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Message from the General Chair and the Program Chairs

Welcome to *SEM 2021, the Joint Conference on Lexical and Computational Semantics! The conference
celebrates a small jubilee, with its 10th edition, and we are pleased to present this volume containing the
accepted long and short papers.

*SEM 2021 was held as a virtual conference following ACL-IJCNLP 2021, on August 5-6, 2021, due to
the exceptional circumstances imposed by the COVID-19 pandemic.

Since its first edition in 2012, *SEM has become a major venue to present recent advances in all
areas of lexical and computational semantics, including semantic representations, semantic processing,
multilingual semantics, and others. *SEM is sponsored by SIGLEX, the ACL Special Interest Group on
the Lexicon.

*SEM 2021 received 78 submissions in 10 areas:

• Theoretical and formal semantics

• Sentiment analysis and argument mining

• Semantics in NLP applications

• Semantic composition and sentence-level semantics

• Resources and evaluation

• Psycholinguistics, cognitive linguistics and semantic processing

• Multilinguality

• Lexical semantics and word representations

• Commonsense reasoning and natural language understanding

We compiled an exciting program across all these areas. This year saw a particularly strong batch of
submissions; finally, 30 papers were accepted – 21 long papers and 9 short papers.

The submitted papers were carefully evaluated by a program committee led by 20 area chairs, who
coordinated a panel of 174 reviewers. Each submission was reviewed by three reviewers, who were
encouraged to discuss any divergence in evaluations. The papers in each area were subsequently assessed
by the area chairs, who added meta-reviews to explain their accept/reject suggestions. The final selection
was made by the program co-chairs after an independent check of all the reviews, meta-reviews, and
discussions with the area chairs. The reviewers’ recommendations were also used to shortlist a set of
papers nominated for the Best Paper Award.

We are also very excited to have two excellent keynote speakers: Diyi Yang (Georgia Institute of
Technology) discussing the inclusion of social factors into natural language processing models, and
Felix Hill (DeepMind) talking about learning embodied language.

We are deeply thankful to all area chairs and reviewers for their invaluable help in the selection of
the program, for their readiness in engaging in thoughtful discussions about individual papers, and for
providing valuable feedback to the authors. We are grateful to our Publicity chair, Yashar Mehdad
(Facebook AI), who set up and regularly updated *SEM’s website and publicized it through social media.
We thank the Publication Chair, Mark-Christoph Müller (HITS), for his help with the compilation of the
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proceedings, and the ACL-IJCNLP 2021 workshop organizers for all the valuable help and support with
organisational aspects of the conference. Finally, we thank all our authors and presenters for making
*SEM 2021 such an exciting event. We hope you will find the content of these proceedings as well as
the program of *SEM 2021 enjoyable, interesting and inspirational!

Vivi Nastase and Ivan Vulić, Program Co-Chairs

Lun-Wei Ku, General Chair
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Invited Talk: Why Do Embodied Language Learning?
Felix Hill

Deep Mind

Abstract: In this talk, I’ll give some good reasons to study language learning and processing in the
context of an embodied or situated agent. Learning in an embodied context is fundamentally different
from other ML settings. Working out how to perceive and move in addition to understanding and using
language can be a substantial additional burden for the learner. However, I will show that it can also bring
important benefits. The embodied learner sees the world from an egocentric perspective, is necessarily
located at a specific place at a given time, exerts some control over the learning data it encounters, and
confronts face-on the relationship between language and the physical world. These factors place strong
constraints on the learner’s experience, which can in turn lead to more human-like learning outcomes. Our
findings suggest that embodied learning may play an important role in convincingly replicating human
linguistic intuitions and behaviours in a machine.

Bio: Felix Hill is a Research Scientist at DeepMind, and leads a team focusing on grounded language
learning and processing. He has a Masters degree in pure mathematics from the University of Oxford,
and a Masters in Psycholinguistics and PhD in Computer Science from the University of Cambridge. His
graduate studies focused on representation-learning in neural network models of language, on which he
worked with many great collaborators including Ivan Vulić, Douwe Kiela, Yoshua Bengio, Kyunghyun Cho
and Jason Weston. At DeepMind, he has focused on developing better learning, meta-learning, reasoning,
memory systems and generalization in agents that explore and interact with simulated environments.
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Invited Talk: Seven Social Factors in Natural Language Processing:
Theory and Practice

Diyi Yang
Georgia Institute of Technology

Abstract: Recently, natural language processing (NLP) has had increasing success and produced
extensive industrial applications. Despite being sufficient to enable these applications, current NLP
systems often ignore the social part of language, e.g., who says it, in what context, for what goals. In this
talk, we take a closer look at social factors in language via a new theory taxonomy, and its interplay with
computational methods via two lines of work. The first one studies what makes language persuasive by
introducing a semi-supervised method to leverage hierarchical structures in text to recognize persuasion
strategies in good-faith requests. The second part demonstrates how various structures in conversations
can be utilized to generate better summaries for everyday interaction. We conclude by discussing several
open-ended questions towards how to build socially aware language technologies, with the hope of getting
closer to the goal of human-like language understanding.

Bio: Diyi Yang is an assistant professor in the School of Interactive Computing at Georgia Tech. She
is broadly interested in Computational Social Science, and Natural Language Processing. Diyi received
her PhD from the Language Technologies Institute at Carnegie Mellon University. Her work has been
published at leading NLP/HCI conferences, and also resulted in multiple award nominations from EMNLP,
ICWSM, SIGCHI and CSCW. She is named as a Forbes 30 under 30 in Science, a recipient of IEEE AI
10 to Watch, and has received faculty research awards from Amazon, Facebook, JPMorgan Chase, and
Salesforce.
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Duccio Pappadopulo, Lisa Bauer, Marco Farina, Ozan İrsoy and Mohit Bansal . . . . . . . . . . . . . . . 152

Toward Diverse Precondition Generation
Heeyoung Kwon, Nathanael Chambers and Niranjan Balasubramanian . . . . . . . . . . . . . . . . . . . . . . 160

One Semantic Parser to Parse Them All: Sequence to Sequence Multi-Task Learning on Semantic Parsing
Datasets

Marco Damonte and Emilio Monti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

ix



Multilingual Neural Semantic Parsing for Low-Resourced Languages
Menglin Xia and Emilio Monti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Script Parsing with Hierarchical Sequence Modelling
Fangzhou Zhai, Iza Škrjanec and Alexander Koller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Incorporating EDS Graph for AMR Parsing
Ziyi Shou and Fangzhen Lin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Dependency Patterns of Complex Sentences and Semantic Disambiguation for Abstract Meaning Repre-
sentation Parsing

Yuki Yamamoto, Yuji Matsumoto and Taro Watanabe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Neural Metaphor Detection with Visibility Embeddings
Gitit Kehat and James Pustejovsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Inducing Language-Agnostic Multilingual Representations
Wei Zhao, Steffen Eger, Johannes Bjerva and Isabelle Augenstein . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Modeling Sense Structure in Word Usage Graphs with the Weighted Stochastic Block Model
Dominik Schlechtweg, Enrique Castaneda, Jonas Kuhn and Sabine Schulte im Walde . . . . . . . . 241

Compound or Term Features? Analyzing Salience in Predicting the Difficulty of German Noun Com-
pounds across Domains

Anna Hätty, Julia Bettinger, Michael Dorna, Jonas Kuhn and Sabine Schulte im Walde . . . . . . . 252

Spurious Correlations in Cross-Topic Argument Mining
Terne Sasha Thorn Jakobsen, Maria Barrett and Anders Søgaard . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Learning Embeddings for Rare Words Leveraging Internet Search Engine and Spatial Location Relation-
ships

Xiaotao Li, Shujuan You, Yawen Niu and Wai Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Overcoming Poor Word Embeddings with Word Definitions
Christopher Malon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Denoising Word Embeddings by Averaging in a Shared Space
Avi Caciularu, Ido Dagan and Jacob Goldberger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Evaluating a Joint Training Approach for Learning Cross-lingual Embeddings with Sub-word Informa-
tion without Parallel Corpora on Lower-resource Languages

Ali Hakimi Parizi and Paul Cook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Adversarial Training for Machine Reading Comprehension with Virtual Embeddings
Ziqing Yang, Yiming Cui, Chenglei Si, Wanxiang Che, Ting Liu, Shijin Wang and Guoping Hu308

x



Conference Program

Semantics in NLP

Did the Cat Drink the Coffee? Challenging Transformers with Generalized Event
Knowledge
Paolo Pedinotti, Giulia Rambelli, Emmanuele Chersoni, Enrico Santus, Alessandro
Lenci and Philippe Blache

Can Transformer Language Models Predict Psychometric Properties?
Antonio Laverghetta Jr., Animesh Nighojkar, Jamshidbek Mirzakhalov and John
Licato

Semantic shift in social networks
Bill Noble, Asad Sayeed, Raquel Fernández and Staffan Larsson

A Study on Using Semantic Word Associations to Predict the Success of a Novel
Syeda Jannatus Saba, Biddut Sarker Bijoy, Henry Gorelick, Sabir Ismail, Md Saiful
Islam and Mohammad Ruhul Amin

Recovering Lexically and Semantically Reused Texts
Ansel MacLaughlin, Shaobin Xu and David A. Smith

NLU and Inference

Generating Hypothetical Events for Abductive Inference
Debjit Paul and Anette Frank

NeuralLog: Natural Language Inference with Joint Neural and Logical Reasoning
Zeming Chen, Qiyue Gao and Lawrence S. Moss

Teach the Rules, Provide the Facts: Targeted Relational-knowledge Enhancement
for Textual Inference
Ohad Rozen, Shmuel Amar, Vered Shwartz and Ido Dagan

ParsFEVER: a Dataset for Farsi Fact Extraction and Verification
Majid Zarharan, Mahsa Ghaderan, Amin Pourdabiri, Zahra Sayedi, Behrouz
Minaei-Bidgoli, Sauleh Eetemadi and Mohammad Taher Pilehvar

BiQuAD: Towards QA based on deeper text understanding
Frank Grimm and Philipp Cimiano

xi



Discourse, Dialog, and Generation

Evaluating Universal Dependency Parser Recovery of Predicate Argument Struc-
ture via CompChain Analysis
Sagar Indurkhya, Beracah Yankama and Robert C. Berwick

InFillmore: Frame-Guided Language Generation with Bidirectional Context
Jiefu Ou, Nathaniel Weir, Anton Belyy, Felix Yu and Benjamin Van Durme

Realistic Evaluation Principles for Cross-document Coreference Resolution
Arie Cattan, Alon Eirew, Gabriel Stanovsky, Mandar Joshi and Ido Dagan

Disentangling Online Chats with DAG-structured LSTMs
Duccio Pappadopulo, Lisa Bauer, Marco Farina, Ozan İrsoy and Mohit Bansal
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Abstract

Prior research has explored the ability of com-
putational models to predict a word seman-
tic fit with a given predicate. While much
work has been devoted to modeling the typ-
icality relation between verbs and arguments
in isolation, in this paper we take a broader
perspective by assessing whether and to what
extent computational approaches have access
to the information about the typicality of en-
tire events and situations described in language
(Generalized Event Knowledge).

Given the recent success of Transformers Lan-
guage Models (TLMs), we decided to test
them on a benchmark for the dynamic estima-
tion of thematic fit. The evaluation of these
models was performed in comparison with
SDM, a framework specifically designed to in-
tegrate events in sentence meaning representa-
tions, and we conducted a detailed error analy-
sis to investigate which factors affect their be-
havior. Our results show that TLMs can reach
performances that are comparable to those
achieved by SDM. However, additional anal-
ysis consistently suggests that TLMs do not
capture important aspects of event knowledge,
and their predictions often depend on surface
linguistic features, such as frequent words, col-
locations and syntactic patterns, thereby show-
ing sub-optimal generalization abilities.

1 Introduction

People can discriminate between typical (e.g., A
cop arrested a thief ) and atypical events (e.g., A
thief arrested a cop) and exploit this ability in on-
line sentence processing to anticipate the upcoming
linguistic input. Brains have been claimed to be
“prediction machines” (Clark, 2013) and psycholin-
guistic research has shown that a crucial ingredient

of such predictive ability is the knowledge about
events and their typical participants stored in hu-
man semantic memory, also referred to as Gener-
alized Event Knowledge (GEK) by McRae and
Matsuki (2009). To make an example, if we were
asked to think about things that are played with a
guitar, we would quickly and more or less unani-
mously think of words such as song, piece or riff.

Computational models of predicate-argument
typicality, generally referred to as thematic fit in the
psycholinguistic literature (McRae et al., 1998), ex-
tract typical arguments from parsed corpora. How-
ever, GEK is not just storing relations between
words: The fact that this knowledge is generalized
– that is, it is based on an abstract representation
of what is typical – allows us to easily classify
new argument combinations as typical or atypi-
cal. Furthermore, psycholinguistic studies (Bick-
nell et al., 2010; Matsuki et al., 2011) have shown
that humans are able to combine and dynamically
update their expectations during sentence process-
ing: for example, their expectations given the se-
quence The barber cut the differ from the ones
given The lumberjack cut the , since the integra-
tion of knowledge “cued” by the agent argument
with the verb will lead to the activation of differ-
ent event scenarios. In Distributional Semantics,
sophisticated models of the GEK have been pro-
posed to make predictions on upcoming arguments
by integrating the cues coming from the verb and
the previously-realized arguments in the sentence
(Lenci, 2011; Chersoni et al., 2019). Since such
knowledge is acquired from both first-hand and
linguistic experience (McRae and Matsuki, 2009),
an important assumption of this literature is that,
at least for its ”linguistic subset”, the GEK can be
modeled with distributional information extracted
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from corpora (Chersoni et al., 2017, 2021).
Language Models are trained to make predic-

tions given a context, and thus, they can also
be viewed as models of GEK. This approach is
promising if one considers the success of recent
Transformer-based Language Models (henceforth
TLMS), which are trained on huge corpora and
contain a massive number of parameters. Even if
these models receive extensive training and have
been shown to capture linguistic properties (Jawa-
har et al., 2019; Goldberg, 2019), it is not obvious
whether they acquire the aspects of GEK that have
been modeled explicitly in previous approaches.
To the best of our knowledge, Transformers have
never been tested on dynamic thematic fit model-
ing, nor their performance has been compared with
traditional distributional models. Our current work
is addressing this issue.

Contributions:

1. we propose a methodology to adapt TLMS to
the dynamic estimation of thematic fit, using a
dataset that contains several types of argument
combinations differing for their typicality;

2. we present a comprehensive evaluation of var-
ious TLMS on this task, performed by com-
paring them to a strong distributional baseline;

3. we conduct further analysis aimed at identi-
fying the potential limitations of TLMS as
models of GEK.

Our results are relevant for researchers interested in
assessing the linguistic abilities of TLMS, as well
as those working on applications involving TLMS,
such as text generation.

2 Related Work

In its classical form, the thematic fit estimation task
consists in comparing a candidate argument or filler
(e.g., wine) with the typical fillers of a given verb
role (e.g., agent, patient, etc.), either in the form
of exemplars previously attested in a corpus (Erk,
2007; Vandekerckhove et al., 2009; Erk et al., 2010)
or in the form of a vector-based prototype (Baroni
and Lenci, 2010; Sayeed and Demberg, 2014; Say-
eed et al., 2015; Greenberg et al., 2015a,b; Sayeed
et al., 2016; Santus et al., 2017; Chersoni et al.,
2020). Additionally, recent studies explored the
use of masked language modeling with BERT for
scoring the candidate arguments (Metheniti et al.,

2020). Performance in the thematic fit task is typ-
ically measured with the correlation between the
output scores of the model and human-elicited typ-
icality judgments for verb-argument pairs (McRae
et al., 1998; Ferretti et al., 2001; Padó, 2007; Zhang
et al., 2019; Marton and Sayeed, 2021).

In the simplest and most common version of
this task, the typicality of verb argument-pairs is
evaluated in isolation. Thematic fit is instead a
dynamic concept: The expectations for an argu-
ment in a given verb role do not depend just on the
verb, but also on the compositional combination
with the other arguments in the sentence (Bicknell
et al., 2010). To check the ability of computational
models to account for the compositional update of
argument expectations, Lenci (2011) framed the
problem as a binary classification task: A system
is presented a sentence pair, with one sentence ex-
pressing a typical real-world situation (The journal-
ist is checking the report) and the other sentence
expressing a plausible but less typical one (The
mechanic is checking the report), and the task is
to assign a higher thematic fit/typicality score to
the former. Notice that the two sentences differ
only for one argument, and that the “atypical” one
might, however, be a common filler with respect to
the verb target role (e.g., report is a typical patient
for check, it is just less plausible in combination
with mechanic as an agent).

Several models have tried to tackle the “dy-
namic” version of the thematic fit task, either based
on classical distributional spaces (Chersoni et al.,
2016, 2019) or on more sophisticated neural net-
work architectures (Tilk et al., 2016; Hong et al.,
2018). On the evaluation side, those works made
use of the experimental materials of the study by
Lenci (2011), which are, however, limited to agent-
verb-patient triples. The recently-introduced DT-
Fit dataset (Vassallo et al., 2018) is, in compari-
son, larger in size and provides more variety of
fillers and roles (including instruments, locations
and time). Other studies introduced larger datasets,
but focused on more specific notions of event plau-
sibility (e.g. the plausibility depending on the phys-
ical properties of the participants) (Wang et al.,
2018; Porada et al., 2019; Ko et al., 2019).

3 Experimental Settings

3.1 Dataset

The DTFit (Vassallo et al., 2018) dataset has been
specifically designed for the evaluation of dynamic
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thematic fit. 1 The dataset contains pairs of tuples
that differ only for one element, which can be ei-
ther a typical or atypical filler of a given role in
the event described by the tuple (cf. Table 1). The
dataset includes tuples of different lengths, and the
typicality of a given argument depends on its inter-
action with all the other elements. For each tuple,
the authors collected typicality judgments by ask-
ing English native speakers how common was the
event described. Scores range from 1 (very atypi-
cal) to 7 (very typical). The dataset mainly targets
knowledge about professions, but also other typical
everyday situations (e.g., what a dog typically eats,
what a grandmother typically does).

The authors created several datasets, which dif-
fer with respect to the semantic role of the can-
didate filler. For our experiments, we selected
the datasets created by the authors for the follow-
ing relations: {Instrument, Time, Location}DTFit.
Additionally, from the original dataset containing
agent-verb-patient triples, we derived two datasets,
that we named AgentDTFit and PatientDTFit. In
AgentDTFit, the tuples forming a pair differ with re-
spect to the typicality of the agent. In PatientDTFit,
they differ for the typicality of the patient. We thus
get a total of five datasets, each of which covers a
different semantic relation. The latter two datasets
have the same properties of the others, but they
put stronger emphasis on the dynamic nature of
thematic fit, as the atypical filler is still a typical
complement of the verb alone. Conversely, the
atypical candidate fillers in the other datasets are
appropriate fillers of the role, but, in most cases,
they do not relate to the other elements of the tuple.
Therefore, AgentDTFit and PatientDTFit are more
challenging for computational models, as the typ-
icality of a filler can only be determined through
the composition of the verb with another argument.
Accordingly, models have to update their predic-
tions by accurately taking into account the whole
context.

For each tuple in DTFit, the task for our models
is to predict the upcoming argument on the basis
of the previous ones. Models were evaluated in
terms of Spearman correlation between the human
ratings and the models’ scores. Moreover, we per-
formed a second evaluation for AgentDTFit and Pa-
tientDTFit, consisting of measuring the accuracy of
each system in assigning a higher thematic fit score

1All the datasets used for the experiments described in this
paper can be found at the link: https://github.com/
giuliarambelli/transformers_thematic_fit.

Role Tuple TypicalAtypical
Agent mix paint painter cook
Patient tailor sew dress wound
Instrumentcook clean fish knife sponge
Time cat chase bird hunting marriage
Location sailor mop deck boat theatre

Table 1: Examples of tuples from DTFit.

to typical tuples. To the best of our knowledge, the
only attempts to test computational models on this
dataset have been done by the authors of the orig-
inal paper and by Chersoni et al. (2019). In both
works, distributional prototype models of thematic
fit have been used.

3.2 Models
In our experiments, we compared the performance
of TLMS with the Structured Distributional Model
(SDM), which has been recently shown to be an
efficient model for the dynamic estimation of the-
matic fit (Chersoni et al., 2019).

3.2.1 Structured Distributional Model
The Structured Distributional Model (SDM)
proposed by Chersoni et al. (2019) combines word
embeddings and formal semantics to specifically
represent GEK and the dynamic construction of
sentence meaning. Like traditional distributional
models of thematic fit, it builds a prototype repre-
sentation for a given role (e.g., the typical patient
of sing) from its typical fillers, but its novelty is
that the fillers are retrieved from an external re-
source called Distributional Event Graph (hence-
forth, DEG). DEG represents GEK as a graph
automatically built from parsed corpora, where the
nodes are words associated to a numeric vector,
and the edges are labeled with syntactic relations
and weighted using statistic association measures.
Thus, given a lexical cue w, it is possible to iden-
tify the events in which w takes part and to retrieve
words related to w on both the paradigmatic and
the syntagmatic axis.

The formal structure at the basis of SDM con-
sists of two semantic structures: the linguistic con-
dition (LC), a context-independent tier of meaning
that represents the lexical items in a sentence, and
the active context (AC), which accumulates con-
textual information activated by lexical items. The
crucial aspect of SDM is that it associates a vector
representation to these formal structures: ~LC is
the sum of the embeddings of the lexical items of
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a sentence; ~AC, for each syntactic slot, is repre-
sented as the centroid vector built out of the role
vectors ~r1, ..., ~rn available in AC, corresponding
to the syntactic associates of the lexical items that
have been already processed.

In our implementation of SDM, the DEG was
constructed by extracting syntactic relations from a
concatenation of the ukWaC corpus (Baroni et al.,
2009), a dump of Wikipedia 2018 and the British
National Corpus (Leech, 1992). The final graph
contains words with a minimum frequency of 300
and events with a minimum frequency of 30. We
used as lexical embeddings the publicly-available
FastText vectors extracted from Wikipedia.2 For
our experiments, we built a semantic representation
for each tuple in the dataset, like in Chersoni et al.
(2019). We used the information in LC and AC
to assign a typicality score to each candidate filler
of a role in the dataset. The scoring function for a
given role filler is the following:

cos(~f, ~LC(sent)) + cos(~f, ~AC(sent))

2
(1)

where ~f is the embedding of the candidate filler;
~LC(sent) is a vector obtained from the sum of the

embeddings of the verb and of the argument other
than f ; ~AC stands for the updated expectation pro-
totype for the role filled by f . In other words, we
quantify the typicality of an argument given a tuple
as the average of i.) the cosine similarity between
the argument embedding and the additive combi-
nation of the other argument vectors ( ~LC), and
ii.) the cosine similarity between the argument em-
bedding and the prototype vector representing the
active context ( ~AC). In the cases where ~AC cannot
be derived (because DEG does not store syntac-
tic relations involving the context words), we take
only the cosine between ~f and ~LC(sent) as the
final score.

3.2.2 Transformer-based Language Models
We experimented with four TLMS to test how dif-
ferent architectures, training objectives, and sizes
of the training corpus affect performance.3

BERT (Devlin et al., 2019) consists of a series of
stacked Transformer encoders. It was trained using
both a masked language modeling objective (i.e.,

2https://fasttext.cc/docs/en/
english-vectors.html

3For all experiments involving TLMS, we use pre-trained
models available in the HuggingFace’s Python library Trans-
formers (Wolf et al., 2019).

predicting a masked word from its left- and right-
context), and a next sentence prediction objective
(i.e., whether a sentence follows another sentence
or not), on a combination of the BooksCorpus and
English Wikipedia (13GB in total). The model uses
WordPiece vocabulary. To test if the model size can
affect BERT performance, we used both the base
(Number of layers=12, Hidden size=768) and the
large (L=24, H=1024) versions.

RoBERTa (Liu et al., 2019), which we used in
the large version, is based on the same architec-
ture as BERT, but it was trained on a much larger
corpus (160GB) and without the next sentence pre-
diction objective. In our experiments, we used the
large version (L=24, H=1024).

In contrast with the bidirectional nature of BERT
and RoBERTa, GPT2 (Radford et al., 2019) is a
uni-directional LM, which means that the training
objective is to predict the next word, given all of
the previous ones. It was trained on WebText, for a
total of 8 million documents of data (40 GB). We
employed the medium version of GPT2 (L=24,
H=1024). We chose GPT2-medium since its di-
mensions are comparable to those of BERT and
RoBERTa large. Moreover, both RoBERTa and
GPT2 make use of a Byte-Pair Encoding tokenizer.

