Initialize S(t+1) ← ∅, A ← ∅;
� A will hold the templates we have chosen
Split S̃(t+1) by templates into m subsets:
{T1 : S̃

(t+1)
1 , . . . , Tm : S̃

(t+1)
m },

� Lines in the same subset share the same template

For each S̃
(t+1)
i , we calculate score hi by averaging

its top n lines according to H(·)
B ← {T1 : h1, . . . , Ti : hi, . . . Tm : hm};
� In B, each template corresponds to an aggregate score h

Assume hj = maxB, append top n lines according
to H(·) from S̃

(t+1)
j to S(t+1);

Delete hj from B, append Tj into A;
while |S(t+1)| ≤ N − n and B �= ∅ do

x ∈ argmaxi

(
hi

∑
Tk∈A ‖Ti − Tk‖div}

)
;

Append top n lines from S̃
(t+1)
x to S(t+1);

Delete hx from B, append Tx into A;
end while
Return S(t+1);

Definition 2 (Diversity Score). For (partial)
templates T1 = {pos11, . . . , pos1n} and T2 =
{pos21, . . . , pos2n}, assume index set A =
{i|pos1i �= pos2i}, then we define the diversity
score (weighted hamming distance) between T1

and T2 as

‖T1 − T2‖div =
∑
i∈A

max(w(pos1i), w(pos2i)).

Consider a scenario where (partial) templates
T1 and T2 have different POS categories at index
i but both categories are fairly common (for
instance, one noun and one verb), and where
(partial) templates T1 and T3 also have different
POS categories at index j but one or both are rare.
Our proposed diversity score will ensure that the
diversity between T1 and T3 is greater than the

diversity between T1 and T2, which aligns with
our intuition.

In short, given the set of partial lines S̃(t+1),
MTBS will choose N lines, denoted as S(t+1),
such that they are high-scoring and generated
using many diverse templates. Specifically, we
divide S̃(t+1) intom subsets {T1 : S̃

(t+1)
1 , . . . , Tm :

S̃
(t+1)
m }, where each subset corresponds to a unique

(partial) template of length t + 1. According to
scoring function H(·), for each of these subsets
S̃
(t+1)
i , we calculate its aggregate score hi by

averaging its n highest-scoring lines. For ease
of notation, we let B = {T1 : h1, . . . , Ti :
hi, . . . Tm : hm}, and we initialize A = ∅ to
be the set of previously chosen templates. At this
point, we shall iteratively determine the order by
which lines from these m subsets will be included
into S(t+1).

We select the first subset that has the highest
aggregate score within {h1, . . . , hm}. Assume it
is S̃

(t+1)
j with score hj . We then delete Tj : hj

from B, add Tj to A, and add the top n lines from
S̃
(t+1)
j to S(t+1). Then, for each iteration > 1, we

calculate a set of temporary new scores B̃ = {T1 :

h̃1, . . . , Ti : h̃i, . . . Tm : h̃m} where each h̃i is
the original score hi multiplied by

∑
Tk∈A ‖Ti −

Tk‖div, which is the sum of the diversity scores
between Ti and all previously chosen templates in
A. These scores are designed to strike a balance
between finding high probability lines (as approx-
imated by h) and lines whose templates have high
diversity from the previously chosen templates (as
measured by

∑
Tk∈A ‖Ti − Tk‖div). Afterwards,

we repeat the process of choosing the template
with the highest h̃ score, delete it from B, add it to
A, and add the top n lines from its corresponding
subset to S(t+1). We stop the iteration before the
size of S(t+1) exceeds N .

609

Empirically, MTBS does not favor the tem-
plates with the rarest POS (largest distance from
the rest), since those will have very low scores
from H(·). It turns out MTBS picks templates that
are reasonably different from each other while
ensuring their generated lines have enough high
scores.

3.4 Storyline Algorithm

We define the storyline of a limerick to
be the last words of each line, denoted as
Y = (y1, y2, y3, y4, y5), where y1 is tradition-
ally a name or place. In addition to making sure Y
has an ‘‘AABBA’’ rhyming pattern, our storyline
algorithm also helps LimGen to maintain a con-
sistent theme throughout its process of limerick
generation.

We define the probabilistic distribution of
storyline Y given a prompt word y0 as:

p(Y |y0) = p(y2|y0)p(y3|y0)p(y4|y0, y2, y3)
· p(y5|y0, y2, y3)p(y1|y5),

(1)

p(y2|y0) ∝ Sim(y2, y0),

p(y3|y0) ∝ Sim(y3, y0),

p(y4|y0, y2, y3) ∝ 1(r)
y4,y3

∑
i∈{0,2,3}

Sim(y4, yi),

p(y5|y0, y2, y3) ∝ 1(r)
y5,y2

∑
i∈{0,2,3}

Sim(y5, yi),

p(y1|y5) ∝ 1(r)
y1,y5 · 1

(p)
y1 . (2)

where the conditional distribution of each story-
line word yi is a multinomial distribution over
W. Sim(w1, w2) calculates the semantic similar-
ity between words w1, w2 ∈ W, which is their
distance in a pretrained word embedding space.
Indicator function 1

(r)
w1,w2 denotes whether w1

rhymes with w2 and 1
(p)
w1 denotes whether w1 is

a person’s name. By sampling the storyline from
p(Y |y0), we guarantee the following:

- y2 and y3 are semantically related to y0;
- y4 rhymes with y3; y5, y1 and y2 rhyme;
- y4, y5 are semantically related to y0, y2, y3.

