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Abstract

For natural language processing systems, two
kinds of evidence support the use of text
representations from neural language models
‘‘pretrained’’ on large unannotated corpora:
performance on application-inspired bench-
marks (Peters et al., 2018, inter alia), and
the emergence of syntactic abstractions in
those representations (Tenney et al., 2019,
inter alia). On the other hand, the lack of
grounded supervision calls into question how
well these representations can ever capture
meaning (Bender and Koller, 2020). We apply
novel probes to recent language models—
specifically focusing on predicate-argument
structure as operationalized by semantic de-
pendencies (Ivanova et al., 2012)—and find
that, unlike syntax, semantics is not brought
to the surface by today’s pretrained models.
We then use convolutional graph encoders
to explicitly incorporate semantic parses into
task-specific finetuning, yielding benefits to
natural language understanding (NLU) tasks
in the GLUE benchmark. This approach de-
monstrates the potential for general-purpose
(rather than task-specific) linguistic supervi-
sion, above and beyond conventional pretrain-
ing and finetuning. Several diagnostics help to
localize the benefits of our approach.1

1 Introduction

The past decade has seen a paradigm shift in how
NLP systems are built, summarized as follows:

• Before, general-purpose linguistic modules
(e.g., part-of-speech taggers, word-sense
disambiguators, and many kinds of parsers)
were constructed using supervised learning
from linguistic datasets. These were often

1https://github.com/ZhaofengWu/SIFT.

applied as preprocessing to text as part of
larger systems for information extraction,
question answering, and other applications.

• Today, general-purpose representation learn-
ing is carried out on large, unannotated
corpora—effectively a kind of unsupervised
learning known as ‘‘pretraining’’—and then
the representations are ‘‘finetuned’’ on
application-specific datasets using conven-
tional end-to-end neural network methods.

The newer paradigm encourages an emphasis
on corpus curation, scaling up pretraining, and
translation of end-user applications into trainable
‘‘tasks,’’ purporting to automate most of the la-
bor requiring experts (linguistic theory construc-
tion, annotation of data, and computational model
design). Apart from performance improvements
on virtually every task explored in the NLP lit-
erature, a body of evidence from probing studies
has shown that pretraining brings linguistic abs-
tractions to the surface, without explicit super-
vision (Liu et al., 2019a; Tenney et al., 2019;
Hewitt and Manning, 2019; Goldberg, 2019, inter
alia).

There are, however, reasons to pause. First,
some have argued from first principles that learn-
ing mappings from form to meaning is hard from
forms alone (Bender and Koller, 2020).2 Second,
probing studies have focused more heavily on
syntax than on semantics (i.e., mapping of forms
to abstractions of meaning intended by people
speaking in the world). Tenney et al. (2019)
noted that the BERT model (Devlin et al., 2019)
offered more to syntactic tasks like constituent and
dependency relation labeling than semantic ones

2In fact, Bender and Koller (2020) argued that this is
impossible for grounded semantics. Our probing analysis,
along with recent efforts (Kovaleva et al., 2019; Liu et al.,
2019a), suggests that modern pretrained models are poor at
surfacing predicate-argument semantics.
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Figure 1: An example sentence in the DM (top, blue) and Stanford Dependencies (bottom, red) format, taken from
Oepen et al. (2015) and Ivanova et al. (2012).

like Winograd coreference and semantic proto-
role labeling. Liu et al. (2019a) showed that
pretraining did not provide much useful infor-
mation for entity labeling or coreference res-
olution. Kovaleva et al. (2019) found minimal
evidence that the BERT attention heads capture
FrameNet (Baker et al., 1998) relations. We extend
these findings in §3, showing that representations
from the RoBERTa model (Liu et al., 2019b)
are relatively poor at surfacing information for
a predicate-argument semantic parsing probe,
compared to what can be learned with finetuning,
or what RoBERTa offers for syntactic parsing.
The same pattern holds for BERT.

Based on that finding, we hypothesize that
semantic supervision may still be useful to tasks
targeting natural language ‘‘understanding.’’ In
§4, we introduce semantics-infused finetuning
(SIFT), inspired by pre-neural pipelines. Input
sentences are first passed through a semantic
dependency parser. Though the method can
accommodate any graph over tokens, our im-
plementation uses the DELPH-IN MRS-derived
dependencies, known as ‘‘DM’’ (Ivanova et al.,
2012), illustrated in Figure 1. The task architecture
learned during finetuning combines the pretrained
model (here, RoBERTa) with a relational graph
convolutional network (RGCN; Schlichtkrull
et al., 2018) that reads the graph parse. Though
the same graph parser can be applied at inference
time (achieving our best experimental results),
benefits to task performance are in evidence in
a ‘‘light’’ model variant without inference time
parsing and with the same inference cost as a
RoBERTa-only baseline.

We experiment with the GLUE benchmarks
(§5), which target many aspects of natural lan-
guage understanding (Wang et al., 2018). Our
model consistently improves over both base and

large-sized RoBERTa baselines.3 Our focus is not
on achieving a new state of the art, but we note
that SIFT can be applied orthogonally alongside
other methods that have improved over similar
baselines, such as Raffel et al. (2020) and Clark
et al. (2020), which used alternative pretraining
objectives, and Jiang et al. (2020), which proposed
an alternative finetuning optimization framework.
In §6, we use the HANS (McCoy et al., 2019)
and GLUE (Wang et al., 2018) diagnostics to
better understand where our method helps on
natural language inference tasks. We find that our
model’s gains strengthen when finetuning data is
reduced, and that our approach is more effective
than alternatives that do not use the full labeled
semantic dependency graph.

