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Abstract

Recently, multimodal transformer models
have gained popularity because their perfor-
mance on downstream tasks suggests they
learn rich visual-linguistic representations.
Focusing on zero-shot image retrieval tasks,
we study three important factors that can
impact the quality of learned representations:
pretraining data, the attention mechanism,
and loss functions. By pretraining models on
six datasets, we observe that dataset noise
and language similarity to our downstream
task are important indicators of model per-
formance. Through architectural analysis, we
learn that models with a multimodal attention
mechanism can outperform deeper models
with modality-specific attention mechanisms.
Finally, we show that successful contrastive
losses used in the self-supervised learning
literature do not yield similar performance
gains when used in multimodal transformers.

1 Multimodal Pretraining

Significant progress in pretraining of natural
language processing (NLP) models has been
made through both architectural innovations (e.g.,
transformers; Vaswani et al., 2017) as well as
a huge increase in the size of pretraining data
and the model (e.g., Devlin et al., 2019; Brown
et al., 2020). This success in language pretraining
has inspired parallel multimodal vision–language
efforts; in particular, multimodal image–language
transformers, pretrained on large noisy image–
text datasets, have achieved state-of-the-art results
on a range of downstream tasks such as image
retrieval, visual question answering, and visual
reasoning (e.g., Lu et al., 2019; Chen et al., 2020;
Tan and Bansal, 2019; Li et al., 2020a,b).

However, even though many variants of multi-
modal image–language transformer models have
been proposed recently, it is unclear how learned
representations are impacted by the large amounts

of pretraining data, the transformer architecture
and self-attention, or their specific losses. We
address this gap, by first establishing a base-
line that is trained on the same pretraining data
as multimodal transformers but with a different
architecture. We then perform an investigative
analysis to better understand the extent to which
these aspects contribute to models’ performance.

Our evaluation mainly focuses on zero-shot
tasks where evaluation data is taken from a
dataset unseen during pretraining. Measuring
zero-shot performance enables us to evaluate
whether a pretrained model learns general repre-
sentations. Previous work in NLP has considered
probing classifiers to evaluate representations;
however, this approach can be misleading as the
performance of probing classifiers does not solely
depend on the quality of representations (e.g.,
Hewitt and Liang, 2019; Voita and Titov, 2020).
Similarly, evaluation after fine-tuning is a less
direct measure of strength of representations since
performance on these tasks is highly dependent on
the fine-tuning experimental set-up and the size
of fine-tuning data (Yogatama et al., 2019).

We first study the importance of different prop-
erties of multimodal datasets such as their size and
their noise level (i.e., how closely the language
describes a given image’s content). Recent work
has introduced image–text datasets with different
qualities—for example, noisy but very large ones
(Sharma et al., 2018) as well as carefully annotated
but smaller ones (Pont-Tuset et al., 2019). Better
understanding of what aspect of a dataset is more
important can result in better task performance and
also guide us in future dataset curation efforts. We
find that a dataset’s size does not always predict
multimodal transformers’ performance; its noise
level and language similarity to the evaluation
task are both important contributing factors. We
also show that multimodal transformers can
achieve competitive results without relying on
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language-only or image-only pretraining for weight
initialization or feature extraction.

We also dissect multimodal transformers’ archi-
tecture, analyzing the effectiveness of different
attention mechanisms, depth, and number of pa-
rameters. We show that multimodal attention,
where both language and image transformers at-
tend to each other, are crucial for these models’
success. Multimodal attention achieves the best
results when combined with multi-level (deep)
interactions. Moreover, models with other types
of attention (even with more depth or parameters)
fail to achieve comparable results to shallower
and smaller models with multimodal attention.

Additionally, inspired by the success of self-
supervised representation learning (e.g., van den
Oord et al., 2018), we examine whether using a
contrastive image–text matching loss instead of a
classification one improves the quality of repre-
sentations in our models. Surprisingly, we find that
the choice of image–text matching loss does not
matter much in multimodal transformers. On the
other hand, models without multimodal attention
(a multi-level ‘‘cross-talk’’ between modalities)
benefit significantly from a contrastive loss.

Finally, we believe that advances in multimodal
pretraining can have significant impacts on a wide
range of downstream applications; however, it is
important to form a clear understanding of how
and why multimodal transformer models perform
well to avoid overfitting to a set of downstream
evaluation tasks. Our analysis of pretraining data,
attention, and loss functions is an important step
towards gaining a deeper understanding of these
powerful models.

2 Multimodal Transformers

The success of transformer-based language mod-
els on a variety of language tasks (e.g., Devlin
et al., 2019) has inspired similar multimodal
efforts (e.g., Lu et al., 2019; Chen et al., 2020;
Tan and Bansal, 2019; Li et al., 2020a,b).1 The
main distinction is that image-text multimodal
transformers take image-text pairs as input, attend
over both modalities, and are trained with addi-
tional losses. Similar to the language models,
multimodal transformers are often fine-tuned on

1We use the term multimodal transformers to refer to
image–text transformer–based models. Note that similar
architectures are applied to other modalities such as videos
(Sun et al., 2019) but are outside of the scope of this work.

down-stream tasks but multimodal ones; e.g.,
image retrieval (Young et al., 2014) or visual
question answering (Goyal et al., 2017).

