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Abstract

Following the success of dot-product atten-
tion in Transformers, numerous approxima-
tions have been recently proposed to address
its quadratic complexity with respect to the in-
put length. While these variants are memory
and compute efficient, it is not possible to di-
rectly use them with popular pre-trained lan-
guage models trained using vanilla attention,
without an expensive corrective pre-training
stage. In this work, we propose a simple yet
highly accurate approximation for vanilla at-
tention. We process the queries in chunks, and
for each query, compute the top-k scores with
respect to the keys. Our approach offers sev-
eral advantages: (a) its memory usage is lin-
ear in the input size, similar to linear attention
variants, such as Performer and RFA (b) it is a
drop-in replacement for vanilla attention that
does not require any corrective pre-training,
and (c) it can also lead to significant memory
savings in the feed-forward layers after casting
them into the familiar query-key-value frame-
work. We evaluate the quality of top-k approx-
imation for multi-head attention layers on the
Long Range Arena Benchmark, and for feed-
forward layers of T5 and UnifiedQA on multi-
ple QA datasets. We show our approach leads
to accuracy that is nearly-identical to vanilla
attention in multiple setups including training
from scratch, fine-tuning, and zero-shot infer-
ence.

1 Introduction

The Transformer architecture (Vaswani et al., 2017)
has been successful in a wide range of natural lan-
guage processing tasks, including machine transla-
tion (Edunov et al., 2018), language modeling (Roy
et al., 2021), question-answering (Karpukhin et al.,
2020), and many more. Transformers pre-trained
on large amounts of text with a language model-
ing (LM) objective, have become the standard in

∗majority of work done while author was part of IBM
AI Residency program.

NLP, exhibiting surprising amounts of linguistic
and world knowledge (Peters et al., 2018; Devlin
et al., 2019; Petroni et al., 2019; Hewitt and Man-
ning, 2019; Roberts et al., 2020).

The contextualizing component of the Trans-
former is the attention layer where all positions
in an input sequence of length L aggregate in-
formation from the entire sequence in parallel.
At its core, given L query, key, and value vec-
tors Q,K, V respectively, the dot-product atten-
tion function outputs softmax(QK>)V where the
softmax function is applied row-wise on the matrix
QK> ∈ RL×L of similarity scores of the query-
key pairs, leading to an expensive Ω(L2) memory
requirement.

To alleviate this, past work proposed ap-
proximation methods for the computation of
softmax(QK>). One major line of research fo-
cused on sparse attention variants, where only a
few similarity scores are computed per query, and
the rest are ignored. Methods differ by which
query-key pairs are selected (Child et al., 2019;
Ye et al., 2019; Qiu et al., 2020; Roy et al., 2021;
Kitaev et al., 2020; Beltagy et al., 2020; Gupta and
Berant, 2020; Vyas et al., 2020). A second line of
research explored dense variants (Katharopoulos
et al., 2020; Wang et al., 2020; Bello, 2021; Tay
et al., 2020a) (cf. (Tay et al., 2020b) for a survey).
For example, instead of computing the attention
scores exactly for only a small number of query-
key pairs, (Choromanski et al., 2021) compute an
approximation of scores for all pairs.

In this work, we adopt the sparse attention ap-
proach, but rather than approximating the k most
similar key vectors per query vector, we compute
this quantity exactly. Specifically, we propose top-
k attention where, for each query vector, we only
keep its k largest similarity scores with respect to
the L keys, where k � L. We show that top-k at-
tention can be implemented in a memory-efficient
manner by (a) chunking the query vectors when
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Figure 1: Memory and time
required for a forward and
backward pass on a single
BERT-base multi-head self-
attention layer with causal
masking on short (left) and
long (right) inputs. Details
are in §3.

2K 4K 6K 8K 10K
0

10

20

30

m
em

or
y 

(G
iB

)

0K 10K 20K 30K 40K 50K 60K
0

10

20

30

m
em

or
y 

(G
iB

)

2K 4K 6K 8K 10K
input length

0.20

0.25

0.30

0.35

0.40

tim
e 

(s
ec

)

0K 10K 20K 30K 40K 50K 60K
input length

0

2

4

6

8

tim
e 

(s
ec

)

vanilla Performer query-chunking (C=1024) top-k-query-chunking (C=1024, k=128)

computing the output one chunk at a time, when
computing softmax(QK>)V , and (b) a custom
implementation of the forward and backward pass
that does not require caching activations while pro-
cessing chunks in the forward pass.

Compared to prior methods, top-k attention has
multiple attractive properties:
• Top-k attention has the same memory footprint

as Performer (Choromanski et al., 2021), a state-
of-the-art attention variant with linear time and
memory complexity, on very long inputs (orange
curve, Fig. 1, top-right), while being as fast as
vanilla attention, and even faster than linear vari-
ants on inputs of length up to 4K (Figure 1,
bottom-left). This allows us, e.g., to train a typi-
cal 12-layer Transformer decoder over 32K-long
inputs on a 30GiB GPU (Figure 3a).