2 Predicate-Argument Semantics
as Dependencies

Though many formalisms and annotated datasets
have been proposed to capture various facets of
natural language semantics, here our focus is on
predicates and arguments evoked by words in
sentences. Our experiments focus on the DELPH-
IN dependencies formalism (Ivanova et al., 2012),
commonly referred to as ‘‘DM’’ and derived from
minimal recursion semantics (Copestake et al.,
2005) and head-driven phrase structure grammar
(Pollard and Sag, 1994). This formalism, illus-
trated in Figure 1 (top, blue) has the appealing
property that a sentence’s meaning is represented
as a labeled, directed graph. Vertices are words
(though not every word is a vertex), and 59 labels
are used to characterize argument and adjunct
relationships, as well as conjunction.

3RoBERTa-base and RoBERTa-large use the same pre-
training data and only differ in the number of parameters.
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Other semantic formalisms such as PSD (Hajic
et al., 2012), EDS (Oepen and Lønning, 2006), and
UCCA (Abend and Rappoport, 2013) also capture
semantics as graphs. Preliminary experiments
showed similar findings using these. Frame-based
predicate-argument representations such as those
found in PropBank (Palmer et al., 2005) and
FrameNet (Baker et al., 1998) are not typically cast
as graphs (rather as ‘‘semantic role labeling’’), but
see Surdeanu et al. (2008) for data transformations
and Peng et al. (2018b) for methods that help
bridge the gap.

Graph-based formalizations of predicate-
argument semantics, along with organized shared
tasks on semantic dependency parsing (Oepen
et al., 2014, 2015), enabled the development of
data-driven parsing methods following extensive
algorithm development for dependency syntax
(Eisner, 1996; McDonald et al., 2005). Even
before the advent of the pretraining-finetuning
paradigm, labeled F1 scores above 0.9 were
achieved (Peng et al., 2017).

Some similarities between DM and dependency
syntax (e.g., the Stanford dependencies, illustrated
in Figure 1, bottom, red; de Marneffe et al.,
2006) are apparent: both highlight bilexical re-
lationships. However, semantically empty words
(like infinitival to) are excluded from the seman-
tic graph, allowing direct connections between
semantically related pairs (e.g., technique ←
apply, impossible → apply, and apply → crops,
all of which are mediated by other words in the
syntactic graph). DM analyses need not be trees
as in most syntactic dependency representations,4

so they may more directly capture the meaning of
many constructions, such as control.

3 Probing RoBERTa for
Predicate-Argument Semantics

The methodology known as ‘‘linguistic probing’’
seeks to determine the level to which a pretrained
model has rediscovered a particular linguistic ab-
straction from raw data (Shi et al., 2016; Adi et al.,
2017; Hupkes et al., 2018; Belinkov and Glass,
2019, inter alia). The procedure is:

1. Select an annotated dataset that encodes
the theoretical abstraction of interest into a
predictive task, usually mapping sentences to

4The enhanced universal dependencies of Schuster and
Manning (2016) are a counterexample.

linguistic structures. Here we will consider
the Penn Treebank (Marcus et al., 1993)
converted to Stanford dependencies and the
DM corpus from CoNLL 2015’s shared task
18 (Oepen et al., 2015).5

2. Pretrain. We consider RoBERTa and BERT.

3. Train a full-fledged ‘‘ceiling’’ model with
finetuned representations. It can be seen as
proxy to the best performance one can get
with the pretrained representations.

4. Train a supervised ‘‘probe’’ model for the
task with the pretrained representations.
Importantly, the pretrained representations
should be frozen, and the probe model should
be lightweight with limited capacity, so that
its performance is attributable to pretraining.
We use a linear probe classifier.

5. Compare, on held-out data, the probe model
against the ceiling model. Through such a
comparison, we can estimate the extent to
which the pretrained model ‘‘already knows’’
how to do the task, or, more precisely, brings
relevant features to the surface for use by the
probing model.

Liu et al. (2019a) included isolated DM arc
prediction and labeling tasks and Tenney et al.
(2019) conducted ‘‘edge probing.’’ To our knowl-
edge, full-graph semantic dependency parsing has
not been formulated as a probe.

For both syntactic and semantic parsing, our
full ceiling model and our probing model are
based on the Dozat and Manning (2017, 2018)
parser that underlies many state-of-the-art systems
(Clark et al., 2018; Li et al., 2019, inter alia). Our
ceiling model contains nonlinear multilayer per-
ceptron (MLP) layers between RoBERTa/BERT
and the arc/label classifiers, as in the original
parser, and finetunes the pretrained representa-
tions. The probing model, trained on the same
data, freezes the representations and removes the
MLP layers, yielding a linear model with limited
capacity. We measure the conventionally reported
metrics: labeled attachment score for dependency
parsing and labeled F1 for semantic parsing,
as well as labeled and unlabeled exact match
scores. We follow the standard practice and use

5These are both derived from the same Wall Street Journal
corpus and have similar size: the syntactic dependency
dataset has 39,832/2,416 training/test examples, while the
DM dataset has 33,964/1,410.
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PTB SD CoNLL 2015 DM
Metrics Abs Δ Rel Δ Ceiling Probe Abs Δ Rel Δ Ceiling Probe

LAS/F1 –13.5±0.2 –14.2%±0.2 95.2±0.1 81.7±0.1 –23.5±0.1 –24.9%±0.2 94.2±0.0 70.7±0.2
LEM –36.4±0.8 –72.4%±1.1 50.3±0.5 13.9±0.5 –45.4±1.1 –93.5%±0.5 48.5±1.2 3.1±0.2
UEM –46.3±0.7 –73.2%±0.5 63.3±0.8 17.0±0.3 –48.8±1.0 –92.8%±0.5 52.6±1.0 3.8±0.2

(a) Base.