For our investigation, we designed the experi-
ment as follows. First, we derived simple sentences
from the tuples by adding definite articles to the
words, [CLS] at the beginning of the input and a pe-
riod to signal the end of the sentence (e.g., [CLS]
The tailor sewed the dress.). Then,
we masked the candidate filler (dress in the exam-
ple) and we computed the probability distribution
of the entire model’s vocabulary for that position.
The model typicality score is the probability as-
signed to the candidate filler, when the candidate
filler is included in the model’s vocabulary. In
case a word to be scored is not included in the
vocabularies of all the models that we used, we
decided to disregard its tuple and the respective
typical/atypical counterpart. For this reason, the
final results only take in consideration a subset of
the original datasets, which varies from model to
model. Additionally, we computed a baseline for
each Transformer model, where the model is pre-
vented from attending to the other tokens in the
sequence when making predictions.
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Coverage SDM BERT-base(line) BERT-large ROBERTA-large GPT-2 medium
AgentDTFit 105/134 0.58 0.46 (0.1) 0.53 0.64 -
PatientDTFit 323/402 0.62 0.59 (0.06) 0.64 0.64 0.63
InstrumentDTFit 31/100 0.58 0.52 (0.08) 0.53 0.5 0.5
TimeDTFit 89/100 0.58 0.63 (0.06) 0.64 0.66 0.66
LocationDTFit 115/150 0.65 0.72 (0.06) 0.71 0.73 0.74

Table 2: Spearman Correlation for the DTFit datasets.

(a) (b)

(c) (d)

Figure 1: Correlation of elicited judgments and model-derived scores for AgentDTFit (a-b) and PatientDTFit (c-d)
datasets.

4 Results and Analysis

In this section, we provide the results of the exper-
iments on the DTFit datasets. Since the models
cover different portions of the original tuples, we
performed the evaluation over the common pairs.

Table 2 reports the correlation scores for all the
five datasets.4 Values in brackets refer to the Spear-
man correlation obtained by the baseline. As the
baseline scores are very similar across models, we
reported the results only for BERT-base.

At a glance, we observe that both SDM and
TLMS obtain quite strong correlations, going from
0.46 to a maximum of 0.74 across datasets and

4We do not computed GPT-2 scores for AgentDTFit, as the
model cannot make predictions based on context because the
candidate filler occurs at the beginning of the sentence.

models. Specifically, we notice that TLMS tend to
reach higher performances compared to the distri-
butional approach. However, a marginally signif-
icant improvement of the correlations over SDM
is obtained only for LocationDTFit (p < 0.05 for
Locations, p < 0.1 for the other roles).5 This re-
sult is interesting, considering that SDM is trained
on a really small corpus compared to TLMS (for
instance, RoBERTa is trained on 160 GB of text).
Another remark is that even if TLMS differ for ar-
chitecture, training objective and data, BERT-large,
RoBERTa and GPT-2 tend to achieve very similar
performances, while correlation scores are lower
for BERT-base.

As there is no significant difference between
5The p-value was computed with Fisher’s r-to-z transfor-

mation, one-tailed test.
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SDM and TLMS results, we plotted an example
of the relationship between the human ratings and
the model-derived scores to provide a better picture
of the models’ predictions. For visualization pur-
poses, we applied a logarithmic transformation to
the scores. For AgentDTFit, we observe that SDM
and BERT-large have a different trend. In the for-
mer (see Figure 1a), the majority of the points fol-
low a roughly linear relationship, and there is a
small variation around the regression line (with few
outliers). On the contrary, BERT-large scores show
more variance (Figure 1b). This trend is confirmed
(even if it is less evident) for PatientDTFit, where
both SDM (Figure 1c) and BERT-large (Figure
1d) have a large amount of variance, and quite a
few outliers. To verify these observations, we com-
pared the sum of the BERT-large residuals with that
of SDM (we first normalized the models’ scores
with min-max scaling in order to make them com-
parable). For both subsets, the sum of residuals is
higher for BERT-large than SDM, which is espe-
cially the case for AgentDTFit (31.43 versus 17.85;
67.04 versus 63.47 for PatientDTFit).

Finally, we also performed a binary classifica-
tion task for AgentDTFit and PatientDTFit. In this
case, we evaluated models on their ability to assign
a higher score to the filler in the typical condition.
As shown in Table 3 (left columns), the accuracy
values are always high and the TLMS scores are
comparable with the SDM ones.

5 Do Transformers Really Encode GEK?

The above results prima facie suggest that TLMS

are able to model the dynamic interaction between
the sentence elements to compute the typicality
value of a candidate filler. However, analyzing the
errors of the TLMS can be revealing of how they
make their predictions.

Table 4 presents some of the PatientDTFit pairs
where BERT-base prefers the atypical filler. In all
these cases, BERT simply seems to rely on frequent
verb objects, without composing and integrating
the verb expectations with information from other
elements of the context (the agent in this case),
which is a key aspect of human GEK and is re-
flected in the typicality judgments. However, we
cannot make any claims about the event knowledge
of TLMS from these examples alone, as only in
some cases (such as The cat drank the coffee) the
atypical tuples evoke events unlikely to take place
in the real world (i.e., it may happen frequently that

DTFit Wang2018
Agent Patient Agent Patient

SDM .89 .91 .65 .66
BERT-base .77 .85 .76 .63
BERT-large .83 .89 .77 .65
ROBERTA-large .89 .91 .76 .73
GPT-2 medium - .90 - .64

Table 3: Accuracy in the binary classification task for
DTFit (agent and patient roles) and Wang2018 datasets.

a chemist pours the juice, even if this is not a typ-
ical action for a chemist). To better understand if
this can lead TLMS to make really implausible pre-
dictions, we carried out an additional experiment
where we tested the models on a diagnostic dataset
controlled for the frequency of the association be-
tween the verb and the filler. In this experiment,
we also tried to address the question of whether
TLMS rely more heavily on the local context when
making predictions.

Furthermore, TLMS’ natural preference for
what is more frequent could help them in the typ-
icality task, as a typical event is often a frequent
one. Their good performance could be due to the
fact that they memorize frequent sequences during
training. Therefore we tested TLMS on a different
dataset, in which atypical but physically plausible
events (e.g., The cloth erased the cream) are distin-
guished from atypical and implausible ones (e.g.,
The cloth erased the house). Frequency effects on
performance should be alleviated in this setting,
as both types of events in the dataset are atypical
and, hence, rare. This task requires fine-grained
knowledge of the properties of arguments, which
is still an important component of GEK.

Additionally, different frequency variations in
the training data could influence TLMS perfor-
mance. Since the models’ knowledge of the world
is mediated by language, it is likely that an argu-
ment filler may or may not be predicted depending
on the frequency of the word chosen to refer to it.
We investigated this issue by testing the models on
another diagnostic dataset obtained by replacing
typical fillers with low-frequency synonyms.

The last question we explored is whether TLMS

can be influenced by the way statements of event
typicality are syntactically expressed. So, we eval-
uated TLMS by feeding them with sentences en-
coding typical events with a transformed and more
complex syntactic form than the one used in the
DTFit experiments.
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Tuple Expected Preferred
mason mix cement (H=6.65, M=-8.41) soup (H=1.95, M=-5.54)
climber climb rock (H=6.8, M=-5.29) staircase (H=5.6, M=-4.05)
blacksmith pour metal (H=6.5, M=-4.03) wine (H=1.6, M=-1.6)
chemist pour compound (H=6.25, M=-8.4) juice (H=2.75, M=-5.18)
cat drink milk (H=5.6, M=-2.89) coffee (H=1.45, M=-3.65)

Table 4: Examples of errors (BERT-base, PatientDTFit). H= Human score, M=Model’s log probability.

I. TLMS seem to prefer frequent collocations,
but only when they are plausible. Errors re-
ported in Table 4 suggest the tendency of TLMS

to predict frequent complements of the verbs, ir-
respective of whether they are coherent with the
rest of the tuple. We questioned to what extent
salient local word co-occurrences make the models
“blind” to the rest of the context and thus com-
promise the plausibility of their predictions. To
investigate this behavior, we generated a new di-
agnostic dataset. The dataset is a small (31 pairs)
subset of PatientDTFit, where the atypical filler in
each pair was replaced with another noun that has
a very strong association with the verb in the tuple.
We computed the association between the verb and
its direct objects using Local Mutual Information
(LMI) (Evert, 2008). Since LMI is computed by
multiplying the Pointwise Mutual Information and
the frequency of the two words in a grammatical
relation, it assigns higher values to combinations
that are both common and informative. We chose
the new atypical fillers among the words with the
highest LMIs. We chose words that give rise to odd
events when integrated with the rest of the context.
To approximate the word distributions encountered
in the training data, we extracted LMI values from
a 2018 dump of English Wikipedia and we evalu-
ated only the BERT model (base and large) on the
new dataset, as Wikipedia is a considerable part
of the training only for this model. Examples of
the new test pairs are the following: The terrorist
released the hostage/ album, The truck hit the car/
ball, The soldier heard the command/ case.

To evaluate BERT performance, we computed
the accuracy scores on the diagnostics dataset in
the same way as in the main experiment (binary
classification task). Results show that the models
generally assign low probabilities to atypical fillers.
They choose the atypical event in some cases (9
in BERT-base, 6 in large), but mainly when the
contrast between the atypical event and our ex-
pectations is less evident (The smuggler sold the
property is preferred to weapon, The soldier throw
the ball is preferred to bomb).

As already observed in the main experiment,
BERT seems to be able to look beyond salient lo-
cal associations and build representations of global
events flexibly. However, this issue should be fur-
ther explored for the other roles as well. For in-
stance, given the sentence The engineer completed
the project in the , the models must consider more
contextual elements to make the correct prediction.

On the other hand, even if SDM design aims
at capturing this aspect of GEK, the manipula-
tions we made in this dataset cause a drop in the
model performance (14 pairs out of 31 are classi-
fied wrongly). This drop is probably due to aspects
of the implementation such as data sparsity. Specif-
ically, if there are no events in which the subject
occurs with a direct object, the prototype of the pa-
tient is built only from the verb’s most associated
patients, disregarding the fact they are implausible
given the whole context.

II. TLMS know more about what is typical
than what is possible. The use of typicality
datasets such as DTFit for the estimation of the
models’ GEK has some limitations. TLMS’ ability
to reproduce combinations encountered frequently
during training could be the reason for high perfor-
mances in the typicality task, since what is most
typical often occurs most frequently. However,
GEK is not just memory of exemplars, but it re-
quires fine-grained knowledge of the properties of
objects and it involves reasoning processes such as
abstraction and comparison between objects and
prototypical concepts.

To evaluate TLMS on a setting where frequency
variations in the training corpus have a minor im-
pact, we used the dataset realized by Wang et al.
(2018) (henceforth, Wang2018). This dataset rep-
resents a benchmark for the task of semantic physi-
cal plausibility (Bagherinezhad et al., 2016), that
is, distinguishing an atypical but physically plau-
sible event such as The student climbed the ship
from an atypical and physically implausible one
such as The student climbed the water. The dataset
contains agent-verb-patient (SVO) triples divided
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into plausible and implausible. From the original
dataset, which contains 1, 540 plausible and 1, 540
implausible triples, we derived two subsets contain-
ing pairs of triples differing either for the agent or
for the patient role filler (obtaining 222 and 394
pairs respectively).

Table 3 reports the resulting accuracy values. In
general, the models’ scores are lower than in the
typicality task (min. 0.64, max. 0.77), and in some
cases they are not much higher than random per-
formance. Moreover, in many cases the models
could be facilitated by the existence of an associ-
ation between the plausible filler and the verb of
the event, as in The ant built the wall and in The
chair absorbed the water. Nevertheless, the results
demonstrate that the notion of plausibility is harder
to model compared to typicality, and invite caution
when making claims about TLMS world and event
knowledge. In fact, the results suggest that even
if it were true that TLMS develop some general-
ization skills from training, they still miss many
predictions about possible events, which instead
humans easily make on the basis of their common-
sense knowledge.

This dataset is also difficult for SDM, which ob-
tains scores lower than those of the TLMS (0.65 for
Agent and 0.66 for Patient). Even if SDM should
be better at reproducing generalization through the
construction of prototypical fillers, the model’s
distributional representations seem to fail to cap-
ture the specific properties that are relevant for the
dataset items, namely physical properties of objects
(liquid-solid, large-small, etc.). The lack of such
properties constitutes a limitation of distributional
models of word meaning based on text data only,
which is why, in previous studies, world knowl-
edge was explicitly injected into the models for the
physical plausibility task (Wang et al., 2018).

III. TLMS do not extend fit judgments to low
frequency synonyms. To test whether TLMS

consider an entity more or less likely to take part
in an event depending on the word used to refer to
that entity, we evaluated them on a new diagnostic
dataset of 39 pairs, generated from a subset of Pa-
tientDTFit. In this setting, the typical filler in each
pair was replaced with a low-frequency word that is
semantically related to the original one. To choose
an appropriate substitute, we first extracted a set
of synonyms according to two lexical resources
(WordNet, Lexico.com). Then, we picked a word
that 1) is less frequent than the original filler and

2) has a frequency lower than 300, 000. For the
same reasons described in the first additional ex-
periment, we extracted statistics from a 2018 dump
of English Wikipedia and evaluated only BERT
on the new dataset. Examples of substitutions are
the following: The botanist examined the plant→
flora, The waiter cleared the restaurant→ tavern,
The veterinarian examined the dog → puppy. It
is interesting to observe that these variations pose
serious difficulties to the models, as their accu-
racy on the diagnostics dataset is close or lower to
the random level (BERT-base: 0.37, BERT-large:
0.53). For example, BERT considers The terrorist
released the captive as less probable than The ter-
rorist released the /book, and the same occurs for
The mother prepared the provisions/gun, and The
carver built the bust/house.

These results cast doubts that current TLMS

can constitute plausible models of event knowl-
edge: they tend to reproduce the patterns that are
frequently observed in the data, and their good
performance is disrupted once these are replaced
with semantically equivalent, but less frequent ones.
This means that they lack the abstract semantic
knowledge of human subjects, whose predictions
are more flexible thanks to inference mechanisms
such as generalization to concepts sharing seman-
tic features. At least in principle, models aiming
at building prototypes of ideal role fillers (such as
the distributional models of thematic fit) are more
cognitively realistic, since they are less dependent
on specific words. However, they may still show
sub-optimal performance in this diagnostic dataset
as they are based on the quality of the distributional
representations, which is lower for words that have
low frequency in corpora. This is confirmed by the
performance of SDM on the dataset (the accuracy
is 0.51).

transitive cleft wh-interrogative
AgentDTFit 0.64 -0.13 0.62
PatientDTFit 0.64 0.26 0.51
InstrumentDTFit 0.5 0.10 0.6
TimeDTFit 0.66 0.33 0.64
LocationDTFit 0.73 0.67 0.73

Table 5: Spearman Correlation for DTFit datasets us-
ing RoBERTa-large and input sentences with different
word orders.

IV. TLMS can be influenced by the surface
structure of sentences Finally, we analyzed to
what extent TLMS’ ability to predict the fit of a
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word in a given role arises from the observation of
recurrent word order patterns during pre-training
(e.g., the fact that an actor’s award-winning event
is canonically expressed with active sentences, in
which award follows the words actor and won),
rather than being based on a deep understanding of
the semantic relations between the words.

To explore this issue, we modified DTFit tuples
to create two different versions of the dataset, each
with examples of a syntactic construction different
from the English canonical word order. Specifi-
cally, we experimented with cleft (It was the award
that the actor won, It was on the ring that the
boxer delivered the punch) and wh-interrogative
sentences (Which award did the actor win?, On
which ring did the boxer deliver the punch?).

We evaluated this new set of sentences using
RoBERTa-large (cf. Table 5). We observe that
the model is not particularly affected by the inter-
rogative structure. Conversely, the model suffers
from the cleft construction for all semantic roles ex-
cept for Location (ρ=0.67). If we ask the model to
generate the most likely words to appear in that po-
sition, we observe that word predictions in the new
construction are more general and less dependent
on the GEK associated with the other words in the
sentence, proving that TLMS are affected by the
surface syntactic shape of the linguistic input, since
the cleft construction is less frequent and presents
a less canonical word order. For instance, given
the sentence It was with the [MASK] that the guard
opened the door, RoBERTa generates the following
possible fillers: gun (P=0.044), crowd (P=0.020),
sword (P=0.016), and then key (P=0.016), while
in the active sentence key is correctly predicted as
the most probable word (P=0.22). In this specific
case, it seems that the model only looks at the word
nearby (guard) to make a prediction, disregarding
the entire context. Generally, the agent role shows
the worst results, obtaining−0.13. Note that SDM
is not affected by these variations by design, since
its predictions are based on semantic roles derived
from the syntactic analysis of the sentence, which
is explicitly provided to the model.

6 Conclusions

In this paper, we tested Transformer-based Lan-
guage Models on tasks related to Generalized Event
Knowledge. In the main experiment, we evalu-
ated their ability to model event typicality, that is,
discern typical from atypical events, on a dataset

designed for this task, DTFit. Results show that
TLMS scores positively correlate with human judg-
ments. However, they do not significantly out-
perform the distributional prototype-based model
(SDM) that we selected for comparison. This con-
firms the ability of SDM to dynamically update the
semantic representation of a sentence, which was
recently shown for the challenging task of logical
metonymy interpretation (Rambelli et al., 2020).

However, we decided to go beyond the simple
evaluation against human judgments. We carried
out several additional small-scale experiments with
the specific aim to understand which factors could
affect the predictions of TLMS. The results sug-
gest that models are often too dependent on what
they observe during training and lack some key
aspects of human event knowledge. In particular,
we observed that, in some cases, they are unable
to compose all elements of the input to make pre-
dictions, and they tend to rely more on salient local
associations between words. However, further anal-
ysis is needed. Secondly, their performance drop
on the physical plausibility task, which requires the
ability to infer physical properties necessary for an
object to participate in a given event. Lastly, their
probabilities are dependent on the specific words
that have to be predicted rather than on their mean-
ing, and on the canonical word order in which these
words tend to occur. Noticeably, even a distribu-
tional model of event knowledge (SDM) showed
similar limitations, generally likely to be due to
data sparsity and inherent limitations of distribu-
tional representations obtained from text data.

To conclude, we believe that the experiments we
reported are the first step towards a deep investi-
gation of “how general” is the Generalized Event
Knowledge in computational models. Future work
might include the creation of a larger version of
our diagnostic datasets, in order to make available
to NLP researchers a more robust benchmark for
tasks related to Generalized Event Knowledge.
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Abstract

Transformer-based language models (LMs)
continue to advance state-of-the-art perfor-
mance on NLP benchmark tasks, including
tasks designed to mimic human-inspired “com-
monsense” competencies. To better under-
stand the degree to which LMs can be said
to have certain linguistic reasoning skills, re-
searchers are beginning to adapt the tools and
concepts of the field of psychometrics. But to
what extent can the benefits flow in the other
direction? I.e., can LMs be of use in predicting
what the psychometric properties of test items
will be when those items are given to human
participants? We gather responses from numer-
ous human participants and LMs (transformer-
and non-transformer-based) on a broad diag-
nostic test of linguistic competencies. We then
use the responses to calculate standard psy-
chometric properties of the items in the di-
agnostic test, using the human responses and
the LM responses separately. We then deter-
mine how well these two sets of predictions
match. We find cases in which transformer-
based LMs predict psychometric properties
consistently well in certain categories but con-
sistently poorly in others, thus providing new
insights into fundamental similarities and dif-
ferences between human and LM reasoning.1

1 Introduction

The current generation of transformer-based lan-
guage models (TLMs) (Vaswani et al., 2017) con-
tinues to surpass expectations, consistently achiev-
ing state-of-the-art results on many natural lan-
guage processing (NLP) benchmark tasks. Espe-
cially surprising is their remarkable performance
on benchmark tasks designed to assess “common-
sense” reasoning (e.g., Wang et al., 2018, 2019),

1Code and data to reproduce our experiments can be found
on Github: https://github.com/Advancing-Machine-Human-
Reasoning-Lab/transformer-psychometrics

possibly owing to their ability to encode and re-
trieve a surprising amount of structural knowledge
(Goldberg, 2019; Hu et al., 2020; Cui et al., 2020;
Petroni et al., 2019; Davison et al., 2019), despite
initial worries that all connectionist language mod-
els in general would suffer the same limitations
as previous generations (Sun, 1992, 1995; McClel-
land, 1995; Klahr, 1999; McLaughlin, 2009).

Understanding how TLMs reason is a complex
task made more difficult by the fact that the sizes of
contemporary TLMs are so large as to effectively
render them black boxes. As such, researchers are
continually searching for new methods to under-
stand the strengths and limitations of TLMs. One
promising approach is to draw from psychometrics,
a sub-field of psychology particularly suited to deal-
ing with perhaps the most mysterious black box of
them all: the human mind. Psychometrics is con-
cerned with psychological measurement—i.e., how
to measure latent attributes like reasoning skills,
attitudes, and personality traits. Psychometricians
have developed tools to measure such properties
even when the mechanisms that give rise to them
are not fully understood, thus suggesting a possi-
ble fruitful application of those tools to complex
artificial black boxes like TLMs. Although some
have called for bridging the gap between psycho-
metrics and AI (Bringsjord and Schimanski, 2003;
Bringsjord, 2011; Bringsjord and Licato, 2012;
Dowe and Hernández-Orallo, 2012; Hernández-
Orallo et al., 2016; Wilcox et al., 2020), the amount
of work attempting to do so is limited: although
some existing work attempts to use advances in
psychometrics to benefit the study of TLMs, none
to our knowledge have used SOTA TLMs (or even
LMs in general) to benefit psychometrics.

To illustrate, assume that someone wishes to de-
sign a test to assess the degree to which a person
possesses mastery of some cognitive skill S. A
good place to start is for a panel of experts to de-
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sign a set of test items (questions) I , such that they
believe solving I requires S. However, although
many NLP benchmarks tend to consider this suffi-
cient, the items in I only have face validity, in that
they only have been demonstrated to superficially
test for S. To go beyond face validity, one must
assess I’s psychometric properties by establishing
their validity (how well the items actually measure
the phenomenon S they purport to measure), relia-
bility (how stable the items are as measurements),
and fairness (how well the items are free from bi-
ases against certain sub-populations of subjects).2

But establishing these psychometric properties can
be prohibitively costly, requiring large numbers of
human participants to answer the items in I and it-
eratively refine them. This drawback motivates the
central research question of our paper: Can TLMs
be used to predict psychometric properties of
test items? If so, the benefit for psychometric prac-
titioners3 is enormous, as it can reduce the need
for multiple rounds of costly empirical testing. But
the benefits for NLP are significant as well: know-
ing how the psychometric properties of items differ
when applied to artificial versus human populations
will give us unique insight into how they solve such
problems, and how they can be improved.

Main Contributions of this Paper: We present
the first exploration into how well TLMs can be
used to predict certain psychometric properties of
linguistic test items. To do this, we identified a
subset of items from the GLUE broad coverage di-
agnostic (Wang et al., 2018), and collected human
responses on these items in order to assess simple
psychometric properties, designing a novel user
validation procedure to do so. We then assess the
performance of 240 LMs on these diagnostic items.
Our resulting analysis clearly shows that TLMs ex-
cel in modeling psychometric properties in certain
sub-categories of linguistic skills, thus providing
fruitful directions for future work.

2 Related Work

What reason do we have to suspect that TLMs can
predict the psychometric properties of test items?
Although TLMs were not primarily designed to
compute in a human-like way, there are some rea-

2Note however that we focus only on validity and reliabil-
ity in this work.

3In other words, professionals responsible for designing
standardized tests or other evaluations meant to assess latent
attributes of individuals.

sons to suspect that they may have the ability to
effectively model at least some aspects of human
linguistic reasoning: They consistently demonstrate
superior performance (at least compared to other
LMs) on human-inspired linguistic benchmarks
(Wang et al., 2018, 2019), and they are typically
pre-trained using a lengthy process designed to em-
bed deep semantic knowledge, resulting in efficient
encoding of semantic relationships (Zhou et al.,
2020; Petroni et al., 2019; Davison et al., 2019; Cui
et al., 2020). Common optimization tasks for pre-
training transformers, such as the masked LM task
(Devlin et al., 2018) are quite similar to the word
prediction tasks that are known to predict children’s
performance on other linguistic skills (Borovsky
et al., 2012; Neuman et al., 2011; Gambi et al.,
2020). Finally, TLMs tend to outperform other
LMs in recent work modeling human reading times,
eye-tracking data, and other psychological and psy-
cholinguistic phenomena (Merkx and Frank, 2021;
Schrimpf et al., 2020b,a; Hao et al., 2020; Bhatia
and Richie, 2020; Laverghetta Jr. and Licato, 2021;
Laverghetta Jr. et al., 2021).