• Top-k attention also reduces memory consump-
tion in Transformer feed-forward layers, by cast-
ing this layer into the familiar query-key-value
framework using ReLU instead of the row-wise
softmax (Sukhbaatar et al., 2019). This is specif-
ically appealing in models such as T5 (Raffel
et al., 2020) and GPT-3 (Brown et al., 2020),
where for short inputs, the memory consump-
tion is dominated by the feed-forward layers, as
the number of keys, corresponding to the feed-
forward hidden dimension size, is as large as
65K. Conversely, methods that rely on ran-
dom feature approximations of attention, such as
Performer (Choromanski et al., 2021) and RFA
(Peng et al., 2021) do not admit an efficient ap-
proximation for the ReLU activation (Yehudai
and Shamir, 2019).

• Top-k attention is a highly accurate approxi-
mation to vanilla attention and is a plug-and-
play replacement at both multi-head attention

and feed-forward layers of a Transformer. This
is unlike past attention variants (Katharopoulos
et al., 2020; Choromanski et al., 2021; Peng et al.,
2021) that require an expensive corrective pre-
training stage to adjust model weights to the new
variant, which can be prohibitive for large models.
We show top-k attention can replace vanilla at-
tention in a zero-shot inference setup and at fine-
tuning time without any corrective pre-training.

We extensively evaluate top-k attention on a wide
range of tasks and demonstrate its mentioned ad-
vantages. Training from scratch, we show top-k
attention performs as well as vanilla self-attention
on Long Range Arena, a benchmark dedicated to
evaluating the ability of transformers to handle
long sequences, and in a language modeling task
(WikiText-103). Second, we show top-k attention
can be used as a drop-in replacement for vanilla
attention at inference time without any additional
training at the feed-forward layer of the UnifiedQA
model (Khashabi et al., 2020) on 12 different ques-
tion answering (QA) datasets, reducing the number
of keys used per query by more than 99%. Last, we
show top-k attention obtains similar performance
to vanilla attention on a wide range of QA tasks
when fine-tuning T5 (Raffel et al., 2020), without
the need for any corrective pre-training.

Overall, our results demonstrate that top-k at-
tention is a simple and effective method for dra-
matically reducing the memory footprint of Trans-
formers without loss of accuracy that can allow
resource-constrained researchers enjoy the bene-
fits of large pre-trained Transformer-based mod-
els. Our code is available at https://github.
com/ag1988/top_k_attention.

https://github.com/ag1988/top_k_attention
https://github.com/ag1988/top_k_attention
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2 Efficient Transformer through Top-k
Attention

In this section, we briefly review the Transformer
architecture, its sparse approximations, and show
how to cast the feed-forward layer into the query-
key-value framework (§2.1). We then describe top-
k attention and our memory-efficient implementa-
tion for it (§2.2).

2.1 Attention in Transformers
A Transformer (Vaswani et al., 2017) is a stack
of layers each consisting of multi-head attention
and feed-forward sub-layers. Its contextualizing
component is the multi-head attention defined as
follows.

Multi-head Attention Given a query Q ∈
RLQ×d, key K ∈ RLK×d and value V ∈ RLK×d,
the output ∈ RLQ×d of dot-product attention is
defined as:

Attention(Q,K, V ) = row-softmax

(
QK>

λ

)
V,

(1)
where λ is an optional temperature typically fixed
as
√
d.1 In multi-head attention, for a given number

of heads h, instead of computing a single attention
output with dmodel dimensional queries, keys and
values, these are linearly projected down in par-
allel h times to d = dmodel/h dimensions, using
different learned projection matrices. Attention
is applied to each of the h new queries, keys and
values, yielding d dimensional outputs which are
concatenated and again projected to obtain a dmodel-
dimensional output.

Sparse approximations The attention function
(Eq. 1) requires the computation of QK> contain-
ing LQ · LK entries and can be expensive for long
sequences (LQ and LK are typically the sequence
length). To alleviate this issue, sparse attention
variants (Child et al., 2019; Qiu et al., 2020; Kitaev
et al., 2020; Beltagy et al., 2020; Gupta and Berant,
2020) relax this requirement and compute only a
few entries of QK>, masking out the rest. For a
binary mask B ∈ {0,−∞}LQ×LK ,

SparseAttention(Q,K, V,B) =

row-softmax
(
QK> +B

)
V.

(2)

The sparsity of B can be leveraged via customized
implementations of matrix product (Child et al.,

1 we omit this in rest of our presentation as Q can be
scaled by 1/λ beforehand.

2019; Beltagy et al., 2020) and, thus Eq. 2 can be
significantly cheaper to compute compared to Eq.
1.

