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Abstract

Pretrained transformer-based encoders such
as BERT have been demonstrated to achieve
state-of-the-art performance on numerous
NLP tasks. Despite their success, BERT style
encoders are large in size and have high la-
tency during inference (especially on CPU
machines) which make them unappealing for
many online applications. Recently introduced
compression and distillation methods have pro-
vided effective ways to alleviate this shortcom-
ing. However, the focus of these works has
been mainly on monolingual encoders. Moti-
vated by recent successes in zero-shot cross-
lingual transfer learning using multilingual
pretrained encoders such as mBERT, we eval-
uate the effectiveness of Knowledge Distilla-
tion (KD) both during pretraining stage and
during fine-tuning stage on multilingual BERT
models. We demonstrate that in contradic-
tion to the previous observation in the case
of monolingual distillation, in multilingual set-
tings, distillation during pretraining is more ef-
fective than distillation during fine-tuning for
zero-shot transfer learning. Moreover, we ob-
serve that distillation during fine-tuning may
hurt zero-shot cross-lingual performance. Fi-
nally, we demonstrate that distilling a larger
model (BERT Large) results in the strongest
distilled model that performs best both on the
source language as well as target languages in
zero-shot settings.

1 Introduction

Since the introduction of pretrained word embed-
dings (Mikolov et al., 2013b; Pennington et al.,
2014), unsupervised representation learning has
become an essential part of Natural Language
Processing (NLP). The idea of exploiting unla-
beled corpuses to improve performance on down-
stream NLP tasks has been excelled in recent
years by the introduction of contextualized rep-
resentation learning techniques (Peters et al., 2018)
using the Language Modeling (LM) objective.

Follow-up works utilized transformer-based archi-
tecture (Vaswani et al., 2017) and subword tok-
enization techniques (Sennrich et al., 2016) to fur-
ther improve these contextualized representations
and achieve state-of-the-art performance on various
NLP tasks when fine-tuned on labeled data (Rad-
ford et al., 2018; Devlin et al., 2019).

Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019) has also
been successfully pretrained on corpuses from 100+
languages to learn a shared representation among
different languages (a.k.a mBERT). mBERT has
been demonstrated to be capable of performing
cross-lingual zero-shot transfer learning given the
labeled data in a single language (e.g., English)
without ever seeing a parallel corpus during pre-
training (Pires et al., 2019). Moreover, it has been
demonstrated that by increasing the size of the en-
coder and the pretaining corpus, such a multilingual
encoder can achieve state-of-the-art cross-lingual
zero-shot performance across many tasks (Conneau
et al., 2020; Mukherjee and Awadallah, 2020).

Despite their success in many NLP task, BERT
encoders are not very attractive for practical appli-
cations due to their huge size (often a few Gbs)
and their latency (especially on CPU machines).
Hence, there has been a great effort in recent years
to compress these encoders without a big drop in
performance using knowledge distillation (Hinton
et al., 2015), network pruning (Li et al., 2020b), and
quantization (Zafrir et al., 2019). However, there
has been little work on compressing multilingual
BERT encoders and evaluating their effectiveness
in maintaining their cross-lingual learning capabili-
ties after compression, which is the main focus of
our work.

In this work, we focus on Knowledge Distillation
(KD) which is an effective approach for reducing
both size and latency of a BERT style encoder. In
particular, we first pretrain a multilingual BERT
base and a multilingual BERT large encoders on
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Wikipedia data of 8 languages (namely mBERT8
and mBERT8Large) and follow (Jiao et al., 2019) to
distill them into 4-layer encoders, namely mLean-
BERT and mXLeanBERT, respectively (see Ta-
ble 1). We then compare the zero-shot cross-lingual
performance of the student to teacher models on 5
datasets including XNLI, PAWS-X, Wikiann, Mul-
tiATIS++, and mTOP (see Table 3) when the mod-
els are fine-tuned only on English training data. We
show that mLeanBERT performance degrades by
2-9% on English test sets but by 6-25% on non-
English ones (zero-shot) compared to mBERT8.
However, mLeanBERT is 0.25-10% better than a
similar sized model pretrained with no KD (Vanilla
mLeanBERT) on zero-shot performance. More-
over, our results demonstrate that mXLeanBERT
(distilled from mBERT8Large) performs better than
Vanilla mLeanBERT by up to 18% in zero-shot.