There are many studies probing TLMs in various
ways, a body of work sometimes called “BERTol-
ogy” (Rogers et al., 2021; Belinkov and Glass,
2019). However, work explicitly bridging psycho-
metrics with AI is less common. Xue (2019) aug-
mented the DINA (De La Torre, 2009) and DINO
(Templin and Henson, 2006) cognitive diagnostic
models (Sessoms and Henson, 2018) with a feed-
forward neural network that used a semi-supervised
learning objective. The architecture achieved su-
perior results to multiple baselines. Ahmad et al.
(2020) created a deep learning architecture for ex-
tracting psychometric dimensions related to health-
care, specifically numeracy, literacy, trust, anxiety,
and drug experiences. Their architecture did not
use transformers, and relied instead on a sophisti-
cated combination of convolutional and recurrent
layers in order to extract representations of emo-
tions, demographics, and syntactic patterns, among
others. Eisape et al. (2020) examined the corre-
lation between human and LM next-word predic-
tions and proposed a procedure for achieving more
human-like cloze probabilities. In NLP, methods
from item response theory (IRT) (Reckase, 2009)
have been particularly popular. Lalor et al. (2018)
used IRT models to study the impact of question
difficulty on the performance of deep models on
several NLP tasks. In a follow-up study, Lalor and
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Yu (2020) used IRT models to estimate the com-
petence of LSTM (Hochreiter and Schmidhuber,
1997) and BERT models during training. This al-
lowed them to create a dynamic curriculum learn-
ing (Bengio et al., 2009) algorithm, which achieved
superior performance to the same models trained
using a static scheduler for several tasks. Sedoc
and Ungar (2020) used IRT to efficiently assess
chat-bots. Martı́nez-Plumed et al. (2019) used IRT
to analyze the performance of machine learning
classifiers in a supervised learning task. IRT has
also been used to evaluate machine translation sys-
tems (Otani et al., 2016) and speech synthesizers
(Oliveira et al., 2020), and also in computer vision
(RichardWebster et al., 2018).

This literature clearly indicates that there has
been a lot of interest in applying psychometrics
to AI. So far, most of this effort has focused on
specific use cases, and has not attempted to broadly
assess commonalities between machine and human
reasoning. Most similar to our current work is Lalor
et al. (2019), who showed that deep models could
achieve a strong correlation with IRT parameters
fitted using human data on several NLP datasets.
However, they compared the human responses to
LSTMs and neural semantic encoders (Munkhdalai
and Yu, 2017), and did not consider TLMs. Fur-
thermore, they focused on the SNLI dataset, which
is less challenging than the GLUE diagnostic and
does not group questions based on fine-grained lin-
guistic competencies.

Besides the GLUE diagnostic, other taxonomies
have been proposed, such as TaxiNLI (Joshi et al.,
2020b). Although TaxiNLI includes some types of
reasoning which have no clear analogue in GLUE,
many of their categories are quite similar.4 Since
the TaxiNLI questions were also taken from the
MNLI dataset, we were concerned they would be
too easy for some of the larger TLMs we planned to
evaluate. We, therefore, chose to focus specifically
on the challenging GLUE diagnostic set and leave
TaxiNLI for future work.

3 Gathering Language Model Data

The GLUE and SuperGLUE benchmarks (Wang
et al., 2018, 2019) are suites of NLP tasks designed
to test the general linguistic capabilities of LMs.
Included as part of the GLUE benchmark is a set
of diagnostic questions, called the broad coverage

4Both GLUE and TanxiNLI test for temporal reasoning,
but place them at different levels in the taxonomy.

diagnostic, which are all formatted as natural lan-
guage inference (NLI) problems. NLI problems
consist of two sentences: a premise (p) and hypoth-
esis (h), and solving such a problem involves as-
sessing whether p textually entails h. There are typ-
ically three choices: either p does textually entail
h (entailment), p entails that h is impossible (con-
tradiction), or h’s truth can not be determined from
p alone (neutral). The NLI task is therefore quite
general and can encompass a wide variety of other
“commonsense” reasoning tasks. The broad cover-
age diagnostic was manually curated by linguistics
and NLP experts and is meant to assess broad psy-
cholinguistic competencies of LMs across multiple
categories. For instance, the propositional structure
category contains questions that exploit proposi-
tional logic operators; e.g., p = “The cat sat on
the mat.” and h = “The cat did not sit on the mat.”
The diagnostic covers four main categories of lin-
guistic competencies: lexical semantics, predicate-
argument structure, logic, and knowledge and com-
mon sense. These categories are further divided
into multiple sub-categories, each of which covers
a specific and interesting phenomenon in language.
The GLUE diagnostic thus aims to be a compre-
hensive test of linguistic reasoning skills, making
it suitable for our present study.

To evaluate our models, we selected a subset of
the GLUE diagnostic questions that were a mem-
ber of only one sub-category, to better isolate fac-
tors. In most cases, there were enough questions
in a single sub-category that we could just drop all
questions that belonged to multiple sub-categories,
further details on this preprocessing can be found
in Appendix A. After performing preprocessing,
we had 811 remaining diagnostic questions encom-
passing 20 sub-categories. Each sub-category had
at least 15 questions, and we selected 7 of the sub-
categories to use in our experiments:

1. morphological negation (MN)

2. prepositional phrases (PP)

3. lexical entailment (LE)

4. quantifiers (Q)

5. propositional structure (PS)

6. richer logical structure (RLS)

7. world knowledge (WK)
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We selected these 7 sub-categories based on
how much the average performance of the LMs
improved after pre-training and finetuning. A sub-
stantial performance improvement indicated the
category was solvable by the models, and would
therefore provide a meaningful comparsion to the
human data. We gathered responses to the diagnos-
tic from a wide array of TLMs, including BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019),
T5 (Raffel et al., 2020), ALBERT (Lan et al., 2020),
XLNet (Yang et al., 2019), ELECTRA (Clark et al.,
2020), Longformer (Beltagy et al., 2020), Span-
BERT (Joshi et al., 2020a), DeBERTa (He et al.,
2020), and ConvBERT (Jiang et al., 2020). Each
of these models differs from the others along one
or more factors, including underlying architecture,
pre-training objective and data, or the general cat-
egory the model belongs to (autoregressive, au-
toencoding, or sequence-to-sequence). For most
of these models we used the Transformers (Wolf
et al., 2020) implementation, the exception being
T5, which was implemented in PyTorch Lightning
(Falcon and .al, 2019). We use LSTM-based LMs
(Hochreiter and Schmidhuber, 1997) as a baseline,
further details on the LMs can be found in Ap-
pendix A.

We used the SNLI (Bowman et al., 2015), MNLI
(Williams et al., 2018), and ANLI (Nie et al., 2020)
training and dev sets to finetune our models. We
found that the amount of finetuning data had a
significant impact on final diagnostic performance.
Therefore, to increase the variance in our results as
much as possible we used the following training
set partitions for all model configurations:

• SNLI alone

• MNLI alone

• SNLI + MNLI

• SNLI + MNLI + ANLI

Both the train and dev sets were shuffled before
every trial. We finetuned our models for between
5 to 10 epochs. We used the reported Matthews
correlation (Matthews, 1975) on the dev set during
training to determine when the performance had sat-
urated; when this correlation stopped consistently
increasing for at least a few dev set evaluations we
stopped training. We evaluated on the dev set every
15,000 steps. All the transformer’s key hyperparam-
eters were selected in a similar way to the study

by Lalor et al. (2019). For all models, we used a
learning rate of 1∗10−5 and a max sequence length
of 175. Since running even a small grid search to
optimize the hyperparameters of each model would
have dramatically increased the number of trials,
we instead chose to fix these hyperparameters to be
similar to what was used in prior work (e.g. Devlin
et al., 2018). We also found that nearly all mod-
els consistently achieved a Matthews correlation of
about 0.5 or higher on the dev set, and thus con-
cluded that our hyperparameters were suitable. It is
important to note that our goal in finetuning was not
to completely optimize the model’s performance
on these NLI datasets. Rather, since the diagnostic
is formatted as an NLI task, we hoped that finetun-
ing would help the models to learn what the output
labels should be.5 To evaluate these models, we
experimented with four different training regimes:

• Zero shot: The model is initialized with ran-
dom weights in the hidden layers and is eval-
uated on the diagnostic without any training.
This is meant to test whether there is any prop-
erty of the architecture itself which is useful
for solving the diagnostic.

• Pre-train, no finetune: The model is pre-
trained but not finetuned.

• No pre-train, finetune: The model weights
are initialized randomly, but we finetune the
model before evaluating it.

• Pre-train and finetune: The model is pre-
trained and finetuned.

For BERT, we experimented with both Devlin
et al.’s pre-trained models, and a BERT model we
trained from scratch. Our BERT model had an iden-
tical architecture to bert-base and was pre-trained
on Google’s One Billion Words corpus (Chelba
et al., 2014). We used the same hyperparameters
from the BERT paper (Devlin et al., 2018), using a
learning rate of 4 ∗ 10−5, a max sequence length of
128, a warmup ratio of 0.01, and a weight decay of
0.01. We used the Transformers library to pre-train
this model, and saved every end-of-epoch check-
point. We pre-trained for 52 epochs and used every
10th checkpoint to gather diagnostic data separately.
This allowed us to study the effect pre-training had
on diagnostic performance.

5Finetuning T5 is necessary to avoid random output.
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In summary, this process allowed us to vary the
underlying architecture, the number of trainable
parameters, and the amount of finetuning data used
in each trial. This allowed us to treat each trained
model as effectively being a different “individual”
(and we will refer to them as such), which might
have a radically different cognitive profile from its
counterparts. For example, a roberta-base model
that was pre-trained and finetuned on all 3 NLI
datasets might produce very different response pat-
terns than a roberta-large model evaluated zero-
shot. We used three Tesla V100 GPUs with 32GB
of video memory each, as well as preemptable
GPUs on Google Colab,6 to train all models. Wher-
ever possible, we used Apex7 to speed up training.

4 Human Studies

As our purpose in gathering this LM data was to
evaluate it against human performance, we addi-
tionally ran a human study. To do this, we recruited
workers on Amazon Mechanical Turk (mTurk8) to
complete our subset of GLUE diagnostic questions.
While mTurk makes conducting large-scale human
studies convenient, there are also well-documented
problems with participants not completing tasks in
good faith (Berinsky et al., 2014, 2016; Keith et al.,
2017). There are multiple techniques for filtering
out bad-faith participants, such as the use of “atten-
tion check” questions, sometimes called “instruc-
tional manipulation checks” (Hauser and Schwarz,
2015), which are designed so that a good-faith par-
ticipant would be unlikely to get them incorrect.
But this alone would not suffice for our purposes
here, as we want a certain amount of low-scoring
participants on some sub-categories, so that the
population variances on sub-category items would
better reflect their actual variances.9 Therefore, we
designed a procedure for distinguishing bad-faith
from low-performing participants.

We first obtained attention checks from the
ChaosNLI dataset (Nie et al., 2020), which gath-
ered over 450,000 human annotations on questions
from SNLI and MNLI. Since each question in
ChaosNLI was annotated by 100 different workers,
if inter-annotator agreement for a given question is

6https://colab.research.google.com
7https://github.com/NVIDIA/apex
8https://www.mturk.com
9If we only kept high-performing participants, the item

variances would be skewed to be low and roughly the same,
which would not reflect the true variances we would expect to
see from a large population of good-faith participants.

high, we conclude that question is likely extremely
easy to solve. These questions were also in the
same format as the diagnostic questions, which
made it less likely that workers would realize they
were being given an attention check. We gathered
36 questions from ChaosNLI where the agreement
for the correct label was at least 90%. The labels
for this subset were perfectly balanced. These were
enough questions to ensure that each phase of our
trials used a unique set of attention check questions.

The human studies were split up into 5 phases,
and workers who did sufficiently well in a given
phase were given a qualification to continue to the
next phase:

1. On-boarding: A qualifying HIT (human
intelligence task) open to any worker located
in the United States, who had completed at
least 50 HITs with an approval rating of at
least 90%. The HIT consisted of 5 attention
check questions, given to each worker in the
same order. We gathered responses from up
to 200 workers.

2. Phase 1: Included questions from morpho-
logical negation, and 3 attention checks. We
gathered up to 45 responses.

3. Phase 2: Included questions from lexical
entailment and prepositional phrases, as well
as 6 attention checks. We gathered up to 36
responses.

4. Phase 3: Included questions from quantifiers
and propositional structure, as well as 6
attention checks. We gathered up to 27
responses.

5. Phase 4: Included questions from richer log-
ical structure and world knowledge, as well
as 6 attention checks. We gathered responses
from all accepted workers from Phase 3.

In each phase, questions were randomly ordered,
except for attention checks which were spread
evenly throughout the survey. We used Qualtrics10

to create the surveys for each HIT and collect the
responses. Participants were first presented with

10https://www.qualtrics.com
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instructions for the task and some examples, which
were based on the instructions originally given to
annotators for the MNLI dataset.11 The questions
from each category were a randomly chosen subset
of 15 questions tested on the LMs for that cate-
gory, balanced for each label. For each question,
workers also had to provide a short justification
statement on why they believed their answer was
correct, which was used to help filter out bad faith
participants. To validate the responses to our sur-
veys, we developed the following authentication
procedure:

Stage 1: Look for duplicate IPs or worker IDs,
indicating that the worker took the HIT more than
once. If there are any, reject the second and future
HITs, but keep the first submission.
Stage 2: If the worker’s overall score was less
than 40%, reject the HIT. If their overall score was
greater than 60%, accept the HIT. For workers who
scored between 40% and 60%, we still rejected
the HIT if they got less than 75% of the attention
checks correct.
Stage 3: Finally, examine the justifications of all
workers not previously rejected. Here we were look-
ing for simple, but clear, reasons for why work-
ers chose their answer. We included this step be-
cause we found in a pilot study that workers some-
times provided nonsensical justifications for their
answers even when they did well on the survey,
making it unclear whether they were truly pay-
ing attention. We checked that the justifications
appeared relevant to the question (some workers
seemed to paste random text from other websites
into the justification), that they did not paste part
of the question for their justification, that they did
not use the same justification for every question,
and that they did not use short nonsensical phrases
for their justification (some workers simply wrote
“good” or “nice” as their justification). This allowed
us to keep some low-scoring participants who had
put genuine effort into the task.

Manual inspection of the resulting responses sug-
gested that workers who passed stage 3 consistently
gave higher quality responses than those who did
not. These workers gave more detailed justifica-
tions that clearly articulated their thought process,
often citing specific details from the question. On
the other hand, workers who failed to give good jus-
tifications also tended to perform quite poorly, gen-

11https://nyu-mll.github.io/GLUE-human-
performance/mnli.html

erally scoring at or below random chance, which
further indicated that they were not actually paying
attention. We, therefore, believe the use of justifi-
cations helped us gather higher-quality responses.
Further details on the human study can be found in
Appendix B.

5 Experimental Results

Using the procedures described in §3 and §4,
we gathered results from 27 human participants
and 240 neural LMs (183 transformer-based and
57 LSTM-based). In addition to the LSTMs, we
also include a true random baseline which simply
guesses randomly on every question. In the follow-
ing experiments, we use the human performance
on each category as the basis for analyzing the per-
formance of the artificial populations, specifically
in terms of how well each artificial population’s
responses correlate with the human data.

Category DT DL DR

MN -0.28, <0.5 0.27, >0.5 -0.14, >0.5
PP 0.86, <0.001 0.47, <0.1 0.42, <0.5
LE 0.62, <0.05 0.17, >0.5 -0.22, <0.5
Q 0.57, <0.05 -0.22, <0.5 0.41, <0.5
PS 0.93, <0.001 0.27, <0.5 0.37, <0.5

RLS 0.28, <0.5 -0.03, >0.5 -0.37, <0.5
WK 0.79, <0.001 0.46, <0.1 -0.25, <0.5

Table 1: Given DH , Spearman correlation and p-values
were calculated with transformer-based (DT ), LSTM-
based (DL), and random (DR) estimates of problem
difficulty (percentage of the population that got the
item correct). Note here we have bolded cells whose
correlations (absolute values) were highest, but their p-
values were not always significant.

5.1 Classical Test Theory
We began by examining how well TLMs could
predict simple problem difficulty in the human
data. This measure comes from classical test theory
and is calculated simply as how many members
of the population get a given item right. For each
item i in a given sub-category in our subset of the
GLUE diagnostic, we calculated the percentage
of human participants who got that question cor-
rect (Di

H ), and then the corresponding percentage
for the TLMs (Di

T ), LSTM-based LMs (Di
L), and

the random baseline (Di
R). We then calculated the

Spearman correlation (Spearman, 1961) between
Di
H and each of the other populations. Results

are shown in Table 1. In almost all cases, TLMs
achieve a much stronger correlation with the human
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data than either baseline, and most were statistically
significant. The main exceptions are morphological
negation (MN) and richer logical structure (RLS),
both of which fail to produce strong correlations.
As we will see, this pattern will repeat in other
measurements as well.

IIC-based Clustering An important idea in psy-
chometrics is that questions that rely on the same
skills should have similar chances of being an-
swered correctly by a given participant (Rust and
Golombok, 2014). Whether questions rely on sim-
ilar skills can be tested using the inter-item cor-
relation (IIC) between two items, where high IIC
suggests that the items rely on similar underlying
reasoning skills. Thus, it can be assumed that if
items cluster together when using IIC as a distance
metric, they rely on similar underlying cognitive
skills. To explore this, given a correlation measure
c ranging from -1 to 1, we convert it into a distance
metric by taking 1− c. We use this metric to apply
k-medoids clustering to the diagnostic questions,
using the silhouette method (Rousseeuw, 1987) to
find the optimal number of clusters. For each sub-
category, we perform clustering using human, trans-
former, LSTM, and random data separately (H ,
T , L, and R respectively). We use the k-medoids
implementation from scikit-learn extra12 and use
scikit-learn (Pedregosa et al., 2011) to calculate the
silhouette coefficient.

After clustering, for each pair of items (i, j) we
define CDi,j as 1 if i and j are in the same cluster as
determined by dataset D ∈ {H,T, L,R}. Finally,
to determine how well clusters from the LM re-
sponses match the human responses, we calculate
Pearson correlation (Pearson, 1895) between CH

and each of CT , CL, and CR. Results are shown
in Table 2. Similar to Table 1, we see statistically
significant correlations from TLMs in every sub-
category, except for morphological negation (MN),
where TLMs again achieve only weak correlation.

Per Model Analysis The previous results give
us some insights into the performance of the entire
TLM population. However, individual transformers
might differ somewhat in the specific skills they
are proficient in. To study this, we performed the
same simple problem difficulty experiment, but
this time only used the diagnostic results from a
single transformer architecture (for instance just
BERT). We did this for each architecture, and then

12https://github.com/scikit-learn-contrib/scikit-learn-extra

Figure 1: Change in correlation for each TLM archi-
tecture on each category, compared to the entire TLM
population. Best viewed in color.

on each diagnostic sub-category, we computed the
difference between the single architecture’s cor-
relation and the overall correlation from Table 1.
The heatmap in Figure 1 shows the results, with
cooler colors indicating a stronger decrease in cor-
relation and warmer colors indicating a stronger
increase. In many cases, the correlation is almost
the same as the value reported in Table 1. However,
in some cases the difference is striking. For ex-
ample, RoBERTa gets a much stronger correlation
on morphological negation than any other model.
Overall, it appears that most models are achieving
close to the mean correlation, but there are a few
significant differences.

Category CT CL CR

MN 0.18, <0.1 0.40, <0.001 -0.14, <0.5
PP 0.31, <0.01 -0.15, <0.5 -0.01, >0.5
LE 0.31, <0.01 -0.03, >0.5 -0.16, <0.5
Q 0.24, <0.05 -0.01, >0.5 0.06, >0.5
PS 0.51, <0.001 0.03, >0.5 0.04, >0.5

RLS 0.46, <0.001 -0.07, <0.5 0.04, >0.5
WK 0.28, <0.01 0.00, >0.5 -0.09, <0.5

Table 2: Pearson correlation and p-values for how well
items clustered using human responses match the clus-
ters which used transformer-based (CT ), LSTM-based
(CL), and random (CR) items.

5.2 Item Response Theory
Models from classical test theory have an impor-
tant shortcoming: they provide no clear way to
separate the characteristics of the test taker and the
test items. In practice, the observed performance
on a test is affected by both the test taker and the
test itself. This intuition is formalized in a psycho-
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metrics approach known as item response theory
(IRT), in which both item characteristics and in-
dividual ability are modeled and used to predict
performance (Baker and Kim, 2004). IRT models
are often regarded as more informative than classi-
cal models and have become standard tools when
designing evaluation scales. Formally, let j be an
individual taking a test, i be an item on that test,
and θj be that individual’s latent ability. Then the
probability that j answers i correctly is defined as:

P (yi = 1|θj) = ci +
1− ci

1 + e−ai(θj−bi)
(1)

Where ai, bi, and ci are item parameters and yi = 1
indicates a correct answer. ai is the discrimination
parameter, which refers to how effective the item is
for picking out high versus low ability test takers.
bi is the difficulty parameter, which models how
easy or difficult the item is. Finally, ci is the prob-
ability of guessing correctly. If both guessing and
discrimination are held constant, we get the one-
parameter or Rasch model (Rasch, 1993). Given a
large number of human responses to a set of items,
parameters for IRT models can be estimated us-
ing the marginal maximum likelihood method and
expectation maximization (Bock and Aitkin, 1981).

Since TLMs correlated well with humans using
the classical techniques we tested, we wished to
examine whether this would still hold using IRT
models. To do this, we used the diagnostic results
from each population to fit Rasch models. We used
the ltm R package to fit all models (Rizopoulos,
2006). This gave us separate difficulty parameter
estimates bi for each item i, for each population.
To determine how well the difficulty parameters
matched between populations, we calculated the
Pearson correlation between the bi using our hu-
man response data (H), and the bi obtained using
the other populations (T , L, R). Results are shown
in Table 3. As before, TLMs consistently get a
stronger correlation than either baseline on most
sub-categories, except for morphological negation
(MN) and richer logical structure (RLS). Interest-
ingly, LSTM-based LMs achieved statistically sig-
nificant and stronger correlations than TLMs on
certain sub-categories: world knowledge (WK) and
prepositional phrases (PP). The only other experi-
ment where LSTM-based LMs achieved stronger
correlation was reported in Table 2, where they
achieved superior correlation to TLMs on morpho-
logical negation (MN).

Category DT DL DR

MN 0.08, >0.5 0.29, <0.5 0.19, >0.5
PP 0.48, <0.1 0.69, <0.01 -0.25, <0.5
LE 0.88, <0.001 -0.06, >0.5 0.14, >0.5
Q 0.61, <0.05 0.03, >0.5 0.12, >0.5
PS 0.61, <0.05 0.05, >0.5 -0.25, <0.5

RLS 0.16, >0.5 -0.05, >0.5 -0.31, <0.5
WK 0.52, <0.05 0.59, <0.05 -0.1, >0.5

Table 3: Pearson correlation and p-values for
transformer-based (DT ), LSTM-based (DL), and ran-
dom (DR) estimates of problem difficulty computed
using Rasch models.

6 Discussion

Our analysis has revealed some interesting patterns
that would have been difficult to discern using tra-
ditional evaluation metrics. Overall, TLMs perform
consistently better than either of our baselines in
modeling human psychometric properties. How-
ever, this improvement is also not uniform across
all psycholinguistic categories. In fact, we have
found some regularities in this regard. For instance,
TLMs failed to achieve a strong correlation on mor-
phological negation in all cases. This might be
explained by two facts: there is little relative vari-
ance in the human responses in this sub-category,
and the average accuracy of human participants
was above 90%, as opposed to LM accuracy of
55%. This sub-category also tests for reasoning
over negation, which prior studies found that trans-
formers struggle with (Rogers et al., 2021). This
ability to analyze the specific kinds of reasoning
transformers have become proficient in is a clear
advantage psychometrics have over typical NLP
evaluations. The NLP community is becoming in-
creasingly aware of the need to construct more
fine-grained evaluation benchmarks (Wang et al.,
2018; Joshi et al., 2020b), and we believe our work
complements these efforts nicely.