Feed-forward as attention In the feed-forward
layer, a 1-hidden layer fully-connected network
is applied identically to every input token. As
observed in past work (Sukhbaatar et al., 2019;
Shazeer, 2020; Geva et al., 2020), a feed-forward
layer can be cast into the query-key-value frame-
work as:

FFK,V (Q) = ReLU
(
QK>

)
V. (3)

In this case, the queries Q ∈ RLQ×dmodel are the
inputs to the layer with LQ tokens, similar to
self-attention. However, the keys K = WK ∈
RLK×dmodel and values V = WV ∈ RLK×dmodel are
learned parameters that are independent of the in-
put. The number of keys LK here is known as
the feed-forward dimension and can be as large
as 65K for wide models such as T5 (Raffel et al.,
2020) and GPT-3 (Brown et al., 2020). In the com-
mon case where the input sequences are relatively
short, memory consumption is dominated by the
feed-forward sub-layer and not the self-attention
sub-layer.

Unlike top-k attention, past approaches for ap-
proximating attention are incompatible with feed-
forward layers. Most approximate attention vari-
ants, such as Sparse Transformer (Child et al.,
2019), LongFormer (Beltagy et al., 2020), BigBird
(Zaheer et al., 2020), Sinkhorn attention (Tay et al.,
2020a), rely on a locality bias in sequences, where
the key vectors indexed close to each other in K
are assumed to have similar representations. This
is irrelevant for keys in a feed-forward layer, which
are permutation-equivariant and do not have any
local structure. Dense attention variants relying
on random fourier features for approximating the
softmax function are also not applicable, since it
is known that ReLU cannot be approximated using
such features (Yehudai and Shamir, 2019).

2.2 Top-k Attention

In this work we propose top-k attention, where for
each query, we mask out all but its k largest dot
products with the keys, that is, in each row ofQK>

we only keep its k largest elements and mask out
the rest:

top-k-Attention(Q,K, V ) =

activation
(

top-k(QK>)
)
V,

(4)
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Figure 2: Memory and time required for a forward pass on a
single BERT-base multi-head self-attention layer on inputs of
length 65, 536.

where activation can be softmax, ReLU, or any
other activation, and top-k(QK>) denotes a sparse
matrix consisting only of the row-wise top-k ele-
ments of QK>. A naïve approach for comput-
ing top-k(QK>) would be to first compute QK>

and applying a row-wise top-k operation. Unfor-
tunately, computing QK> ∈ RLQ×LK explicitly
would require Ω (LQ · LK) memory. We now de-
scribe our approach, which avoids this high cost.

Query chunking A simple way to implement
attention and reduce its peak memory consumption
is to chunk queries: instead of processing all the
queries at once, we partition the queries into chunks
and process them sequentially, one chunk at a time.
For a chunk size C, the rows of Q are grouped
into LQ/C contiguous chunks of size C and the
attention function (Eq. 1, 3, 4) is computed using
QC ,K, V as inputs where QC denotes the subset
of Q corresponding to chunk C.

During inference, once a query chunk is fully
processed, the intermediate activations produced
during its processing can be discarded and, hence,
the peak memory required to process allLQ queries
is bounded by the memory required to process a
single chunk. Therefore, modulo the storage re-
quired for Q,K, V and the outputs themselves, the
peak memory usage reduces from Ω (LQ · LK) to
O(C · LK) which is linear with respect to LK for
a fixed chunk size C.

Chunk size provides a simple way to trade-off
between the maximum memory usage and the slow-
down due to the sequential processing of chunks.
Fig. 2 shows memory and time for different chunk
sizes for a single BERT-base self-attention layer
over a sequence of length 65, 536. We observe that
chunk sizes 29, 210 yield a good trade-off between
time and memory.

Input checkpointing While query chunking pro-
vides a straightforward approach for bounding
the peak memory usage of attention during in-
ference, it is not so straightforward to employ

it during training. Let d (A) denote the gradi-
ent of the loss with respect to a tensor A. For
a given query chunk QC , the intermediate activa-
tions produced during the computation of the out-
put oC = Attention(QC ,K, V ) are required for
computing d (QC) from d (oC) via backpropaga-
tion. Unfortunately, for the above bound on the
peak memory usage to hold, we cannot afford to
cache these activations for all the chunks, as done
by standard automatic differentiation packages.

Taking inspiration from gradient checkpointing
(Chen et al., 2016), we observe that if the inputs
QC ,K, V are available during the backward pass,
we can re-compute oC and then use the produced
intermediate activations to compute d (QC) from
d (oC). Once d (QC) is computed, we can again
discard the intermediate activations and gradients
produced during this step and move on to the next
chunk. This ensures that the peak memory usage
during the backward pass through the attention
layer is bounded by the memory required to back-
propagate through a single chunk.

To summarize, a customized backward pass al-
lows us to utilize query chunking, both during for-
ward and backward passes, and only requires us
to cache the inputs to the attention function. For a
stack ofN attention layers and fixed d, this reduces
the peak memory usage from Ω (LQ · LK ·N) to
O ((LQ + LK) ·N + C · LK).

As described above, the combination of query
chunking and input checkpointing provides a sim-
ple method for reducing the memory-footprint of
vanilla attention, independent of top-k attention. In-
deed, our benchmarking experiments in §3 demon-
strate this. However, a drawback of this approach is
that, during the backward pass, an implicit second
forward pass is performed to re-compute the inter-
mediate activations as described above. This can
potentially increase the compute (FLOPs) required
for a combined forward and backward pass by 50%.
We now describe how to further improve both com-
pute and memory by combining query chunking
and input checkpointing with top-k attention.