PTB SD CoNLL 2015 DM
Metrics Abs Δ Rel Δ Ceiling Probe Abs Δ Rel Δ Ceiling Probe
LAS/F1 –17.6±0.1 –18.5%±0.1 95.3±0.0 77.7±0.1 –26.7±0.3 –28.3%±0.3 94.4±0.1 67.7±0.2
LEM –40.0±0.6 –77.2%±0.4 51.9±0.6 11.8±0.2 –46.6±1.1 –94.4%±0.1 49.3±1.1 2.7±0.0
UEM –50.2±0.6 –77.4%±0.2 64.8±0.7 14.6±0.2 –50.0±1.1 –93.9%±0.2 53.2±1.0 3.3±0.1

(b) Large.

Table 1: The RoBERTa-base (top) and RoBERTa-large (bottom) parsing results for the full ceiling
model and the probe on the PTB Stanford Dependencies (SD) test set and CoNLL 2015 in-domain test
set. We also report their absolute and relative differences (probe – full). The smaller the magnitude of
the difference, the more relevant content the pretrained model already encodes. We report the canonical
parsing metric (LAS for PTB dependency and labeled F1 for DM) and labeled/unlabeled exact match
scores (LEM/UEM). All numbers are mean ± standard deviation across three seeds.

the Chu-Liu-Edmonds algorithm (Chu and Liu,
1965; Edmonds, 1967) to decode the syntactic
dependency trees and greedily decode the seman-
tic graphs with local edge/label classification
decisions. See Appendix B for training details.

Comparisons between absolute scores on the
two tasks are less meaningful. Instead, we are
interested in the difference between the probe
(largely determined by pretrained representations)
and the ceiling (which benefits also from
finetuning). Prior work leads us to expect
that the semantic probe will exhibit a larger
difference than the syntactic one, signalling that
pretraining surfaces syntactic abstractions more
readily than semantic ones. This is exactly what
we see in Tables 1 across all metrics, for both
RoBERTa-base and RoBERTa-large, where all
relative differences (probe – full) are greater in
magnitude for parsing semantics than syntax.
Surprisingly, RoBERTa-large achieves worse
semantic and syntactic probing performance than
its base-sized counterpart across all metrics. This
suggests that larger pretrained representations
do not necessarily come with better structural
information for downstream models to exploit. In
Appendix C, we also show that BERT-base shows
the same qualitative pattern.

4 Finetuning with Semantic Graphs

Given pretrained RoBERTa’s relative incapabil-
ity of surfacing semantic structures (§3) and the

Figure 2: SIFT architecture. The sentence is first
contextualized using RoBERTa, and then parsed.
RGCN encodes the graph structures on top of
RoBERTa. We max-pool over the RGCN’s outputs
for onward computation.

importance of modeling predicate-argument se-
mantics (§2), we hypothesize that incorporating
such information into the RoBERTa finetuning
process should benefit downstream NLU tasks.

SIFT, briefly outlined in §4.1, is based on the
relational graph convolutional network (RGCN;
Schlichtkrull et al., 2018). §4.2 introduces a
lightweight variant of SIFT aiming to reduce test
time memory and runtime.
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Figure 3: To get the representation of a node, we
average the vectors of the wordpieces it is aligned to.

4.1 SIFT

SIFT first uses an external parser to get the
semantic analysis for the input sentence. Then
it contextualizes the input with a pretrained
RoBERTa model, the output of which is fed into
a graph encoder building on the semantic parse.
We use RGCN to encode the DM structures,
which are labeled graphs. The model is trained
end-to-end. Figure 2 diagrams this procedure.

RGCN. RGCN can be understood as passing
vector ‘‘messages’’ among vertices in the graph.
The nodes are initially represented with RoBERTa
token embeddings. At each RGCN layer, each
node representation is updated with a learned
composition function, taking as input the vector
representations of the node’s neighbors as well
itself. Each DM relation type is associated with
a separately parameterized composition function.
For tasks such as text classification or regression,
we max-pool over the final RGCN layer’s output
to obtain a sequence-level representation for
onward computation. Readers are referred to
Appendix A and Schlichtkrull et al. (2018) for
further details.

Note on Tokenization. RoBERTa uses byte-
pair encodings (BPE; Sennrich et al., 2016),
differing from the CoNLL 2019 tokenizer (Oepen
et al., 2019) used by the parser. To get each
token’s initial representation for RGCN, we
average RoBERTa’s output vectors for the BPE
wordpieces that the token is aligned to (illustrated
in Figure 3).