We give a brief overview of the BERT
model (Devlin et al., 2019), which forms the
backbone of multimodal transformers. The BERT
architecture consists of a stack of transformer
blocks (Vaswani et al., 2017) and has three main
components. First, the input text is tokenized and
three embedding functions are used to embed the
token, its position in the sentence (i.e., positional
encoding), and the sentence it belongs to. The
final language embedding is a summation of these
three vectors. The BERT model also includes a
<SEP> token to separate different sentences and
a <CLS> token, which can be thought of as an ag-
gregate representation of the input text. Second,
the sequence of token embeddings are input into
a series of transformer layers where tokens are
combined through self-attention. Third, two dif-
ferent losses are applied to the model output: a
masked language modeling loss, in which the
model predicts a masked word (denoted by a
<MASK> token), and a next sentence prediction
loss which, given two sentences, predicts if the
second sentence follows the first.

Multimodal transformer models facilitate learn-
ing from multimodal data via three changes to the
BERT architecture: multimodal data preprocess-
ing (more specifically images), adding multimodal
attention by changing self-attention such that it
combines image and text modalities, and intro-
ducing image and multimodal loss functions.

2.1 Multimodal Data Processing

Training multimodal transformers requires
image–text pairs such that the text for a given
image, at least to some degree, describes the
image.Recent work attempts to remove the anno-
tation cost by automatically collecting datasets
(e.g., Web images and their alt-text as in Sharma
et al., 2018). In Section 4.2, we examine whether
the quality of text descriptions impacts these
models’ performance.

The text input processing is the same as
language models; in fact, many of the existing
models (such as Lu et al., 2019) are initialized
with BERT pretrained weights. We show that this
initialization is not important in our experiments
(see Section 4.2). Processing images into a
sequence involves defining ‘‘visual tokens’’
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Figure 1: Different attention types (see Section 2.2). Queries, keys, and values are shown by Q, K, and
V ; w and r index language words and image regions, respectively. H l is the activation at layer l.

analogously to language tokens. Almost all image-
text multimodal transformer models consider a
bounding box from a pretrained object detection
model to be a ‘‘visual token’’. Similar to the
positional encodings in language models, for each
visual token, the spatial position of each bounding
box is also encoded.

Although most multimodal transformers require
training a supervised model (a detector) to extract
bounding-box features, there are other possible
ways to represent visual tokens—for example,
Huang et al. (2020) bypass training a detector by
using regions from a high-level feature map in an
image classification network as visual tokens. We
focus our studies on models that use bounding-
box features as this reflects the majority of recent
work, though we achieve comparable results when
learning directly from images without a detector
(or even a pretrained classifier) in Section 4.2.

2.2 Multimodal Attention
Each transformer block consists of a multi-head
attention module (Vaswani et al., 2017) that for
a given token embedding produces a weighted
representation of all other tokens in a sentence.
This weighted representation is then combined
with the input representation of the given token
and is passed to the next layer. More specifically,
for the token i at layer l, each attention head takes
as input a key kil , value vil , and query qil , which
are computed by passing the representation from
the previous layer hil−1 through a linear layer. The
output of the attention module for token i is:

A(qil ,Kl, Vl) = softmax
(
qilKl√
dk

)
Vl, (1)

where dk is the dimension of the key and Kl and
Vl matrices contain all tokens’ keys and values.

Given this definition, there are a few possi-
ble ways to implement multi-head attention over
image and language modalities as shown in

Figure 1. For a given query (from one modality),
we can simply consider keys and values from all
input tokens regardless of the modality type (e.g.,
Chen et al., 2020). We refer to this multimodal
attention as merged attention because it simply
merges inputs from the two modalities.

Alternatively, given queries from one modality
(e.g., image), keys and values can be taken only
from the other modality (e.g., language). Follow-
ing Lu et al. (2019), we refer to this multimodal
attention as coattention. We also consider cases
where this attention is asymmetric, that is, queries
are either from language or image, while keys and
values are from image or language, respectively.
We call these two attention types language-query
attention or image-query attention.

Another possibility is to consider single-
modality transformers where queries, keys, and
values all come from either the image or text
modality; we refer to this attention as modality-
specific attention, where each modality has its
own multi-head attention. Single-modality trans-
formers with modality-specific attention allow us
to study the role of ‘‘cross-talk’’ between modal-
ities in multimodal transformer models.

We note that we use the term multimodal
attention to refer to both merged attention and
coattention and discuss the importance of different
attention types in Section 4.3.

2.3 Multimodal Loss Functions

Broadly, multimodal transformers have three
loss types, language and image losses that are
applied to the language and image outputs,
respectively, as well as an image-text matching
loss applied to image–language pairs. Let r =
{r1, · · · , rN} be the N input image regions
and w = {w1, · · · , wT } be the T word tokens
representing an image–text pair. A subset of
input image regions and word tokens are masked
(e.g., set to zero) before being passed through the
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transformer layers. After applying the mask, we
refer to the unmasked image regions as rm and
to the unmasked word tokens as wm. We use Nm

and Tm to denote the set of image region and
word token indices that are masked, respectively.
Similar to the BERT model, the language loss is a
masked-language modeling (MLM) loss:

−
∑
t∈Tm

logPw
θ (wt|wm, rm), (2)

where Pw
θ corresponds to the output probability

distribution over words in the vocabulary from the
transformer model parameterized by θ.

Most models also include an analogous masked
region modeling loss (MRM) for images. One
popular region modeling loss, for each bounding
box, minimizes the KL-divergence between the
predicted distribution over object classes and
the distribution over classes obtained from a
pretrained detector D(l|rn) (e.g., Chen et al.,
2020; Lu et al., 2019).

∑
n∈Nm

KL(D(l|rn)||P r
θ (rn|rm,wm)), (3)

where P r
θ corresponds to the predicted probabil-

ity distribution over object classes from the trans-
former model parameterized by θ.