Improving efficiency through top-k attention
We now show that one can avoid re-computing
activations in the case of top-k-Attention (Eq. 4).
At a high level, top-k(QK>) provides a highly
compressed but accurate representation of QK>

and requires only O(LQ · k) storage, compared to
Ω(LQ ·LK) for QK>, where we assume k � LK .
Hence, we can cache it in addition toQ,K, V with-
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1 def forward (Q, K, V, k, activation):

2 # Q: query chunk, K: keys, V: values # [C, d], [L_K, d], [L_K, d]

3 dots = matrix_prod(Q, transpose(K)) # [C, L_K]

4 top_dots, top_indices = row_wise_topk(dots, k) # [C, k], [C, k]

5 del dots

6 top_actv = activation(top_dots) # [C, k]

7 actv = matrix(top_actv, top_indices)

8 out = matrix_prod(actv, V) # [C, d]

9 to_cache(Q, K, V, top_dots, top_indices, activation)

10 return out

11

12 def backward(d_out):

13 # d_out: grad of loss w.r.t. out # [C, d]

14 Q, K, V, top_dots, top_indices, activation = from_cache()

15 d_top_actv = matrix_prod(d_out, transpose(V), out_indices=top_indices) # [C, k]

16 # did not cache top_actv so re-compute it to backpropagate

17 with compute_grads():

18 top_actv = activation(top_dots) # [C, k]

19 d_top_dots = top_actv.backpropagate(d_top_actv) # [C, k]

20 actv = matrix(top_actv, top_indices)

21 d_V = transpose(matrix_prod(transpose(d_out), actv))# [L_K, d]

22 del actv

23 d_dots = matrix(d_top_dots, top_indices)

24 d_Q = matrix_prod(d_dots, K) # [C, d]

25 d_K = transpose(matrix_prod(transpose(Q), d_dots)) # [L_K, d]

26 return d_Q, d_K, d_V

out incurring a significant increase in memory us-
age.

In the pseudo-code above, we show the forward
and backward pass for top-k attention over a query
chunk with input checkpointing. The steps of
the forward pass that we re-compute during the
backward pass is the application of activation on
the output of top-k(QK>) and forming its ma-
trix representation for subsequent operations (com-
pare Lines 6, 7 and Lines 18, 20). Therefore,
the number of FLOPs spent on re-computation in
our implementation of top-k attention is at most
O(LQ · (k + LK) ·N), typically much lower than
Ω(LQ ·LK ·d·N), as there is no need to re-compute
the dot-products.

Moreover, our benchmarking experiments (§3)
show that top-k attention leads to improved mem-
ory usage compared to query chunking. This is
because in vanilla attention (Eq. 1), while perform-
ing the re-computation in the backward pass of a
query chunk QC , we first re-compute QCK>, then
apply activation and backpropagate through this
operation to compute d(QCK

>). This implies that
at this point there are three C × LK matrices in
memory. In top-k attention, activation is applied
only on aC×k matrix and at any given time during
the backward pass shown below there is at most one

C ×LK matrix in memory: either actv (Line 20)
or d_dots (Line 23). As our experiments show,
this can lead to a much smaller memory footprint
for small values of k,N .

3 Benchmarking

In this section, we benchmark top-k attention in
terms of time and memory, and compare it to
vanilla attention, query-chunking without the top-k
operation, and to Performer (Choromanski et al.,
2021), as a representative of state-of-the-art linear
attention variants. We separately benchmark (a)
a single self-attention layer over long sequences,
(b) a single feed-forward layer with a large feed-
forward dimension, and (c) a 12-layer Transformer
decoder with same architecture as BERT-base (De-
vlin et al., 2019).

Experimental details For all models, we bench-
mark by running a forward and backward pass over
random inputs. Each measurement is an average
over 3 runs on an Nvidia A100 GPU and is dis-
carded if memory usage exceeds 30GiB. We use
causal masking for self-attention layers to highlight
the simplicity of our approach that can seamlessly
handle arbitrary attention masks, unlike other meth-
ods (Wang et al., 2020; Katharopoulos et al., 2020;
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Choromanski et al., 2021), where implementing
causal masking requires customized CUDA im-
plementations. For Performer, we use 256 ran-
dom features, and the CUDA implementation from
(Katharopoulos et al., 2020).

Multi-head attention layer We benchmark a
single multi-head attention layer over long se-
quences in a configuration similar to BERT-base:
dmodel is 768, 12 heads of size 64, and feed-forward
dimension 3072. Fig. 1 shows the results when set-
ting k to 128 and the query chunk size to 1024,
which was shown to provide a good time-memory
trade-off in §2.2.

We observe that top-k attention has the same
device-memory usage as the Performer (top) for
sequences as long as 65K tokens, while being as
fast as vanilla attention, and even faster than Per-
former on inputs of length up to 4K. With vanilla
attention, we cannot fit even a single multi-head
attention layer over a sequence of more than 10K
tokens, while top-k uses less than 10GiB of mem-
ory over sequences of length 65K. Lastly, we ob-
serve improvement in both time and memory when
comparing top-k attention to query chunking over
vanilla attention, where using top-k leads to a 3×
memory reduction for sequences of length 65K.