Examples of samples from Storyline’s distribution
are provided in Table 2.

During the process of generating a limerick,
the Storyline algorithm will sequentially generate
many storylines in the order of y2, y3, y4, y5, y1,
each of which satisfies not only the rhyming

Prompt Storyline
war (Wade, raid, campaign, again, stayed)
sports (Pete, street, school, pool, athlete)
monster (Skye, guy, scary, carry, pie)
forest (Shea, day, friend, end, way)

Table 2: Examples of storyline samples.

constraint but also the constraints on POS tem-
plate, syllable count, and anapestic meter pattern.
Figure 2 shows the directed acyclic graph for the
Storyline algorithm when the beam size of MTBS
is 1.

In general, given a prompt word y0, we start by
generating the first line l1, which has a canonical
form, with a random name filled at its end as
a placeholder for y1 (otherwise, a pre-specified
name will limit the options for y2, y5). Following
l1, we use LimGen to generate a set of second
lines {. . . , l2, . . . } (as described in Algorithm 3.1)
with last word left blank. We use l′1:2 to denote
a limerick generated up to this point (i.e., l1 con-
catenated with an almost-finished l2). For each
l′1:2, we repeatedly sample y2 from the condi-
tional Storyline distribution p(y2|y0) in (2) until it
satisfies constraints on POS, syllable and meter.
[l′1:2, y2] together form the complete first two
lines of a limerick. Continuing to generate lines,
we use MTBS (described in Algorithm 3.2) to
maintain a set of high-scoring and diverse second
lines {. . . , [l′1:2, y2], . . . }. Note that our language
model also assigns a probability score for each
y2. We can continue generating l′1:k with LimGen
and sampling yk from the conditional Storyline
distribution for k = 3, 4, 5 in a similar fashion.
Finally, we sample y1 from p(y1|y5) and replace
the random name at the end of l1 by it. The result
is a set of limericks {. . . , L, . . . }, from which we
choose the highest scoring one.

4 Experiment

4.1 Experimental Setup

To implement LimGen, a significant amount
of effort has gone into adapting existing NLP
technologies for limerick generation. In order to
extract POS templates from human written lim-
ericks, we modified the POS categories in NLTK
(Bird et al., 2009) by refining certain categories
for better quality in our generated limericks.
Leveraging NLTK’s POS tagging technique, we
obtained a list of refined POS templates from a

610

Figure 2: Directed acyclic graph for generating a limerick L with Storyline algorithm given prompt y0, with solid
arrows representing dependency through Storyline distribution (1), shaded arrows representing the generation
process of LimGen, and the total beam size of MTBS set to be 1 for simplicity.

small limerick dataset of 200 human-written lim-
ericks from Cicchi (2019) and Limericks (2019).
For a full list of our modified POS categories see
Wang et al. (2020). Since the filtering function F
requires knowing each word’s syllable and stress
pattern, we use CMU (2019) for information on
syllable and stress.

As for the implementation of the Storyline
algorithm, there are several existing technologies
to indicate whether two words rhyme with each
other. For example, Deep-speare (Lau et al.,
2018) proposed a character-level LSTM to learn
rhyming. For the sake of simplicity and accu-
racy, we used a rhyming dictionary curated from
Beeferman (2016). We also used a dictionary
of names (Namepedia, 2019) from which the
Storyline algorithm can choose y1, the name in
the poem’s first line. To calculate the seman-
tic similarity between two words, we use the
pre-trained word embedding space from spaCy’s
model (Honnibal et al., 2020).

Note that Algorithm 3.1 is only responsible for
generating the last four lines of a limerick. Since
first lines of limerick usually have a canonical
form, we generate the first lines separately.

The outline of this section is as follows. We
first show why GPT-2—or even retrained GPT-
2—cannot produce limericks without LimGen.
We then show the low-quality output from prior
attempts at limerick generation. We have also
designed five experiments to compare the quality
of LimGen’s output with limericks from human
poets, baseline algorithms, and other state-of-
the-art poetry systems re-purposed for limerick

generation. All five experiments were evaluated
on Amazon Mechanical Turk by crowd-workers,
following a protocol similar to that of Lau
et al. (2018) and Hopkins and Kiela (2017) (see
Section 4.4 for details). Additionally, an ‘‘Expert
Judgment’’ experiment was conducted where
more experienced judges directly evaluated the
performance of LimGen’s output and human-
written limericks across a variety of metrics (See
Section 4.8 for details).

Since LimGen has three major components:
AMTC, MTBS, and Storyline, we designed three
baseline algorithms for an ablation analysis in
order to investigate the effectiveness of each of
them.
-Single-Template: MTBS+Storyline but without
AMTC
-No-Story: AMTC+MTBS but without pre-
selected storylines
-Candidate-Rank: AMTC+Storyline but we have
replaced the MTBS algorithm with another mod-
ified beam search algorithm Candidate-Rank
(Cohen and Beck, 2019).

In our experiments, LimGen and all baseline
algorithms use a total beam size of N = 360 at
each step, MTBS algorithm’s individual beam size
per template is n = 12, and we take the highest
scoring poem from the set of output poems. For
implementation details please refer to our online
GitHub repository (Wang et al., 2020).

4.2 GPT-2 Cannot Generate Poems by Itself

A naı̈ve implementation of GPT-2 simply cannot
produce original and valid limericks. GPT-2 tends

611

(a) Two examples of Naı̈ve GPT-2

There was a kind girl whose name is Jane,
A girl who I did not know,
He then added,
She had tons of luggage,
It seemed I could walk where she.
(b) This output is an exact replica of a human limerick

(Vaughn, 1904) in the training corpus of GPT-2.
Wait, there was a young lady in china,
Who was quite a greedy young diner.
She feasted on snails,
Slugs, peacocks and quails,
‘No mixture,’ she said, ‘could be finer.’