Finally, multimodal transformer models include
an image–text matching (ITM) loss, which pre-
dicts whether an image and text pair match; this is
generally posed as a binary classification problem:

− y log(σ(sθ(r
m,wm)))

−(1− y) log(1− σ(sθ(r
m,wm))), (4)

where y is equal to 1 for positive pairs and 0
otherwise and sθ corresponds to the confidence
score of the model that a pair (r,w) are
matched and σ is the sigmoid function. Recently,
contrastive image–text matching losses have
been successful in self-supervised representation
learning (e.g., van den Oord et al., 2018); thus, we
also explore whether a contrastive formulation of
ITM can improve the performance of multimodal
transformers and discuss the challenges of using
these losses for multimodal transformer models.
Our contrastive loss is formulated as:

− log

⎛
⎜⎝ esθ(r

m,wm))

esθ(rm,wm) +
∑

(r̃,w̃)∼N
esθ(r̃m,w̃m)

⎞
⎟⎠ , (5)

where N is a set of negative image-text pairs.
Section 4.4 outlines our findings on loss ablations.

3 Experimental Setup

Here we outline the details of our experimental
setup: the base multimodal transformer model
used in most of our experiments, our baseline
model, and the pretraining datasets.

3.1 Base Multimodal Transformer

Our base multimodal transformer model (MMT)
most closely resembles the ViLBERT model
(Lu et al., 2019). For text inputs, we first tok-
enize sentences using SentencePiece (Kudo and
Richardson, 2018) and truncate sentences into a
fixed length of 22 for pretraining datasets and 25
for datasets used to fine-tune and evaluate retrieval
models. We then include a separator (<SEP>) and
an aggregator (<CLS>) token. Unless other-
wise stated, we do not transfer weights from a
pretrained BERT model.

For image inputs, we represent ‘‘visual tokens’’
as region of interest pooled features correspond-
ing to bounding boxes from an object detector
(Ren et al., 2015) trained on Visual Genome
(Krishna et al., 2017) images with labels parsed as
was done in Anderson et al. (2018). The detection
model is trained using a multi-label sigmoid cross-
entropy loss to simultaneously predict objects and
attributes. The highest 36 or 100 scoring bounding
boxes are input when pretraining or evaluat-
ing, respectively. Like ViLBERT, we include an
‘‘average’’ feature, which is computed by averag-
ing features across bounding boxes and serves a
similar role to the <CLS> token in the text input.

In addition to the positional encoding added to
text embeddings before the first transformer layer,
we also add the positional encoding to the text
embedding at each layer of the language-only
transformer blocks as in XLNet (Yang et al.,
2019) because this led to improvements on a
language-only BERT model. For image inputs,
we embed bounding box coordinates and add this
to our image embedding.

In our model, following ViLBERT, a multi-
modal coattention layer consists of an image-only
and a language-only transformer, each followed by
a transformer with coattention (see Section 2.2).
We use the term ‘‘layer’’ to refer to this multi-
modal layer. Like VilBERT, our model consists of
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6 language-only layers, followed by 6 multimodal
ones. We train the model by minimizing masked
language modeling (Equation (2)), masked region
modeling (Equation (3)), and binary classifica-
tion image–text matching (Equation (4)) losses.
To calculate the image-text loss, we apply an
element-wise multiplication to the <CLS> lan-
guage features and output corresponding to the
averaged image feature input. The resulting ‘‘mul-
timodal feature’’ is input into a classification
model. We create negative image-text examples
by sampling text from another image in our batch.
Unless otherwise noted, we have an equal number
of negative and positive image-text pairs.

We train our models with a global batch size of
1024 distributed over 64 Google Cloud TPU v3
cores.2 We use the LAMB optimizer (You et al.,
2019) with an initial learning rate of 0.00176 and
20,000 warm-up steps. Learning rate is decayed
with polynomial decay with a minimum learning
rate ratio of 0.004. We use gradient clipping (1)
and dropout (0.1) as well as weight decay (0.1).
We find weight decay particularly important in
ensuring that our loss did not diverge. We train our
models for a maximum of 1,000,000 iterations.

3.2 The Baseline Model

Multimodal transformers are different from
most prior image–text models because they are
pretrained on a large dataset (millions of image-
text pairs). To better understand if data alone can
lead to better image–text representations, we train
a strong baseline model, which does not include
a multimodal attention mechanism, with the same
data as our multimodal transformer.

Our baseline model learns a joint space between
language and vision (Weston et al., 2011; Frome
et al., 2013; Kiros et al., 2014) by minimizing
the distance between image and text features
taken from a positive pair (where text describes
the image) and at the same time increasing that
distance for a negative pair. Despite lacking a mul-
timodal attention mechanism, this approach has
been popular in image and video domains because
of its simplicity and effectiveness for retrieval
applications (e.g., Gong et al., 2014; Wang et al.,
2016; Chowdhury et al., 2018; Miech et al., 2018).

To implement our baseline, we encode word
tokens w into a fixed-size sentence representation

2https://cloud.google.com/tpu/.

S ∈ R
768 and image regions r into a fixed-

size image representation I ∈ R
768. To encode

sentence representations, we input words into a
randomly initialized BERT model and extract sen-
tence representations S from the <CLS> output.
To extract image representations I , we mean-pool
features across detected bounding boxes then pass
the features into a one-layer MLP with an output of
size 768. Finally, we element-wise multiply I and
S and input the resulting vector into a two-layer
MLP parameterized by θ which outputs a score,
sθ, indicating whether I andS match. The baseline
model is trained with the contrastive loss defined
in Equation (5) with 1024 negative examples. The
detector weights are fixed during training.