Feed-forward layer While considerable effort
has been dedicated to devising efficient models for
long contexts, a large feed-forward dimension is
useful for knowledge-intensive tasks such as open-
domain QA (Roberts et al., 2020; Brown et al.,
2020), and efforts have been made to reduce its
complexity (Fedus et al., 2021). We benchmark
the resource usage of top-k attention at a single
feed-forward layer for different feed-forward di-
mensions using batch size 512 and input length
512, which results in 218 queries per batch.

Top-k attention (Figure 3b), for k = 512
and query chunk size 214, dramatically improves
device-memory usage compared to vanilla atten-
tion: it allowed us to use a feed-forward dimension
65K with 11GiB, while vanilla attention uses the
same amount of memory with a feed-forward di-
mension 2K. Fitting a linear curve to the memory
usage of vanilla attention and top-k attention, we es-
timate that top-k attention can handle feed-forward
dimension 205K compared to 7K for vanilla atten-
tion on a 30GiB machine. Moreover, comparing
top-k attention to query chunking, we again ob-
serve a 3× improvement in memory usage when

the number of keys is 65K. Lastly, we observe only
a minor slowdown in top-k attention compared to
vanilla attention.

12-layer model We benchmark a 12-layer model
to examine the cumulative utility of not caching
QK> in all N layers compared to the Performer.
We use the same architecture as BERT-base with
batch size 1 and vary the input length. We use
a Transformer decoder with top-64 attention and
chunk size 1, 024 at the self-attention layers, and
simple query chunking with chunk size 4, 096 at
the feed-forward layers.

We easily fit a 32K-long input on a 30GiB
GPU, improving memory consumption by more
than 8× compared to vanilla Transformer and 2×
compared to Performer. Moreover, top-k atten-
tion outperforms query chunking in terms of both
memory and runtime. As top-k attention targets
memory consumption but not runtime, a current
limitation is that runtime, unlike Performer, is still
quadratic. Thus, running multi-layer models on
long sequences is reasonable in a fine-tuning or
zero-shot inference setup, but further work is re-
quired for training from scratch 12-layer models
over large datasets that contain long sequences.

Overall, our benchmarking results over multi-
head attention, feed-forward, and multi-layer Trans-
former establish top-k attention as a strong baseline
for future work on efficient Transformers that dra-
matically improves memory consumption. Next,
we evaluate top-k attention on downstream tasks
and show that top-k attention can be used as a
drop-in replacement for vanilla attention without
additional pre-training, which can allow resource-
constrained research groups experiment with Trans-
formers over long sequences or models with a large
feed-forward dimension.

4 Experimental Evaluation of Top-k
Attention

Having established top-k attention as a memory ef-
ficient alternative to vanilla attention, we now show
that, even for small values of k, top-k attention
provides a high-quality approximation of vanilla
attention, both at the multi-head attention and feed-
forward layers. We empirically show this in a wide
range of setups including (a) training from scratch
on tasks that require handling long-range depen-
dencies (§4.1) and on language modeling (§4.2),
(b) fine-tuning pre-trained language models (T5)
on multiple QA datasets (§4.5), and (c) perform-
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Figure 3: Memory and time required for a combined forward and backward pass (details in §3).

ing zero-shot inference using pre-trained language
models (UNIFIEDQA) without any training (§4.3).

4.1 Long Range Arena

Long Range Arena (Tay et al., 2021) is a recently
established benchmark for evaluating the ability
of Transformer variants to handle long sequences.
It comprises of multiple text classification tasks
with inputs containing thousands of tokens (Ta-
ble 1). In ListOps (Nangia and Bowman, 2018),
given a sequence of operations on single-digit in-
tegers, the model predicts a single-digit solution
modeled as 10-way classification. IMDb movie re-
views (Maas et al., 2011) is a character-level binary
sentiment classification task. Lastly, in the ACL
Anthology Network (AAN) (Radev et al., 2013)
task, a character-level model classifies if there is a
citation between a pair of papers.

For each task, we downloaded and directly used
the vanilla Transformer code offered by the authors
(Tay et al., 2021) and compared the performance
before and after replacing the multi-head attention
layers with top-128 attention, using identical hy-
perparameters for both cases (details in §A.1).2

Test accuracy measured at the training check-
point with the highest accuracy on the development
set is reported in Table 1 and the learning curves on
the development and test sets are shown in Fig. 5.
On IMDb and AAN, the performance of top-128
is comparable or better than vanilla attention. For
ListOps, there is a minor drop in performance (1.5
points), but learning curves (Figure 5a) exhibit sim-
ilar behaviour.

2 https://github.com/google-research/
long-range-arena

Thus, top-k attention, even for k as small as 3%
of the number of keys, results in a performance very
similar to that of vanilla attention. This shows that
an exact and sparse top-k solution is a high-quality
approximation for vanilla attention at multi-head
attention layers.