Of course, this study also has limitations. The
number of human participants in our study was
somewhat small compared to typical psychometrics
studies, which makes it difficult to draw stronger
conclusions. One of the main criticisms IRT models
draw is that they can require thousands of responses
to get good estimates of the latent parameters (Min
and Aryadoust, 2021). As stated earlier, practical
limitations on population size is a common problem
in psychometrics research, one which our present
work hopes to alleviate somewhat. Future work will
need to repeat our experiments with much larger
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population sizes, and also take measures to ensure
sufficient diversity in the study population (e.g.,
age, income, education level, English fluency, etc.).
Improvements in the computational efficiency of
TLMs is likely also necessary for our approach to
be practical, as it is unlikely most pyschometricians
have access to extensive GPU resources. One possi-
ble solution would be to identify a subset of TLMs
that preserves the psychometric properties of the
entire population, which might allow us to achieve
similar results with fewer models.

Furthermore, although we reported in detail on
certain psychometrics measures where our method
demonstrated promising results for TLMs, it is
worth reporting that certain other measures we ex-
amined did not appear to align well. For example,
item-total correlations using human data did not
appear to correlate with any LM data better than
with the random baseline. Likewise, our LMs failed
to predict average inter-item correlations between
either random subsets of items or our diagnostic
sub-categories. More work is needed to better un-
derstand why.

Finally, while our experiments have given us
some insights into the validity and reliability of the
diagnostic items, it is unclear whether our approach
can allow us to measure their fairness. Although it
is an important property, fairness is somewhat more
controversial than other psychometric properties,
in part because there are multiple interpretations
of what constitutes test bias (Warne et al., 2014).
Being able to probe the fairness of items would
have interesting downstream applications. For in-
stance, it might indicate whether a diagnostic gives
an unfair advantage to certain types of classifiers.

7 Conclusion

We believe our work offers a clear path forward for
bridging psychometrics and AI. The use of psycho-
metrics measures gives us a more nuanced under-
standing of the latent abilities of LMs than single-
valued measures like accuracy or F1 can provide.
Furthermore, the increasingly powerful ability of
TLMs to model human “commonsense” reasoning
and knowledge suggests new ways to predict psy-
chometrics properties of test items, reducing the
need for costly human empirical data.
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A Additional Details on Language Model
Experiments

To create the subset of the GLUE diagnostic, there
were three cases where we needed to merge mem-
bers of one sub-category into another to prevent
overlap:

1. negation and double negation questions were
merged into morphological negation.

2. symmetry/collectivity was merged into core
arguments.

3. Questions in both world knowledge and
named entities were merged into named enti-
ties.

Each of these was cases where the sub-categories
overlapped highly. For a full listing of the sub-
categories and their descriptions, see (Wang et al.,
2018). We experimented with multiple different
snapshots of each TLM, which differed in the num-
ber of trainable parameters. We obtained these snap-
shots from HuggingFace.13 For each model we
used a smaller version, designated with the small
or base suffix, and a larger version, designated with
the base or large suffix. For example, for BERT we
experimented with both bert-base and bert-large,
where bert-large had more trainable parameters.
For ALBERT, we used the base and xxlarge ver-
sions.

For the LSTMs, we used a PyTorch implemen-
tation designed specifically for NLI.14 We initial-
ized the LSTM-based LMs with GloVe word em-
beddings (Pennington et al., 2014). We ran a non-
exhaustive grid search to generate a population of
LSTMs, changing the number of recurrent layers,
size of the hidden layers, learning rate, and dropout
(Srivastava et al., 2014) probability.

B Human Study Details

We paid workers the following amount for each
phase:

• On-boarding: $0.50

• Phase 1: $3.60

• Phase 2: $7.20

• Phase 3: $7.20

• Phase 4: $7.20

Our payment structure was designed to incen-
tivize workers to put forth their best effort when
completing the task. Workers were informed that
successfully completing each task would award
them the opportunity to earn additional payment
on each subsequent phase. However, if on a given
phase a worker failed our authentication protocol

13https://huggingface.co/models
14https://github.com/pytorch/examples/tree/master/snli
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we rejected their work and did not pay them. Work-
ers were informed before starting every study that
we would evaluate the quality of their work, and
that it might be rejected if we found evidence that
they did not put forth an honest effort.
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Abstract

Just as the meaning of words is tied to the com-
munities in which they are used, so too is se-
mantic change. But how does lexical seman-
tic change manifest differently across different
communities? In this work, we investigate the
relationship between community structure and
semantic change in 45 communities from the
social media website Reddit. We use distri-
butional methods to quantify lexical semantic
change and induce a social network on commu-
nities, based on interactions between members.
We explore the relationship between semantic
change and the clustering coefficient of a com-
munity’s social network graph, as well as com-
munity size and stability. While none of these
factors are found to be significant on their own,
we report a significant effect of their three-way
interaction. We also report on significant word-
level effects of frequency and change in fre-
quency, which replicate previous findings.

1 Introduction

The mechanisms and patterns of semantic change
have a long history of study in linguistics (e.g.,
Paul, 1886; Bloomfield, 1933; Blank, 1999). How-
ever, historical accounts of semantic change typi-
cally consider meaning at the language level and,
as Clark (1996) points out, referring to Lewis’s
(1969) account of convention, the meaning of a
word “does not hold for a word simpliciter, but
for a word in a particular community”. This gives
rise questions of how semantic change manifests
differently in different communities. In this work,
we explore relationship between semantic change
and several community characteristics, including
social network structure.

Social network analysis has long been a tool of
sociolinguists studying variation and change (e.g.,
Bloomfield, 1933; Milroy and Milroy, 1985; Eck-
ert, 1988), but our work differs somewhat from that

tradition in both methodology and focus. Sociolin-
guists typically work with the social networks of
individuals—their ego networks—how many peo-
ple each speaker is connected to, what kind of re-
lationships they have and, sometimes, how people
in their immediate network are connected to each
other. The ego network is convenient for sociolin-
guists using ethnographic methods; it is usually
infeasible to recreate the entire social network of a
large community (Sharma and Dodsworth, 2020).
By studying online communities, we are able to
define and compute several community-level struc-
tural characteristics including size, stability, and
social network clustering (Section 5).

Another way that our work differs from the vari-
ationist approach is that we consider change on
the level of meaning. With a few exceptions (e.g.,
Hasan, 2009), sociolinguistic research studies varia-
tion in linguistic form (phonology, morphology and
syntax). Indeed, mainstream sociolinguists have ex-
pressed skepticism that semantics can be a proper
subject of variational analysis at all (Lavandera,
1978; Weiner and Labov, 1983), since the received
definition of linguistic variation concerns multiple
forms expressing the same content—i.e., different
ways of saying the same thing. With semantics at
the top of the traditional linguistic hierarchy, there
is no higher-order constant to which two meanings
can refer. In this work, we instead consider seman-
tic shift, which refers to changes in the meaning of
a given lexical form (Newman, 2015).

For more traditional sociolinguistic variables, so-
cial indexicality—the association of a variant with
social identities and ideology—is the main factor
that mediates diffusion (Eckert, 2019). Since se-
mantic variation can itself carry social and idealog-
ical meaning (Hasan, 2009), there is good reason to
think that it may be sensitive to some of the same
aspects of community structure.

The focus on semantic shift is also made possible
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by computational methodology—we model word
meaning with distributional semantics (Section 4),
which allows us to quantify short-term lexical se-
mantic shifts at the community level.

In this study, we model the social networks of
45 English-language communities from the social
media website Reddit,1 and use diachronic word
vectors to measure semantic change between two
time periods one year apart. Then, we use a multi-
stage linear mixed effects statistical model to test
the effect of various community features on word-
level semantic change.

2 Related work

In this section, we review work that uses compu-
tational methods to study linguistic variation and
change in social context.

Distributional semantics Distributional meth-
ods, which model the meaning of a word with the
contexts in which it appears, are a popular way to
detect and quantify semantic change.2 Several re-
cent studies use distributional semantics to examine
short-term semantic shift at the community level.
Azarbonyad et al. (2017) use diachronic word vec-
tors to study semantic change in political and media
discourse, including in UK parliamentary debates,
finding that word meaning changes differently de-
pending on the political viewpoint of the speaker.
Stewart et al. (2017) use diachronic word vectors
to measure semantic change in the VKontakte so-
cial network during the Russia-Ukriaine crisis and
find that changes in word frequency are predictive
of semantic shift. Del Tredici et al. (2019) stud-
ied short-term semantic shift in the /r/LiverpoolFC
community on Reddit, empirically validating the
diachronic word vector model proposed by Kim
et al. (2014) by correlating cosine distance between
vectors from two different time periods with seman-
tic change judgments collected from members of
the community. In another study Del Tredici and
Fernández (2017) find variations in word mean-
ing across different Reddit communities, including
communities organized around the same topic.

Social network analysis In an early example of
using social network analysis to study the language
online communities, Paolillo (1999) categorizes
the relationships of users of an IRC channel as

1https://www.reddit.com
2See Tahmasebi et al. (2018), Tang (2018), and Kutuzov

et al. (2018) for recent surveys.

strong or weak ties, based on interaction frequency.
They find that tie strength predicts the use of some
online and community-specific forms but not others
and conjecture that this difference is related the
social meaning of those forms. Kooti et al. (2012)
examined early Twitter conventions for attributing
the source tweet to someone else (i.e., indicating
that it is a retweet). They examined social network
features, such as the size of a user’s ego network,
but did not find such features to be very predictive
of convention adoption compared to global trends.

Communication games in a laboratory setting
have also been used to examine the effect of so-
cial network structure on linguistic change. Raviv
et al. (2019) quantified the communicative success,
systematicity and stability of languages developed
by “communities” of participants, but did not find
a significant effect across the three different net-
work structures that were tested. Lev-Ari (2018)
found that individuals with larger real-world ego
networks had less malleable semantic representa-
tions in the lab, and use computer simulations to
argue that individuals with smaller ego networks
therefore play an important role in the community-
level propagation of linguistic change.

3 Data

To investigate semantic change in different com-
munities, we use comments collected from the
social media website Reddit.3 On Reddit, users
create posts, which consist of a link, image, or
user-generated text, along with a comment section.
Comments are threaded: users can comment on the
post or reply to another user’s comment.

Reddit is divided into forums called subreddits,
which are typically organized around a topic of
interest. While some forums—especially those
organized around relatively niche topics—have a
small tightly-knit community of users, others have
a much looser community structure, with any given
user posting and commenting infrequently.

Our dataset consists of comments from 45 ran-
domly selected subreddits that were active in the
years 2015–2017. In addition to the subreddit cor-
pora, we created a generic Reddit corpus, consist-
ing of comments sampled from every subreddit,
including communities not in our sample. For both
the generic corpus and the community-specific cor-
pora, we constructed separate datasets for 2015
and 2017, leaving a one-year gap between them.

3Obtained from pushshift.io (Baumgartner et al., 2020).
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The generic corpus consists of 55M comments for
2015 and 54M for 2017. For each of the selected
subreddits, we sampled comments from 2015 and
2017 to construct two datasets of 5.4M tokens each
(averaging 158K comments).4

4 Semantic change model

In this section, we describe how we quantify seman-
tic change. We adopt a modeling procedure similar
to that of Del Tredici et al. (2019), which is adapted
from Kim et al. (2014)’s diachronic skip-gram with
negative sampling (SGNS) model (Section 4.1).
We define naı̈ve cosine change for the community-
specific and “generic” lexicons (Section 4.2). In
Section 4.3, we use a control procedure adapted
from Dubossarsky and Weinshall (2017) to account
for noise in the naı̈ve metric.

4.1 Diachronic SGNS

The strategy laid out by Kim et al. (2014) is to train
a standard skip-gram language model on a corpus
from some time period t0, and then for each sub-
sequent time period tn+1, initialize a model with
the same architecture with word vectors from time
period tn.5 Del Tredici et al. (2019) adapts this pro-
cedure for a low-data setting by first training a base
model on some large corpus, and initializing the t0
model with vectors from that model. We follow the
same framework. We train a base model, MG,2015,
on the generic 2015 corpus. Then, for each com-
munity, c, Mc,2015 is initialized with word vec-
tors from MG,2015 and trained on the community-
specific 2015 corpus. Then, Mc,2017 is initial-
ized from Mc,2015 and trained on the community-
specific 2017 corpus. Additionally, we train a
generic 2017 model, MG,2017, which is initialized
from MG,2015 and trained on the generic 2017 cor-
pus. See the supplementary materials for details on
vocabulary and skip-gram model hyperparameters.

In the following, will write ~wc,t for the word
vector from Mc,t, corresponding word w.

4See Appendix A and B for details on com-
munity selection and data preprocessing. Code for
downloading the data and the running experiments
can be found at https://github.com/GU-CLASP/
semantic-shift-in-social-networks.

5It is not clear in the original paper if the tn+1 model is
initialized with only the word vectors from the previous time
period, or if internal weights and context vectors are included
as well. It seems that most subsequent implementations only
carry over the word vector weights, though, which allows for
more flexibility with the vocabulary. We follow this approach.

4.2 Naı̈ve cosine change

We define naı̈ve cosine change as the angular dis-
tance between corresponding word vectors from
the two different time periods.6

For a community c, naı̈ve cosine change is de-
fined for all words in the vocabulary as follows:

�cos
c (w) =

cos�1(cos sim(~wc,2015, ~wc,2017))

⇡
(1)

where

cos sim(v1, v2) =
v1 · v2

kv1kkv2k
(2)

Generic naı̈ve cosine change, �cos
G , is defined anal-

ogously.
Generally speaking, naı̈ve cosine change has a

strong track record as a semantic change metric,
performing well in both human-annotated and syn-
thetic evaluations (Hamilton et al., 2016b; Shoe-
mark et al., 2019; Schlechtweg et al., 2020). Espe-
cially relevant to this work, Del Tredici et al. (2019)
found cosine change to correlate with aggregated
semantic change judgments collected from mem-
bers of the /r/LiverpoolFC community on Reddit.

Model drift can distort cosine change, although
this is mainly a problem with many serially-trained
time periods (Shoemark et al., 2019). In a pilot
study, we experimented with post-hoc aligned vec-
tor spaces and a neighborhood-based change metric
(Hamilton et al., 2016a), but found minimal differ-
ences from the naı̈ve metric.

A more serious concern for our purposes is the
fact that naı̈ve cosine change is inherently biased to-
wards words that appear in more variable contexts.
In the following section, we examine this issue
more closely and define a rectified change metric
that controls for noise. We discuss other limitations
of the model in the final discussion section.

4.3 Rectified change score

Consider Figure 1 (left). Although naı̈ve cosine
change ranges a priori from 0 to 1, very few words
score below 0.1. Even some of the most common
function words have naı̈ve cosine change above
0.2. Dubossarsky and Weinshall (2017) demon-
strate that this bias is due to differences in the vari-
ance of different words’ context distributions—if

6Some authors use 1 � cos sim as the cosine change
metric, but angular distance is easier to interpret since it is a
distance metric and ranges from 0 to 1.
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a word appears in highly variable contexts, the
SGNS model is more likely to pick up on differ-
ences between time periods, even if those differ-
ences are mere happenstance and not reflective of
actual change. This is especially a problem in our
case where the amount of data is relatively small.

We adapt the shuffle control condition described
by Dubossarsky and Weinshall (2017) to address
this problem. For each subreddit, we shuffle the
2015 and 2017 corpora together and split them
randomly to create pseudo-diachronic corpora with
two “time periods”. Then, we train diachronic
SGNS models just as before, including initializing
the “first” model with word vectors from MG,2015.
We do this n = 10 times for each community,
giving us, for each sample i, and each vocabulary
item w, a pseudo-naı̈ve cosine change, �cos

c,i (w).
Since no genuine change can possibly have taken
place between the shuffled corpora, �cos

c,i (w) is a
sample from the noise distribution that contributes
to w’s naı̈ve cosine change, based purely on the
nosiness of its context distribution in c.

Next, we take the mean, x̄c,w and sample stan-
dard deviation (using Bessel’s correction of n� 1
degrees of freedom), sc,w, of the samples and com-
pute rectified change, which we define as the t-
statistic of the genuine naı̈ve cosine change, given
the estimated noise distribution:The resulting met-
ric, although it is still more variable for less fre-
quent words, is unbiased by the variance of the
underlying context distribution (Figure 1, right).

�⇤
c(w) =

�cos
c (w)� x̄c,w

sc,w

p
1 + 1/n

(3)

We perform this same procedure with the generic
change models (shuffling together the generic 2015
and 2017 corpora) and define generic rectified
change, �⇤

G, analogously.

Figure 1: Naı̈ve cosine change versus rectified change
for words in the /r/toronto subreddit.

�cos rank �⇤ rank freq.

possibly 0.333 1 4.19 81 7.78
; 0.316 2 0.30 2519 33.89
definitely 0.316 3 2.23 450 29.68
heck 0.314 4 2.58 311 2.19
except 0.314 5 1.60 860 14.78

2016 0.260 303 11.19 1 1.54
rentals 0.245 576 10.91 2 1.53
foreign 0.218 1414 9.84 3 4.60
admission 0.221 1330 9.83 4 1.23
screening 0.245 582 9.34 5 1.21

Table 1: Top five tokens from /r/toronto, according to
naı̈ve cosine change and rectified change. Frequency is
per 100k tokens.

Rectified change is a measure of how much
higher (or lower) the measured naı̈ve cosine change
is than would be expected if the word’s underlying
context distribution hadn’t changed at all. In other
words, it quantifies the strength of the evidence that
the word has changed. In our setup with 10 sam-
ples from the noise distribution, rectified change
scores above 4.781 correspond to a 99.95% confi-
dence that the change detected by the diachronic
SGNS model was genuine. In addition to the ana-
lytical reasons for preferring rectified change and
previous empirical work on historical change, we
note that the highest scoring words for each com-
munity in our data are intuitively more varied and
community-specific for rectified change. The naı̈ve
cosine change frequently ranks words with some
kind of rhetorical or discourse connective function
as the having changed the most (see Table 1 for
examples).

5 Community features

In this section we characterize the structural fea-
tures of the online communities in our dataset.
Many of the features we define use the notion of ac-
tive members. For a community c and time period
t, the active members, Uc,t, is the set of members
who made at least 10 posts in that period.

Size The size of a community may have an ef-
fect on semantic change. In communication game
experiments, Raviv et al. (2019) found that larger
communities of participants developed linguistic
structure faster and more consistently than when
they were grouped in smaller communities.

We define community size, S2015 = |Uc,2015|,
as the number of active members in 2015.

Stability Community stability may also have an
effect on semantic change. For example, communi-
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Figure 2: Community-level features for each of the 45 subreddits in our experiments. Dot size represents the
community’s active membership in 2015 (smallest = 1 679; largest = 118 625).

ties with stable membership have a better chance of
building up community-specific common ground.
On the other hand, stable communities may experi-
ence less change if such change tends to come from
new community members, as some studies have
suggested (Danescu-Niculescu-Mizil et al., 2013).

We define community stability as the Jaccard
index between the sets of active members in 2015
and 2017. This metric, ranging from 0 to 1, cap-
tures how similar the community membership is
between the two time periods.

T =
|Uc,t0 \ Uc,t1 |
|Uc,t0 [ Uc,t1 |

(4)

Mean posts P2015 is the average number of posts
per active members over the course of 2015.

5.1 Social network model
In this section, we define our model of social net-
work structure and a measure of network connec-
tivity, which we consider along with the other com-
munity features. First, we give some background
and motivation for including this feature.

Social network connectivity can have seemingly-
contradictory influences on linguistic change.
Bloomfield (1933) observed that densely connected
networks and strong social ties have a conservative
influence on an individual’s speech.

It is not clear whether this pattern will hold for
semantic change since, as discussed by Sharma and
Dodsworth (2020), different variables respond dif-
ferently to different social network structures. We
must also consider the evidence that an encounter
with a novel or subtly unfamiliar word usage gives
a speaker about the community’s lexical common
ground (Stalnaker, 2002; Clark, 1996). In more
densely connected communities, such an exposure
is better evidence that other speakers have been
exposed to similar uses of the same word, either
by the same speaker or, especially in the case of
communities on social media, to the very same oc-
currence. For this reason, it could be that semantic
change occurs faster in communities with dense
clusters of strong social ties.

Clustering coefficient For each community, we
define a graph model of its social network. For
a, b 2 Uc,2015, let I(a, b) be the number of interac-
tions between a and b in that community in 2015.
Interactions are considered undirected (regardless
of who is replying to whom) and we don’t consider
self-replies, meaning that I(a, b) = I(b, a) and
I(a, a) = 0. The two networks are thus defined:

G = {{a, b} | I(a, b) > 1} (5)

Note that we do not consider a top-level com-
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ment to be an interaction between the commenter
and the creator of the post for two reasons: First,
posts frequently do not contain any text written
by the author—they are often just a link or photo.
Second, the author of the post is not always the ad-
dressee of top-level comments, whereas in replies
to comments, the author of the parent comment is
always salient (though replies may of course be
made with a wider audience in mind).

The clustering coefficient (Watts and Strogatz,
1998), measures the graph’s tendency to form
dense, interconnected clusters of nodes. For an
individual, i, the clustering coefficient Ci is de-
fined as the proportion of possible connections that
exist between individuals connected to i in G:

Ci =
|{{j, k} 2 G | j, k 2 N(i)|}

|N(i)|(|N(i)|� 1)
(6)

where N(i) = {j 2 U | {i, j} 2 G} is the neigh-
borhood of i. The clustering coefficient for the
community as a whole is the mean clustering coef-
ficient of its members:

CG =

P
i2U Ci

G

|U | (7)

Note that Ci is precisely the measure of ego net-
work density used in many sociolinguistic stud-
ies (Milroy, 1987), meaning that we would expect
communities with higher clustering coefficients to
exhibit less sociolinguistic change. We don’t know
whether the same effect holds for semantic change.

6 Predictive model

We perform an exploratory analysis of the data
using multi-stage regressions and model selection
by backwards elimination with semantic change,
as measured by �⇤, as the dependent variable.7

Since we fit the mixed effects model at the word
level, in addition to the community-level indepen-
dent variables described in Section 5, we consider
two word-level features as fixed effects. See Ta-
ble 2 for the full list of fixed effects.

Word frequency Since word frequency known
to interact with semantic change (Hamilton et al.,
2016b). we include the frequency of the token in
the 2015 community corpus (f2015) as a feature.

7The use of stepwise regression has been criticized for
being a fallacious method for one-shot hypothesis testing but
is a legitimate way to investigate the explanatory capacity of
predictors. See https://dynamicecology.wordpress.com/

2013/10/16/in-praise-of-exploratory-statistics/ for a discus-
sion of the issue.

Change in frequency Additionally, we include
the change in frequency between 2015 and 2017
(f� = f2017 � f2015) as a feature since previous
work suggests that increases in the frequency of
a word often accompany semantic change (Wi-
jaya and Yeniterzi, 2011; Kulkarni et al., 2015;
Del Tredici et al., 2019).

Effect Varies by

Mean posts (2015) P2015 community
Size (2015) S2015 community
Stability T community
Clustering C community

Frequency (2015) f2015 token, community
Change in Frequency f� token, community
Generic rectified change �⇤

G token
Rectified change �⇤ token, community

Table 2: Fixed effect inputs to the statistical model.
Rectified change is the dependent variable.

Community intercepts In addition to fixed ef-
fects, we use community-level random intercepts
under the hypothesis that community topics have
idiosyncratic reasons or lexical reasons for differ-
ences in semantic change rates to do with the com-
munity topics themselves, which we do not model.

6.1 Detecting multicollinearity
Before fitting the full model with interactions,
we checked for multicollinearity via linear regres-
sions with the standard lm function in R as well
as the variance inflation factor (VIF) calculation
provided by the car package in R. All the pre-
dictors were scaled and centered (n = 201 240
word-community combinations). We found that
the distribution of �⇤ is fat-tailed (it is likely t-
distributed). Nevertheless, it is bell-shaped and
large enough that this should not be a problem.
We ran a regression under the hypothesis �⇤ ⇠
S2015 + T + C + P2015 + �⇤

G + f2015 + f� (see
Table 2) and calculated the VIF on this model. We
found that P2015 had VIF higher than 2, the cutoff
from Zuur et al. (2010). Removing it produced
VIFs below the cutoff for the other predictors.8

We fit a linear mixed effects model (using the
lmer command from the lme4 package in R;
Bates et al., 2015) with the remaining predictors

8Initially we defined a separate clustering metric Cweak
for the weak ties network, analogous to the network defined in
Section 5.1 but with edges between community members with
exactly one interaction. However, this features was highly
colinear with C and had a very high VIF when we tested it at
this stage, so it was also excluded from further analysis.
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in order to take into account the individual seman-
tic change characteristics of community and word.
(Model code and output will be placed on the web
upon publication.)