Finally, we study the effectiveness of distilla-
tion during fine-tuning and demonstrate that in con-
trast to previous observations in monolingual set-
tings (Jiao et al., 2019), it can hurt zero-shot cross-
lingual performance. In particular, extra distilla-
tion during fine-tuning degrades zero-shot cross-
lingual performance of mLeanBERT by up to 2.5%
despite improving or not changing its performance
on English test set.

The main contributions of this work are:

• Evaluating state-of-the-art knowledge distilla-
tion method on pretrained multilingual BERT
Base and Large models and demonstrating its
effectiveness (when done during pretraining)
in multilingual settings.

• Demonstrating that in contradiction to mono-
lingual settings, knowledge distillation dur-
ing fine-tuning mostly hurts zero-shot cross-
lingual transfer. This argument holds even
if knowledge distillation during fine-tuning is
the only distillation step (not as a second stage
distillation step).

• Pretraining a multilingual BERT large model
and utilizing it as the teacher during knowl-
edge distillation to demonstrate that a larger
model as teacher results in a stronger distilled
model performing better for zero-shot cross-
lingual transfer.

2 Related Work

2.1 Cross-lingual Transfer Learning
Transferring a task specific knowledge between
different languages has always been an intriguing
subject in NLP. Such a transfer is demonstrated
to be possible by aligning word embeddings us-
ing a limited dictionary of words (Mikolov et al.,
2013a; Schuster et al., 2019) or even without a dic-
tionary (Lample et al., 2018). Aligning sentence
representations is also demonstrated to be effective
for cross-lingual transfer for sentence level tasks
such as Natural Langual Inference (NLI) (Conneau
et al., 2018).

Despite the success of alignment methods, shar-
ing an encoder for multiple languages is demon-
strated to be a more effective way of cross-lingual
transfer learning. In particular, (Artetxe and
Schwenk, 2019) showed that by sharing an en-
coder to learn sentence representations for mul-
tiple languages for Machine Translation (MT) can
outperform previous methods for sentence level
tasks. However, BERT-style pretraining tasks (De-
vlin et al., 2019) on mixed corpus from different
languages is shown to be as effective as MT task in
cross-lingual transfer without access to any parallel
data (Siddhant et al., 2020). Moreover, recent work
by (Conneau et al., 2020) demonstrated that by us-
ing larger encoders and larger pretraining corpus,
BERT-style pretrained encoders (i.e., XLM-R) can
outperform all previous methods on various NLP
tasks.

Another recently proposed approach for cross-
lingual transfer mixes the word alignment approach
with encoder sharing to expand a monolingual
BERT model to a new language and allow transfer
learning (Artetxe et al., 2020; Tran, 2020). The
approach is shown to be as effective as joint pre-
training on mixed corpus and mixed vocabulary.

Finally, when available, (Lauscher et al., 2020)
demonstrated that using a few target language
training examples can significantly improve cross-
lingual performance of pretrained multilingual
models.

2.2 Model Compression and Distillation
Knowledge distillation is widely used to trans-
fer knowledge from large (teacher) models into
small (student) models (Ba and Caruana, 2014;
Hinton et al., 2015). This type of compression has
a number of benefits, including reducing model
size/latency, semi-supervised learning, and con-
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Model KD? #lgs tokenization L Hm Hff A V #params*
mBERT8Large no 8 BPE 24 1024 4096 16 120k 302M
mBERT8 no 8 BPE 12 768 3072 12 120k 85M
mBERT no 104 WordPiece 12 768 3072 12 110k 85M
mXLeanBERT yes 8 BPE 4 768 1200 12 120k 17M
mLeanBERT yes 8 BPE 4 768 1200 12 120k 17M
Vanilla mLeanBERT no 8 BPE 4 768 1200 12 120k 17M

Table 1: List of models. L,Hm, Hff , A and V denote the number of layers, transformer hidden dimension, feed-
forward layers’ hidden dimension, number of attention heads, and the vocabulary size, respectively. mLeanBERT
and mXLeanBERT are distilled (1st stage distillation) from mBERT8 and mBERT8Large, respectively. Vanilla
mLeanBERT, however, is pretrained normally with no teachers. The same multilingual data is used to pretrain and
distill all the models. *Number of parameters excluding the embeddings.