3.3 Pretraining Datasets

Conceptual Captions (CC) consists of over 3
million image-text pairs harvested from the Web
where the caption corresponding to an image
is its alt-text description (Sharma et al., 2018).
Image–text pairs are filtered and preprocessed
such that text is more image relevant than raw
alt-text; however, the dataset is still ‘‘noisy’’ and
includes pairs where the text is not relevant to the
image’s content. We were able to download 81%
of the training set of CC; unless otherwise stated,
we train our models on this subset of CC.

The SBU dataset (Ordonez et al., 2011) consists
of 1 million image-text pairs sourced from Flickr
with text taken from users’ captions. As a result,
similar to CC, not all text is image-relevant. We
also use datasets that were collected by asking
annotators to describe images, resulting in more
image relevant language including the MSCOCO
dataset (Chen et al., 2015) and Visual Genome
(VG) (Krishna et al., 2017), which includes de-
scriptions for bounding boxes in images.

When using VG, we consider each bounding
box description to be a caption for the entire
image. We also experiment with the Localized
Narratives dataset (Pont-Tuset et al., 2019). This
dataset includes rich annotations collected by
asking users to describe an image while pointing to
each part of the image being described (using their
mouse). The resulting ‘‘narratives’’ often consist
of multiple sentences. We break the narratives
into individual sentences and treat each sentence
as a caption paired with the image. We use
the localized narratives collected for the Open
Images (Kuznetsova et al., 2018) and MSCOCO
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Dataset # images
Caption

Type #
MSCOCO 83K Annot. 592K
Visual Genome (VG) 110K Annot. 5.4M
MSCOCO-narratives 83K Narration 230K
OI-narratives 500K Narration 1.3M
SBU 1M Web 1M
Conceptual Captions 2.7M Alt-text 2.7M

Table 1: The pretraining datasets: the type and
number of images and captions.

datasets, and refer to them as OI-narratives and
MSCOCO-narratives. This allows us to compare
models that are trained with the same images
(MSCOCO) with different language (MSCOCO
captions vs. localized narratives). Table 1 provides
an overview of our pretraining datasets.

We combine datasets using two sampling
approaches: instance sampling, where we mix
all datasets together and sample from this mix
for each batch, and dataset sampling, where
we sample evenly from datasets so that each
batch contains the same number of examples
from each dataset. For datasets with multiple
captions, we first sample an image, then sample a
caption for the given image. We combine all six
datasets described here as well as the four data-
sets combined in Chen et al. (2020) (MSCOCO,
VG, SBU, and Conceptual Captions) which we
refer to as UNITER data.

3.4 Evaluation Tasks

We focus on zero-shot evaluation as it enables
us to examine the representations without con-
founding our findings with the side-effects of
fine-tuning (Yogatama et al., 2019) or probing
classifiers (e.g., Zhang and Bowman, 2018; Hewitt
and Liang, 2019). Following Lu et al. (2019) and
Chen et al. (2020), we use the term zero-shot to
refer to experiments where we test our models on a
dataset different from our pretraining data without
fine-tuning. For example, we use the MSCOCO
dataset to test the models that are pretrained on
Conceptual Captions. This is considered as a zero-
shot task since the properties of the dataset used
for testing (for example, its language) differ from
those in the pretraining dataset. We use zero-shot
image retrieval tasks since image retrieval directly
measures what our pretraining data and objectives

encourage our models to learn: whether an image
and a sentence are aligned.

We evaluate on the Flickr30k dataset (Young
et al., 2014) (referred to as zero-shot Flickr) and
use the splits defined in Karpathy and Fei-Fei
(2015). We evaluate checkpoints after 1 million
steps as well as when the loss on the CC validation
set is lowest. When varying the pretraining data,
our models sometimes overfit quickly on smaller
datasets; as a result, we evaluate checkpoints
every 100K steps. We select the best checkpoint
according to zero-shot performance on Flickr30k
validation split and use it for all other downstream
tasks. We also report retrieval numbers on
MSCOCO (Chen et al., 2015) (which we call zero-
shot MSCOCO) using the splits of Karpathy and
Fei-Fei (2015). We report retrieval numbers on
the test split of datasets. Flickr30k and MSCOCO
images are annotated with 5 captions.

In addition to the zero-shot image retrieval
tasks, we use the fine-tuned Flickr30k image-
retrieval task to examine whether our observations
transfer when fine-tuning the MMT model. We
fine-tune our models for 10,000 steps and use
MLM, MRM, and ITM losses. All results for
image retrieval are reported using Recall@K
(R@K), which measures whether the ground-
truth image is among the top K images retrieved
by our model.

When comparing pretraining datasets, we
hypothesize that which pretraining dataset is
best depends on the downstream task, so we
additionally consider VQA (Antol et al., 2015;
Goyal et al., 2017). To fine-tune for VQA, we
replace the image–text matching loss with a 2-
layer MLP and train with a binary cross-entropy
loss against soft answer scores (Teney et al.,
2018). We use similar hyper-parameters as when
pretraining and report results on the validation
set. We report the average score across 3 random
initializations of the MLP.

We use Flickr IDs to filter out images appearing
in the Flickr30k and MSCOCO validation/test sets
from our pretraining sets. Conceptual Captions is
not collected from Flickr, so we could not filter
out images using this method. Table 2 provides an
overview of our evaluation datasets.