We performed a regression on the model equa-
tion �⇤

c ⇠ (1|community)+S2015 ⇤T ⇤C +�⇤
G ⇤

f2015 ⇤�f ; that is, we included interactions among
the community-level and word-level predictors.

6.2 Results
For the regression results (table 3), we do not report
statistical significance directly from lmer. Instead,
using R’s anova function, we performed back-
wards elimination model selection (by stepwise
removal of interactions and factors), and we report
statistical significance based on p-values derived
from the �2 log-likelihood ratio between models.

We found that all word-level fixed effects and
their three-way interaction were significant at p <
0.05 in the model in terms of a �2 likelihood
ratio test. The three-way word-level interaction
�⇤

G · f2015 · f� had a p-value too small to rep-
resent (�2(4) = 6380.751) relative to a model
with all predictors without the interaction (so terms
�⇤

G + f2015 + f�) along with all the other pre-
dictors and interactions. Relative to the model
without the three-way word level interaction, re-
moving each word-level predictor individually
yielded p�⇤

G
= 7.059⇥ 10�81 (�2(1) = 362.759),

pf2015 = 1.605⇥ 10�26 (�2(1) = 113.587), and
pf� was too small to measure (�2(2) = 2070.095).

The three-way interaction for the community-
level features was significant at p = 0.014
(�2(4) = 12.530), but none of the two-way interac-
tions or the individual predictors were significant.9

We plotted the three-way interaction in Figure 3.
Clustering coefficient and size are held at the mean
and plus or minus one standard deviation from the
mean. At low levels of clustering, all levels of
size have a positive linear relationship on rectified
change with respect to increasing stability.

At mean levels of clustering, the lower and mean
levels of size retain the positive relationship but flat-
ten out, and the high size level becomes negative.
At one standard deviation above the mean for clus-
tering, only the lowest size level remains positively
sloped relative to stability. Confidence intervals
increase dramatically as clustering increases (as
there are fewer examples with higher coefficients).

9This means that all the individual predictors and two-way
interactions must be part of the model, but their significant
effect is conditioned on one another.

Predictor Coefficient SE

(intercept) 0.250 0.069

S2015 -0.076 0.146
T 0.041 0.046
C -0.022 0.107
S2015 · T -0.088 0.076
S2015 · C -0.017 0.192
T · C -0.132 0.056
S2015 · T · C -0.056 0.112

f2015 -0.014 0.007
f� 0.462 0.005
�⇤

G 0.055 0.003
f2015 · f� -0.026 0.001
f2015 · �⇤

G -0.012 0.006
f� · �⇤

G 0.251 0.004
f2015 · f� · �⇤

G -0.014 0.000

Table 3: Fixed effect coefficients of the mixed effects
model with standard errors. p-values for some predic-
tors are reported in the text.
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Figure 3: Plot of three-way interaction between
community-level predictors vs. the rectified change us-
ing the ggeffects package. Each panel represents a
fixed value for the clustering coefficient, specifically -1
st.dev. from the mean, the mean, and 1 st.dev from the
mean. Similarly, each line represents the same three
values for the size. The x-axis in each panel represents
the group stability.

The effect of the random intercept is small (�2 =
0.019, SD = 0.138). This is the extent to which the
type of community causes the intercept of rectified
change to vary.

7 Discussion and conclusions

We conducted an exploratory statistical analysis
of the relationship between semantic change and
several word- and community-level predictive fea-
tures. Rectified semantic change, our independent
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variable, protects the results from certain system-
atic biases inherent in the traditional cosine change
metric. By looking at online communities, we were
able to compute a clustering coefficient on the so-
cial network graph of each community, as well as
several other community-level structural features.

Community features and semantic change We
found all three word-level features to be signifi-
cant. Together with the intercept, f� dominates
the mixed-effects model, with greater changes in
frequency associated with higher semantic change.
This is in line with previous findings (Wijaya and
Yeniterzi, 2011; Kulkarni et al., 2015; Del Tredici
et al., 2019), but our study is the first to demonstrate
this effect while controlling for noise effects.

Although the effect is much smaller, there is a
negative relationship between semantic change and
baseline frequency, f . This agrees with previous
results about historical change (Hamilton et al.,
2016a; Dubossarsky and Weinshall, 2017), but we
note that, while we cannot compare the regression
coefficients directly, it appears that frequency may
have a much smaller effect on semantic change in
the short-term setting; however, testing this hypoth-
esis would require further research.

Semantic change in the generic lexicon also
predicts community-level change, though it has a
smaller effect than f�. The interaction between f�
and �G suggests that changes in frequency can pre-
dict whether generic lexicon changes in meaning
will be picked up by a particular community.

We found that the three-way interaction between
size, stability, and clustering, was significant: For
communities with low clustering, there is a pos-
itive linear relationship between stability and se-
mantic change (regardless of community size). For
communities with average or high clustering, how-
ever, the positive relationship between stability and
change only appears to hold for smaller communi-
ties. Note, however that the confidence intervals
increase dramatically as clustering increases, since
our sample of communities found fewer examples
with high clustering.

We did not find significant correlations for any
of the community-level features on their own. It is
possible that a larger study with more communities
or a more diverse set of communities would reveal
some more universal effect, but we cannot make
any conclusions from these results. The fact that
the three-way interaction has a significant effect
while none of the individual features did on their

own demonstrates the complexity of relationship
between structural community characteristics and
semantic change.

Assumptions and limitations of the semantic
change model In spite of our efforts to control
for biases of cosine change, there are still some
caveats when interpreting the results.

Like most distributional models of semantics, the
diachronic SGNS model associates each word form
with a single vector, meaning it is not sensitive to
polysemy or homonymy. If a word with multiple
senses undergoes changes in the relative frequency
with which those senses are used, this would be re-
flected in the vector representation of the token that
both senses are associated with, even if the mean-
ing of either sense hasn’t changed on its own.10

However, many theories of semantic change em-
phasize the role of changing sense distributions as
a mechanism for lexical semantic change, so it is
not necessarily contrary to our aims of quantifying
semantic change over the lexicon.

A related weakness of distributional semantics
has to do with the distinction between meaning-
in-use and lexical meaning. Even if we assume
that distributional context is a faithful (if noisy)
representation of the situated meaning of a word
(cf. Lücking et al., 2019; Bisk et al., 2020; Bender
and Koller, 2020), it might not capture the word’s
full meaning potential (Norén and Linell, 2007)—
in the extreme, a word may have common ground
semantic content that could be activated, but that
happens not to appear in the corpus.

Moreover, changes in the topics discussed by the
community may cause changes in the context dis-
tribution of words that don’t reflect actual change
in meaning. Consider the words at the top of the
list for /r/toronto (Table 1). It’s possible that some
of those words appear due to changes in the socio-
political topics people were discussing on the fo-
rum between 2015 and 2017. Similarly, the top
word, 2016, presumably still refers to the same
year, though the year itself went from being in the
future to being in the past. Whether or not such a
change counts as a change in meaning is naturally
beyond the scope of this paper.

10Contextualized word representations (Peters et al., 2018;
Devlin et al., 2019) don’t have this shortcoming and have
recently been used to investigate semantic change (Giulianelli
et al., 2020; Vani et al., 2020), but extracting one vector per
occurrence is computationally expensive and has therefore
only been applied to small sets of target words.
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Future work This work offers some insight into
how semantic change and community structure in-
teract, but there are still many open questions, in-
cluding how these results generalize to communi-
ties in different communicative settings and over
different time frames. Future work should take
a closer look at the kinds of change (e.g., Blank,
1999) taking place. For example, are the meanings
of words broadening or narrowing? How are ex-
isting community-level communicative resources
used to create new word uses? Given that we can
identify statistically significant changes in meaning
over a relatively short period of time, it would also
be interesting to investigate the circumstances of
individual changes. For example, do community
members with more central social network position
tend to innovate more? How are early innovative
uses received by the community? Is there a cor-
relation between semantic change in a given time
period and the frequency of explicit word meaning
negotiation (Myrendal, 2019) in the same period?
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A Subreddit selection

We randomly selected 50 subreddits from the set of
all forums with at least 15,000 comments per month
for each of the 36 months in the 2015–2017 period.
We initially selected 50 subreddits but excluded five
from further analysis: two which were primarily
non-English, two with particularly short average
comment lengths, and one where our procedure
for identifying template-generated posts failed (see
Section B for details).

B Data preprocessing

Below we describe the preprocessing procedure
we used to prepare training data for our diachronic
SGNS models.

Duplicate comments Before any text normaliza-
tion steps (described below), we sought to remove
duplicate template-generated posts by bots and
moderating tools. Since this automated content
frequently appears in only one of the two time pe-
riods, it can have an outsized effect on the cosine
change score of words included in the template.

We identified these posts by comparing the tail
(after the first 50 characters) any two posts of more
than 50 characters in length. Posts marked as du-
plicate under this criteria were discarded (keeping
one such post in each category). This preserves
“natural” human-written duplicates, which tend to
be short, while catching most template-generated
content, where form-filled deviations tend to be rel-
egated to the beginning of the post. Unfortunately,
this criteria missed posts by a bot in the /r/jailbreak
subreddit, resulting rectified semantic change score
outliers for certain words in the bot’s template. As
a result, we excluded this community from analysis
in the mixed-effects model.

Normalization and tokenization The text of
comments was normalized as follows. We removed
markdown formatting, extracting only rendered
text. We exclude the content of block quotes, code
blocks, and tables. We tokenized comments using
the SpaCy tokenizer with the default English model
(version 2.2.3). We lower-cased all tokens and re-
moved whitespace, including linebreaks. Addition-
ally, we removed tokens containing certain char-
acters present in the 2015 data but absent in 2017,
apparently due to text encoding changes made by
Reddit. The removed characters were mostly emo-
jis and certain Hangul graphemes and none were

particularly common in our data (see [link] for a
list of excluded characters).

C Vocabulary and SGNS training
proceedure

For each community c we maintain a separate vo-
cabulary, Vc. Words with at least 50 occurances in
both the 2015 and 2017 time periods are included
in the vocabulary. Likewise, the generic Reddit
models have vocabulary VG, which includes words
with at least 500 occurances in both time periods.

All models were trained with the Gensim (v.
3.8.1) SGNS implementation, with 200 dimen-
sional vectors for 50 epochs (for both the generic
and community-spcefic models). For all other hy-
perparameters, we maintain the default hyperpa-
rameters (length 5 context window, 5 negative sam-
ples per word, inital learning rate of 0.025, subsam-
pling threshold of 1⇥ 10�5, and negative sampling
distribution exponent of 0.75).

For Mc,2015, we randomly initialize vectors for
words in Vc \ VG. Words in VG \ Vc have no vector
representation in Mc,2015 or Mc,2017.
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Abstract

Many new books get published every year, and
only a fraction of them become popular among
the readers. So the prediction of a book suc-
cess can be a very useful parameter for pub-
lishers to make a reliable decision. This ar-
ticle presents the study of semantic word as-
sociations using the word embedding of book
content for a set of Roget’s thesaurus concepts
for book success prediction. In this work, we
discuss the method to represent a book as a
spectrum of concepts based on the association
score between its content embedding and a
global embedding (i.e. fastText) for a set of se-
mantically linked word clusters. We show that
the semantic word associations outperform the
previous methods for book success prediction.
In addition, we present that semantic word as-
sociations also provide better results than us-
ing features like the frequency of word groups
in Roget’s thesaurus, LIWC (a popular tool
for linguistic inquiry and word count), NRC
(word association emotion lexicon), and part
of speech (PoS). Our study reports that con-
cept associations based on Roget’s Thesaurus
using word embedding of individual novel re-
sulted in the state-of-the-art performance of
0.89 average weighted F1-score for book suc-
cess prediction. Finally, we present a set of
dominant themes that contribute towards the
popularity of a book for a specific genre.

1 Introduction
Every year a lot of literary fictions get published
and only a few of them achieve the popularity. So
it is very important to be able to predict the success
of a book before the publisher commits a signifi-
cant effort and resources for it. Many factors con-
tribute to the success of a book. The story, plot, and
character development, all have specific role in the
popularity of a book. There are some other factors

*Both authors contributed equally to this research.

Figure 1: This figure represents average word embed-
ding association scores for 24 themes as defined in the
Roget’s thesaurus. We observe that corresponding as-
sociation scores for historical fiction books, such as the
successful book The Prince and the Pauper, and the
unsuccessful book The House of the Seven Gables are
very different. The success of those books were defined
using their corresponding Goodreads-rating.

like the time when the book has been published,
the author’s reputation, the marketing strategy, etc
that may also influence a book’s popularity. In this
paper, we only focus on understanding a set of con-
cepts’ associations extracted from the content of
the book to predict its success.

According to the theory of word embedding, the
vector representation of a word in the embedding
space captures its semantic relationship with other
words based on co-occurrence in the corpus. Kulka-
rni et al. (2015), and Hamilton et al. (2016a) de-
veloped methods for detecting the statistically sig-
nificant linguistic change using word embedding.
In the meantime, Caliskan et al. (2017) developed
the concepts of word embedding association test
(WEAT) to uncover the gender bias and ethnicity
bias. Following these studies, Garg et al. (2018),
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and Jones et al. (2020) used 100 years of text data
and demonstrated that word embedding can be used
as a powerful tool to quantify historical trends and
social change. For every time period, they warp the
vector spaces into one unified coordinate system
and construct a distance-based distributional time
series for each word to track its linguistic displace-
ment over time. Our idea is to use the associations
of different semantically linked word groups or
concepts in a book and investigate how its impact
on book success prediction.

In this article, we study the efficacy of word asso-
ciations to represent literature as a spectrum of in-
dividually organized concepts as a set of connoted
words in the popular Roget’s Thesaurus (Roget and
Roget, 1886). We represent word association as
the Euclidean distance between two words in the
embedding space. To find the association of book
content to a set of concepts, we compute the aver-
age Euclidean distance for each set of semantically
linked word vectors of a book’s normalized embed-
ding space to the respective word representation
in the global embedding space. The concept of
word embedding normalization and the word asso-
ciation score has been used successfully in many
recent research works for computing the gender
associations (Jones et al., 2020).

In Figure 1, we show word associations of promi-
nent themes for a successful book The Prince and
the Pauper having Goodreads-rating > 3.5, and an
unsuccessful book The House of the Seven Gables
with a Goodreads-rating < 3.5. We observe that
the average association score of each theme vary
between these two books. We analyze the impact
of these associations score for the success of each
book, and obtain a set of dominant concepts that
play an important role for a book success. In this
paper, we include following research contributions:

• We developed necessary methods to represent
a book as the spectrum of word associations
for a set of semantically linked words.

• We present genre-wise book success predic-
tion model using semantic word associations
as features, and show that the model can
achieve the best average weighted F1-score of
0.89.

• We derived a set of dominant features for each
genre showing the impact of those features for
interpreting the prediction of book success.

2 Related Work

In the earlier work, Ashok et al. (2013) used stylis-
tic approaches, such as unigram, bigram, distribu-
tion of the part-of-speech, grammatical rules, con-
stituents, sentiment, and connotation as features
and used Liblinear SVM (Fan et al., 2008) for the
classification task. They used books from total 8
genres, and they were able to achieve an average
accuracy of 73.50% for all the genres.

van Cranenburgh and Koolen (2015) distin-
guished highly literary works from less literary
works using textual features e.g. bigram. Vonnegut
(1981); Reagan et al. (2016) worked on emotion
along with the book for success prediction.

Maharjan et al. (2017) used a set of hand-crafted
features in combination with recurrent neural net-
work and generated feature representation to pre-
dict the success, and obtained an average accuracy
of 73.50% for the 8 genres. They also performed
several experiments, including using all the fea-
tures from Ashok et al. (2013), sentiment concept
(Cambria et al., 2018), different readability metrics,
Doc2Vec (Le and Mikolov, 2014) representation of
a book, and unaligned Word2Vec (Mikolov et al.,
2015) model of the book.

In a more recent work by Maharjan et al. (2018a),
they used the flow of the emotions across the book
for success prediction and obtained an F1-score
of 69%. They divided the book into some chunks,
counted the frequency of emotional associations
for each word using the NRC emotion lexicon (Mo-
hammad and Turney, 2013), and used a recurrent
neural network with an attention mechanism to pre-
dict both the genre and the success.

Jarmasz and Szpakowicz (2004); Jarmasz (2012)
showed that Roget’s has turned out to be an excel-
lent resource for measuring semantic similarity and
the words in Roget’s word clusters have higher cor-
relation than many other prominent word groups
e.g., Wordnet Miller (1998). Guyon et al. (2002)
used SVM weights for assigning ranks in the fea-
ture selection process. They verified that the top-
ranked genes found by SVM have biological rele-
vance to cancer and the SVM classifier with SVM
selected features worked better than other classi-
fiers in determining the relevant features along with
the classification task.

3 Dataset

In this study, we use the dataset introduced by Ma-
harjan et al. (2017), a publicly available dataset
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Genre Unsuccessful Successful Total
Detective Mystery 60 46 106
Drama 29 70 99
Fiction 30 81 111
Historical Fiction 16 65 81
Love Stories 20 60 80
Poetry 23 158 181
Science Fiction 48 39 87
Short Stories 123 135 258
Total 349 654 1,003

Table 1: The book dataset originally introduced by Ma-
harjan et al. (2017) is used in this research work for
success prediction. Each book in this dataset belongs
to one of the eight genres. Here we have the most num-
ber of books from the Short Stories genre(258) and the
least number of books from the Love Stories genre(80).

comprising of total 1,003 books. All of these books
are downloaded from the Project Gutenberg1. De-
tails of the dataset are given in Table 1. Each of
these books are labeled as either successful (1) or
unsuccessful (0). The definition of the success of
a book is based on Goodreads2 ratings. A book
is considered successful if it had been rated by at
least 10 Goodreads users and has a Goodreads rat-
ing ≥ 3.5 out of 5. In this corpus, there are 349
unsuccessful books and 654 successful books. Af-
ter downloading the books we used the NLTK API
for data processing (Bird et al., 2009). For each
book, we extracted the part-of-speech (PoS) tag
frequencies using the Stanford CoreNLPParser, the
Roget’s Thesaurus category frequencies (Roget and
Roget, 1886; Manning et al., 2014).

Linguistic Models
We utilized four linguistic models for our quan-
titative analysis. Two of the models - PoS and
NRC are our own implementation of models used
in Ashok et al. (2013) and Maharjan et al. (2018a).
Our two additional models have not been used to
make these types of qualitative conclusions until
now. The linguistic models used in our frequency
and association analysis are described below.
PoS: Part of Speech or PoS is a category to which
a word is assigned in accordance with its syntactic
functions. PoS provides context and classification
to words that helps with better understanding of
the purpose of word choice. We used NLTK PoS
tagger to label our tokens.
LIWC: Linguistic Inquiry and Word Count (Pen-
nebaker et al., 2015) is a text analysis program

1https://www.gutenberg.org/
2https://www.goodreads.com

that counts words in psychologically meaningful
categories. We used 72 LIWC categories for our
experiments.
NRC: The distribution of sentiments is one way of
looking at books. We used ten categories from
NRC (trust, fear, negative, sadness, anger, sur-
prise, positive, disgust, joy, anticipation) to quan-
tify shifts in sentiment across the book.
Roget’s Thesaurus: It is composed of 6 primary
classes and each class is composed of multiple
themes. There are total 24 themes that are further
divided into multiple concepts. We used 1,019
word categories from the Roget’s Thesaurus for the
book success prediction.

4 Methodology
In order to predict the success of a book, one of our
major research questions was how we can represent
a book properly. We explored a wide range of
feature sets and performed multiple experiments in
order to find the most suitable feature set that can
represent the concept, emotion and writing style
of a book. In this section, we discuss the relevant
methods that we used for the study of book success
prediction.

4.1 Frequency Distribution
We explore 4 different word frequency distribu-
tions, such as (1) Roget’s Thesaurus, (2) LIWC, (3)
NRC and (4) PoS as the feature sets for the book
success prediction. We first experimented with fre-
quency distribution of Roget word categories to
predict the success of a book. To perform this task,
we compute the unit normalized word frequency
distribution for each book. Here, frequency is com-
puted for word groups rather than individual words.
If a word falls under multiple word group its fre-
quency contributes to all of them. The frequency
count of a word group is the summation of frequen-
cies of all the underlying words in that group. And
finally, we apply the classifier as discussed in the
subsection 4.4 for the book success prediction us-
ing Roget’s word group frequency distributions as
a feature of individual book. We repeat the above
steps for creating three other feature sets based on
the word frequency distributions of LIWC, NRC,
and PoS for each book.

4.2 Association Score
To represent a book as a vector of concept asso-
ciation score, we first create the word embedding
vectors from the respective book’s content. We
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Figure 2: Steps in computing the concept association. At first, word vectors for the global embedding (fastText)
and local embedding (individual book embedding) are aligned to a unified space (Steps 1 - 3). Then, for each word,
we compute the Euclidean distance of its representative vector from the global and aligned local embedding. The
Euclidean distance of all words of each concept are then averaged to calculate the association score (Steps 4 - 6).

then align each book embedding to a global embed-
ding space so that each book can be analyzed with
respect to a reference embedding space (Mikolov
et al., 2018). To generate the word embedding of
each book, we considered the fastText embedding
generation methods (Bojanowski et al., 2017). On
the contrary to Word2Vec and Glove, fastText treats
each word in corpus like an atomic entity and gener-
ate a vector for each word. In fastText embedding,
the vector representation for a word is created de-
pending on its constituent character n-grams. This
method generates better word embedding for rare
words and out of vocabulary words.

To do the embedding space alignment, we use
the methods described in the paper (Artetxe et al.,
2018) including 4 other methods described in
(Hamilton et al., 2016b; Kendall, 1989). Intuitively,
we have two embedding space for each book, one
is the original or local embedding of the book and
the other is global fastText embedding. For every

Figure 3: Distribution of the word association for Ro-
get concept words using different alignments methods

word present in a book embedding, we calculate the
Euclidean distance. The distribution of the distance
using different alignment methods is shown in Fig-
ure 3 for the word embedding of 10 books. Ulti-
mately, we use the method named VecMap (Artetxe
et al., 2018) as it results in minimum distance after
vector alignment.

To represent a book as a vector of concept asso-
ciation score, we first create the fastText word em-
bedding vectors from the respective book’s content.
As a result, we obtain two individual embedding
spaces, one for book and another for the global em-
bedding space. We align the book embedding space
to the global embedding space so that each book
can be analyzed with respect to a reference embed-
ding space (Refer to Figure 2: Steps 1 - 3). To
find the concept association score, we compute the
average Euclidean distance from the book’s aligned
embedding vectors to the global embedding vec-
tors for each semantically linked word cluster. We
depict the process in Figure 2 (Steps 4 - 6).

We use the wiki word embedding model (Bo-
janowski et al., 2017) as our global embedding
space. It is trained on Wikipedia using fastText. For
the compatibility of book embedding and global
embedding, we use fastText to produce word em-
bedding for each book individually. Each generated
word vector is 300 dimensional. We use skip-gram
as a training algorithm. We then tune the num-
ber of iterations over the book content (epochs) by
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Figure 4: Association of different concepts with 8 genres. The x-axis is the mean association score of the words in
a Roget concept, and the y-axis is the frequency observed for each book.

running 20 different experiments with a random se-
lection of diverse values of epochs, and then select
50 as the epoch. To generate word embedding vec-
tors for each book, we only consider those words
that have a minimum word count 2.

Therefore, each book of the dataset is repre-
sented using a feature vector of length 1,019 fol-
lowing the word category definition in Roget’s The-
saurus. Figure 4 shows the distribution of different
Roget concept associations for 8 different genres.
From these distributions, it is clear that different
concepts have different impact on each genre. We
also perform the Kolmogorov-Smirnov Test (kol,
2008) to check whether these distributions are dif-
ferent or not. In most of the cases, we find that
a pair of the the distributions are significantly dif-
ferent from each other as per the statistical test.
Finally, we apply the classifier described in sub-
section 4.4 on the set of association scores of each
book for book success prediction task.

4.3 Feature Selection

The feature selection process selects a subset of
features that can efficiently describe the input sam-
ples. As a result, this step eliminates the inter-
dependent and irrelevant variables, reduce effects
from noise, and finally improve classification per-
formance. Among various feature selection meth-
ods, we use the filter method (John et al., 1994) to
identify relevant features. In this method, all the
features are ranked based on a score or weight that
is used to denote the feature relevance. This list
of features is optimized or shortened depending on
a defined threshold to improve the model predic-

tion. We set the limit of shortened and selected
feature length as 50 to prevent the loss of important
information about a book.