tinual learning. Previous work has demonstrated
successful compression of teachers into students of
the same type (Kim and Rush, 2016; Sanh et al.,
2019) as well as into students with different model
types and architectures (Tang et al., 2019). De-
pending on the approach, the limits of compres-
sion, and the ideal initialization procedure differ
substantially (Sanh et al., 2019; Yang et al., 2019b;
Turc et al., 2019). The resulting student models
are shown to preserve many of the attractive quali-
ties of the teacher model and perform better than
training the same models without knowledge dis-
tillation. Some distillation approaches jointly train
the teacher and student, such as in (Jin et al., 2019),
however we consider the common case of a “fixed”
teacher at distillation time in this work.

The most common approach to distillation is out-
put matching between the teacher and the student,
where the student is trained to minimize two losses
during training; the standard cross-entropy loss and
the cross-entropy loss between the teacher output
and the student output (Hinton et al., 2015). There
exists variations of this approach, such as adding
loss functions leveraging cues from internal rep-
resentations of the teacher (Jiao et al., 2019; Sun
et al., 2019; Aguilar et al., 2020; Romero et al.,
2014).

In the context of pretrained models, distillation
can be executed directly after teacher pretraining as
in (Sanh et al., 2019), after teacher fine-tuning, or
both (Jiao et al., 2019). In an ablation study, (Jiao
et al., 2019) found that distillation after teacher
finetuning (2nd stage) is more important than dis-
tillation after teacher pretraining (1st stage). How-
ever, the relative importance of the two stages of
distillation remains an open question for distilling
multilingual models.

Distillation of multilingual models for NER is

explored in (Mukherjee and Awadallah, 2020) in
the setting of 2nd stage distillation, i.e. distillation
after finetuning, while 1st stage distillation is not
considered. In addition, (Mukherjee and Awadal-
lah, 2020) did not investigate the zero-shot perfor-
mance of the distilled models. In a similar vein,
(Tan et al., 2019; Wang et al., 2020b; Reimers and
Gurevych, 2020) distill language-specific models
into a combined multilingual machine translation
model. In a recent parallel work to ours, (Wang
et al., 2020a) introduced a new distillation method
and demonstrated its effectiveness in multilingual
settings. However, they focused on distillation dur-
ing pretraining and evaluate their model only on
XNLI from XTREME benchmarks. Since they
used common crawl data for pretraining and a dif-
ferent architecture, their models are not directly
comparable to ours.

3 Method

3.1 Pretraining

We pretrain two multilingual BERT models,
namely mBERT8Base and mBERT8Large, on 8
languages including English, French, German,
Japanese, Hindi, Italian, Spanish and Portuguese.
For pretraining, we use Wikipedia data of the cor-
responding languages. For English, we also add
Google Billion Words Corpus (Chelba et al., 2014)
to the mix. All data are tokenized using a tokenizer
that transforms written format to spoken format
(e.g., removes casing and punctuation).

We mix and upsample the data following (Con-
neau and Lample, 2019). In particular, we sample
500M sentences according to a multinomial distri-
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Model perplexity #epochs
mBERT8Large 5.89 2
mBERT8 6.78 4
mXLeanBERT 9.76 4
mLeanBERT 10.18 4
Vanilla mLeanBERT 9.94 4

Table 2: Models’ perplexity on the validation set (com-
prised of all languages) after pretraining. Epochs de-
notes the total number of epochs used for pretraining
each model.

bution with probabilities (q1, q2, . . . , qN ), where:

qi =
pαi∑N
j=1 p

α
j

, pi =
ni∑N
j=1 nj

(1)

in which N is the total number of languages and ni
is the total number of sentences in language i (we
set α = 0.5). Byte Per Encoding (BPE) codes (Sen-
nrich et al., 2016) of size 120k are then learnt from
the mixed training set for subword tokenization.
For pretraining task, we only use Masked Language
Modeling (MLM) (Devlin et al., 2019) without
any sentence-level tasks, similar to RoBERTa (Liu
et al., Jul. 2019). However, we limit the length of
sentences to 256 characters to speedup the pretrain-
ing. We pretrain mBERT8Base and mBERT8Large
for 4 and 2 epochs, respectively. The perplexities
(MLM perpelxity) on the validation set after the
pretrainings are provided in Table 2.