4.2 SIFT-Light

Inspired by the scaffold model of Swayamdipta
et al. (2018), we introduce SIFT-Light, a light-
weight variant of SIFT that aims to reduce time
and memory overhead at test time. During infer-
ence it does not rely on explicit semantic structures

and therefore has the same computational cost as
the RoBERTa baseline.

SIFT-Light learns two classifiers (or regres-
sors): (1) a main linear classifier on top of
RoBERTa fRoBERTa; (2) an auxiliary classifier
fRGCN based on SIFT. They are separately pa-
rameterized at the classifier level, but share the
same underlying RoBERTa. They are trained on
the same downstream task and jointly update
the RoBERTa model. At test time, we only use
fRoBERTa. The assumption behind SIFT-Light is
similar to the scaffold framework of Swayamdipta
et al. (2018): by sharing the RoBERTa parameters
between the two classifiers, the contextualized
representations steer towards downstream classi-
fication with semantic encoding. One key differ-
ence is that SIFT-Light learns with two different
architectures for the same task, instead of using
the multitask learning framework of Swayamdipta
et al. (2018). In §6.3, we find that SIFT-Light
outperforms a scaffold.

4.3 Discussion
Previous works have used GCN (Kipf and Welling,
2016), a similar architecture, to encode unlabeled
syntactic structures (Marcheggiani and Titov,
2017; Bastings et al., 2017; Zhang et al., 2020c,a,
inter alia). We use RGCN to explicitly encode
labeled semantic graphs. Our analysis shows that
it outperforms GCN, as well as alternatives such as
multitask learning with parameter-sharing (§6.3).
However, this comes with a cost. In RGCN, the
number of parameters linearly increases with the
number of relation types.6 In our experiments, on
top of the 125M RoBERTa-base parameters, this
adds approximately 3–118M parameters to the
model, depending on the hyperparameter settings
(see Appendix B). On top of RoBERTa-large,
which itself has 355M parameters, this adds
6–121M additional parameters. The inference
runtime of SIFT is 1.41–1.79× RoBERTa’s with
the base size and 1.30–1.53× with the large size.

SIFT incorporates semantic information only
during finetuning. Recent evidence suggests
that structural information can be learned with
specially-designed pretraining procedures. For
example, Swayamdipta et al. (2019) pretrain with
syntactic chunking, requiring the entire pretraining
corpus to be parsed which is computationally

6In experiments we upper-bound the number of the pa-
rameters by imposing a low-rank constraint on the parameter
matrices by construction. See Appendix A.
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prohibitive at the scale of RoBERTa’s pretraining
dataset. With a distillation technique, Kuncoro
et al. (2020) bake syntactic supervision into
the pretraining objective. Despite better accuracy
on tasks that benefit from syntax, they show
that the obtained syntactically-informed model
hurts the performance on other tasks, which
could restrict its general applicability. Departing
from these alternatives, SIFT augments general-
purpose pretraining with task-specific structural
finetuning, an attractively modular and flexible
solution.

5 Experiments

We next present experiments with SIFT to test
our hypothesis that pretrained models for nat-
ural language understanding tasks benefit from
explicit predicate-argument semantics.

5.1 Settings
We use the GLUE datasets, a suite of tests
targeting natural language understanding detailed
in Table 2 (Wang et al., 2018).7 Most are
classification datasets, while STS-B considers
regression. Among the classifications datasets,
MNLI has three classes while others have two;
CoLA and SST-2 classify single sentences while
the rest classify sentence pairs. We follow Dodge
et al. (2020) and Vu et al. (2020) and only report
development set results due to restricted GLUE
test set access.

We compare the following models:

• RoBERTa, both the base and large variants,
following Liu et al. (2019b).

• SIFT builds on pretrained RoBERTa, with 2
RGCN layers. To generate semantic graphs,
we use the semantic dependency parser by
Che et al. (2019) which held the first place in
the CoNLL 2019 shared task (Oepen et al.,
2019) with 92.5 labeled F1 for DM.8

• SIFT-Light (§4.2) is trained similarly to
SIFT, but does not rely on inference-time
parsing.

7Following Devlin et al. (2019), we do not report WNLI
results because it is hard to outperform the majority class
baseline using the standard classification finetuning routine.

8About half of the CoNLL 2019 evaluation set is out-
of-domain. Without gold semantic graph annotations for our
target datasets, this can be seen as a reasonable estimation of
the parser’s performance for our use case.

Data Task |Train| |Dev.|

CoLA Acceptability 8.5K 1K
MRPC Paraphrase 2.7K 409
QNLI Entailment 105K 5.5K
RTE Entailment 2.5K 278
SST-2 Sentiment 67K 873
STS-B Similarity 5.8K 1.5K
QQP Paraphrase 363K 40K
MNLI Entailment 392K 9.8K

Table 2: GLUE datasets and statistics. CoLA:
Warstadt et al. (2019); MRPC: Dolan and Brockett
(2005); SST-2: Socher et al. (2013); STS-B:
Cer et al. (2017); QQP: Csernai (2017); MNLI:
Williams et al. (2018); QNLI is compiled by
GLUE’s authors using Rajpurkar et al. (2016).
RTE is the concatenation of Dagan et al. (2005);
Bar-Haim et al. (2006); Giampiccolo et al. (2007);
Bentivogli et al. (2009).

• Syntax-infused finetuning is similar to
SIFT but uses the syntactic Universal
Dependencies parser (Straka, 2018; Straka
and Straková, 2019) from the CoNLL 2019
shared task (Oepen et al., 2019). We include
this model to confirm that any benefits to
task performance are due specifically to the
semantic structures.