4 Experimental Results

We first compare MMT to a baseline and then
investigate how pretraining data, attention, and
loss functions impact model performance.
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Dataset
# images

ZS FT
train test

Flickr30k 29K 1K � �
MSCOCO n/a 5K �
VQA 440K 210K �

Table 2: Number of images in evaluation tasks
and whether datasets were used in a zero-shot
(ZS) or fine-tuned (FT) setting.

4.1 Comparison to a Baseline

We compare our multimodal transformer (MMT)
against a strong baseline inspired by recent suc-
cess in visual retrieval (e.g., Miech et al., 2018).
To disentangle the effect of pretraining data and
architecture, we investigate whether our baseline
(described in Section 3.2), without multimodal
attention or MLM and MRM losses but pretrained
on the same data (i.e., Conceptual Captions) as
multimodal transformers, produces competitive
results.

In Table 3, we compare MMT to our proposed
baseline, verifying that MMT learns better repre-
sentations not only because it is pretrained on a
large dataset, but because of architectural choices.
Our MMT results are on par with existing models
trained with the same data: comparing to ViL-
BERT, the most similar model to ours, on the
zero-shot Flickr, we achieve an R@1 of 41.9 in
comparison to 31.9. As expected, retrieval num-
bers on zero-shot MSCOCO are lower than zero-
shot Flickr because MSCOCO has more images
in its evaluation set (see Table 2) and is therefore
harder. On the fine-tuned image retrieval task, we
achieve comparable performance to ViLBERT
(our R@1 is 59.1 vs. 58.2), even though we do not
sample hard negatives when training. We empha-
size that our goal is not to outperform existing
work, but to build a strong multimodal transfor-
mer model to analyze the role of data, attention,
and losses.

On our baseline, we verify that a contrastive
loss (Equation (5)) leads to stronger results than
a classification one. As shown in Table 3, replac-
ing the contrastive loss with a classification loss
consistently decreases performance. Initializing
our baseline with BERT weights marginally de-
creases performance, for example, R@1 on zero-
shot Flickr decreases by 0.6.

Flickr30k MSCOCO
ZS FT ZS

R1 R10 R1 R10 R1 R10
Baseline 25.4 64.9 40.9 81.8 13.0 44.5
− contrastive 21.7 61.0 39.0 80.6 10.2 40.9
+ BERT PT 24.8 65.1 39.9 79.9 12.7 43.1
MMT 41.9 79.0 59.1 91.5 21.3 57.9
ViLBERT 31.9 72.8 58.2 91.5 − −

Table 3: Comparison of our proposed baseline to
our multimodal transformer model (MMT).

Figure 2: Effect of pretraining data. The datasets
on the x axis are ordered based on their zero-shot
Flickr scores. IS:Instance Sampling, DS: Dataset
Sampling.

4.2 Multimodal Data Preprocessing

We investigate how pretraining datasets, super-
vised image features, and weights from a pre-
trained language model impact our results.

Pretraining Datasets. Figure 2 reports our re-
sults when we pretrain the MMT on the individual
and combined datasets introduced in Section 3.3.
We observe that in all our tasks, larger datasets
usually lead to better performance, but not always.
For example, SBU consistently performs worse
than MSCOCO, despite being substantially larger.

Additionally, when combining datasets, how
datasets are sampled matters. In our experiments,
dataset sampling (DS) is more effective than in-
stance sampling (IS). In dataset sampling, smaller
datasets (like MSCOCO) will be sampled more
frequently than in instance sampling. Because
MSCOCO pretraining leads to good performance,
more exposure to MSCOCO samples is beneficial.
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We consider combining all datasets as well as
datasets combined in UNITER (Chen et al., 2020).
Figure 2a shows that combining all datasets per-
forms better than UNITER data on the zero-shot
Flickr task, but not on the zero-shot MSCOCO,
showing that more data is not always better. On
zero-shot MSCOCO the impact of the sampling
mechanism is even more evident: Given UNITER
data, dataset sampling performs better than in-
stance sampling by over 10 points (37.1 vs 26.4).

Next, we compare datasets that have a simi-
lar number of images to investigate the role of
the type of language used in each dataset. As
an extreme example, MSCOCO and MSCOCO-
narratives contain the same images, but the former
does substantially better on our downstream tasks.
To better understand this observation, we quantify
the difference between the language of pretraining
and evaluation datasets: we trained a language
model (a 6-layer Transformer) on a given pre-
training dataset, and use that model to compute
the perplexity of the evaluation dataset. For our
three datasets with the same number of images
(MSCOCO, MSCOCO-narratives, and VG), the
perplexity of the evaluation dataset (Flickr or
MSCOCO) explains their performance—the per-
plexities are the lowest on MSCOCO, then
VG, and lastly on MSCOCO-narratives. This
shows that the similarity between the language of
pretraining and evaluation datasets is important.

However, not all performance differences are
explained by the number of images or perplexity:
Pretraining on SBU results in poorer performance
than OI-narratives on our downstream tasks,
despite SBU having twice the number of images
and lower perplexity on both evaluation datasets.
We conjecture that SBU’s poor performance is
due to noise: SBU text is scraped from captions
and may not match the images as well as the manu-
ally annotated text in OI-narratives. To investigate
this, we calculate an overlap metric for an image–
text pair as the ratio of text words overlapping
with predicted bounding box labels. For each
dataset, we calculate the average overlap for 3000
images, providing an approximation of how much
the language describes the images in the dataset.
The overlap is much lower for SBU compared to
OI-narratives (0.14 vs. 0.25), showing that SBU
is indeed noisier, which can decrease its utility for
pretraining multimodal representations.3

3The overlap metric for other datasets: VG: 0.82,
MSCOCO: 0.42, MSCOCO-narratives: 0.27, and CC: 0.11.