3.2 Knowledge Distillation (KD)

We distill the pretrained mBERT8 and
mBERT8Large models into the LeanBERT ar-
chitecture, namely a 4 layer, 768 unit, 1200 hidden
unit, and 12 attention head transformer. We
differentiate between distillation during pretraining
of the student model (1st stage), where the learning
task is the unsupervised MLM task using dataset
described in Section 3.1, and distillation during
fine-tuning (2nd stage distillation), where the
task is sentence/token level classification or
sequence-to-sequence generation.

For 1st stage and 2nd stage distillation, we train
the student model with a combination of distillation
losses in addition to the standard cross-entropy loss.
We follow the distillation losses proposed in (Jiao
et al., 2019) that comprise of output/logit based
loss functions and intermediate representation loss
functions. At the output level, we penalize the
student model by the cross-entropy between the

student output predictions and the teacher output
predictions. Given the student output predictions
zs and the teacher output predictions zt, the output
layer distillation loss is:

Loutput = −zt · log zs. (2)

For intermediate representations, the student
model is trained to minimize the L2 distance to
the teacher’s corresponding intermediate represen-
tation. When the number of layers or units in the
teacher and student model do not match, this re-
quires establishing a mapping g(m) between the
teacher/student layers and a projection f(x) to
match number of units. Given the m-th teacher in-
termediate representation xt,m and the correspond-
ing student intermediate representation xs,g(m), the
intermediate layer distillation loss is:

Linter = ||xt,m − f(xs,g(m))||2 (3)

Note that this loss function is applied to three
types of intermediate representations: embeddings,
transformer outputs, and self-attention scores. In
our experiments, we adopt the same mapping g(m)
as (Jiao et al., 2019), namely that the student model
learns from every three layers of the teacher model.

The combinations of these loss functions can be
applied to distill the pretrained teacher for 1st stage
distillation and to distill the pretrained+fine-tuned
teacher for 2nd stage distillation (we refer to this
as ft-distill).

We refer to the models distilled from mBERT8
and mBERT8Large during pretraining (1st stage dis-
tillation) as mLeanBERT and mXLeanBERT, re-
spectively (see Table 1). We used all the data as
described in Section 3.1 during distillation. For
comparison purposes, we also pretrained a Vanilla
mLeanBERT model with no distillation by follow-
ing the steps described in the previous subsection.
The perplexity of these models after pretraining
can be seen in Table 2.

It can be seen that mXLeanBERT which has
been distilled from the mBERT8Large results in the
lowest perplexity between the 3 models. However,
the Vanilla mLeanBERT results in a lower perplex-
ity compared to mLeanBERT which is distilled
from mBERT8 model. As we demonstrate in the
next section, this lower perplexity is not a good
predictor for better cross-lingual capability of the
Vanilla mLeanBERT model.
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Corpus Task |Train| |Dev| |Test| Metric
XNLI Classification 392,702 2,490 5,010 Acc.
PAWS-X Classification 49,401 2,000 2,000 Acc.
Wikiann NER 19,999 9,999 999-9,999 F1
MultiATIS++ IC/NER 4,488 490 ∼900 Exact Match
mTOP Semantic Parsing 15,667 1,527 ∼3,000 Exact Match

Table 3: Characteristics of the datasets.

Model XNLI PAWS-X Wikiann MultiATIS++ mTOP
mBERT8Large 82.49 92.73 84.21 87.53 82.24
mBERT8 81.67 91.68 83.46 87.98 82.09
mBERT 81.36 93.4 84.85 88.12 81.8
Vanilla mLeanBERT 77.47 85.22 80.47 87.34 80.26

KD during pretraining (1st stage)

mLeanBERT 77.23 84.21 79.92 86.59 79.85
mXLeanBERT 78.91 88.58 80.76 87.42 81.24

KD during fine-tuning (2nd stage)

mLeanBERT (ft-distill) 77.13 87.93 80.28 86.17 79.77
Vanilla mLeanBERT (ft-distill) 77.68 85.73 80.63 86.75 80.44

Table 4: Results on English test set (averaged over 4 seed runs). All models are fine-tuned only on English training
data. Bold numbers denote the best score across all LeanBERT sized models.

4 Experimental Results

4.1 Data

We evaluate our models on multiple tasks (summa-
rized in Table 3). We limited our experimentation
to these datasets due to the sheer number of re-
quired experimentation (9 models, 5 task, and 4
seeds).