Table 3: Two examples of Naı̈ve GPT-2.

to generate long sentences that exceed the syllable
limit for limericks. To meet a syllable constraint,
we would need to truncate the generated sentences,
which creates lines that do not end correctly.
Rhyming is insurmountable if we do not utilize
additional algorithms, as evidenced by Example
(a) of Table 3. The output lacks poetic quality
since the training corpus of GPT-2 does not
mainly consist of limericks or other kinds of
poetry.

If we try to re-train the last few layers of a
GPT-2 model on our entire limerick dataset, it
does not solve the problem. To our knowledge,
our entire dataset is the largest and most com-
prehensive limerick dataset, consisting of more
than 2000 limericks from several sources (Cicchi
2019; Limericks, 2019; Lear, 2010; Parrott, 1984;
Haynes, 2010). Even though this dataset is much
larger than the subset of data (≈ 300) from which
we extracted templates, it is still insufficient
to retrain GPT-2. The result of re-training is
that GPT-2 severely overfits. It only regurgitates
limericks from the training corpus, as seen in
Example (b) of Table 3.

Terminating training early (in order to avoid
memorization or overfitting) leads only to an
awkward merge of problems shown in the two
examples of Figure 3 in which the model has not
learned enough to faithfully reproduce the form of
a limerick, but also often loses coherence abruptly
or regurgitates the training set.

Just as LimGen needs a powerful pre-trained
language model such as GPT-2, without LimGen’s
algorithms, GPT-2 by itself is unable to accom-
modate the constraints of limerick generation due
to the deficiency of training data.

4.3 Prior Attempts at Limerick Generation

Levy (2001) stated that ‘‘the current system pro-
duces limericks that in many ways seem random.’’
We have re-run their implementation, and it only
produced meaningless verses with serious gram-
matical issues. Manurung et al. (2000) stated that
their work is unfinished and stated that their results
‘‘can hardly be called poems’’ (see examples in
Table 4). Empirically, LimGen has a clear advan-
tage over both prior works. Therefore, the low-
quality output from these system do not warrant
an extensive comparison with LimGen’s poems.

On the other hand, popular internet poem gen-
erators (PoemGenerator, 2019; PoemOfQuotes,
2019) have a set of human-written half-finished
sentences that are assembled with user input
words to create limericks (see Table 5). However,
because so little of the resulting limerick is gen-
erated by a machine, we cannot consider these
internet poem generators as automatic limerick
generation systems.

4.4 Experiment 1: LimGen vs. No-Story

As we have mentioned before, the No-Story
baseline still utilizes the AMTC and MTBS
algorithms. This experiment demonstrates the
importance of having pre-selected storylines in
poetry generation.

We randomly selected 50 pairs of limericks,
in which each pair of limericks consists of one
generated by LimGen and another generated by
No-Story using the same prompt word. For each
pair of limericks, 5 different crowd-workers (each
with an approval rate ≥ 90%) answered a list of
6 questions on different evaluation metrics (hu-
mor, sensibleness, storytelling, emotional content,
grammar, thematic relatedness to prompt) and an
additional sanity-check question to filter out illog-
ical responses. Figures 3 and 4 show the side-by-
side comparison of a pair of limericks and the list
of questions exactly as they appeared on the
Amazon Mechanical Turk survey. Note that the
output of LimGen has a 50% chance of being either
Limerick A or B to avoid any left–right bias.

A total of 250 response were recorded, and a
small number of responses were filtered out since
they did not answer the sanity check question
correctly, which asks crowd-workers to count the
number of 3-letter words in the fourth line of Lim-
erick B. We have transformed the response such
that a response of 5 always means that the poem is

612

Figure 3: Side-by-side comparison of two limericks generated from different methods.

(a) Example of Levy’s (2001) system

Ears christmas new throat boat apparel,
Plain always obsessed deal idea,
Attempt blast work many,
Mercator aghast,
Kathleen mind revealed barge bugs humor.

(b) Example of Manurung et al.’s (2000) system
The bottle was loved by Luke.
a bottle was loved by a dog
A warm distinctive season humble mellow,
smiled refreshingly slowly. Ran.

Table 4: Two prior attempts at limerick generation.

(a) Example of PoemGenerator (2019)
There once was a man called Liam.
He said, "See the coliseum!",
It was rather young,
But not very zedong,
He couldn’t resist the mit im.

(b) Example of PoemOfQuotes (2019)
There was a man from White
Who liked to fly his kite
On each sunny day
The man would say
’Oh, how I miss White!’

Table 5: Examples of internet poem generators.
Underlined parts are human-written half sentences
and bold parts are user inputs.

rated as ‘‘Definitely LimGen’s output;’’ that is, if
LimGen produced Limerick B, we transform 5 to 1,
4 to 2, 2 to 4 and 1 to 5. After this transformation,
we calculated the mean and standard deviation
for each metric. Since all questions ask crowd-
workers to compare the qualities of two limericks,
the results are relative. It should be clear that for
any metric, an average greater 3 means LimGen
is performing better than the baseline method on
that metric. To be precise, if the mean of a metric

Figure 4: The list of questions on Amazon Mechanical
Turk survey.

is > 3, we run a one-sided t-test with the null-
hypothesis being ‘‘metric ≤ 3, i.e., LimGen is
not doing better than baseline.’’ If the mean of a
metric is < 3, suggesting the baseline is probably
doing better, we run the complementary one-sided
t-test with the null-hypothesis being ‘‘metric ≥ 3,
i.e., baseline is not doing better than LimGen.’’