ListOps IMDb AAN mean
input length 2K 1K 4K

vanilla (reported in (Tay et al., 2021)) 36.4 64.3 57.5 52.7
vanilla (our run) 38.12 63.66 57.93 53.2

top-128 36.56 63.72 59.14 53.1

Table 1: Test accuracy for vanilla and top-128 attention on
Long Range Arena.

4.2 Language Modeling
We further ascertain the findings of §4.1 via lan-
guage modeling on WikiText-103 (Merity et al.,
2017) using a 6-layer Transformer decoder with
156M parameters. Using an input length of 1024,
we trained two models with vanilla and top-64 at-
tentions at the self-attention layers, obtaining test
perplexity scores of 30.96 and 30.51 respectively,
slightly better in case of top-64 (details in §A.3).

4.3 Zero-shot Inference with UNIFIEDQA
We have established that the performance of top-k
attention is comparable to vanilla attention when
training the model from scratch. In this set-up,
several recently-proposed approaches have also re-
ported competitive performances (Tay et al., 2021).
Now, we consider a different and more practical
setup, where the starting point is using an already
pre-trained language model (Devlin et al., 2019;
Raffel et al., 2020). As such models were trained
using vanilla attention, replacing it with a new at-
tention variant typically requires a corrective pre-
training stage to allow the model weights to adjust

https://github.com/google-research/long-range-arena
https://github.com/google-research/long-range-arena
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k AI2 elem. AI2 mid. ARC easy ARC chal. BoolQ CSQA MCTest NarQA OBQA RACE SQuAD v1 SQuAD 2.0
64 82.9 77.6 79.3 71.6 88.7 72.4 92.8 30.5 77.4 83.5 86.1 82.0
128 87.8 81.6 83.5 72.2 89.7 74.8 93.1 31.6 80.0 85.8 86.8 84.3
256 91.1 84.0 85.3 75.6 90.0 75.9 92.8 32.1 85.4 86.8 86.8 85.7
512 91.1 84.0 85.4 75.9 90.4 77.0 93.1 32.3 83.6 87.2 86.9 86.2

1024 91.9 83.2 86.3 76.3 90.7 77.2 93.1 32.3 85.0 87.3 87.0 86.3
2048 91.9 82.4 85.8 75.9 90.8 77.2 93.1 32.3 85.0 87.3 87.0 86.3
4096 91.9 82.4 86.0 75.6 90.8 77.6 93.1 32.3 85.2 87.4 87.0 86.3

65536 (vanilla) 91.9 82.4 86.0 75.6 90.7 77.5 93.1 32.3 85.2 87.4 87.0 86.3

Table 2: Exact match scores of UNIFIEDQA on development sets with top-k attention at feed-forward layers. Notation: AI2
science elementary (AI2 elem.), AI2 science middle (AI2 mid.), ARC challenging (ARC chal.), CommonsenseQA (CSQA),
NarrativeQA (NarQA), OpenbookQA (OBQA).

to the new variant, which can be expensive for large
models. For example, (Gupta and Berant, 2021;
Peng et al., 2021) have shown that using random
features without corrective pre-training leads to
high error rates in a language modeling task. More-
over, as explained in §2.1, most past methods are
incompatible with feed-forward layers. In the sub-
sequent experiments we show that it is possible to
replace vanilla with top-k attention, at multi-head
attention and feed-forward layers, and perform in-
ference and fine-tuning without any need for such
correction.

First, we compare the performance of UNI-
FIEDQA (Khashabi et al., 2020) before and after
replacing its feed-forward layers with our imple-
mentation of top-k attention and directly perform-
ing inference on 12 different question answering
(QA) datasets without any training. UNIFIEDQA
is a T5-based (Raffel et al., 2020) model with 11B
parameters (Raffel et al., 2020), fine-tuned on a
weighted mixture of QA datasets. The 12 datasets
include diverse domains, such as science questions,
factoid questions over Wikipedia, commonsense
questions, etc. Details regarding the datasets and
metrics can be found in §A.2.

Table 2 shows the results for increasing values of
k, where the feed-forward dimension of the model
is 65, 536. We observe that already when k = 256
and k = 512, i.e., less than 1% of the number of
keys, performance is comparable to vanilla Trans-
former. When k = 4, 096 (6% of the number of
keys), performance is equal or better than vanilla
Transformer on all tasks. This highlights the plug-
and-play property of top-k attention, which can be
used without any additional training.

4.4 Zero-shot Inference with BERT

To verify that the plug-and-play property of top-
k attention also holds at self-attention layers, we
downloaded a BERT-large-uncased-whole-word-
masking checkpoint (Devlin et al., 2019) already
fine-tuned on SQuAD v1 (Rajpurkar et al., 2016)

and evaluated its performance on the development
set before and after replacing its self-attention lay-
ers with top-k attention. For k as low as 16 (4%
of input length), we only saw a minor decrease
in the exact match scores (86.9 → 86.2). More-
over, to empirically verify that dense approxima-
tions of vanilla attention (Performer, RFA, etc) in-
deed require corrective pre-training, we repeated
the measurement using Performer attention with
256 features, obtaining a score of 0.38.