XNLI is a Cross-Lingual Natural Language Infer-
ence task that asks whether a premise sentence
entails, contradicts, or is neutral toward a hypothe-
sis (Conneau et al., 2018).

PAWS-X requires the model to determine whether
two sentences are paraphrase of each other (Zhang
et al., 2019; Yang et al., 2019a). We obtained the
data using XTREME repository code (Hu et al.,
2020). However, we downloaded the test sets di-
rectly.1

Wikiann is a Name Entity Recognition dataset
(NER). The data is extracted from Wikipedia in
which name entities are tagged as LOC, PER,
and ORG (Pan et al., 2017). As in PAWS-X, we

1XTREME code does not download test set on purpose to
keep them private for its leaderboard. Although, the test sets
are available directly from their original source (Zhang et al.,
2019; Yang et al., 2019a).

obtained the data through XTREME repository but
downloaded test sets directly (Pan et al., 2017).

MultiATIS++ is a Natural Language Understand-
ing (NLU) dataset that requires the model to de-
tect the intent of an utterance as well as the related
slots. It is an extension to MultiATIS dataset (Upad-
hyay et al., 2018) to Spanish, German, Chinese,
Japanese, Portuguese, and French languages in ad-
dition to English, Hindi, and Turkish (Xu et al.,
2020).2

mTOP is a multilingual Task Oriented Parsing
dataset that covers English, German, French, Span-
ish, Hindi, and Thai languages (Li et al., 2020a).

4.2 Models

We consider models in Table 1 as introduced in
Section 3 and fine-tune them only on the English
training data for the tasks described in Section 4.1.
Besides these models, we also consider distillation
during fine-tuning for mLeanBERT and Vanilla
mLeanBERT. In all distillations during fine-tuning,

2We noticed that in the test sets of MultiATIS++ there are
a few utterances for which number of tags do not match the
number of tokens. We removed those instances from the test
sets.
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Model XNLI PAWS-X Wikiann MultiATIS++ mTOP
mBERT8Large 72.61 85.69 77.88 46.25 37.41
mBERT8 70.31 83.47 76.73 45.42 34.60
mBERT 67.54 85.18 77.33 35.24 25.80
Vanilla mLeanBERT 64.53 74.06 71.30 34.06 23.74

KD during pretraining (1st stage)

mLeanBERT 66.09 75.07 71.48 37.58 25.96
mXLeanBERT 67.69 80.26 71.17 37.05 28.01

KD during fine-tuning (2nd stage)

mLeanBERT (ft-distill) 65.52 77.98 71.62 36.79 25.33
Vanilla mLeanBERT (ft-distill) 64.97 74.76 71.57 34.01 24.15

Table 5: Average zero-shot results across selected languages (averaged over 4 seed runs). All models are fine-tuned
only on English training data. Bold numbers denote the best score across all LeanBERT sized models.

we use mBERT8 as the teacher. For these exper-
iments, the teacher is fine-tuned on the English
training data for the task and the same data is used
for distillation.

4.3 Experimentations Setup

For all of the tasks except mTOP, we followed the
original BERT paper (Devlin et al., 2019) and fine-
tuned the encoder on the downstream task with
additional output blocks. We also kept the embed-
ding layers frozen to prevent the change only in
subset of subwords that appear in the training data.

For mTOP, we followed (Rongali et al., 2020)
and fine-tuned a seq2seq model with pointers which
has been shown to achieve state-of-the-art results
on TOP dataset (Gupta et al., 2018). In all exper-
iments, we used the pretrained encoders but ran-
domly initialized a 3-layer decoder with the same
hidden dimension and number of heads as the en-
coder. The feedforward layers in the decoder have
the dimension of 512. As in all of the other ex-
periments, we kept the encoder embedding layers
frozen during fine-tuning.

4.4 Key Findings

The results on the English test sets and the average
zero-shot performance across different languages
can be seen in Tables 4 and 5, respectively. Per lan-
guage performance of different models on XNLI,
PAWS-X, Wikiann, MutiATIS++, and mTOP can
be seen in Tables 6, 7, 8, 9,10, respectively.

The following subsections describe the key find-
ings from these results.