In our experiments, we use the weighted linear
SVM as a classifier. To predict the class of any
testing sample x, the decision function for this clas-
sifier is given below.

f(x) = sgn(wTφ(x) + b) (1)

If f(x) < 0, the book is predicted as unsuc-
cessful and if f(x) > 0 the book is predicted as
successful. Here, feature weight vector w in Equa-
tion 1 is determined by training the linear SVM
classifier. This weight vector w can be used to
find out the relevance of each feature (Guyon et al.,
2002) . The feature values φ(x) in Equation 1 can
only be positive for the book success prediction
using both frequency and association analysis as
feature. So the larger the value |wi| is, the more
it contributes for deciding the sign of the decision
function. It is worth mentioning that linear SVM
classifier with optimized feature set is intuitively
an efficient process as both the tasks use the same
decision model. Thus selection of decision bound-
ary for SVM and selection of relevant features are
tightly connected (Bron et al., 2015).

4.4 Model Evaluation
For our prediction task, we used weighted linear
SVM (Fan et al., 2008) as a classifier with L2 regu-
larization over training data. We used grid-search
in order to tune regularization hyperparameter C for
weighted linear SVM. To tune the weighted linear
SVM parameter C, we used the tool gridsearchCV
(Pedregosa et al., 2011) and performed a search
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over the values ranging 1e(−4to3). Then the best
value of C was used as a regularization parameter
for the weighted linear SVM. To mitigate the over-
fitting problem, we used 5-fold cross-validation to
measure our performance. Thus, our dataset was
randomly split into 5 equal segments, and results
were averaged over 5 trials. In each trial, the model
was trained on 4 segments and tested on the last
segment.

We present the algorithms for Association Score
Calculation, Feature Ranking Based on Linear
SVM Weights, and Training and Prediction in the
Appendix Algorithms 1-3.

5 Results

5.1 Baseline Model
Prior works have been done on book success predic-
tion using the dataset introduced in Maharjan et al.
(2017). Among them, some of the best weighted
F1-scores for the book success prediction tasks
are 0.69 for Book2Vec (DBoW+DMM) (Maharjan
et al., 2017), 0.67 for the Emotion Flow (Maharjan
et al., 2018a), 0.71 for Annotated char-3gram(AC3)
(Maharjan et al., 2019), and 0.75 for the genre at-
tention with RNN method (Maharjan et al., 2018b)
which achieved the state-of-the-art performance.
We set the weighted F1 score of 0.75 as our base-
line result and proceed to our experiments.

5.2 Book Success Using Word Group Fre-
quency

Our first set of experiments were devised using
PoS, NRC and LIWC feature sets having 10, 44,
72 features respectively. As we decided 50 as the
lowest number of selected features in subsection
4.3, we did not apply the feature selection method
for PoS and NRC categories. Table 2 shows that
feature set using PoS and NRC word frequencies
could obtain average weighted F1 scores of 0.65
and 0.67 respectively. After employing the feature
selection method for LIWC, we obtained an aver-
age weighted F1 score of 0.69 which is a slight
improvement over the previous two methods but it
still fails to outperform the baseline result.

5.3 Book Success Using Roget’s Word
Group Frequency

For this modeling task, we started with the semantic
word association scores of 1,019 Roget’s thesaurus
concepts as features. As discussed in the method-
ology section, we performed feature selection for

optimized model performance. As a result, this
method yielded a performance gain of 0.88 average
weighted F1 score beating the baseline results by
a large margin (Table 2). In order to investigate
the interpretability of the results we obtained from
Roget frequency, we dived deeper into the anal-
ysis and explored the discriminative features for
classifying successful and unsuccessful books for
different genres. The visualization we produced
for ”Detective and Mystery Stories” is placed in
the Appendix Figure 9. Although we obtained a
result that outperformed the state-of-the-art perfor-
mance using this analysis, it fails to discover more
meaningful insights than association analysis that
we discussed in the following subsections 5.4 and
5.5.

5.4 Book Success Using Word Association

As all our previous experiments are based on fre-
quency distribution of lexical features, they failed
to capture the essential semantic features that have
an enormous impact on book success. To deal
with this problem, we performed an association
analysis using Roget’s word groups that were cat-
aloged based on semantic meaning as discussed
in subsection 4.2. The feature selection result for
each genre are presented in the Figure 5. It can
be observed that as we keep filtering out irrelevant
features, the performance for book success predic-
tion for each genre increased. But after reaching
a certain level, further feature reduction caused a
monotonous decline in performance as it discarded
important features. The best result obtained using
Roget Association is an average weighted F1 score
of 0.89 which outperforms not only the baseline
results but also the state-of-art result we obtained
using Roget’s word group frequency (Table 2).

As mentioned earlier, our modeling experiments
were performed using the genre-wise 5-fold cross
validation. To further identify any overfitting char-
acteristics in the modeling we computed the area
under precision-recall curve (AUC of PR-curve).
As our dataset is not balanced, we used PR-curve to
validate or interpret our result. In the Appendix Fig-
ure 1, we show genre-wise precision-recall plots,
where we draw a combined precision-recall curve
of 5-fold cross-validation. Most of the combined
results are above an AUC of 0.90 except Detective
and Short Stories having that slightly less than 0.90
AUC. This proves that our model performed very
well in this imbalanced dataset.
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Figure 5: We performed feature selection process for each of the 8 genres. This figure represents the weighted
F1-score achieved for different feature sets. Here the max length of the feature set is 1,019. Thus, at each iteration
a single feature was filtered based on its weight. For each genre, we select the set of features that obtain the highest
F1-score. The best performance for each genre for a particular feature set is marked with X. This plot shows an
interesting insight that it is not necessary to use more than 500 concepts/features to represent a book.

Method Genre (Weighted F1) Average
Detect Drama Fiction Hist Love Poet Scien Short Acc. W. F1 Pre Rec

Roget Association 0.90 0.97 0.90 0.92 0.95 0.86 0.86 0.77 0.89 0.89 0.86 0.87
Roget Frequency 0.92 0.90 0.86 0.93 0.87 0.83 0.89 0.83 0.88 0.88 0.85 0.86
LIWC Frequency 0.68 0.68 0.69 0.74 0.74 0.82 0.49 0.70 0.69 0.69 0.63 0.64
PoS Frequency 0.70 0.68 0.66 0.65 0.61 0.77 0.47 0.68 0.64 0.65 0.6 0.61
NRC Frequency 0.58 0.69 0.62 0.72 0.65 0.75 0.59 0.72 0.66 0.67 0.62 0.62

Table 2: Genre-wise classification results

5.5 Result Interpretation

To explore the importance of semantic word as-
sociations in book success prediction, we present
sunburst plot of reduced feature set. In figure 6, we
observe that “Detective and Mystery” is the most in-
teresting since it goes against expectations in a way
that makes sense. Specifically, we would probably
expect the Intellectual Faculties, Related To Matter,
and Abstract Relation categories to be positively as-
sociated with stories about solving a crime/mystery
using intellect, evidence, and abstract relationships.
However, it appears that the most popular stories
of this genre actually favor things that have less to
do with evidence and more to do with characters
and their choices/feelings. This is illustrated by the
positive associations of Voluntary Powers, Related
To Space, and Sentiment and Moral Powers. In
other words, it seems readers like it best when a
detective solves a mystery because he/she is ”the
good guy” who makes the right choices, rather than
through real detective work.

Among all the 24 themes, Intellectual Faculties
shows some interesting insights about the success
prediction of a book. So we’ll discuss about the
impact of this theme in classifying books across
different genres. The top features that the weighted
linear SVM classifier determined for successful po-
etry books are Analogy, Obscurity, Overestimation,
etc. This sheds light on the writing style of many
of the greatest poems where the poets show a con-
nection between materialistic and abstract entities
while keeping some room for the readers to per-
ceive the same poem with their own different flavor
of apprehension. This finding is further validated
by the presence of Perspicuity as one of the top fea-
tures for unsuccessful poetry books. For example,
take the following poem -

O my Luve is like a red, red rose
That’s newly sprung in June;

O my Luve is like the melody
That’s sweetly played in tune.

— Robert Burns
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Figure 6: The large sunburst presents a comprehensive review of the most discriminative Roget classes, themes
and concepts for a single genre, “Detective Mystery”. While the small circles represent the disriminative feature
distribution across multiple genres for a common Roget class, “Intellectual Faculties”. We consider the top 30
discriminative features for both successful and unsuccessful books. Discriminative features for successful and
unsuccessful books are colored with green and red respectively.

Here, the analogy between love and rose may
arise a debate between the readers where one side
will find the poem expressing that love is beauti-
ful like a rose while the opposition might say this
poem is indicating the delicacy and fragility of love.
For the Love Stories genre, concepts like Thought,
Reasoning, Conversation, Perspicuity work as im-
portant features for a successful book prediction.
This goes against the normal way of thinking that
a good love story book should only contain over-
flowing emotions, gestures that abandon earthly
reasonings for the triumph of romance, etc. But
it seems like the readers tend to prefer romantic
books where lovers also consider their logical rea-
soning, worldly obligations while trying to win
over their love. The ‘Intellectual Faculties’ section
has an overall positive impact on detecting suc-
cessful books of the Science Fiction genre. It is
expected, as the main focus of successful science
fiction books is towards many scientific revolutions
or the main timeline of the story is set on futuristic
utopian or dystopian civilization where new tech-
nology is introduced. We present the sunburst plot
for all genres in the Appendix Figures 2-8.

6 Conclusion and Future Work

We present a novel study of word association of
book content to predict the success of book and
show that semantic word association features can
be new vertical of the classification based task. Our
empirical results demonstrate that word associa-
tion and different types of concepts can be very
useful to capture the book’s literary content and
can predict the book success with better accuracy.
Rather than individual word frequency, the set of
words with similar concepts has been proved to
be more effective. We will continue our research
work in this area and we intend to perform the ex-
periments on a bigger data set in the future. We
hypothesize that instead of preparing word embed-
ding for individual book, we can retrain the global
embedding using genre-wise data. This genre spe-
cialized embedding can help us to obtain a much
better result for two reasons - as each embedding
will be retrained on individual genre, the quality of
generated embedding is expected to be better and
it will represent the genre specific context for each
word more explicitly.
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and Thamar Solorio. 2018b. A genre-aware atten-
tion model to improve the likability prediction of
books. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3381–3391, Brussels, Belgium. Association
for Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Tomas Mikolov, Kai Chen, Gregory S Corrado, and Jef-
frey A Dean. 2015. Computing numeric represen-
tations of words in a high-dimensional space. US
Patent 9,037,464.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

George A Miller. 1998. WordNet: An electronic lexical
database. MIT press.

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a word-emotion association lexicon.
29(3):436–465.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

James Pennebaker, Roger Booth, Ryan Boyd, and
Martha Francis. 2015. Linguistic inquiry and word
count: Liwc2015.

Andrew J Reagan, Lewis Mitchell, Dilan Kiley,
Christopher M Danforth, and Peter Sheridan Dodds.
2016. The emotional arcs of stories are dominated
by six basic shapes. EPJ Data Science, 5(1).

P.M. Roget and J.L. Roget. 1886. Thesaurus of English
Words and Phrases: Classified and Arranged So as
to Facilitate the Expression of Ideas and Assist in
Literary Composition. T. Y. Crowell.

K. Vonnegut. 1981. Palm Sunday: An autobiographi-
cal collage. New York: Delacorte Press.

47



Appendix

Algorithm 1: Association Score Calculate
Input: Books bi, i = 1, ..., n.

Roget Concepts ri, i = 1, ..., c
Global Word Embedding EG

Output: The association vector
ai, i = 1, ..., n

1 for i← 1 to n do
2 Pbi = Embedding(bi)
3 Ebi = Align(Pbi , EG)
4 for j ← 1 to c do
5 WG =Words(EG)
6 Wbi =Words(Ebi)
7 Wrj =Words(rj)
8 W =WG ∩Wbi ∩Wrj

9 for k ← 1 to len(W ) do
10 V GWk

= EG[Wk]
11 V LWk

= Ebi [Wk]
12 Dk =√∑L

l=1 (V GWk,l − V LWk,l)
2

13 end
14 ai,j = AV G(D)

15 end
16 end

Algorithm 2: Feature Ranking Based on
Linear SVM Weights
Input: Training sets, (xi, yi) , i = 1, ..., l.
Output: Sorted feature ranking list.

1. Use grid search to find the best parameter C.

2. Train a L2-loss linear SVM model using the
best C.

3. Sort the features according to the absolute
values of weights in the model.

Algorithm 3: Training and Prediction
Input: Training sets, testing sets.
Output: Predictions on nested subsets.

1. Use a feature ranking algorithm to
compute the sorted feature list
fj , j = 1, ..., n.

2. For each feature size m ∈ {50, 51, ..., n}.
(a) Generate the new training set that has

only the first m features in the sorted
feature list, fj , j = 1, ...,m.

(b) Use grid search to find the best
parameter C.

(c) Train the L2-loss linearSVM model
on the new training set.

(d) Predict the testing set using the
model.
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Figure 1: The precision-recall (PRC) plot shows precision values for corresponding sensitivity (recall) values for
the association analysis. This PRC plot provides a model-wide evaluation.

Figure 2: This figure presents a comprehensive re-
view of the most discriminative Roget classes, themes
and concepts for Roget Association Analysis of Drama
genre. We consider the top 30 discriminative features
for both successful and unsuccessful books. Discrim-
inative features for successful and unsuccessful books
are colored with green and red respectively.

Figure 3: This figure presents a comprehensive re-
view of the most discriminative Roget classes, themes
and concepts for Roget Association Analysis of Fiction
genre. We consider the top 30 discriminative features
for both successful and unsuccessful books. Discrim-
inative features for successful and unsuccessful books
are colored with green and red respectively.

49



Figure 4: This figure presents a comprehensive review
of the most discriminative Roget classes, themes and
concepts for Roget Association Analysis of Historical
Fiction genre. We consider the top 30 discriminative
features for both successful and unsuccessful books.
Discriminative features for successful and unsuccessful
books are colored with green and red respectively.

Figure 5: This figure presents a comprehensive review
of the most discriminative Roget classes, themes and
concepts for Roget Association Analysis of Love Sto-
ries genre. We consider the top 30 discriminative fea-
tures for both successful and unsuccessful books. Dis-
criminative features for successful and unsuccessful
books are colored with green and red respectively.

Figure 6: This figure presents a comprehensive re-
view of the most discriminative Roget classes, themes
and concepts for Roget Association Analysis of Poetry
genre. We consider the top 30 discriminative features
for both successful and unsuccessful books. Discrim-
inative features for successful and unsuccessful books
are colored with green and red respectively.

Figure 7: This figure presents a comprehensive review
of the most discriminative Roget classes, themes and
concepts for Roget Association Analysis of Science
Fiction genre. We consider the top 34 and 26 discrim-
inative features for successful and unsuccessful books
respectively. Discriminative features for successful and
unsuccessful books are colored with green and red re-
spectively.
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Figure 8: This figure presents a comprehensive review
of the most discriminative Roget classes, themes and
concepts for Roget Association Analysis of Short Sto-
ries genre. We consider the top 36 and 24 discrimina-
tive features for successful and unsuccessful books re-
spectively. Discriminative features for successful and
unsuccessful books are colored with green and red re-
spectively.

Figure 9: This figure presents a comprehensive review
of the most discriminative Roget classes, themes and
concepts for Roget Frequency Analysis of Detective
and Mystery genre. We consider the top 30 discrim-
inative features for both successful and unsuccessful
books. Discriminative features for successful and un-
successful books are colored with green and red respec-
tively.
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Abstract

Writers often repurpose material from existing
texts when composing new documents. Be-
cause most documents have more than one
source, we cannot trace these connections us-
ing only models of document-level similarity.
Instead, this paper considers methods for local
text reuse detection (LTRD), detecting local-
ized regions of lexically or semantically simi-
lar text embedded in otherwise unrelated mate-
rial. In extensive experiments, we study the
relative performance of four classes of neu-
ral and bag-of-words models on three LTRD
tasks – detecting plagiarism, modeling jour-
nalists’ use of press releases, and identifying
scientists’ citation of earlier papers. We con-
duct evaluations on three existing datasets and
a new, publicly-available citation localization
dataset. Our findings shed light on a num-
ber of previously-unexplored questions in the
study of LTRD, including the importance of in-
corporating document-level context for predic-
tions, the applicability of of-the-shelf neural
models pretrained on “general” semantic tex-
tual similarity tasks such as paraphrase detec-
tion, and the trade-offs between more efficient
bag-of-words and feature-based neural models
and slower pairwise neural models.

1 Introduction

When composing documents in many genres—
from news reports, to scientific papers, to politi-
cal speeches—authors obtain ideas and inspiration
from source documents and present them in the
form of direct copies, quotations, summaries, or
paraphrases. In the simplest case, e.g. in con-
gressional bills, writers include text from earlier
versions of the same document along with new
material (Wilkerson et al., 2015). In news me-
dia, journalists often paraphrase or quote speeches,
press releases, and interviews (Niculae et al., 2015;

∗Equal contribution.

Tan et al., 2016). In academia, citations of papers
usually appear along with summaries of their con-
tributions (Qazvinian and Radev, 2010). These
are instances of lexical and semantic local text
reuse, where both source and target documents
contain lexically or semantically similar passages,
surrounded by text that is unrelated or dissimilar.
Often, reused text is presented without explicit
links or citations, making it hard to track infor-
mation flow.

While many state-of-the-art (SoTA) NLP archi-
tectures have been trained on the closely-related
tasks of document- and sentence-pair similarity de-
tection (Reimers and Gurevych, 2019) and ad-hoc
retrieval (Dai and Callan, 2019), prior methods for
local text-reuse detection (LTRD) are mostly lim-
ited to lexical matching (Lee, 2007; Clough et al.,
2002; Leskovec et al., 2009; Wilkerson et al., 2015;
Smith et al., 2014) with some dictionary expan-
sion (Moritz et al., 2016). To our knowledge, only
Zhou et al. (2020) has applied neural models to
this problem, proposing hierarchical neural mod-
els that use a cross-document attention mechanism
to model local similarities between two candidate
documents.

In this paper, we conduct a large-scale evalu-
ation of several lexical overlap and SoTA neural
models for LTRD. Among the neural models, we
benchmark not only the hierarchical neural models
proposed by Zhou et al. (2020), but also study the
effectiveness of three classes of models not yet ap-
plied to LTRD: 1) BERT-based (Devlin et al., 2019)
passage encoders trained on generic paraphrase, se-
mantic textual similarity, and IR data (Reimers and
Gurevych, 2019); 2) feature-based BERT models
with direct sentence-level supervision; and 3) fine-
tuned BERT-based models for sequence-pair tasks.

We conduct evaluations on four datasets, includ-
ing 1) PAN and S2ORC (Zhou et al., 2020), bench-
mark LTRD datasets for plagiarism detection and
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citation localization; 2) Pr2News (MacLaughlin
et al., 2020), a dataset of text reuse in news arti-
cles labeled with a mix of expert, non-expert, and
heuristic annotation; 3) ARC-Sim, a new, publicly
available1 citation localization dataset created us-
ing citation links in the ACL ARC (Bird et al.,
2008).

Our experiments address a number of previously-
unexplored questions in the study of LTRD, includ-
ing 1) the impact of training on weakly-supervised
data on model accuracy; 2) the effectiveness of
SoTA neural models trained on “general” seman-
tic similarity data for LTRD tasks; 3) the impor-
tance of incorporating document-level context; 4)
the effects of domain-adaptive pretraining (Guru-
rangan et al., 2020) on the accuracy of fine-tuned
BERT models; and 5) the trade-offs between more
efficient lexical overlap and feature-based neural
models and slower pairwise neural models.

2 Related Work

LTRD methods have been applied in many do-
mains, including tracking short “memes” in news
and social media (Leskovec et al., 2009), tracing
specific policy language embedded in proposed leg-
islation (Wilkerson et al., 2015; Funk and Mullen,
2018), studying reuse of scripture in historical
and theological writings (Lee, 2007; Moritz et al.,
2016), tracing information propagation in news and
social media (Tan et al., 2016; Clough et al., 2002;
MacLaughlin et al., 2020), and detecting plagia-
rism on the web (Potthast et al., 2013; Sánchez-
Pérez et al., 2014; Vani and Gupta, 2017). Most
applications, however, use only lexical overlap and
alignment methods to detect reuse, sometimes with
lemmatization and dictionary curation.

Our work builds on the recent efforts of Zhou
et al. (2020), who demonstrate the efficacy of hi-
erarchical neural models in detecting instances of
non-literal reuse where authors paraphrase, sum-
marize, and heavily edit source content. However,
as discussed in §1, we conduct a much larger set
of experiments beyond those of Zhou et al. (2020).
In addition to the hierarchical neural models with
document-level supervision proposed by Zhou et al.
(2020), we evaluate four sets of models: lexical
overlap models, SoTA neural models trained for
general paraphrase detection, hierarchical neural
models with sentence-level supervision, and fine-
tuned sequence-pair BERT models. Further, in

1https://github.com/maclaughlin/ARC-Sim

addition to evaluating models on the benchmark
LTRD datasets introduced by Zhou et al. (2020),
we conduct experiments on two more challenging
datasets: ARC-Sim, a new citation localization
dataset with hard negative examples, and Pr2News
(MacLaughlin et al., 2020), a dataset of text reuse
in science news articles with heuristically-labeled
training data.

Also related to our work is research studying
sentence-pair problems, e.g. paraphrase detection
(PD) (Dolan and Brockett, 2005), semantic tex-
tual similarity (STS) (Cer et al., 2017) and textual
entailment, (Bowman et al., 2015), and document-
ranking problems, e.g. ad-hoc retrieval (Croft et al.,
2009). In fact, it is trivial to adapt existing ap-
proaches to sentence-pair and document ranking
problems to LTRD. As discussed in §3, we cast
LTRD as sentence classification and ranking, iden-
tifying which sentences in a target text are lexically
or semantically reused from some portion of the
source. Thus, in order to adapt sentence-pair mod-
els to this task, we simply compute scores for all
pairs of (source sentence, target sentence), and use
some function (e.g. max) to aggregate the scores
for each target sentence. Similarly, one can adapt
existing ad-hoc retrieval approaches by treating
each target sentence as a query and computing a
score with the corresponding source. These ap-
proaches, however, may suffer from a lack of con-
textualization and/or efficiency issues. Sentence-
pair models that encode each source and target
sentence separately, while efficient, might miss im-
portant contextualizing information in surrounding
sentences. Similarly, neural IR models that pro-
cess each target sentence as a separate query do not
contextualize target sentences and also require a
computationally-expensive forward pass for each
query. We study the importance and impact of
these limitations in our work, testing the effective-
ness of multiple SoTA BERT-based architectures
for sequence-pair similarity and ranking.

3 Problem Definition

Following Zhou et al. (2020), we define LTRD as
two tasks: document-to-document (D2D) align-
ment and sentence-to-document (S2D) align-
ment. In D2D, for a given pair of documents
(source document S, target document T), we aim
to predict whether T reuses content from S. Thus,
each pair has a corresponding binary label of 1 if
T reuses content, else 0. Note, this is different than
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evaluating the similarity of the two documents as
a whole, since, in this setting, only a small portion
of T is adapted from S, and most of it is possibly
unrelated. In S2D, given an (S, T) pair, we aim
to predict which specific sentences ti ∈ T contain
reused S content. Thus, each pair has n correspond-
ing labels, one label for each sentence ti ∈ T.2

4 Models

We benchmark four classes of models on this task:

4.1 Lexical Overlap Models

We evaluate two unsupervised metrics:

• TF-IDF Cosine Similarity: Simple word
overlap metrics are commonly-used baselines
to measure the similarity between two pas-
sages for PD (Dolan and Brockett, 2005), STS
(Reimers and Gurevych, 2019), document re-
trieval (Croft et al., 2009), and LTRD (Tan
et al., 2016; Lee, 2007; Clough et al., 2002).

• Rouge (Lin, 2004): Since authors of derived
documents often paraphrase and summarize
source content, we evaluate Rouge, a popular
summarization evaluation metric. We evaluate
Rouge-{1, 2, L}, selecting the best configura-
tion for each dataset using validation data.

We compute two versions of each metric: single-
pair (sp) and all-pairs (ap). In sp, for a given doc-
ument pair (S, T), we compute a score for each
sentence ti ∈ T by computing its similarity to the
entire S. In ap, we compute a score for each sen-
tence ti ∈ T by computing its similarity to each
sentence si ∈ S, then selecting the maximum score
over all si. These scores are then thresholded to
make binary predictions. For the D2D task, we
predict T as positive if it contains at least one pos-
itively predicted sentence. For the S2D task, we
evaluate the predicted score for each ti ∈ T.