From Table 6, the p-value of grammar, humor,
relatedness to prompt, and storytelling are all
small enough to reject the null hypothesis, which
shows that LimGen was better than No-Story in
all four categories. We can weakly reject the
null hypothesis for the sensibleness metric, which
shows that LimGen also may outperform No-
Story with respect to sensibleness. However, the
p-value of emotion is 0.38, therefore we cannot

613

Metrics
Statistics

mean sd p-value

emotion 3.03 1.22 0.38
grammar 3.18 1.27 0.03
humor 3.14 1.20 0.05
relatedness 3.32 1.22 2.0×10−4

storytelling 3.35 1.38 3.0×10−4

sensibleness 3.14 1.42 0.09

Table 6: LimGen vs. No-Story.

claim LimGen’s output has better emotional con-
tent than No-Story. Overall, we see that LimGen
empirically outperforms No-Story in 5 categories.
From this experiment, we see that having pre-
selected storylines not only makes the limerick
more related to the prompt (as expected), but it
also enhances the consistency of story-telling and
other important poetic metrics.

All other experiments were designed in the
same way as Experiment 1.

4.5 Experiment 2: LimGen vs.
Single-Template

As we have mentioned before, the Single-
Template baseline still utilizes the MTBS and
Storyline algorithms. However, we have designed
the Single-Template baseline so that it mimics a
traditional rule-based poetry generation algorithm,
wherein a single POS template is followed (Colton
et al., 2012). For each prompt word, a random tem-
plate is selected and Single-Template generates
text according to it. This experiment will highlight
the advantages of adaptively choosing templates.

From Table 7, we see that the means of 5
metrics are significantly greater than 3, which
means AMTC has a clear advantage over using
a single template constraint. This makes sense,
since AMTC allows LimGen to adaptively choose
which template to follow. Though AMTC is easy
to implement, we see substantial improvement
over its predecessors. Lastly, the mean of related-
ness is 2.95, but the p-value is not small enough to
claim that LimGen is worse than Single-Template.

4.6 Experiment 3: LimGen vs.
Candidate-Rank

Candidate-Rank beam search (Cohen and Beck,
2019) addressed the degradation of beam search
performance when the beam size grows too large.
It is simple to implement, and remains one of the
best modified beam search algorithms.

Metrics
Statistics

mean sd p-value

emotion 3.20 1.23 0.02
grammar 3.48 1.28 4.4×10−6

humor 3.27 1.16 0.001
relatedness 2.95 1.42 0.34
storytelling 3.52 1.39 1.3×10−6

sensibleness 3.40 1.36 9.8×10−5

Table 7: LimGen vs. Single-Template.

Metrics
Statistics

mean sd p-value

emotion 2.88 1.20 0.62
grammar 3.06 1.14 0.25
humor 2.91 1.15 0.15
relatedness 3.03 1.22 0.37
storytelling 3.06 1.31 0.28
sensibleness 3.19 1.27 0.034

Table 8: LimGen vs. Candidate-Rank.

From Table 8, the only statistically significant
result is that LimGen outperforms Candidate-
Rank with respect to sensibleness, which is due
to the diversity fostering beam search MTBS.
Since in our left-to-right limerick generation pro-
cedure, LimGen picks the next word that not
only satisfies POS, meter, syllable and rhyming
constraints but also flows naturally with the pre-
ceding lines, it is beneficial to maintain a diverse
set of preceding partial lines to choose from.
This ensures coherency and sensibleness in the
output limericks. We can see the role of MTBS
in fostering diversity more explicitly by counting
distinct POS templates and by calculating the
repetition (in terms of n-grams) within a fixed
number of output limericks. For both LimGen and
Candidate-Rank, a maximum of 360 sentences
can be processed in parallel. We ran both methods
200 times (using 100 prompt words, each with
one female and one male name). LimGen has
an average of 27 different templates per ∼200
poem run, whereas Candidate-Rank only used 6
templates on average. For each run, to measure
diversity, we randomly selected 50 limericks from
the output set and calculated the ‘‘mean popularity
of each n-gram’’ (e.g., 2-gram, 3-gram, 4-gram,
5-gram) in their last lines. Specifically, for each
n-gram (n consecutive words) within those 50 last
lines, we record its number of occurrences within
those 50 lines. We then average all those recorded

614

Figure 5: Distributions of ‘‘mean popularity of
n-gram’’ within last lines for LimGen and Candidate-
Rank output.

numbers and denote it as the ‘‘mean popularity
of n-gram.’’ For instance, ‘‘mean popularity of
3-gram’’= 2.0 indicates that, on average, each
3-gram within those 50 lines repeats twice. A
high value of the ‘‘mean popularity of n-gram’’
indicates heavy phrase repetition. As we can see
from Figure 5, MTBS has a significantly lower
‘‘mean popularity of n-gram’’ than the Candidate-
Rank beam search, which indicates more sentence
diversity within MTBS’s output.