Figure 3: Comparing models trained with the
MSCOCO and CC datasets. We provide the top-1
ranked retrieved image given an input query sen-
tence on the Flickr val dataset. Correctly retrieved
images are framed in green and the incorrect ones
in red.

Moreover, we observe that the goodness of a
pretraining dataset for one task does not always
transfer to a different task. For example, CC is
a better pretraining dataset than VG when fine-
tuning for image retrieval, but they perform sim-
ilarly when fine-tuning for VQA, a substantially
different task.In fact, we note that VQA perfor-
mance varies less across pretraining datasets (e.g.,
CC, VG, and MSCOCO), likely because the VQA
training split is large. We also observe differences
between zero-shot and fine-tuned image retrieval.
Though MSCOCO performs 3.8 points better on
zero-shot Flickr than OI-narratives, OI-narratives
performs 2.9 points better after fine-tuning.

Finally, to visually illustrate the difference
between the learned representations, we compare
qualitative examples of models trained with our
best two pre-training datasets: MSCOCO and CC
(see Figure 3). Though the model trained with
MSCOCO retrieves examples with some semantic
relevance, our model trained with CC is able to
retrieve images with more correct details like
‘‘enjoying a view’’ and ‘‘black fleece jacket’’.

Language-only Pretraining. Many multimodal
transformers initialize language weights from a
pretrained BERT model. Similar to LXMERT, we
find this hurts performance on our retrieval task;
R@1 on zero-shot Flickr decreases to 39.7 and
R@1 on zero-shot MSCOCO decreases to 20.4.

Image-only Pretraining. The object detector
used to extract image features is another source
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Figure 4: Ablation studies on number of layers and heads.

of modality-specific pretraining. We replace
detection features with grid features taken from
the last residual block of a ResNet-50 trained
from scratch.4 Similarly to Huang et al. (2020),
this model is trained without the MRM loss
since features aggregate information in the whole
image, and as a result, masking specific regions is
not straightforward. This model performs slightly
better than our base MMT on zero-shot Flickr
(43.4 vs. 41.9) and comparably on zero-shot
MSCOCO (21.3 vs. 20.6). Though Huang et al.
(2020) showed a detector can be replaced with
an image classifier, we show that comparable
results can be achieved without any image-only
pretraining.

We conclude that careful consideration of
pretraining datasets and their sampling methods is
important in a model’s performance—the level of
noise and the type of language in a dataset can be
more significant than its size. Finally, the image-
only and language-only pretraining are not crucial
in training strong multimodal representations.

4.3 Multimodal Attention

We explore the impact of the number of
attention heads and coattention layers in our
base multimodal transformer model before
investigating the effect of different attention
mechanisms.

Number of Heads and Layers. We test the
importance of the number of heads in multi-
head attention when fixing the total number of
parameters by comparing models trained with
one head, 3 heads, and 12 heads with query/key
size of 768, 256, and 64, respectively. Increasing
the number of heads to 12 leads to an improve-
ment (Figure 4b). Next, we vary the number of

4We fit images into a 384 × 384 square by resizing and
padding to preserve the aspect ratio. As the total stride of
ResNet-50 is 32, a feature grid is of size 12 × 12, which
we flatten to 144 features and give as input along with the
averaged features (for the <CLS> token) to our MMT.

R@1 Co Merge Asym. Attn. Mod.

L-12 I-12 L-24 I-24 Spec.
F. ZS 41.9 40.0 24.4 31.3 33.6 31.6 16.9
F. FT 59.1 57.0 45.1 48.4 52.5 46.3 15.4

M. ZS 21.3 19.6 13.8 16.1 17.0 16.0 8.0

Table 4: MMT trained with coattention
(Co), merged attention (Merge), language-query
attention (L-12 and L-24), image-query attention
(I-12 and I-24) (the number indicates the number
of attention heads) and modality-specific attention.

heads (6, 12, and 18) but fix the query/key size
to 64. We observe that increasing the number
of heads up to 12 still leads to an improvement,
but further increase results in poorer performance
(see Figure 4c).

Consistent with Lu et al. (2019), increasing
the number of layers (Figure 4a) helps up to
a point, and then adding more layers degrades
performance.

Type of Attention Mechanism. We perform an
in-depth analysis on different types of attention
explained in Section 2.2 (see Table 4). We com-
pare coattention with merged attention—these
mechanisms both ‘‘combine’’ the image and lan-
guage modalities; however, coattention does so
by taking keys/values and queries from opposite
modalities, while merged attention shares keys
and values across the modalities. When controlled
for the number of parameters, coattention per-
forms marginally better than merged attention.
Both perform considerably better than asymmet-
ric attention where attention queries are over
one modality.

The number of heads in an asymmetric atten-
tions is half of the equivalent coattention, so
we experiment with asymmetric attention mech-
anisms with 12 heads (L-12, I-12) as well as 24
heads (L-24, I-24). Increasing the number of atten-
tion heads for the asymmetric attention improves

578



Figure 5: Comparing top-1 ranked images retrieved with models trained with the different attention
mechanisms on the Flickr dataset. Correctly retrieved images are framed in green and the incorrect ones
in red.

results, but the gap between our best-performing
model with asymmetric attention (L-24) and
coattention is still quite large.

We also consider transformers with modality-
specific attention where there is no cross-talk
between the modalities through attention, but the
model has the same number of parameters as our
MMT with coattention and is trained with the
same losses (Table 4, Mod. Spec. column). This
model performs substantially worse than MMT.