4.2 Pretrained Sentence-BERT Encoders

We evaluate Sentence-BERT (SBERT) (Reimers
and Gurevych, 2019), a SoTA pretrained passage
encoder for semantic-relatedness tasks. SBERT
models are trained by 1) adding pooling (e.g. mean
pooling) to the output of BERT; 2) training on pairs

2We could also study the sentence-to-sentence problem,
learning to identify which source sentence(s) contain the con-
tent reused in a given target sentence, if any. However, as
noted by Zhou et al. (2020), no datasets exist yet which con-
tain such fine-grained annotation.

or triplets of passages to learn semantically mean-
ingful passage representations; 3) at test time, com-
puting the similarity between two passages as the
cosine similarity between their pooled representa-
tions. We evaluate three SBERTs trained for differ-
ent tasks:

• Semantic Textual Similarity (STS):
RobertaLARGE (Liu et al., 2019) trained on
SNLI (Bowman et al., 2015) and MultiNLI
(Williams et al., 2018) then fine-tuned on the
STS-B (Cer et al., 2017) train set.

• Paraphrase Detection (PD): distilled
RobertaBASE (Sanh et al., 2019) fine-tuned
on a large-scale paraphrase detection corpus.

• Information Retrieval (IR): distilled
RobertaBASE (Sanh et al., 2019) fine-tuned
on MS MARCO (Campos et al., 2016).

Note, these pretrained SBERT models are not
trained for LTRD. Instead, they are trained on large-
scale datasets for other related tasks (PD, STS, IR).
These experiments thus evaluate how well off-the-
shelf tools generalize to a new task and domain.

Just as the lexical models, we evaluate in sp
and ap settings. Following Reimers and Gurevych
(2019), we embed each source document, source
sentence, and target sentence separately, then com-
pute cosine similarity for each pair.

4.3 Hierarchical Neural Models (HNM)
We also benchmark three HNM. Similar to SBERT
(§4.2), HNM operate on frozen embeddings (Peters
et al., 2019) which are computationally efficient
since they only need to be calculated once (i.e. only
one BERT forward pass for each source or target
sentence). Unlike SBERT, however, HNM also
have task-specific model architectures that learn to
contextualize and align sentences.

BERT-HAN (shallow) (Zhou et al., 2020): this
model mean pools frozen BERT embeddings to
generate sentence representations, then uses a hi-
erarchical attention network (HAN) (Yang et al.,
2016) to add document-level context and a cross-
document attention (CDA) mechanism to align pas-
sages across documents. See Zhou et al. (2020).

At training time, BERT-HAN only calculates
loss at the document-pair level, i.e. D2D classifica-
tion. There is no sentence-level supervision (S2D).
At inference, two sets of predictions are output: 1)
the D2D prediction, as during training; 2) the in-
termediate hidden representations of the sentences
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ti ∈ T are extracted, then ranked by their similar-
ity to the final hidden representation of the entire
source document S.

GRU-HAN (deep) (Zhou et al., 2020): this
model mirrors BERT-HAN, except with GloVe
(Pennington et al., 2014) embeddings and a HAN
with CDA at both the word and sentence level. It
follows the same training and testing regime.

BCL-CDA: We adapt the BCL model from
MacLaughlin et al. (2020) (originally designed for
the task of intrinsic source attribution on Pr2News)
for LTRD by adding a final CDA layer (Zhou et al.,
2020). After generating contextualized representa-
tions of each source and target sentence with BCL,
a CDA layer computes an attention-weighted rep-
resentation of each target sentence, weighted by
its similarity to the source sentences. The CDA-
weighted and original target sentence representa-
tions are then concatenated and fed into a final layer
for prediction.

At training time, BCL-CDA is supervised with
target sentence labels. At testing time, it makes
target sentence-level predictions (S2D) just as in
training. We make a D2D prediction for each (S,
T) pair by taking the max over its sentence-level
predictions. See Appendix C for full model details.

4.4 Fine-tuned BERT-based Models

Finally, we evaluate fine-tuned BERT-based models
for sequence pair classification. Unlike the other
three classes of models described above, features
for these fine-tuned models cannot be precomputed.
Instead, at test time, a separate forward pass is re-
quired for each (S, T) or (S, ti) pair. Thus, though
these models might achieve better performance
than feature-based alternatives (Peters et al., 2019),
it may be unfeasible to test them on large collec-
tions where many pairwise computations would be
required.

Sequence Pair Models: We fine-tune
RobertaBase (Liu et al., 2019) using the standard
setup for sequence-pair tasks such as PD, STS,
and IR (Devlin et al., 2019; Akkalyoncu Yilmaz
et al., 2019). We create an input example for each
(source document S, target sentence ti) pair:

[CLS] < s1, ..., sn > [SEP] ti [SEP]
where < s1, ..., sn > contains the source docu-
ment, split into sentences, with each sentence
separated by a special [SSS] token (“source
sentence start”) and ti is a single target sentence.
We feed the [CLS] representation into a final layer

Table 1: Dataset statistics: the total number of (source
S, target T) example pairs, the average # of sentences
and words in each S and T, and the average # of posi-
tively labeled T sentences in each positive (S, T) pair.
For Pr2News, we report the average # of T sentences
with label > 0 in the human-labeled val and test sets.

Avg. Source Avg. Target
Dataset # Examples # Sents # Words # Sents # Words # Positive

PAN 18,903 23.7 527.6 22.4 538.5 14.0
S2ORC 188,311 7.2 190.7 11.5 335.8 1.2

Pr2News 64,779 35.3 934.7 30.1 761.3 8.7
ARC-Sim 105,381 5.0 126.6 16.7 400.8 1.2

to make a prediction for ti. Thus, making a
prediction for an entire (S, T) document pair
requires n forward passes, one for each ti ∈ T.

Domain-adapted Sequence Pair Models: As
shown by Gururangan et al. (2020), further pre-
training BERT-based models on in-domain text
improves performance on a variety of tasks. We
explore the effects of DAPT for LTRD, testing
Roberta models domain-adapted on either biomed-
ical publications, computer science publications or
news data. We fine-tune these models as above.

Sequential Sequence Pair Models: Since the
fine-tuned models discussed above operate on a
single ti at a time, they cannot leverage informa-
tion from the surrounding target context. Following
the success of BERT-based models for sequential
sentence classification (Cohan et al., 2019), we
construct new input examples containing the full
source and target documents, split into sentences:

[CLS]< s1, ..., sn >[SEP]< t1, ..., tn >[SEP]
Again, < s1, ..., sn > contains the source sen-
tences. Similarly, < t1, ..., tn > contains the tar-
get sentences, with each separated by a special
[TSS] token (“target sentence start”). We feed the
final [TSS] representations into a multi-layer feed-
forward network to make a prediction for each tar-
get sentence.

Each pair is labeled with all corresponding tar-
get sentence labels. Since many pairs exceed
Roberta’s 512 Wordpiece length limit, we use
LongformerBase (Beltagy et al., 2020), a Roberta-
based model with an adapted attention pattern to
handle up to 4,096 tokens. We put global attention
on the [SSS] and [TSS] tokens to allow the model
to capture cross-document sentence similarity.

5 Datasets

We benchmark the proposed models on four differ-
ent datasets (Table 1). See Appendix A for further
dataset stastics and preprocessing details.
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5.1 PAN (Zhou et al., 2020)

PAN contains pairs of (S, T) web documents where
T has potentially plagiarized S. Positive pairs
contain synthetic plagiarism, generated by meth-
ods such as back-translation (Potthast et al., 2013).
Negative examples are created by replacing S with
another, unplagiarized source text, S̃, sampled from
the corpus. D2D labels are binary: plagiarized or
not. The S2D labels for ti ∈ T are 1 if ti plagia-
rizes S, else 0 (labels in negative pairs are 0).

5.2 Pr2News (MacLaughlin et al., 2020)

Pr2News contains pairs of (press release S, science
news article T), where each T has reused content
from S. There are three aspects of this dataset
which are unlike the others we study: 1) All (S, T)
pairs are positive and contain reuse. Thus, we only
evaluate the S2D task. 2) While the val and test
sets are human-annotated, the (S, T) pairs in the
training set are labeled using a heuristic (TF-IDF
cosine similarity). Though there has been some
success training neural models on scores generated
by word-overlap heuristics for the problems of doc-
ument retrieval (Dehghani et al., 2017) and source
attribution (MacLaughlin et al., 2020), applications
of weakly-supervised models have not yet been
studied on human-labeled LTRD test sets. 3) Tar-
get sentences, ti ∈ T, in the val and test sets are
labeled on a 0-3 ordinal scale, ranging from no
reuse (0) to near or exact duplication (3).

5.3 S2ORC (Zhou et al., 2020)

S2ORC is a citation localization dataset, contain-
ing (abstract S, paper section T) pairs. Citation
localization consists of identifying which ti ∈ T,
if any, cite the source. All citation marks are re-
moved from the texts, so models can only make
predictions by comparing the language of S and
T, not just simply identify citation marks. Positive
examples are created by sampling scientific papers
from the broader S2ORC corpus (Lo et al., 2020),
finding sections in those papers that contain cita-
tion(s) to another paper in the corpus, and pairing
together the (cited source abstract S, citing section
T). Negative pairs are created by pairing T with
S̃, the abstract of a paper it does not cite. The D2D
labels are 0 for negative pairs, 1 for positive. The
S2D labels for ti ∈ T are 1 if ti contains a citation
of S, else 0. S2D labels for negative pairs are all 0.

The design of this dataset follows the assumption
that the citing sentence(s) in T often paraphrase or

summarize some portion of the cited paper, which
is, in turn, summarized by its abstract S. This
assumption, however, may be incorrect if the cit-
ing sentence is a poor summary of the cited paper
(Abu-Jbara and Radev, 2012) or it refers to con-
tent in the cited paper which is not included in
the abstract. Nevertheless, this assumption allows
for easy creation of large-scale, real-world LTRD
datasets. This is in contrast to Pr2News, which
is substantially smaller due its reliance on human-
annotated val and test labels, and PAN, which uses
automatic methods to generate synthetic examples.
We discuss the trade-offs of using citation marks to
generate LTRD datasets in §5.4.

5.4 ARC-Sim

Motivated by the design of S2ORC, we propose a
new citation localization dataset3 built on the ACL
Anthology Conference Corpus (ARC) (Bird et al.,
2008). Just as S2ORC, we construct our dataset
using citations links between papers. Thus, we
first break up each ARC paper by section, then use
ParsCit (Councill et al., 2008) to find all sections
that cite another paper in ARC. Positive examples
are pairs (abstract S, paper section T) where S is
cited by at least one ti ∈ T. Using this method we
generate 61,131 positive (S, T) pairs. Most (88%)
T contain only one positive sentence.

To create negative examples, we pair each S
from the positive samples with a new section, T̃,
that does not cite it. Importantly, T̃ is sampled from
the same target paper as the original T. This gen-
erates 44,250 negative pairs.4 We argue that these
negative samples method will be both more diffi-
cult and realistic than those in S2ORC. In S2ORC,
negatives are generated by sampling a new source
S̃ to pair with T. However, due to the large scale of
the corpus, S̃ and T are often completely unrelated
(e.g. Bio vs. CS). These examples, therefore, are
trivial and can be easily classified using simple lex-
ical overlap. In ARC-Sim, however, negatives are
generated by sampling a new section T̃ from the
same paper as T. We hypothesize that differentiat-
ing between these positive and negative examples
will 1) be more difficult since T̃ is likely still topi-
cally related to S and may contain some spurious
lexical or semantic overlap; 2) be more indicative
of real-world performance, since real users may

3Available for download here.
4We sample 1 negative pair per (source abstract, target

paper), so target papers that cite the source in more than 1
section will have more positive examples than negative.
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need to identify which specific sections in a full
target paper reuse content from the source. Further
preprocessing and dataset split information is de-
tailed in Appendix A. We use the same labeling
scheme as S2ORC.

With dataset creation complete, we sample a
set of 50 positive pairs from the val set to ana-
lyze in depth. Three expert annotators (authors
of this paper) perform the LTRD task, predicting
which ti ∈ T reuse content from S. Five pairs are
marked by all annotators (Fleiss’ Kappa: 0.83).
The remaining 45 are split into 15 per annotator.
Overall, we find that annotators mark more sen-
tences as reused (avg. 1.6 sents / target) than the
true citation labels (1.3 / target). This is reason-
able since T often only cites S once, even if it
discusses S in multiple sentences (Qazvinian and
Radev, 2010). These false negatives are one dis-
advantage of using citation marks as supervision.
Further, we find that annotators and ground truth
often, but not always, agree – annotators identify at
least one true citing sentence in 72% of pairs. This
difference is mostly due to 1) citing sentences that
discuss source content not described in the source
abstract; 2) OCR errors that can make text hard to
read. On the whole, we find that ACL-Sim is a use-
ful LTRD dataset, but there are clear avenues for
improvement, such as manually annotating reused
sentences without citation marks and improving
OCR.

6 Evaluation Settings & Metrics

D2D Metrics: We evaluate the D2D task as (S,T)
pair classification using F1 score. A positive label
indicates that T reuses content from S. A negative
label indicates no text reuse. There is no D2D task
for Pr2News since all examples are positive.

S2D Metrics: We evaluate S2D in two settings:
corpus level (i.e. evaluating all target sentences
from all pairs at once), and document level (i.e.
evaluating the sentences in each target document
w.r.t each other, then averaging scores across doc-
uments). The metrics for each setting depend
on the dataset. At the corpus level, we evaluate
binary-label datasets (PAN, S2ORC, ARC-Sim)
with sentence-level F1 and ordinal-label datasets
(Pr2News: 0-3 scale), with spearman’s correlation
(ρ) and NDCG@N (where N is the number of tar-
get sentences in the test set). At the document level,
we evaluate binary-label datasets with mean aver-
age precision (MAP) and top-k accuracy (Acc@k),

defined as the proportion of test examples where a
positively-labeled sentence in T is ranked in the top
k by the model. We evaluate ordinal-label datasets
with NDCG@{1,3,5}. Note, in order for these
document-level metrics to be meaningful, T must
contain at least one positive sentence. Thus, our
document-level evaluations are only calculated on
the positive (S,T) pairs in each dataset.5 Since
Pr2News only contains positive examples, we use
the full test set for all evaluations.

BERT-HAN & GRU-HAN: Since both HAN
models are trained on document-level, not sentence-
level, labels, we cannot train them on Pr2News,
where all document-level labels are positive. Thus,
we skip evaluating the HAN models on this dataset.

Domain-adapted RoBERTa Models: We eval-
uate three DAPT models: 1) Biomed-DAPT for
S2ORC and Pr2News since they contain biomed-
ical texts, 2) News-DAPT for Pr2News since the
target documents are news articles, 3) CS-DAPT
model for S2ORC and ARC-Sim since they contain
CS papers.6 We do not apply DAPT to PAN since
no models are adapted to a similar domain.

7 Results & Discussion

As seen in Tables 2 & 3, BERT-based models fine-
tuned on LTRD data perform the best in general,
outperforming lexical overlap, SBERT, and HNM.
Overall, models achieve their best performances on
PAN. We suspect that this is because many positive
(S, T) pairs are easy, containing many plagiarized
passages with high lexical overlap, and since many
negative (S̃, T) pairs are topically unrelated and
share little lexical or semantic overlap. On the other
end of the spectrum is ARC-Sim, where models
score relatively poorly. We hypothesize that this is
because most T only contain one citing sentence
and since, as discussed in §5.4, we focus on select-
ing hard negative target texts, T̃, sampled from the
same document as the original T.

5We confirmed that Zhou et al. (2020) calculate their
document-level metrics, MRR, P@5 and P@10, across all
(S,T) pairs. For the negative pairs, they give models full
credit on the S2D task if their corresponding D2D prediction
is correct. We argue that this is not indicative of model perfor-
mance, and thus conduct our document-level evaluations on
only positive pairs.

6CS- and Biomed-DAPT models are adapted on an internal
version of the S2ORC corpus (Lo et al., 2020). Since the
S2ORC LTRD dataset is randomly sampled from that same
corpus, it is possible that the DAPT models are pretrained on
some portion of the S2ORC LTRD test set. We do not believe
this overlap exists for any other (DAPT, LTRD dataset) pairs.
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Table 2: D2D and S2D results on PAN and S2ORC.

PAN S2ORC
Setting Model D2D-F1 S2D-F1 MAP Acc@1 Acc@3 Acc@5 D2D-F1 S2D-F1 MAP Acc@1 Acc@3 Acc@5

Single-pair
baselines

TF-IDF 84.5 69.6 92.4 97.3 99.8 99.8 90.4 27.1 52.9 36.0 65.9 79.6
Rouge 82.8 59.5 92.2 98.1 99.7 99.9 71.3 21.3 47.1 30.2 58.0 73.0

SBERT-STS 78.8 32.8 76.6 91.7 99.0 100.0 83.3 23.6 48.0 30.4 59.6 75.4
SBERT-PD 80.8 36.8 80.8 95.1 99.2 99.8 87.6 22.2 44.4 26.7 54.5 71.2
SBERT-IR 76.0 41.6 77.5 89.5 98.3 99.5 89.9 25.4 50.6 33.5 62.5 77.6

All-pairs
baselines

TF-IDF 86.7 79.4 94.5 97.7 99.7 100.0 91.1 26.5 51.1 33.6 63.7 78.8
Rouge 91.8 80.8 94.9 98.2 99.7 99.8 74.9 21.3 45.4 27.4 56.6 73.8

SBERT-STS 89.3 74.4 93.1 98.2 99.8 99.9 85.9 24.6 48.3 30.5 60.3 76.3
SBERT-PD 90.8 76.1 94.4 98.5 99.8 99.9 88.6 21.7 42.9 24.8 53.2 70.3
SBERT-IR 87.3 71.8 91.8 97.9 99.4 99.8 90.8 25.5 50.4 32.8 62.7 78.0

Hierarchical
Neural Models

Bert-Han (Shallow) 74.6 44.3 54.6 46.2 74.5 86.4 90.8 10.0 37.7 19.4 46.2 63.1
Gru-Han (Deep) 77.2 44.3 54.0 42.8 76.0 89.4 91.8 10.2 40.4 21.5 50.0 68.1

BCL-CDA 74.1 68.8 81.1 78.1 90.5 94.6 88.6 37.2 58.9 42.5 72.3 84.9

Fine-tuned
BERT

Roberta 95.0 82.2 96.8 99.2 99.9 100.0 88.8 54.2 76.7 65.7 88.3 94.4
Biomed-Roberta – – – – – – 90.3 54.0 77.6 66.8 89.2 94.7

CS-Roberta – – – – – – 89.9 54.1 77.7 67.2 89.3 94.9
Longformersequential 76.6 68.3 89.6 90.7 96.3 98.5 96.6 58.5 75.5 63.6 88.0 94.4

7.1 Impact of Weak Supervision

In general, the supervised BERT-based models out-
perform the unsupervised lexical overlap baselines.
The exception to this finding is Pr2News, where
the lexical overlap baselines Rougeap and Rougesp
have the best corpus-level and document-level S2D
scores, respectively. This result is perhaps not un-
expected, since, unlike other datasets, the label-
ing methods of Pr2News differ substantially be-
tween training (heuristic generated by TFIDFap
scores), validation (non-expert-labeled) and test
(expert-labeled). However, our results still contrast
Dehghani et al. (2017), who, working on a doc-
ument ranking task, find that weakly-supervised
neural models consistently outperform the unsuper-
vised methods used to label their training data. We
hypothesize that our negative finding might be due,
in part, to the small scale of Pr2News and our re-
liance on only a single heuristic as the supervision
signal source. To address this, future work could
explore applications on larger weakly-supervised
LTRD datasets, e.g. closer in scale to the 50M
document collection of Dehghani et al. (2017), and
improving the weak-supervision signal to better re-
flect human judgements, e.g. through combination
of multiple heuristics (Boecking et al., 2021).

7.2 Effectiveness of Off-the-shelf Tools

Next, we take a closer look at the performances
of SBERT (Reimers and Gurevych, 2019). Note,
these off-the-shelf models are trained on the re-
lated tasks of either PD, STS, or IR, not on our
LTRD datasets. Though PD, STS, and IR receive
substantially more attention in the NLP and IR
literature, prior research has not yet explored the
generalizability of models trained on these tasks
to LTRD. We focus in particular on SBERT-PD,

since Reimers and Gurevych (2019) recommend it
for various applications and claim that it achieves
strong results on various similarity and retrieval
tasks. Examining our results, however, we find the
opposite – SBERT performs worse in general than
the lexical overlap baselines, and SBERT-PD per-
forms no better than SBERT-IR (though both better
than SBERT-STS). We suspect that the SBERT
models would perform better if they were fine-
tuned on in-domain LTRD data. However, since
we aimed to evaluate the effectiveness of an off-
the-shelf tool, we did not test this hypothesis.

7.3 Importance of Document-level Context

To examine the importance of incorporating
document-level context for LTRD, we compare the
results of Roberta and Longformer.7 As noted in
§4, input to both models follows the standard BERT
sequence-pair setup (Devlin et al., 2019). However,
Roberta operates on pairs of source documents and
single target sentences (S, ti), while Longformer
operates on full document pairs (S, T), making
predictions for all target sentences simultaneously.

From Tables 2 & 3, we see that modeling tar-
get document context does not consistently im-
prove performance. While Longformer outper-
forms Roberta on the D2D and corpus-level S2D
tasks on most datasets, Roberta consistently scores
higher on document-level S2D. To investigate the
discrepancy between Longformer’s strong corpus-
level S2D performance and its relatively weaker
document-level S2D scores, we examine S2ORC

7Longformer is initialized from RobertaBase, but has addi-
tional parameters and is further pretrained on a long-document
corpus. Thus, though we cannot disentangle these effects from
the benefits of incorporating document-level context, we be-
lieve our experiments provide a relatively fair comparison
between two SoTA models for short vs. long input sequences.
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Table 3: D2D and S2D results on ARC-Sim and S2D results on Pr2News.

ARC-Sim Pr2News
Setting Model D2D-F1 S2D-F1 MAP Acc@1 Acc@3 Acc@5 ρ NDCG@N NDCG@1 NDCG@3 NDCG@5

Single-pair
baselines

TF-IDF 77.4 18.4 44.8 30.1 52.5 65.5 60.0 90.8 76.0 70.0 71.0
Rouge 75.3 14.6 36.6 21.8 42.4 55.5 64.5 94.2 77.3 77.0 77.7

SBERT-STS 76.3 15.0 39.6 23.6 47.0 61.4 35.5 81.6 40.3 42.8 49.2
SBERT-PD 77.2 16.6 41.4 25.8 48.1 62.5 36.4 82.6 48.7 51.2 55.4
SBERT-IR 76.9 16.9 41.3 25.7 49.2 62.8 35.3 79.7 54.0 54.7 54.5

All-pairs
baselines

TF-IDF 77.3 18.3 43.1 27.6 51.4 64.3 66.7 97.1 66.7 69.8 72.8
Rouge 75.1 12.9 35.9 20.2 42.0 56.4 67.2 97.3 69.7 74.6 77.4

SBERT-STS 76.7 15.8 39.2 23.1 46.7 60.8 58.0 94.8 59.2 61.1 64.4
SBERT-PD 77.2 16.6 40.4 24.4 47.8 61.3 63.0 96.4 70.3 70.8 71.4
SBERT-IR 77.4 16.9 40.2 24.3 47.9 62.5 56.1 94.2 56.3 62.4 63.3

Hierarchical
Neural Models

Bert-Han (Shallow) 78.7 7.5 35.5 19.8 41.1 56.5 – – – – –
Gru-Han (Deep) 79.7 22.1 43.5 27.2 53.2 67.3 – – – – –

BCL-CDA 79.9 30.8 55.3 38.5 67.7 80.4 26.3 80.2 24.3 32.5 37.1

Fine-tuned
BERT

Roberta 82.0 41.6 69.7 57.0 81.8 90.4 60.5 93.7 71.3 68.6 71.4
Biomed-Roberta – – – – – – 60.1 93.3 68.6 66.2 69.9
News-Roberta – – – – – – 60.6 93.4 68.3 67.8 70.6

CS-Roberta 81.6 44.0 69.5 56.7 81.7 89.8 – – – – –
Longformersequential 84.5 46.5 68.3 55.0 80.9 88.8 62.7 95.9 69.5 70.4 70.8

and ARC-Sim. At the corpus-level, Roberta mostly
makes false positives (FP) errors, while Long-
former makes roughly equal FP and FN errors
(and fewer errors overall). For both models, most
of these FPs occur in positive (S, T) pairs, i.e.
pairs where at least one ti cites S. As discussed
in §5, these errors are reasonable, since T often
only cites S once, even if it discusses S in multiple
sentences (Qazvinian and Radev, 2010). Roberta’s
more-frequent FP errors, however, do not affect
its document-level scores as much. Since, at the
document-level, we evaluate how well models rank
the ti in each T w.r.t each other, models perform
well if they score positive sentences higher than
negatives (no reuse). Indeed, though Roberta pre-
dicts high scores for many negatives, it does better
than Longformer at scoring positives higher, lead-
ing to better ranking performance.