Hyperparameters are summarized in Appendix B.

Implementation Details. We run all models
across 3 seeds for the large datasets QNLI, MNLI,
and QQP (due to limited computational resources),
and 4 seeds for all others. As we do not aim for
state of the art, we do not use intermediate task
training, ensemble models, or re-formulate QNLI
as a ranking task as done by Liu et al. (2019b). For
sentence-pair classification tasks such as MNLI,
we use structured decomposable attention (Parikh
et al., 2016) and 2 additional RGCN layers to
further propagate the attended information (Chen
et al., 2017). The two graphs are separately max-
pooled to obtain the final representation. See
Appendix A for more details.

5.2 Main Findings
Tables 3 summarizes the GLUE development set
performance of the four aforementioned models
when they are implemented with RoBERTa-
base and RoBERTa-large. With RoBERTa-base
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MNLI
Models CoLA MRPC RTE SST-2 STS-B QNLI QQP ID. OOD. Avg.

RoBERTa 63.1±0.9 90.1±0.8 79.0±1.6 94.6±0.3 91.0±0.0 93.0±0.3 91.8±0.1 87.7±0.2 87.3±0.3 86.4

SIFT 64.8±0.4 90.5±0.7 81.0±1.4 95.1±0.4 91.3±0.1 93.2±0.2 91.9±0.1 87.9±0.2 87.7±0.1 87.0
SIFT-Light 64.1±1.3 90.3±0.5 80.6±1.4 94.7±0.1 91.2±0.1 92.8±0.3 91.7±0.0 87.7±0.1 87.6±0.1 86.7
Syntax 63.5±0.6 90.4±0.5 80.9±1.0 94.7±0.5 91.1±0.2 92.8±0.2 91.8±0.0 87.9±0.1 87.7±0.1 86.7

(a) Base.

MNLI
Models CoLA MRPC RTE SST-2 STS-B QNLI QQP ID. OOD. Avg.

RoBERTa 68.0±0.6 90.1±0.8 85.1±1.0 96.1±0.3 92.3±0.2 94.5±0.2 91.9±0.1 90.3±0.1 89.8±0.3 88.7

SIFT 69.7±0.5 91.3±0.4 87.0±1.1 96.3±0.3 92.6±0.0 94.7±0.1 92.1±0.1 90.4±0.1 90.1±0.1 89.3
Syntax 69.6±1.2 91.0±0.5 86.0±1.6 95.9±0.3 92.4±0.1 94.6±0.1 92.0±0.0 90.4±0.3 90.0±0.2 89.1

(b) Large.

Table 3: GLUE development set results with RoBERTa-base (top) and RoBERTa-large (bottom). We
report Matthews correlation for CoLA, Pearson’s correlation for STS-B, and accuracy for others. We
report mean ± standard deviation; for each bold entry, the mean minus standard deviation is no worse
than RoBERTa’s corresponding mean plus standard deviation.

(Table 3a), SIFT achieves a consistent improve-
ment over the baseline across the board, suggest-
ing that despite heavy pretraining, RoBERTa
still benefits from explicit semantic structural
information. Among the datasets, smaller ones
tend to obtain larger improvements from SIFT,
e.g., 1.7 Matthews correlation for CoLA and
2.0 accuracy for RTE, while the gap is smaller
on the larger ones (e.g., only 0.1 accuracy for
QQP). Moreover, SIFT-Light often improves
over RoBERTa, with a smaller gap, making
it a compelling model choice when latency is
prioritized. This shows that encoding semantics
using RGCN is not only capable of producing
better standalone output representations, but can
also benefit the finetuning of the RoBERTa-
internal weights through parameter sharing.
Finally, the syntax-infused model underperforms
SIFT across all tasks. It only achieves minor
improvements over RoBERTa, if not hurting per-
formance. These results provide evidence sup-
porting our hypothesis that incorporating semantic
structures is more beneficial to RoBERTa than
syntactic ones.

We observe a similar trend with RoBERTa-
large in Table 3b, where SIFT’s absolute improve-
ments are very similar to those in Table 3a.
Specifically, both achieve an 0.6 accuracy im-
provement over RoBERTa, averaged across all
datasets. This indicates that the increase from
RoBERTa-base to RoBERTa-large added little to
surfacing semantic information.

6 Analysis and Discussion

In this section, we first analyze in which
scenarios incorporating semantic structures helps
RoBERTa. We then highlight SIFT’s data effi-
ciency and compare it to alternative architectures.
We show ablation results for architectural deci-
sions in Appendix D. All analyses are conducted
on RoBERTa-base.

6.1 When Do Semantic Structures Help?

Using two diagnostic datasets designed for eval-
uating and analyzing natural language inference
models, we find that SIFT (1) helps guard the
model against frequent but invalid heuristics in
the data, and (2) better captures nuanced sentence-
level linguistic phenomena than RoBERTa.