4.5 T5 Finetuning

Having established the plug-and-play property of
top-k attention in zero-shot inference (§4.3, §4.4),
we now show the effectiveness of top-k attention
when fine-tuning a model, and that there are no
unforeseen issues stemming from training under
high sprasity. Here, we use T5-base rather than
T5-11B and evaluate on five QA datasets (and not
12) due to computational constraints.

Similar to §4.3, we replace the feed-forward lay-
ers of T5-base, which has feed-forward dimen-
sion 3072, with our implementation of top-256 at-
tention and fine-tuned on multiple QA datasets.
As summarized in Table 3, we found that the
performance of top-256 attention was again com-
parable to vanilla attention on BoolQ, Common-
senseQA and ROPES with a minor loss in per-
formance on MCTest (81.2 → 79.4) and Open-
bookQA (58.8→ 58.0).

BoolQ CSQA MCTest OBQA ROPES
T5-base 0.5 35.7 36.6 17.0 21.7

UNIFIEDQA-base 82.0 45.0 85.3 59.6 26.3
T5-base + finetuning 83.3 61.9 81.2 58.8 54.0

T5-base, top-256 + finetuning 83.1 62.0 79.4 58.0 53.8

Table 3: Exact match scores on development sets. “Finetun-
ing” denotes model was finetuned on the dataset, else it was
evaluated directly without any training. All models use vanilla
feed-forward layers except the ones that say top-256 (§4.5).

To summarize, our experiments in §4.1-§4.5
demonstrated that the performance of vanilla at-
tention and top-k attention is comparable at both
multi-head attention (§4.1, §4.4) and feed-forward
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layers in multiple set-ups including training from
scratch (§4.1, §4.2), fine-tuning (§4.5) and zero-
shot inference (§4.3, §4.4), while dramatically im-
proving memory usage, as shown in §3.

5 Discussion

Related work Our work follows a long line of
works on efficient Transformers (see §1). Our
method employs three main ideas: (a) comput-
ing the top-k attention scores for each query (b)
grouping the queries into chunks and processing
these sequentially (c) caching only a part of the
activations for the backward pass. Top-k operation
was used at self-attention layers by (Zhao et al.,
2019) to show improved model performance, at-
tributed to the removal of irrelevant information
in the context. We use it to reduce the resource
usage of multi-head attention and feed-forward lay-
ers. Processing query chunks sequentially was also
used in Reformer (Kitaev et al., 2020) as activa-
tions are not cached. But in that case, by replac-
ing vanilla residual connections in the Transformer
with reversible connections (Gomez et al., 2017).
Similar to the explanation provided in §2.2, these
require an extra implicit forward pass during the
backward pass and do not provide the compute and
memory savings we get from our top-k specific
backward pass (§2.2). Secondly, replacing resid-
ual connections with reversible ones changes the
function computed by the model and would require
corrective pre-training to be used with BERT, T5,
etc (§4.3-§4.5).

Limitations and future work As our method re-
quires computing inner products of all queries and
keys, it has a quadratic compute requirement. As
seen in our pseudo-code (§2.2), there are four ma-
trix products (Lines 8, 15, 21, 25) involving a large
sparse matrix and a small dense one. The results
presented in the benchmarking section (§3) are
based on our implementation that does not lever-
age this sparsity and hence is as slow as vanilla
attention.

Leveraging sparsity of matrices We considered
the option of performing matrix products involv-
ing large sparse matrices (Lines 8, 15, 21, 25 in
our pseudo-code (§2.2)) by representing them in
PyTorch’s torch.sparse_coo_tensor for-
mat and using the torch.sparse framework to
explicitly leverage their sparsity for saving com-
pute. Unfortunately, the results were not encour-
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Figure 4: Memory and time required for a combined forward
and backward pass on a single feed-forward layer for random
inputs.

aging even for k = 1% of number of keys (Figure
4). While future devices might allow faster sparse-
dense products, in the immediate future, one can
leverage block-sparse kernels (Child et al., 2019;
Tillet et al., 2019) which have been successfully
used for such products (Rasley et al., 2020).

Conclusion In this work, we proposed a
memory-efficient and accurate sparse approxima-
tion of the primary sub-layers of a Transformer,
benchmarked the resulting resource savings, and
verified its quality and unique advantages, on a
wide range of downstream tasks and evaluation
set-ups.
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A Supplemental Material

A.1 Details of Long Range Arena
ListOps (Nangia and Bowman, 2018) aims to di-
agnose the capability of modelling hierarchically
structured data. Given a sequence of operations on
single-digit integers, the model predicts the solu-
tion, also a single-digit integer modeled as a 10-
way classification. Character-level text classifica-
tion with the IMDb movie review dataset (Maas
et al., 2011) is a binary sentiment classification
task. In the character-level document retrieval with
the ACL Anthology Network (AAN) (Radev et al.,
2013), the model classifies if there is a citation
between a pair of papers.