4.4.1 Stage 1 Distillation is Effective for
Multilingual Models

It has been previously demonstrated by (Jiao et al.,
2019) that stage 1 distillation is effective in im-
proving performance in monolingual settings. We
confirm this finding in our experiments by compar-
ing mBERT8, mLeanBERT, and Vanilla mLean-
BERT performances on English test sets in Ta-
ble 4. Our new finding, however, is that as can be
seen in Table 5, mLeanBERT outperforms Vanilla
mLeanBERT in all the tasks in zero-shot setting as
well. In particular mLeanBERT outperforms
Vanilla mLeanBERT on all the tasks in zero-
shot setting (by more that 9% on MultiATIS++
and mTOP).

Moreover, by comparing mBERT8 and mLean-
BERT performances, we can see that despite be-
ing 5 times smaller, mLeanBERT performance de-
grades only by 5.74%, 8.87%, 4.43%, 1.6%, and
2.8% on English test set and by 6.00%, 10.06%,
6.84%, 17.26%, and 24.97% in zero-shot perfor-
mance on XNLI, PAWS-X, Wikiann, MultiATIS++,
and mTOP tasks, respectively. We observe that per-
formance degradation in zero-shot performance is
greater than on English which emphasizes the chal-
lenges in multilingual distillation.

4.4.2 Stage 2 Distillation Can Hurt Zero-shot
Cross-lingual Performance

Another important observation from our experi-
mental results is that in contrast to previous ob-
servations by (Jiao et al., 2019) in the monolin-
gual case, 2nd stage distillation may hurt zero-
shot cross-lingual performance. In particular, al-
though as can be seen in Tables 4 and 5 ft-distill im-
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Model en fr de es hi
mBERT8Large 82.49 75.71 73.48 76.19 65.07
mBERT8 81.67 73.32 70.70 74.94 62.28
mBERT 81.36 70.32 67.94 73.07 58.82
Vanilla mLeanBERT 77.47 67.80 65.01 68.91 56.4

KD during pretraining (1st stage)

mLeanBERT 77.23 68.79 66.41 70.25 58.91
mXLeanBERT 78.90 70.37 67.85 71.51 61.04

KD during fine-tuning (2nd stage)

mLeanBERT (ft-distill) 77.13 68.85 66.15 69.37 57.71
Vanilla mLeanBERT (ft-distill) 77.68 68.15 65.60 68.92 57.23

Table 6: XNLI results (accuracy) per language (averaged over 4 seed runs). All models are fine-tuned only on
English training data. Bold numbers denote the best score across all LeanBERT sized models.

Model en fr de es ja*
mBERT8Large 92.95 86.15 85.65 85.85 66.8
mBERT8 91.55 84.8 83.65 85.05 62.1
mBERT 93.4 85.35 84.35 85.85 71.8
Vanilla mLeanBERT 82.9 74.43 73.21 74.55 59.18

KD during pretraining (1st stage)

mLeanBERT 84.21 75.53 73.9 75.77 60.77
mXLeanBERT 88.58 80.52 78.67 81.6 63

KD during fine-tuning (2nd stage)

mLeanBERT (ft-distill) 87.93 78.55 76.66 78.75 61.22
Vanilla mLeanBERT (ft-distill) 85.73 75.22 73.78 75.28 61.02

Table 7: PAWS-X results (accuracy) per language (averaged over 4 seed runs). All models are fine-tuned only on
English training data. Bold numbers denote the best score across all LeanBERT sized models.*Results on Japanese
test set are not included in the average zero-shot performance presented in Table 5. The main reason for that is
that the tokenizer we used for Japanese is incompatible with PAWS-X data describing the degradation in accuracy
compared to the public mBERT.

Model en fr de es pt it hi
mBERT8Large 84.21 79.65 79.06 75.20 80.01 79.82 73.56
mBERT8 83.47 78.06 78.48 76.90 79.37 78.79 68.77
mBERT 84.85 80 78.18 74.17 81.42 80.89 61.81
Vanilla mLeanBERT 80.47 73.46 73.47 73.81 73.82 74.38 58.9

KD during pretraining (1st stage)

mLeanBERT 79.92 73.33 72.13 70.58 75.02 72.98 64.89
mXLeanBERT 80.76 72.24 73.00 69.23 74.54 74.17 63.87