Results on the HANS Diagnostic Data. We
first diagnose the model using the HANS dataset
(McCoy et al., 2019). It aims to study whether a
natural language inference (NLI) system adopts
three heuristics, summarized and exemplified in
Table 4. The premise and the hypothesis have
high surface form overlap, but the heuristics are
not valid for reasoning. Each heuristic has both
positive and negative (i.e., entailment and non-
entailment) instances constructed. Due to the high
surface similarity, many models tend to predict
‘‘entailment’’ for the vast majority of instances.
As a result, they often reach decent accuracy
on the entailment examples, but struggle on the
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Heuristic Premise Hypothesis Label RoBERTa SIFT

Lexical The banker near the judge saw the actor. The banker saw the actor. E 98.3 98.9
Overlap The judge by the actor stopped the banker. The banker stopped the actor. N 68.1 71.0
Sub- The artist and the student called the judge. The student called the judge. E 99.7 99.8
sequence The judges heard the actors resigned. The judges heard the actors. N 25.8 29.5

Constituent
Before the actor slept, the senator ran. The actor slept. E 99.3 98.8
If the actor slept, the judge saw the artist. The actor slept. N 37.9 37.6

Table 4: HANS heuristics and RoBERTa-base and SIFT’s accuracy. Examples are due to McCoy et al.
(2019). ‘‘E’’: entailment. ‘‘N’’: non-entailment. Bold font indicates better result in each category.

‘‘non-entailment’’ ones (McCoy et al., 2019), on
which we focus our analysis. The 30,000 test
examples are evenly spread among the 6 classes
(3 heuristics, 2 labels).

Table 4 compares SIFT against the RoBERTa
baseline on HANS. Both struggle with non-
entailment examples. SIFT yields improvements
on the lexical overlap and subsequence heuristics,
which we find unsurprising, given that semantic
analysis directly addresses the underlying dif-
ferences in meaning between the (surface-similar)
premise and hypothesis in these cases. SIFT
performs similarly to RoBERTa on the constituent
heuristic with a 0.3% accuracy difference for
the non-entailment examples. Here the hypothesis
corresponds to a constituent in the premise, and
therefore we expect its semantic parse to often be
a subgraph of the premise’s; accuracy hinges on
the meanings of the connectives (e.g., before and
if in the examples), not on the structure of the
graphs.

Results on the GLUE Diagnostic Data.
GLUE’s diagnostic set (Wang et al., 2018) con-
tains 1,104 artificially curated NLI examples to
test a model’s performance on various linguis-
tic phenomena including predicate-argument
structure (e.g., ‘‘I opened the door.’’ entails ‘‘The
door opened.’’ but not ‘‘I opened.’’), logic (e.g.,
‘‘I have no pet puppy.’’ entails ‘‘I have no corgi
pet puppy.’’ but not ‘‘I have no pets.’’), lexical
semantics (e.g., ‘‘I have a dog.’’ entails ‘‘I have an
animal.’’ but not ‘‘I have a cat.’’), and knowledge
& common sense (e.g., ‘‘I went to the Grand
Canyon.’’ entails ‘‘I went to the U.S..’’ but not
‘‘I went to Antarctica.’’). Table 5 presents the
results in R3 correlation coefficient (Gorodkin,
2004). Explicit semantic dependencies help SIFT
perform better on predicate-argument structure
and sentence logic. On the other hand, SIFT
underperforms the baseline on lexical semantics

Phenomenon RoBERTa SIFT

Predicate Argument Structure 43.5 44.6
Logic 36.2 38.3
Lexical Semantics 45.6 44.8
Knowledge 28.0 26.3

Table 5: R3 correlation coefficient of RoBERTa-
base and SIFT on the GLUE diagnostic set.

and world knowledge. We would not expect
a benefit here, since semantic graphs do not
add lexical semantics or world knowledge; the
drop in performance suggests that some of what
RoBERTa learns is lost when it is finetuned
through sparse graphs. Future work might seek
graph encoding architectures that mitigate this
loss.

6.2 Sample Efficiency

In §5.2, we observe greater improvements from
SIFT on smaller finetuning sets. We hypothesize
that the structured inductive bias helps SIFT more
when the amount of finetuning data is limited.
We test this hypothesis on MNLI by training
different models varying the amount of finetuning
data. We train all configurations with the same
three random seeds. As seen in Table 6, SIFT
offers larger improvements when less finetuning
data is used. Given the success of the pretraining
paradigm, we expect many new tasks to emerge
with tiny finetuning sets, and these will benefit the
most from methods like SIFT.

6.3 Comparisons to Other Graph Encoders

In this section we compare RGCN to some
commonly used graph encoders. We aim to study
whether or not (1) encoding graph labels helps,
and (2) explicitly modeling discrete structures is
necessary. Using the same experiment setting as
in §5.1, we compare SIFT and SIFT-Light to
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ID. OOD.

Fraction |Train| RoBERTa SIFT Abs Δ Rel Δ RoBERTa SIFT Abs Δ Rel Δ

100% 392k 87.7 87.9 0.2 0.2% 87.3 87.7 0.4 0.4%
0.5% 1,963 76.1 77.6 1.5 1.9% 77.1 78.2 1.1 1.4%
0.2% 785 68.6 71.0 2.5 3.5% 70.0 71.8 1.8 2.5%
0.1% 392 58.7 61.2 2.6 4.2% 60.5 63.7 3.3 5.1%

Table 6: RoBERTa-base and SIFT’s performance on the entire MNLI development sets and their
absolute and relative differences, with different numbers of finetuning instances randomly subsampled
from the training data.

MNLI

Models CoLA MRPC RTE SST-2 STS-B QNLI QQP ID. OOD. Avg.