To better demonstrate the strength of mul-
timodal attention compared to asymmetric and
modality-specific attention, we compare our mod-
els in Table 4 to shallower and smaller models
with coattention on the zero-shot Flickr task.
Strikingly, our best-performing model without
multimodal attention with 24 attention heads and
12 layers (R@1 of 33.6; L-24 in Table 4) performs
worse than the coattention model with only one
head (R@1 of 38.2; Figure 4b) or one multimodal
layer (R@1 of 37.2; Figure 4a).

Figure 5 shows example retrieval results com-
paring the asymmetric and modality specific
attention to our coattention mechanism. When
the coattention mechanism retrieves the incorrect
image, the image frequently includes important
content from the sentence (e.g., in Figure 5 lower
left, the image shows ‘‘people gathered’’, but they
are not on stage). Though other attention mech-
anisms retrieve images with some similarities to
the text, the coattention mechanism retrieves fine
details like ‘‘lime green shirt’’ and ‘‘miniature
electric circuit’’.

A modality specific transformer model is com-
putationally more efficient than models with
multimodal attention because image and language
features can be computed once and reused across
image–text pairs; this means that single-modality
transformers are faster for retrieval and thus would
be more appealing in large-scale applications if
their accuracy were higher. We therefore investi-
gate whether we can improve the single-modality
transformer’s poor performance by combining
five modality-specific attention layers followed
by one coattention layer to introduce multi-
modal interaction.This model is as deep as our
MMT, but performs worse than our MMT with
one coattention layer: R@1 of 33.1 vs 37.2 on
zero-shot Flickr and 16.7 vs 19.0 on zero-shot
MSCOCO.

We conclude that multimodal attention mech-
anisms, either coattention or merged attention,
are a key component to multimodal transformers’
success. Moreover, a shallow or small model with
multimodal attention outperforms deeper models
with an inferior attention mechanism yet more
parameters. Finally, we show that a model’s depth
alone is not important; both multimodal attention
and depth are needed for best performance.

4.4 Losses

We explore the degree to which MLM, MRM, and
ITM losses contribute to our MMT results. We
then explore whether a contrastive formulation of
the ITM loss—used commonly in self-supervised
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Flickr-ZS COCO-ZS

MRM + ITM 20.2 9.7
MLM + ITM 41.1 22.4
MRM + MLM + ITM 41.9 21.3

Table 5: Zero-shot retrieval results (R@1) on
models trained with different losses.

representation learning and important for our
baseline—improves MMT’s performance.

Comparing MLM, MRM, and ITM. Table 5
shows performance of our models with different
combinations of the masked modeling losses
and the image-text loss. With careful hyper-
parameter tuning (in particular, decreasing the
learning rate from 0.00176 to 0.001 and using
cosine decay instead of polynomial decay) we
can remove the MRM loss during pretraining and
achieve comparable performance on our image
retrieval tasks. We found negligible difference
when training our base MMT with the different
hyper-parameters. We note that our multimodal
transformer trained on pixels (Section 4.2) is
also trained without a region modeling loss,
yet performs similarly to our base MMT.
Additionally, our finding is in line with the results
of Li et al. (2020b), who achieve strong results
without a region modeling loss.

Contrastive ITM Loss. Contrastive losses (e.g.,
Equation (5)) require sampling many negative
examples to achieve good performance and thus
can be computationally expensive (e.g., Tian et al.,
2019; Miech et al., 2020). In models without
multimodal attention (e.g., our baseline model),
the computational cost is reduced by caching and
reusing negative examples; in such models, since
image and text input are processed independently,
once image and text features are calculated, they
can be considered as negatives for all other training
examples in the batch. Due to their multimodal
attention, multimodal transformers process image
and text examples as pairs and thus cannot share
image or text features across training examples.
This limits the number of negatives available for
these models to the maximum batch size that
fits in memory. As a result, to study the role
of a contrastive loss with a reasonable number
of negatives, we consider our MMT with one
multimodal layer. We also examine whether
a model with only modality-specific attention

Model Loss Negatives Flickr-ZS COCO-ZS

MSA Cls. 1 15.0 6.9
MSA Con. 32 17.9 8.3
MSA Con. 1024 19.7 9.5
MMT-1 Cls. 1 37.3 19.1
MMT-1 Con. 32 35.7 19.1

Table 6: R@1 with a classification ITM loss (cls)
and contrastive ITM loss (con) for a MMT with
one multimodal layer (MMT-1) and a model which
only has modality specific attention (MSA).

(here, we use 6 image and 12 language layers)
benefits from a contrastive loss since it is easier
to increase the negatives in a model without
multimodal attention. In both models, we replace
the image–text matching classification loss,
Equation (4), with a contrastive one, Equation (5).

Table 6 compares the performance of a single-
modality transformer trained with a classification
loss to a model trained with a contrastive loss
and 32 or 1024 negatives. We observe a notable
improvement with the contrastive loss and adding
more negatives. We next compare the performance
of our one-layer MMT trained with a classification
loss and a contrastive loss with 32 negatives (the
max we could fit into memory). When training
with the contrastive loss, we see no performance
difference on zero-shot MSCOCO and a small per-
formance degradation on zero-shot Flickr. This is
surprising given the large body of research demon-
strating the benefit of contrastive losses. We
conclude that the multimodal attention and MLM
loss can help the model learn better representations
without relying on stronger image–text losses.