4.7 Experiment 4: LimGen vs. Deep-speare

Similar to GPT-2, Deep-speare’s language model
was trained on 2000 limericks for 30 epochs
until validation loss stopped decreasing using the
optimal hyper-parameters provided by Lau et al.
(2018). Since the pentameter model for stress and
the rhyming model in the full Deep-speare are
not guaranteed to adhere to limericks’ stress, syl-
lable, and rhyming constraints, especially when
the training data are scarce, we replaced these two
models (pentameter and rhyming) with constraints
to ensure the output from Deep-speare meets the
requirements of limericks. Compared to GPT-2,
Deep-speare is a much smaller model. In the orig-
inal paper, it was trained on only 7000 quatrains
of sonnets. After training on our limerick dataset,
it was able to produce some form of limerick that
warrants a comparative experiment.

We can clearly see from Table 9 that for the
task of limerick generation, LimGen outperforms
this adapted version of Deep-speare (which is
considered a state-of-the-art neural network for
English poetry generation) across all metrics. It
remains to be seen whether Deep-speare will

Metrics
Statistics

mean sd p-value

emotion 3.46 1.18 2.96×10−7

grammar 4.02 1.35 ≈ 0

humor 3.36 1.24 6.74×10−5

storytelling 3.98 1.11 ≈ 0

sensibleness 3.99 1.18 ≈ 0

Table 9: LimGen vs. Deep-speare.

improve given more training data. However, it is
unclear where more data would come from.

4.8 Experiment 5: LimGen vs. Human Poets

In this experiment, 50 human limericks were
chosen randomly from our database. Although not
completely homogeneous in their poetic qualities,
they were all well-thought-out and well-written,
and represent genuine effort from their authors.

In Table 11, we added a column that records
the percentage of limerick pairs with an average
response > 3, that is, the percentage of LimGen’s
limericks that are better than human’s on a spe-
cific metric according to crowd-workers. Clearly,
human poets outperform LimGen on several met-
rics. It is not statistically conclusive which method
is better with respect to grammar, presumably
due to the template-guided approach that ensures
grammatical correctness. Upon careful inspection,
we noticed that for several metrics, there is actu-
ally a significant portion of LimGen’s output that
were rated more highly than human-written limer-
icks. For example, 43% of the machine-generated
limericks had better emotional content than human
poems. Another observation is that humor seems
to be the hardest attribute for LimGen to emulate
and master. Even though LimGen does output
humorous limericks at times, they usually do not
have the highest score according to our scoring
functionH(·); in other words, even though humor-
ous poems were generated, our scoring mechanism
could not recognize them as humorous.

In this same experiment, we asked crowd-
workers a Turing test question for each limerick
pair (one by a human and one by LimGen)
(Figure 6): whether Limerick A or B is more
likely to be written by a human. Recall that
in our analysis we have transformed the data
such that a score of 5 indicates the crowd-
worker thinks that the poem was surely written
by machine. The recorded score distribution is

615

There once was a brave soldier named Wade There was a honest man named Dwight
Who led a small army on his raid. Who lost all his money in a fight.
He died on the campaign, His friends were so upset,
His body burned again, They were willing to bet,
But he kept his promises and stayed. And they did not like feeling of spite.

(a) Prompt word: war (b) Prompt word: loss
There was a loud waitress named Jacque, There once was a nice man named Theodore
Who poured all her coffee in a shake. Who killed all his family in a war.
But the moment she stirred, He came back from the dead,
She was struck by a bird, With a scar on his head,
Then she saw it fly towards the lake. But he lost his memories and more.

(c) Prompt word: shaken (d) Prompt word: violent

Table 10: More Example limericks from LimGen.

Metrics
Statistics

mean sd p-value > 3

emotion 2.84 1.41 0.04 43%
grammar 2.97 1.41 0.29 58%
humor 2.21 1.41 ≈ 0 22%
storytelling 2.55 1.49 ≈ 0 37%
sensibleness 2.58 1.47 ≈ 0 35%

Table 11: LimGen vs. human poets.

5 : 11%, 4 : 14%, 3 : 18%, 2 : 29%, 1 : 27%.
Scores 4 and 5 are when LimGen’s limericks are
mistaken as human-written when directly com-
pared with actual human-written poems. Score
3 is when judges cannot differentiate between
LimGen’s output and human poems. Overall,
the crowd-workers cannot differentiate LimGen’s
output from human-written poems 43% of the
time.

While so far we have compared LimGen with
baselines and prior works on a relative scale
because people are better at comparing items
rather than assigning direct values to them, we
now evaluate LimGen’s output on an absolute
scale, which would paint a clearer picture of its
strength and weakness on poetic metrics. We
convened an expert panel of 20 Duke Univer-
sity students who are proficient in English, have
received a liberal arts education and have com-
pleted two college-level courses designated to
satisfy the literature requirement of the university.
Since the intended audience of limericks is the
general public, we believe that these panelists,
with their considerable experience and expertise
in the English language, are qualified to directly
evaluate 60 limericks (30 from LimGen and 30

Figure 6: The Turing test question.

from humans) across the same metrics on an
absolute scale from 1 to 5 (1 being the worst
and 5 being the best). Each panelist completed at
least one assignment, which consists of 6 poems
randomly chosen from the set of 60 limericks.
We ensured that each limerick was evaluated at
least twice and the panelists did not see repeated
limericks. None of these panelists knew anything
about how the automated poems were generated.
They were only notified that they would see a
mixture of machine and human-written limericks.

The scores in this survey are absolute values
rather than relative values. We interpret an average
over 3 on a metric as a decent level of performance.
From Table 12, although expert judgment con-
firms that human poets outperform LimGen, it still
shows that LimGen performs decently according
to several metrics: LimGen has decent grammar
and can tell a story well with its verses. It seems
that grammar and storytelling are the easiest poetic
attributes to master, since both human poets and
LimGen have the highest scores on these metrics.
Emotion and sensibleness are harder to learn. But
what really differentiates human poets and Lim-
Gen is poets’ ability to consistently make jokes.