RoBERTa 63.1 90.1 79.0 94.6 91.0 93.0 91.8 87.7 87.3 86.4

GCN 65.2 90.2 80.2 94.8 91.1 92.9 91.8 87.8 87.7 86.8
GAT 63.4 90.0 79.4 94.7 91.2 92.9 91.8 87.7 87.6 86.5
Hidden 64.2 90.2 79.7 94.5 91.0 92.8 91.8 87.1 86.7 86.4
Scaffold 62.5 90.5 71.1 94.3 91.0 92.6 91.7 87.7 87.6 85.5

SIFT 64.8 90.5 81.0 95.1 91.3 93.2 91.9 87.9 87.7 87.0
SIFT-Light 64.1 90.3 80.6 94.7 91.2 92.8 91.7 87.7 87.6 86.7

Table 7: GLUE development set results for different architectures for incorporating semantic information.
The settings and metrics are identical to Table 3a. All models use the base size variant.

• Graph convolutional network (GCN; Kipf
and Welling, 2016). GCN does not encode
relations, but is otherwise the same as RGCN.

• Graph attention network (GAT; Veličković
et al., 2018). Similarly to GCN, it encodes
unlabeled graphs. Each node aggregates
representations of its neighbors using an
attention function (instead of convolutions).

• Hidden (Pang et al., 2019; Zhang et al.,
2020a). It does not explicitly encode struc-
tures, but uses the hidden representations
from a pretrained parser as additional fea-
tures to the classifier.

• Scaffold (Swayamdipta et al., 2018) is
based on multitask learning. It aims to
improve the downstream task performance
by additionally training the model on the DM
data with a full parsing objective.

To ensure fair comparisons, we use comparable
implementations for these models. We refer the
readers to the works cited for further details.

Table 7 summarizes the results, with SIFT hav-
ing the highest average score across all datasets.

Notably, the 0.2 average absolute benefit of SIFT
over GCN and 0.5 over GAT demonstrates the
benefit of including the semantic relation types
(labels). Interestingly, on the linguistic accept-
ability task—which focuses on well-formedness
and therefore we expect relies more on syntax
—GCN outperforms RGCN-based SIFT. GAT
underperforms GCN by 0.3 on average, likely
because the sparse semantic structures (i.e., small
degrees of each node) make attended message
passing less useful. Hidden does not on average
outperform the baseline, highlighting the bene-
fit of discrete graph structures (which it lacks).
Finally, the scaffold underperforms across most
tasks.

7 Related Work

Using Explicit Linguistic Information.
Before pretrained contextualized representations
emerged, linguistic information was commonly
incorporated into deep learning models to im-
prove their performance including part of speech
(Sennrich and Haddow, 2016; Xu et al., 2016,
inter alia) and syntax (Eriguchi et al., 2017;
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Chen et al., 2017; Miwa and Bansal, 2016, inter
alia). Nevertheless, recent attempts in incorpo-
rating syntax into pretrained models have little
success on NLU: Strubell et al. (2018) found
syntax to only marginally help semantic role
labeling with ELMo, and Kuncoro et al. (2020)
observed that incorporating syntax into BERT
conversely hurts the performance on some GLUE
NLU tasks. On the other hand, fewer attempts have
been devoted to incorporating sentential predicate-
argument semantics into NLP models. Zhang
et al. (2020b) embedded semantic role labels
from a pretrained parser to improve BERT.
However, these features do not constitute full
sentential semantics. Peng et al. (2018a) enhanced
a sentiment classification model with DM but
only used one-hop information and no relation
modeling.

Probing Syntax and Semantics in Models.
Many prior works have probed the syntactic
and semantic content of pretrained transformers,
typically BERT. Wallace et al. (2019) observed
that BERT displays suboptimal numeracy knowl-
edge. Clark et al. (2019) discovered that BERT’s
attention heads tend to surface syntactic relation-
ships. Hewitt and Manning (2019) and Tenney
et al. (2019) both observed that BERT embeds
a significant amount of syntactic knowledge.
Besides pretrained transformers, Belinkov et al.
(2020) used syntactic and semantic dependency
relations to analyze machine translation models.

8 Conclusion

We presented strong evidence that RoBERTa
and BERT do not bring predicate-argument se-
mantics to the surface as effectively as they
do for syntactic dependencies. This observation
motivates SIFT, which aims to incorporate
explicit semantic structures into the pretraining-
finetuning paradigm. It encodes automatically
parsed semantic graphs using RGCN. In con-
trolled experiments, we find consistent benefits
across eight tasks targeting natural language
understanding, relative to RoBERTa and a
syntax-infused RoBERTa. These findings moti-
vate continued work on task-independent se-
mantic analysis, including training methods that
integrate it into architectures serving downstream
applications.
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Petr Sgall, Ondrej Bojar, Silvie Cinková,
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A Detailed Model Architecture

In this section we provide a detailed illustration of
our architecture.

Graph Initialization Because RoBERTa’s BPE
tokenization differs from the Che et al. (2019)
semantic parser’s CoNLL 2019 tokenization, we
align the two tokenization schemes using character
level offsets, as illustrated in Figure 3. For each
node i, we find wordpieces [tj , · · · , tk] that it
aligns to. We initialize its node embedding by
averaging the vectors of these wordpiece followed
by an learned affine transformation and a ReLU
nonlinearity:

h
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⎛
⎝We
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k − j + 1
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s=j
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Figure 4: SIFT architecture for sentence pair tasks. Two
graphs are first separately encoded using RGCN, then
structured decomposable attention is used to capture
the inter-graph interaction. Additional RGCN layers are
used to further propagate the structured information.
Finally two vectors max-pooled from both graphs
are concatenated and used for onward computation.
RoBERTa and the external parser are suppressed for
clarity.