We used the code and pre-processed data pro-
vided by the authors of Long Range Arena (Tay
et al., 2021) and default model configurations. For
each task, we used identical hyperparameters for
vanilla and top-k attentions (Table 4) and used at
most two Nvidia A100 for each run.

Hyperparameter Notation BSZ: effective
batch size, SQL: input sequence length, LR: learn-
ing rate, WRM: linear LR warm-up steps, STEP:
number of gradient updates, EFQ: evaluated ev-
ery these many steps, NL: number of layers in en-
coder/decoder, HS: hidden size, FF: feed-forward
dimension, NH: number of heads, VOC: vocab-
ulary size, DRP: dropout rate, CLIP: maximum
gradient norm.

A.2 Details of UNIFIEDQA inference & T5
finetuning

We used Hugging Face’s Transformers library
(Wolf et al., 2019) for these experiments. Authors
of UNIFIEDQA collected and pre-processed several
QA datasets into a common format: “QUESTION
\n CHOICES \n CONTEXT”. We downloaded
this data by following the instructions provided by
the authors3 and used it for the UNIFIEDQA infer-
ence experiments (§4.3). Some statistics are shown
in Table 5. Longer inputs were truncated to 512
tokens.

Given an instance from the pre-processed data,
we computed the exact match score of a prediction
with respect to the list of provided answers via
the SQuAD v1 evaluation script (Rajpurkar et al.,
2016).

For the T5 experiments (§4.5), we used a
slightly different input format. Given an instance

3 https://github.com/allenai/unifiedqa

in the UNIFIEDQA format, we formed the
modified instance as “question: QUESTION
context: <yes> <no> <No Answer>
CHOICES \n CONTEXT”.

A.3 Language Modeling on WikiText-103
WikiText-103 is a language modeling task based
on English Wikipedia. We used the language mod-
eling framework provided by Faiseq4 and hyperpa-
rameters in Table 7. The details of Adam optimizer
are β1=0.9, β2=0.98, weight-decay: 0.01, CLIP:
none, LR schedule: inverse square root. During
evaluation on test set, dataset is chunked into seg-
ments of length 1024 and perplexity is computed
over each segment normally without access to other
segments.

A.4 Benchmarking details
Benchmarking (§3) was done in PyTorch 1.8.1.
For each run, we sampled a batch of random 32-bit
input vectors and a backward pass was performed
using the mean of the output elements as the loss.
The part of code that was timed was enclosed
within torch.cuda.synchronize()
to ensure all CUDA threads finished.
Memory usage was measured using
torch.cuda.max_memory_reserved().
On Nvidia A100, any internal casting to TF32 was
explicitly disabled.

4 https://github.com/pytorch/fairseq

https://github.com/allenai/unifiedqa
https://github.com/pytorch/fairseq
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Figure 5: Learning curves of vanilla and top-128 attention on Long Range Arena (§4.1).

task BSZ SQL LR WRM STEP EFQ NL HS FF NH
ListOps 16 2K 0.02 1K 20K 1K 6 512 2048 8
IMDb 32 1K 0.03 8K 40K 1K 4 256 1024 4
AAN 8 4K 0.05 8K 5K 500 4 128 512 4

Table 4: Hyperparameters for LRA tasks (§4.1). Other hyperparameters were used as provided at https://github.com/
google-research/long-range-arena.

training samples eval samples T5 tokens per sample
(90th percentile)

CSQA (Talmor et al., 2019) 9741 1221 54
OBQA (Mihaylov et al., 2018) 4957 500 60

ARC easy (Clark et al., 2018) 2251 570 90
AI2 elem. (Clark, 2015) 623 123 96
ARC chal. (Clark et al., 2018) 1119 299 101

BoolQ (Clark et al., 2019) 9427 3270 253
SQuAD 2.0 (Rajpurkar et al., 2018) 130124 11873 294
SQuAD v1 (Rajpurkar et al., 2016) 87489 10570 295

ROPES (Lin et al., 2019) 10924 1688 345
MCTest (Richardson et al., 2013) 1480 320 435
RACE (Lai et al., 2017) 87860 4887 568
NarQA (Kočiský et al., 2018) 65494 6922 1278

Table 5: Statistics of the pre-processed datasets used in §4.3 and §4.5.

dataset BSZ LR STEP SQL CLIP
CSQA 576 5e-5 3K 512 1
OBQA 512 5e-5 3K 512 1
BoolQ 80 5e-5 3K 512 1

MCTest 80 5e-5 3K 512 1
ROPES 80 5e-5 3K 512 1

Table 6: Hyperparameters for T5-base finetuning (§4.5). Trainings were performed on a single Nvidia V100 using Adam
optimizer with a constant LR and evaluation was done only at end of training.

BSZ SQL LR WRM STEP NL HS FF NH VOC DRP
64 1024 5e-4 4K 50K 6 512 2048 8 267744 0.1

Table 7: Hyperparameters for WikiText-103 task (§4.2).

https://github.com/google-research/long-range-arena
https://github.com/google-research/long-range-arena