Overall, we find our results encouraging, as
they not only show that LimGen outperforms all
prior baselines by a clear margin, but also shows
that LimGen has the potential to approach human
level performance in the future. More outputs
from LimGen are in Table 10.

616

Human LimGen p-value
emotion 3.79 ± 0.98 2.93± 0.99 0.006
grammar 4.22 ± 0.99 3.65 ± 0.96 0.068
humor 3.92 ± 1.01 2.21 ± 0.92 ≈ 0
storytelling 4.44 ± 0.74 3.68 ± 0.85 0.009
sensibleness 3.88 ± 0.92 3.03 ± 1.05 0.006

Table 12: Expert judges: LimGen vs. humans.

There was a shy actor named Dario,
Who played a big role on our show.
He came back from the break,
And we went to the lake,
And he sat down and took his photo.

(a) Prompt word: Season
There was a artist named Cole,
Who made a huge impact on my soul.
He was a musician,
He was on a mission,
And that is the beauty of this role.

(b) Prompt word: Art
There once was a liar named Kai,
Who fooled a grand jury on her lie.
I had a suspicion,
I was on a mission,
I was ready to fight and to die.

(c) Prompt word: Cunning
There was a bright cleaner named Dot,
Who put all her money in a pot.
When she started to smoke,
She was struck by a stroke,
She has a severe case of a clot.

(d) Prompt word: Water
There was a funky chef named Dwight,
Who cooked a great meal on our night.
We got back from the bar,
And we walked to the car,
And we sat down and had our bite.

(e) Prompt word: Beer
There was a cruel judge named Lyle,
Who killed a young girl on his trial.
It was like a nightmare,
I was scared by his stare,
But I knew his intentions and smile.

(f) Prompt word: Death

Table 13: Additional limericks from LimGen.

5 Conclusion

LimGen is the first fully automated limerick
generation system. Using human judgements, we
have shown that our adaptive multi-templated
constraints provide LimGen with a combination of
quality and flexibility. We have shown the value
of our diversity-fostering multi-templated beam

search, as well as the benefits of our Storyline
algorithm.

Acknowledgments

We would like to extend our sincere appreciation
to all people involved in this research project,
especially our colleagues Matias Benitez, Dinesh
Palanisamy, and Peter Hasse for their support and
feedback in the initial stage of our research. We
would also like to thank Alstadt for funding. We
have included a few more poems from LimGen
in Table 13. Please refer to our online GitHub
repository (Wang et al., 2020) for implementation
details and more poems.

References

Peter Anderson, Basura Fernando, Mark Johnson,
and Stephen Gould. 2017. Guided open vocab-
ulary image captioning with constrained beam
search. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language
Processing, pages 936–945. Association for
Computational Linguistics. DOI: https://
doi.org/10.18653/v1/D17-1098

Doug Beeferman. 2016. Datamuse. https://
www.datamuse.com/api/.

John Benhart, Tianlin Duan, Peter Hase, Liuyi
Zhu, and Cynthia Rudin. 2018. Shall i compare
thee to a machine-written sonnet? an approach
to algorithmic sonnet generation. arXiv preprint
arXiv:1811.05067.

Steven Bird, Edward Loper, and Ewan Klein.
2009. Natural Language Processing with
Python, O’Reilly Media Inc.

Huimin Chen, Xiaoyuan Yi, Maosong Sun, Wen-
hao Li, Cheng Yang, and Zhipeng Guo. 2019.
Sentiment-controllable chinese poetry gener-
ation. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial
Intelligence, IJCAI-19, pages 4925–4931. In-
ternational Joint Conferences on Artificial
Intelligence Organization. DOI: https://
doi.org/10.24963/ijcai.2019/684

Sheila Cicchi. 2019. Internet limericks. https://
www.brownielocks.com/Limericks.html.

Carnegie Mellon University (CMU). 2019. The
CMU pronouncing dictionary. http://www
.speech.cs.cmu.edu/cgi-bin/cmudict.

617

https://doi.org/10.18653/v1/D17-1098
https://doi.org/10.18653/v1/D17-1098
https://www.datamuse.com/api/
https://www.datamuse.com/api/
https://doi.org/10.24963/ijcai.2019/684
https://doi.org/10.24963/ijcai.2019/684
https://www.brownielocks.com/Limericks.html
https://www.brownielocks.com/Limericks.html
https://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://www.speech.cs.cmu.edu/cgi-bin/cmudict

Eldan Cohen and Christopher Beck. 2019.
Empirical analysis of beam search performance
degradation in neural sequence models.
In Proceedings of the 36th International
Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research,
pages 1290–1299, Long Beach, California,
USA. PMLR.

Simon Colton, Jacob Goodwin, and Tony Veale.
2012. Full-face poetry generation. In Pro-
ceedings of ICCC-2012, the 3rd International
Conference on Computational Creativity,
pages 230–238.

Aditya Deshpande, Jyoti Aneja, Liwei Wang,
Alexander Schwing, and David Forsyth. 2019.
Fast, diverse and accurate image captioning
guided by part-of-speech. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10687–10696.
DOI: https://doi.org/10.1109/CVPR
.2019.01095

Pablo Gervás. 2000. Wasp: Evaluation of different
strategies for the automatic generation of
spanish verse. In Proceedings of the AISB-00
Symposium on Creative & Cultural Aspects of
AI, pages 93–100.