KD during fine-tuning (2nd stage)

mLeanBERT (ft-distill) 80.28 73.34 72.15 70.64 75.00 72.93 65.67
Vanilla mLeanBERT (ft-distill) 80.63 73.25 73.90 73.98 74.29 74.81 59.2

Table 8: Wikiann results (F1 scores) per language (averaged over 4 seed runs). All models are fine-tuned only on
English training data. Bold numbers denote the best score across all LeanBERT sized models.
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Model en fr de es pt hi
mBERT8Large 87.54 62.04 61.97 53.29 45.59 8.42
mBERT8 87.99 59.98 59.77 51.32 41.84 14.18
mBERT 88.12 44.37 35.87 43.78 35.76 16.46
Vanilla mLeanBERT 87.35 45.23 45.10 41.79 37.5 3.39

KD during pretraining (1st stage)

mLeanBERT 86.59 48.13 53 39.73 41.36 5.71
mXLeanBERT 87.43 52.81 41.14 43.53 41.20 6.58

KD during fine-tuning (2nd stage)

mLeanBERT (ft-distill) 86.17 47.09 51.97 38.75 40.5 5.62
Vanilla mLeanBERT (ft-distill) 86.76 44.16 44.70 40.56 37.70 2.97

Table 9: MultiATIS++ results (Exact Match) per language (averaged over 4 seed runs). All models are fine-tuned
only on English training data. Bold numbers denote the best score across all LeanBERT sized models.

Model en fr de es hi
mBERT8Large 82.25 47.34 40.80 43.12 18.42
mBERT8 82.10 46.98 36.07 39.72 15.65
mBERT 81.8 34.85 28.43 34.75 5.2
Vanilla mLeanBERT 80.26 33.34 24.32 31.98 5.36

KD during pretraining (1st stage)

mLeanBERT 79.85 34.95 26.59 33.48 8.86
mXLeanBERT 81.24 37.85 30.43 33.15 10.61

KD during fine-tuning (2nd stage))

mLeanBERT (ft-distill) 79.77 33.71 26.99 32.4 8.25
Vanilla mLeanBERT (ft-distill) 80.45 33.50 24.79 33.09 5.24

Table 10: mTOP results (Exact Match) per language (averaged over 4 seed runs). All models are fine-tuned only
on English training data. Bold numbers denote the best score across all LeanBERT sized models.

proves Vanilla LeanBERT performance (except on
MultiATIS++), ft-distill degrades zero-shot per-
formance of mLeanBERT by 0.86%, 2.1%, and
2.43% on XNLI, MultiATIS++, and mTOP, re-
spectively (see Table 5).

These mixed results demonstrate that 2nd stage
fine-tuning cannot be reliably used to improve
cross-lingual performance of multilingual models.
We hypothesize that 2nd stage fine-tuning makes
multilingual models to overfit to the source lan-
guage resulting in degradation in cross-lingual per-
formance (i.e., catastrophic forgetting).

4.4.3 Distilling a Larger Model Results in a
Stronger Distilled Model

Finally, as has been previously observed by (Li
et al., 2020b) in the network pruning context, com-
pressing larger models to the same size results in
stronger compressed models. Our results demon-

strate the same performance gain both on the En-
glish test set and in the zero-shot setting when dis-
tilling from BERT8Large.

As can be seen in Table 4, mXLeanBERT
performs better than mLeanBERT on all the
tasks on English test sets (outperforming it by
5.2% on PAWS-X). For zero-shot cross-lingual
performance, we also observe the same trend
in Table 5. This time mXLeanBERT out-
performs mLeanBERT by 6.46% on zero-shot
cross-lingual performance on PAWS-X and by
7.31% on mTOP. On Wikiann and MultiATIS++
the two models provide a very similar performance
(which can be due to instability of exact match
metric for NER).

Based on the three observations, we observe that
when it comes to distilling multilingual models,
pretraining a larger model and then distilling it
results in the best distilled multilingual model.
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5 Conclusion

In this work, we applied state-of-the-art knowl-
edge distillation methods on multilingual BERT
encoders and demonstrated that distillation during
pretraining is as effective in multilingual setting.
However, in contradiction to previous observations
in monolingual settings, we demonstrated that dis-
tillation during fine-tuning may degrade zero-shot
cross-lingual performance. When it comes to mul-
tilingual distillation, we showed that pretraining a
larger model and then distilling it results in the best
performing distilled model.
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