5 Related Work

Multimodal transformers are the first family of
multimodal models to be pretrained on large data
and applied to a range of different language and
vision tasks (Lu et al., 2019; Chen et al., 2020; Tan
and Bansal, 2019; Li et al., 2020b,a). The recent
image-text transformers share the same backbone
but have slight differences in data preprocess-
ing and other architectural choices. Notably, the
UNITER model (Chen et al., 2020) achieves state-
of-the-art results on most existing image–language
benchmarks by using a larger dataset and a num-
ber of different loss functions. Huang et al. (2020)
removes the need for using image features (taken

580



from a pretrained object detector) by training mod-
els on raw images (pixels). To combine image
and text modalities, LXMERT (Tan and Bansal,
2019) and ViLBERT (Lu et al., 2019) propose
coattention mechanisms, similar to the coattention
originally proposed for VQA (Lu et al., 2016). In
ViLBERT, feed-forward layers are applied after
the coattention and self-attention layers, whereas
in LXMERT, a feed-forward layer is only applied
after the self-attention layer.

A few of our findings are similar to observa-
tions in prior work: (i) LXMERT and ViLBERT
show that more layers improve results, (ii) ViL-
BERT and UNITER show that more data boosts
performance, and (iii) LXMERT shows that
transferring BERT weights is not beneficial. In
contrast to UNITER, we show that with the right
hyper-parameters, the MRM loss is not needed.

Finally, while joint-space approaches to mul-
timodal training are applied to multilingual data
(Gella et al., 2017; Sigurdsson et al., 2020), all
existing multimodal transformers are applied to
English; an interesting future direction is to extend
these models to other languages.

Analyzing Multimodal Transformers. Recent
analysis work (Singh et al., 2020; Cao et al.,
2020) has shed light on different aspects of
multimodal transformer models. Singh et al.
(2020) study which pretraining data is best when
fine-tuning two different multimodal transformer
variants—ViLBERT (Lu et al., 2019) and Visual-
BERT (Li et al., 2019)—on four fine-tuned tasks,
whereas we mainly focus on a zero-shot retrieval
task across a variety of pretraining datasets, archi-
tectural choices, and loss functions. Our results are
complementary to this work: Singh et al. (2020)
observe that dataset size is not the only factor for
good performance and pretraining datasets are bet-
ter when they match the domain of a downstream
task. We take a first step towards quantifying what
it means for a pretraining dataset to be similar to a
downstream task by analyzing the language used
in the pretraining datasets and tasks (Section 4.2).

Cao et al. (2020) consider various probing
methods on two models (UNITER and LXMert,
Chen et al., 2020; Tan and Bansal, 2019) to
study what information is captured in pretraining.
Cao et al. (2020) show that while representations
become more similar in the last layers of models
with merged attention, in coattention models,
they are most similar at the first multimodal

layer. They also observe that attention heads in
merged attention models mostly focus on the lan-
guage modality, only a few heads are specialized
for cross-modality processing, and that attention
heads are able to capture some image-text align-
ment. Our comparisons of merged and coattention
is performed in a more controlled setting than that
of Cao et al. (2020) and Singh et al. (2020): They
compare two models with many small differences
other than the attention mechanism; in contrast,
we compare the attention mechanisms in the same
modeling framework.

6 Discussion

We rigorously examined different aspects of train-
ing multimodal transformers (datasets, attention,
and losses) that contribute to the quality of their
learned representations. We focused on zero-shot
image retrieval tasks to evaluate learned represen-
tations. Zero-shot tasks are advantageous because
they directly measure what a model has learned
and do not introduce confounds such as the size of
a fine-tuning dataset and its experimental setup. At
the same time, datasets do not always capture what
they are designed to measure; e.g., Akula et al.
(2020) show that models can do well on a referring
expression task while ignoring the linguistic struc-
ture.Thus, we argue that designing and curating
specialized zero-shot evaluation tasks and datasets
is an important future direction that will allow us
to better understand our models’ limitations.

We find the quality of language and the degree
to which the language describes its correspond-
ing image (noisiness) plays an important role in
our results. Moreover, language-only and image-
only pretraining do not notably contribute to the
performance of multimodal transformers. These
suggest curating less noisy image–text datasets
to be more important than relying on single-
modality datasets. Previous work has successfully
removed some of the noise in automatically
harvested datasets through preprocessing (e.g.,
Sharma et al., 2018) but such approaches are still
limited in their robustness to noise, and the far
from negligible degree of noise in large-scale
real-world datasets (e.g., Ordonez et al., 2011;
Miech et al., 2019) still poses a challenge. An
alternative approach is to aim to remove this noise
by designing models that better tap into statistical
regularities of image–text pairs (e.g., Duygulu
et al., 2002) and thus are more robust to noise.
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We show that multimodal attention—where
each modality is informed by both modalities—is
crucial in these models’ performance. Smaller
models with multimodal attention outperform
deeper models with no or other multi-head atten-
tion mechanisms. This suggests that we can
potentially train smaller models (than the exist-
ing multimodal transformers) for a given task,
especially when the pretraining data is chosen
carefully. Moreover, with multimodal attention,
we can achieve the best zero-shot retrieval results
using a classification loss which uses only one
negative example per image–text pair (compare
to a contrastive loss with 16384 negatives used in
Tian et al., 2019) and also removes the need for
mining more hard negatives (Faghri et al., 2017).

Additionally, we observe that comparable
results can be achieved without the image (masked
region modeling) loss in multimodal transform-
ers. This suggests that our current models are
not tapping into the useful signal in the image
modality, presumably because of the image loss
formulation. An interesting future direction is
designing better generative pretraining losses for
images; previous work shows that the choice of
loss significantly impacts the quality of language
representations (Voita and Titov, 2020).

Finally, we believe that examining why and
how multimodal transformers perform so well can
guide future work in more effectively measuring
progress in learning rich visual-linguistic features.
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