Pablo Gervás. 2001. Generating poetry from a
prose text: Creativity versus faithfulness. In
Proceedings of the AISB 2001 Symposium on
Artificial Intelligence and Creativity in Arts and
Science.

Marjan Ghazvininejad, Xing Shi, Yejin Choi,
and Kevin Knight. 2016. Generating topical
poetry. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural
Language Processing, pages 1183–1191. DOI:
https://doi.org/10.18653/v1/D16
-1126

Jim Haynes. 2010. The Great Australian Book of
Limericks. Allen & Unwin.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using
grid beam search. In Proceedings of the 55th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 1535–1546. Vancouver, Canada. Asso-
ciation for Computational Linguistics. DOI:

https://doi.org/10.18653/v1/P17
-1141

Matthew Honnibal, Ines Montani, Sofie Van
Landeghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Process-
ing in Python. https://github.com
/explosion/spaCy.

Jack Hopkins and Douwe Kiela. 2017.
Automatically generating rhythmic verse with
neural networks. In Proceedings of the 55th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 168–178. DOI: https://doi.org
/10.18653/v1/P17-1016

Philipp Koehn and Rebecca Knowles. 2017.
Six challenges for neural machine translation.
In Proceedings of the First Workshop on
Neural Machine Translation, pages 28–39,
Vancouver. Association for Computational
Linguistics. DOI: https://doi.org/10
.18653/v1/W17-3204.

Jey Han Lau, Trevor Cohn, Timothy Baldwin,
Julian Brooke, and Adam Hammond. 2018.
Deep-speare: A joint neural model of poetic
language, meter and rhyme. In Proceedings of
the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1:
Long Papers), pages 1948–1958, Melbourne,
Australia. Association for Computational
Linguistics.

Edward Lear. 2010. A Book of Nonsense,
Kessinger Publishing.

Gershon Legman. 1988. The Limerick, Random
House.

Robert P. Levy. 2001. A computational model
of poetic creativity with neural network as
measure of adaptive fitness. In Proceedings of
the ICCBR-01 Workshop on Creative Systems.

Jiwei Li and Dan Jurafsky. 2016. Mutual infor-
mation and diverse decoding improve neural
machine translation. CoRR, abs/1601.00372.

Internet Limericks. 2019. Internet limericks.
https://www.familyfriendpoems.com/.

Bei Liu, Jianlong Fu, Makoto P. Kato, and
Masatoshi Yoshikawa. 2018. Beyond narrative
description: Generating poetry from images

618

https://doi.org/10.1109/CVPR.2019.01095
https://doi.org/10.1109/CVPR.2019.01095
https://doi.org/10.18653/v1/D16-1126
https://doi.org/10.18653/v1/D16-1126
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://github.com/explosion/spaCy
https://github.com/explosion/spaCy
https://doi.org/10.18653/v1/P17-1016
https://doi.org/10.18653/v1/P17-1016
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://www.familyfriendpoems.com/

by multi-adversarial training. In ACM Multi-
media 2018. DOI: https://doi.org/10
.1145/3240508.3240587

Ruli Manurung, Graeme Ritchie, and Henry
Thompson. 2000. Towards a computational
model of poetry generation. https://era
.ed.ac.uk/handle/1842/3460.

Namepedia. 2019. Namepedia: The name data-
base. http://www.namepedia.org/.

Eric O. Parrott. 1984. The Penguin Book of
Limericks. Penguin Books.

PoemGenerator. 2019. Poem generator. https://
www.poem-generator.org.uk/limerick/.

PoemOfQuotes. 2019. Poem of quotes. https://
www.poemofquotes.com/tools/poetry
-generator/limerick-generator.

Matt Post and David Vilar. 2018. Fast lexically
constrained decoding with dynamic beam
allocation for neural machine translation.
In Proceedings of the 2018 Conference
of the North American Chapter of the
Association for Computational Linguistics:
Human Language Technologies, Volume 1
(Long Papers), pages 1314–1324, New Orleans,
Louisiana. Association for Computational
Linguistics. DOI: https://www.aclweb
.org/anthology/N18-1119.

Alec Radford, Jeff Wu, Rewon Child, David
Luan, Dario Amodei, and Ilya Sutskever.
2019. Language models are unsupervised
multitask learners. https://github.com
/openai/gpt-2.

Stanton Vaughn. 1904. Limerick Lyrics. J. Carey
& Company.

Ashwin K. Vijayakumar, Michael Cogswell,
Ramprasaath R. Selvaraju, Qing He Sun, Stefan
Lee, David J. Crandall, and Dhruv Batra. 2018.
Diverse beam search for improved description
of complex scenes. In The Thirty-Second
AAAI Conference on Artificial Intelligence
(AAAI-18), pages 7371–7379.

Oriol Vinyals, Alexander Toshev, Samy Bengio,
and Dumitru Erhan. 2016. Show and tell:
Lessons learned from the 2015 mscoco image
captioning challenge. IEEE Transactions on
Pattern Analysis and Machine Intelligence,

39:1–1. DOI: https://doi.org/10.1109
/TPAMI.2016.2587640, PMID: 28055847

Jianyou Wang, Xiaoxuan Zhang, Yuren Zhou,
Chris Suh, and Cynthia Rudin. 2020. Online
github repository for LimGen. https://
github.com/wjyandre/LimGen.