Here We is a learned matrix, and the e vectors are
the wordpiece representations. The superscript on
h denotes the layer number, with 0 being the input
embedding vector fed into the RGCN layers.

Graph Update In each RGCN layer �, every
node’s hidden representation is propagated to its
direct neighbors:
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where R is the set of all possible relations
(i.e., edge labels; including inverse relations for
inverse edges that we manually add corresponding
to the original edges) and N r

i denotes vi’s
neighbors with relation r. Wr and W0 are
learned parameters representing a relation-specific
transformation and a self-loop transformation,
respectively. We also use the basis-decomposition
trick described in Schlichtkrull et al. (2018) to
reduce the number of parameters and hence the
memory requirement. Specifically, we constructB
basis matrices; where |R| > B, the transformation
of each relation is constructed by a learned linear
combination of the basis matrices. Each RGCN
layer captures the neighbors information that is
one hop away. We use � = 2 RGCN layers for our
experiments.

Sentence Pair Tasks For sentence pair tasks, it is
crucial to model sentence interaction (Parikh et al.,
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PTB SD CoNLL 2015 DM
Metrics Abs Δ Rel Δ Full Probe Abs Δ Rel Δ Full Probe

LAS/F1 –13.6 –14.4% 94.6 81.0 –23.2 –24.8% 93.6 70.4
LEM –35.8 –73.7% 48.6 12.8 –39.4 –91.6% 43.0 3.6
UEM –44.7 –74.1% 60.3 15.7 –42.0 –91.5% 45.9 3.9

Table 8: The BERT-base parsing results for the full ceiling model and the probing
model on the PTB Stanford Dependencies (SD) test set and CoNLL 2015 in-domain
test set. The metrics and settings are identical to Table 1 except only one seed is used.

MNLI
MRPC STS-B ID. OOD.

Full 90.5 91.3 87.9 87.7
– attention 90.1 91.2 87.9 87.7
– concat 90.2 91.0 87.8 87.6

Table 9: Ablation results on the development
sets of 3 GLUE datasets with a RoBERTa-base
backbone.

2016). We therefore use a similar structured de-
composable attention component to model the
interaction between the two semantic graphs. Each
node attends to the other graph’s nodes using
biaffine attention; its output is then concatenated
to its node representation calculated in its own
graph. Specifically, for two sentences a and b, we
obtain an updated representation h′(�),a for a as
follows:
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where Wα is a learned matrix, and 	 denotes
the elementwise product. We do the same
operation to obtain the updated h′(�),b. Inspired
by Chen et al. (2017), we add another � RGCN
composition layers to further propagate the
attended representation. They result in additional
parameters and runtime cost compared to what
was presented in §4.3.

Graph Pooling The NLU tasks we experiment
with require one vector representation for each
instance. We max-pool over the sentence graph
(for sentence pair tasks, separately for the two

graphs whose pooled output are then concate-
nated), concatenate it with RoBERTa’s [CLS]
embedding, and feed the result into a layer nor-
malization layer (LN) to get the final output.

B Hyperparameters

Probing Hyperparameters. No hyperparame-
ter tuning is conducted for the probing experi-
ments. For the full models, we use intermediate
MLP layers with dimension 512 for arc projection
and 128 for label projection. The probing mod-
els do not have such layers. We minimize the
sum of the arc and label cross entropy losses for
both dependency and DM parsing. All models are
optimized with AdamW (Loshchilov and Hutter,
2019) for 10 epochs with batch size 8 and learning
rate 2× 10−5.

Main Experiment Hyperparameters. For
SIFT, we use 2 RGCN layers for single-sentence
tasks and 2 additional composition RGCN layers
after the structured decomposable attention com-
ponent for sentence-pair tasks. The RGCN hidden
dimension is searched in {256, 512, 768}, the
number of bases in {20, 60, 80, 100}, dropout
between RGCN layers in {0, 0.2, 0.3}, and the
final dropout after all RGCN layers in {0, 0.1}.
For SIFT-Light, the training loss is obtained
with 0.2lossRGCN+0.8lossRoBERTa. For all models,
the number of training epochs is searched in
{3, 10, 20} and the learning rate in {1× 10−4, 2×
10−5}. We use 0.1 weight decay and 0.06 warmup
ratio. All models are optimized with AdamW with
an effective batch size of 32.

C BERT Probing Results

We replicate the RoBERTa probing experiments
described in §3 for BERT. We observe similar
trends where the probing model degrades more
from the full model for DM than dependency
syntax. This demonstrates that, like RoBERTa,
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BERT also less readily surfaces semantic content
than syntax.

D Ablations

In this section we ablate two major architectural
choices: the sentence pair structured decompos-

able attention component and the use of a con-
catenated RoBERTa and RGCN representation
rather than only using the latter. We select 3
sentence-pair datasets covering different dataset
sizes and tasks with identical experimental setup
as §5.1. The ablation results in Table 9 show that
the full SIFT architecture performs the best.
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