Kai Wang, Xiaojun Quan, and Rui Wang. 2019.
BiSET: Bi-directional selective encoding with
template for abstractive summarization. In
Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 2153–2162, Florence, Italy. Associ-
ation for Computational Linguistics. DOI:
https://doi.org/10.18653/v1/P19
-1207.

Zhe Wang, Wei He, Hua Wu, Haiyang Wu, Wei
Li, Haifeng Wang, and Enhong Chen. 2016.
Chinese poetry generation with planning based
neural network. In Proceedings of COLING
2016, the 26th International Conference on
Computational Linguistics: Technical Papers,
pages 1051–1060, Osaka, Japan. ACL.

Sam Wiseman, Stuart Shieber, and Alexander
Rush. 2018. Learning neural templates for
text generation. In Proceedings of the 2018
Conference on Empirical Methods in Na-
tural Language Processing, pages 3174–3187,
Brussels, Belgium. Association for Computa-
tional Linguistics. DOI: https://doi
.org/10.18653/v1/D18-1356

Rui Yan, Han Jiang, Mirella Lapata, Shou-De
Lin, Xueqiang Lv, and Xiaoming Li. 2016. i,
Poet: Automatic Chinese Poetry Composition
through a Generative Summarization Frame-
work under Constrained Optimization. In Pro-
ceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence,
pages 2197–2203.

Cheng Yang, Maosong Sun, Xiaoyuan Yi,
and Wenhao Li. 2018. Stylistic Chinese
poetry generation via unsupervised style
disentanglement. In Proceedings of the 2018
Conference on Empirical Methods in Na-
tural Language Processing, pages 3960–3969,
Brussels, Belgium. Association for Compu-
tational Linguistics. DOI: https://doi
.org/10.18653/v1/D18-1430

Jian Yang, Shuming Ma, Dongdong Zhang,
Zhoujun Li, and Ming Zhou. 2020. Improving

619

https://doi.org/10.1145/3240508.3240587
https://doi.org/10.1145/3240508.3240587
https://era.ed.ac.uk/handle/1842/3460
https://era.ed.ac.uk/handle/1842/3460
http://www.namepedia.org/
https://www.poem-generator.org.uk/limerick/
https://www.poem-generator.org.uk/limerick/
https://www.poemofquotes.com/tools/poetry-generator/limerick-generator
https://www.poemofquotes.com/tools/poetry-generator/limerick-generator
https://www.poemofquotes.com/tools/poetry-generator/limerick-generator
https://www.aclweb.org/anthology/N18-1119
https://www.aclweb.org/anthology/N18-1119
https://github.com/openai/gpt-2
https://github.com/openai/gpt-2
https://doi.org/10.1109/TPAMI.2016.2587640
https://doi.org/10.1109/TPAMI.2016.2587640
https://europepmc.org/article/MED/28055847
https://github.com/wjyandre/LimGen
https://github.com/wjyandre/LimGen
https://www.aclweb.org/anthology/P19-1207
https://www.aclweb.org/anthology/P19-1207
https://doi.org/10.18653/v1/D18-1356
https://doi.org/10.18653/v1/D18-1356
https://doi.org/10.18653/v1/D18-1430
https://doi.org/10.18653/v1/D18-1430

neural machine translation with soft template
prediction. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 5979–5989, Online. Asso-
ciation for Computational Linguistics. DOI:
https://doi.org/10.18653/v1/2020
.acl-main.531

Xiaoyuan Yi, Ruoyu Li, Cheng Yang, Wenhao
Li, and Maosong Sun. 2020. Mixpoet: Diverse
poetry generation via learning controllable
mixed latent space. Proceedings of the
AAAI Conference on Artificial Intelligence,
34(05):9450–9457. DOI: https://doi
.org/10.1609/aaai.v34i05.6488

Xiaoyuan Yi, Maosong Sun, Ruoyu Li,
and Wenhao Li. 2018a. Automatic poetry
generation with mutual reinforcement learning.

In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Pro-
cessing, pages 3143–3153, Brussels, Belgium.
Association for Computational Linguistics.

Xiaoyuan Yi, Maosong Sun, Ruoyu Li, and
Zonghan Yang. 2018b. Chinese poetry gen-
eration with a working memory model. In
Proceedings of the 27th International Joint
Conference on Artificial Intelligence, IJCAI’18,
pages 4553–4559, AAAI Press.

Xingxing Zhang and Mirella Lapata. 2014.
Chinese poetry generation with recurrent
neural networks. In Proceedings of the 2014
Conference on Empirical Methods in Na-
tural Language Processing (EMNLP),
pages 670–680. DOI: https://doi.org
/10.3115/v1/D14-1074

620

https://doi.org/10.18653/v1/2020.acl-main.531
https://doi.org/10.18653/v1/2020.acl-main.531
https://doi.org/10.1609/aaai.v34i05.6488
https://doi.org/10.1609/aaai.v34i05.6488
https://doi.org/10.3115/v1/D14-1074
https://doi.org/10.3115/v1/D14-1074

	Introduction
	Related Literature
	Methodology
	Terminology
	Adaptive Multi-Templated Constraint (AMTC)
	Multi-Templated Beam Search (MTBS)
	Storyline Algorithm

	Experiment
	Experimental Setup
	GPT-2 Cannot Generate Poems by Itself
	Prior Attempts at Limerick Generation
	Experiment 1: LimGen vs. No-Story
	Experiment 2: LimGen vs. Single-Template
	Experiment 3: LimGen vs. Candidate-Rank
	Experiment 4: LimGen vs. Deep-speare
	Experiment 5: LimGen vs. Human Poets

	Conclusion