Next, we first perform error analysis on PAN,
the only dataset where Roberta outperforms Long-
former across all metrics. We find that Roberta
makes few D2D errors, of which most (80%) are
FPs. Longformer, on the other hand, not only
makes substantially more errors overall, but splits
them roughly equally between FPs and FNs. These
FNs are especially surprising since many positive
examples in PAN have high lexical overlap. On
the other hand, for the corpus-level S2D task, we
find that both models have similar numbers of TPs
and FNs, but that Longformer generates an order of
magnitude more FPs, i.e. predicting that negative
target sentences contain reuse.

7.4 Effects of Domain-adaptive Pretraining
We next examine the benefits of DAPT. Gururangan
et al. (2020) find that further pretraining Roberta
on text from a new domain improves downstream

performance, provided that this new domain is sim-
ilar to the downstream task. To examine whether
this finding holds for LTRD, we conduct DAPT
evaluations on three datasets – S2ORC, ARC-Sim
and Pr2News. Unlike Gururangan et al. (2020),
however, we find mixed results. On ARC-Sim and
Pr2News, standard Roberta models outperform the
corresponding DAPT models on most metrics. The
ARC-Sim findings are especially surprising, since
its domain (NLP papers) is substantially different
from Roberta’s standard pretraining data (books,
news, web documents) and since Gururangan et al.
(2020) show strong performance gains from DAPT
on a classification dataset also based on ACL-ARC.
Moving on to S2ORC, our findings are reversed,
with both DAPT models outperforming Roberta.
However, as noted in §6, since the extra pretraining
data for these DAPT models is sampled from the
same corpus as S2ORC, we cannot be sure how
much of this boost is due to DAPT models pretrain-
ing on S2ORC’s test data.

7.5 Trade-offs between Models
Finally, we discuss the trade-offs between models,
focusing on differences in performance and rela-
tive computational efficiency. On one end of the
efficiency spectrum are the lexical overlap metrics
(TFIDF, Rouge-{1,2}) which are easily scaled to
large document collections by simply keeping track
of the ngrams in each source or target passage, then
computing word-overlap scores for each (S, T)
pair.8 As discussed in §4, we evaluate these metrics
in two settings, sp and ap, depending on whether
we compute similarity scores between target sen-

8Rouge-L cannot be scaled as easily as the other lexical
overlap baselines. However, it performs worse than Rouge-1
and -2 on all validation sets and is not applied to any test data.
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tences and entire source documents or with each
source sentence separately (then compute an aggre-
gate score). Though no single metric or evaluation
setting consistently achieves the best performance,
these models provides a very strong baseline, espe-
cially on the D2D task.

In the middle of the efficiency spectrum are
SBERT and HNM. Though these models require an
expensive forward pass to generate an embedding
for each source or target passage, these embeddings
can then be saved and reused. Scores for each (S,
T) pair can be computed relatively quickly by ei-
ther computing cosine similarity scores (SBERT)
or running the pair through a lighter-weight task-
specific architecture (HNM). However, we find
mixed and negative results regarding their effec-
tiveness. Specifically, as discussed in §7.2, off-
the-shelf SBERT models generally lag behind the
computationally-cheaper lexical overlap baselines.
Results are slightly more positive, though, for the
HNMs. BCL-CDA, the best HNM, achieves the
second best performance on two datasets (S2ORC,
ARC-Sim). However, it still lags behind the best
model, fine-tuned BERT, by a significant margin.
Further, it performs worse than lexical overlap base-
lines on the other datasets, PAN and Pr2News.
Turning next to the HAN models, we find that
though they achieve competitive D2D performance
on two of the three datasets, they have very weak
S2D scores. We suspect that this is because they
are only trained on the D2D task – at test time,
they make sentence-level predictions by computing
similarity scores between hidden source and target
representations extracted from a pretrained D2D
model. Due to this training formulation, the HAN
models fail to learn sentence-level representations
that are useful for prediction. See Appendix B for
a discussion of our efforts to replicate the results
from the HAN models on our datasets.

Lastly, the least efficient models are fine-tuned
BERTs, which require a separate forward pass to
compute a score for each (S, T) or (S, ti) pair. As
is the trend with other NLP tasks, though, these
computationally-intense and parameter-rich mod-
els achieve the best average performance. This
finding is clearest on S2ORC and ARC-Sim, where
few ti contain reuse and that reuse is non-literal
(e.g. paraphrase). On these datasets, the best
fine-tuned BERT outperforms the next-best model
(BCL-CDA) by an average of 6.3% (D2D) and
15.5% (S2D). However, on datasets where target

documents directly copy large spans of source
content with minimal changes (PAN) or where
large-scale supervised training data is unavailable
(Pr2News), fine-tuned BERT provides much less or
no improvement over the lexical overlap metrics.

8 Conclusion

We study methods for local text reuse detection,
identifying passages in a target document that lexi-
cally or semantically reuse content from a source.
Through evaluations on four datasets, including a
new citation localization dataset, we confirm the
strong performance of BERT models fine-tuned on
our task. However, we also find that lexical-overlap
methods, e.g. TFIDF, provide strong baselines, fre-
quently outperforming off-the-shelf neural passage
encoders and hierarchical neural models.

Based on these findings, we suggest practitioners
take one of two approaches: 1) in instances with
little labeled training data or where most reuse is
exact (i.e. copying), use traditional lexical over-
lap models; 2) in instances with large-scale labeled
training data and where much of the reuse is non-
literal (e.g. summarization, paraphrasing), use a
lexical overlap method to filter possible (S, T)
pairs, then run a more expensive fine-tuned BERT
on that subset. We suggest users opt for fine-tuned
BERT models over pretrained passage encoders
(SBERT) or HNMs for this second step since they
achieve substantially higher performance. Sugges-
tion #2 follows current approaches to neural IR,
where neural models only rerank smaller lists of
documents retrieved by a cheaper lexical overlap
method, e.g. TF-IDF. Performance may be fur-
ther boosted by fine-tuning BERT-based models
that incorporate document-level context (i.e. Long-
former) or ones that are adapted to the target do-
main of interest (i.e. DAPT), but often the standard
RobertaBase achieves highly competitive results.
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A Data Preprocessing

Table 4 lists the training, validation and test set
sizes for each dataset. Each split is separated into
the number of positive examples that contain reuse
and the number of negative examples that do not.
Below we discuss the data preprocessing steps we
follow for each dataset:

ARC-Sim We create this dataset using papers
from the ACL Anthology Conference Corpus (Bird
et al., 2008). Since we use citation marks to iden-
tify instances of text reuse, we use ParsCit (Coun-
cill et al., 2008) to first identify all in-line citation
marks. We then create examples by matching to-
gether a section in a paper that contains a citation
with the abstract of the cited paper (assuming the
cited paper is also in the ACL ARC). Since cita-
tion marks have a distinctive lexical pattern, we
remove them all after matching the pairs. We then
split sections and abstracts into sentences using
Stanford CoreNLP (Manning et al., 2014), keeping
track of where the original citation was in order to
generate S2D labels. We create negative examples
by matching a cited abstract together with another
section from the same paper as the original citing
section (the new section is selected so that it does
not cite the paper). Finally, for computational fea-
sibility, we limit source documents to 20 sentences
and target sections to 50, the 90th percentiles in the
data. We remove pairs where the citation occurs
after the 50th sentence in the target section. We
split the dataset into train/val/test by cited abstract
S, yielding the splits detailed in Table 4.

PAN: We download the public dataset. We filter
out 1) malformed positive pairs that do not con-
tain any positively-labeled sentences or contain
positively-labeled sentences with no words; 2) ex-
tremely long pairs which cause GPU memory is-
sues for our models, removing (source, target) pairs
that contain more than 4,000 tokens total (80th per-
centile). Following Zhou et al. (2020), we split
documents into sentences and tokenize them using
NLTK (Bird and Loper, 2004).

For the hierarchical neural models (BERT-HAN,
GRU-HAN, BCL-CDA), we follow Zhou et al.
(2020) and cap documents at a predefined number
of sentences so that the models fit in GPU memory.
We cap source documents at 50 sentences (90th per-
centile). We split examples with target documents
containing more than 45 sentences (90th percentile)
into multiple examples, i.e. (source document, first
45 sentences of target document), (source docu-
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Table 4: Number of examples in the training, validation and test sets of each dataset, split into numbers of positive
and negative examples. Pr2News contains no negative examples.

Train Val Test
Dataset # Pos # Neg # Pos # Neg # Pos # Neg

PAN 6,152 7,567 1,243 1,336 1,253 1,352
S2ORC 74,807 75,861 9,262 9,562 9,258 9,561

Pr2News 64,684 – 45 – 50 –
ARC-Sim 50,197 36,227 5,269 3,852 5,665 4,171

ment, next 45 sentences of target document), and
so on. Predictions for split examples are merged
back together at test time.

S2ORC: We download the public dataset. As
for PAN, we filter out malformed positive pairs that
do not contain any positively-labeled sentences or
contain positively-labeled sentences with no words.
S2ORC examples, are, in general, short and do
not require length-based filtering. Following Zhou
et al. (2020), we split documents into sentences
and tokenize them using NLTK (Bird and Loper,
2004).

For the hierarchical neural models (BERT-HAN,
GRU-HAN, BCL-CDA), we cap source documents
at 20 sentences (99th percentile). We split exam-
ples with target documents containing more than 29
sentences (99th percentile) into multiple examples
and merge back predictions at test time.

Pr2News: We obtain the preprocessed and fil-
tered Pr2News dataset from MacLaughlin et al.
(2020, §4-5), who created it with data from Alt-
metric. We evaluate models on the provided test
set of 50 expert-labeled (press release, news arti-
cle) pairs. We use the set of 45 non-expert-labeled
(press release, news article) pairs as our validation
set (we filter out the 5 spurious validation set pairs
noted by MacLaughlin et al. (2020)). Finally, we
use the remaining 64,684 pairs labeled with their
TF-IDF cosine similarity heuristic as training data.
For pairs with more than one matched press release,
we select the press release with the highest TFIDF
cosine similarity to the news article.

For the hierarchical neural models (BERT-HAN,
GRU-HAN, BCL-CDA), we cap source documents
at 54 sentences (90th percentile). We split exam-
ples with target documents containing more than 57
sentences (90th percentile) into multiple examples
and merge back predictions at test time.

B Implementation of BERT-HAN and
GRU-HAN

Although we use the official source code from
Zhou et al. (2020) to run the HAN models, our
results differ on PAN and S2ORC from their
originally reported results (mostly slightly, but,
in one instance, substantially). With the excep-
tion of using BERTBASE as the passage encoder
for BERT-HAN instead of BERTLARGE , we fol-
low their recommended hyperparameters. But,
as compared with the results from Zhou et al.
(2020), on the D2D task (measured by F1), BERT-
HAN’s scores are substantially lower on PAN and
slightly lower on S2ORC. GRU-HAN’s scores, on
the other hand, are very slightly higher on both
PAN and S2ORC. We hypothesize that the minor
differences in performance are due to 1) differ-
ences in model random initialization (Reimers and
Gurevych, 2017); 2) differences in the datasets – as
noted in Appendix A, we filtered out some exam-
ples from PAN and S2ORC since they contained
some malformed positive examples with either no
positively-labeled sentences or positively-labeled
sentences that were empty strings; 3) for BERT-
HAN, we use BERTBASE as the encoder rather
than BERTLARGE . Despite these factors, BERT-
HAN’s large performance drop on PAN is still sur-
prising. However, we emphasize that even when
using Zhou et al. (2020)’s original numbers, BERT-
HAN still lags behind both our lexical overlap base-
lines and fine-tuned BERT models, so our overall
takeaways from §7 still stand.

For the S2D task, our results are not directly
comparable to the original numbers of Zhou et al.
(2020) for two reasons:

1. We use different metrics – we use MAP and
Acc@k, while they use MRR and P@k. MAP
is more appropriate than MRR since there
are often multiple positively-labeled target
sentences. Acc@k is more appropriate than
P@k when k is greater than the number of
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positively-labeled target sentences. When
there are fewer than k positively-labeled tar-
get sentences in an example, a perfect system
will still have a P@k < 1. Systems receive
a perfect Acc@k score, on the other hand, if
at least one positively-labeled target sentence
appears anywhere in the top k.

2. We evaluate on different sets of the data – as
noted in §6 , Zhou et al. (2020) calculate their
S2D ranking metrics (MRR, P@k) on all test
examples, both positive and negative. How-
ever, these metrics cannot be computed on
negative examples where no target sentences
contain reuse. We confirmed with Zhou et al.
(2020) that, in these instances, they give their
models full credit if the corresponding D2D
prediction is correct, i.e. the model predicts
that the target document contains no reuse.
Since many negative examples in PAN and
S2ORC are easy to classify, this manner of
calculation substantially inflates the results.
To address this, we calculate our S2D rank-
ing metrics (MAP, Acc@k) on only the sub-
set of positive examples. Calculating in this
way shows substantially decreased S2D per-
formance for the HAN models.

C Model Hyperparameters & Best
Configurations

Below, we discuss all searched hyperparameters
(HP) for each model. For all models, we search
for a threshold, t ∈ [0, 1], to differentiate between
positive and negative sentence and document pre-
dictions (not used for the Pr2News dataset). Table 5
lists the optimal HP values for each dataset (as se-
lected by average performance on the val set).

All neural models, with the exception of BCL-
CDA (Tensorflow: Abadi et al. (2015)) were imple-
mented in Pytorch (Paszke et al., 2019) and run on
16GB or 32GB Nvdia P100s or V100s.

TF-IDF: We search over n-gram size (unigrams
or unigrams & bigrams).

Rouge: We search over three different Rouge
measures, Rouge-{1, 2, L}.

Sentence-BERT: None except threshold. We
test the following pretrained Sentence-BERT
models: Semantic Textual Similarity: stsb-
roberta-large, Paraphrase Detection: paraphrase-
distilroberta-base-v1, Information Retrieval:
msmarco-distilroberta-base-v2.

BERT-HAN (shallow): We use the suggested
batch size (256), HAN hidden dimension size (50),
and early stopping criterion (no improvement on
val set for 5 epochs). We perform a search over
Adam (Kingma and Ba, 2015) learning rates ∈
{1e-5, 2e-5, 5e-5, 1e-4}. We use BERTBASE
as the sentence encoder instead of BERTLARGE
for efficiency reasons. For the S2ORC and ARC-
Sim datasets, we find that BERT-HAN’s S2D per-
formance is substantially higher when we rank
sentences by the complement of their scores, i.e.
scorenew = 1 − scoreold. This, in effect, inverts
the predicted target sentence ranking for each doc-
ument (we select this transformation based on val
set results). We are only able to achieve results
roughly on par with those reported in Zhou et al.
(2020) using this trick. This trick is not necessary
for the PAN dataset nor for the GRU-HAN model.

GRU-HAN (deep): We use batch size 128 and
50 dimensional GloVe embeddings. Otherwise, the
HPs are the same as for BERT-HAN.

BCL-CDA: We adapt the BCL model from
MacLaughlin et al. (2020) for LTRD as follows
(see MacLaughlin et al. (2020) for details of the
BCL model): Each source and target sentence is
fed into frozen BERTBASE separately. We then
use a CNN with 1-max pooling over time to aggre-
gate the token representations from BERT’s second
to last layer into a single representation for each
sentence. We search over CNN filter size ∈ {3,5,7}
and number of filters ∈ {50, 100, 200}. The sen-
tence representations in each source or target docu-
ment are then contextualized with document-level
BiLSTMs (two separate BiLSTMs for source or tar-
get documents). We search over hidden dimension
size ∈ {64, 128} (same dimensionality for both
BiLSTMs). After the BiLSTM layer, we are left
with si ∈ S and ti ∈ T, contextualized sentence
representations for the sentences in the source and
target documents. Next, we use a sentence-level
CDA layer to compute t̃i, an attention-weighted
(Luong et al., 2015, §3.1: general attention) rep-
resentation of ti, weighted by its similarity to the
sentences si ∈ S. Finally, we concatenate [t̃i;ti]
and feed this to a final layer to make a prediction
for each target sentence.

We set dropout at 0.2, batch size at 32, and
search over the max number of epochs (10, with
early stopping). We optimize with Adam with
learning rate ∈ {1e-4, 5e-4}. For the PAN, S2ORC
and ARC-Sim datasets, we use weighted cross-
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Table 5: Best HP configurations for all models across all datasets. t is the classification threshold (only for PAN,
S2ORC and ARC-Sim). BERT-HAN and GRU-HAN have two thresholds, one for document classification, the
other for sentence classification. All other models have a single, sentence-level threshold. n-gram is the n-gram
range for TF-IDF (unigrams or unigrams and bigrams). For the neural models: e is epochs, lr is learning rate, and
w is the weight placed on positive examples in weighted cross-entropy loss (weight on negative examples is 1).
For BCL-CDA, fs is the CNN filter size, nf is number of CNN filters, and lhd is the BiLSTM hidden dimension.
‘–’ indicates that there are no HPs to be optimized. ‘×’ indicates that the model is not trained on that dataset.

PAN S2ORC ARC-Sim Pr2News

Single-pair
baselines

TF-IDF t = 0.10, n-gram = 1 & 2 t = 0.04, n-gram = 1 & 2 t = 0.04, n-gram = 1 & 2 n-gram = n-gram = 1 & 2
Rouge t = 0.03, rouge = R-2 t = 0.02, rouge = R-2 t = 0.02, rouge = R-2 rouge = R-2

Robertamean (STS) t = 0.46 t = 0.48 t = 0.48 –
DistilRobertamean (PD) t = 0.41 t = 0.39 t = 0.42 –
DistilRobertamean (IR) t = 0.38 t = 0.38 t = 0.44 –

All-pairs
baselines

TF-IDF t = 0.17, n-gram = 1 & 2 t = 0.14, n-gram = 1 t = 0.14, n-gram = 1 n-gram = 1 & 2
Rouge t = 0.40, rouge = R-1 t = 0.27, rouge = R-1 t = 0.24, rouge = R-1 rouge = R-2

Robertamean (STS) t = 0.63 t = 0.53 t = 0.52 –
DistilRobertamean (PD) t = 0.58 t = 0.42 t = 0.45 –
DistilRobertamean (IR) t = 0.61 t = 0.43 t = 0.48 –

Frozen
BERT

Bert-Han (Shallow) doc t = 0.41, sent t = 0,
lr =5e-5

doc t = 0.34, sent t = 0.0,
lr =2e-5

doc t = 0.33, sent t =
0.08, lr = 1e-4

×

Gru-Han (Deep) doc t = 0.34, sent t = 0,
lr = 1e-5

doc t = 0.33, sent t =
0.01, lr = 5e-5

doc t = 0.42, sent t = 0.11,
lr = 1e-4

×

BCL-CDA t = 0.57, lr =5e-4, e = 7,
w = 5, fs = 5, nf = 50,
lhd = 128

t = 0.44, lr =5e-4, e = 5,
w = 5, fs = 3, nf = 50,
lhd = 128

t = 0.74, lr =1e-4, e = 3,
w = 15, fs = 5, nf =
200, lhd = 64

lr =5e-4, e =7, fs = 7,
nf = 200, lhd = 128

Fine-tuned
BERT

Biomed-Robertasingle × t = 0.34, lr = 2e-5, e =
2,w = 3

× lr = 3e-5, e = 1

CS-Robertasingle × t = 0.47, lr = 2e-5, e =
3,w = 3

t = 0.51, lr = 2e-5, e =
5,w = 10

×

News-Robertasingle × × × lr = 3e-5, e = 1
Robertasingle t = 0.91, lr =3e-5, e = 4,

w = 1
t = 0.4, lr = 2e-5, e = 4,
w = 3

t = 0.39, lr = 2e-5, e =
3,w = 5

lr = 2e-5, e = 2

Longformerseq t = 0.52, lr = 5e − 5,
e = 9,w = 5

t = 0.41, lr =3e-5, e =19,
w =5

t = 0.53, lr =3e-5, e =12,
w = 5

lr = 5e− 5, e = 7

entropy loss since the datasets are unbalanced
(many more negative sentences than positive). We
search over the weight w to put on examples from
the positive class. Weights vary by dataset since
datasets are not equally imbalanced: PAN ∈ {1, 3,
5}, S2ORC ∈ {3, 5, 10}, ARC-Sim ∈ {10, 15, 20}.
Following MacLaughlin et al. (2020), we use MAE
loss for Pr2News.

Fine-tuned RoBERTaBASE , DAPT, and
Longformer: We search over Adam learning rate
∈ {2e-5, 3e-5, 5e-5}. We use batch size 32 (with
gradient accumulation to ensure that batches fit
in GPU memory) and train models for 10 epochs
at most (20 for Longformer), with early stopping.
For PAN, S2ORC and ARC-Sim, following BCL-
CDA, we search over weight w for weighted cross-
entropy loss. We search over the same w ranges
for each dataset as for BCL-CDA, except for ARC-
Sim, where we search over w ∈ {5, 10, 20}. We
use MAE loss for Pr2News.
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Abstract

Abductive reasoning starts from some observa-
tions and aims at finding the most plausible ex-
planation for these observations. To perform
abduction, humans often make use of temporal
and causal inferences, and knowledge about
how some hypothetical situation can result in
different outcomes. This work offers the first
study of how such knowledge impacts the Ab-
ductive αNLI task – which consists in choos-
ing the more likely explanation for given ob-
servations. We train a specialized language
model LMI that is tasked to generate what
could happen next from a hypothetical sce-
nario that evolves from a given event. We then
propose a multi-task model MT L to solve
the αNLI task, which predicts a plausible ex-
planation by a) considering different possible
events emerging from candidate hypotheses –
events generated by LMI – and b) selecting
the one that is most similar to the observed
outcome. We show that ourMT L model im-
proves over prior vanilla pre-trained LMs fine-
tuned on αNLI. Our manual evaluation and
analysis suggest that learning about possible
next events from different hypothetical scenar-
ios supports abductive inference.

1 Introduction

Abductive reasoning (AR) is inference to the best
explanation. It typically starts from an incomplete
set of observations about everyday situations and
comes up with what can be considered the most
likely possible explanation given these observa-
tions (Pople, 1973; Douven, 2017). One of the key
characteristics that make abductive reasoning more
challenging and distinct from other types of reason-
ing is its non-monotonic character (Strasser and An-
tonelli, 2019) i.e., even the most likely explanations
are not necessarily correct. For example, in Figure
1, the most likely explanation for Observation 1:

“wet grass outside my house” is that “it has been

The grass outside my house is wet 

The sprinkler outside was switched on

Observation 2

It rained last night 

Sprinkler made 
the grass wet

Plausible ExplanationObservation 1 

:  

:  

Figure 1: Motivational example illustrating Abductive
Reasoning and its non-monotonic character.

raining”. However, when a new piece of informa-
tion (observation or evidence) becomes available,
the explanation must possibly be retracted, show-
ing the defeasible character of abduction. With the
new observation (“the sprinkler was switched on”)
the most plausible explanation changes to “Sprin-
kler caused the grass to be wet”. Humans, in such
situations, could induce or validate such abductive
inferences by performing hypothetical reasoning
(such as “What would happen if the sprinkler was
switched on?”) to arrive at a plausible explanation
for “wet grass outside my house”.

In this work, we focus on the αNLI task (Bhaga-
vatula et al., 2020), where given two observations
(O1 at time t1, O2 at time t2, with t1 < t2) as an
incomplete context, the task is to predict which of
two given hypothesized events (H1 or H2) is more
plausible to have happened between O1 and O2.
Figure 2 illustrates this with an example: given ob-
servations O1:“Priya decided to try a new restau-
rant.” and O2: “Priya thought her food was deli-
cious.”, the task is to predict whether H1 or H2 is
the more plausible explanation given observations
O1 and O2. Both H1 and H2 are different plausi-
ble hypothetical situations that can evolve from the
same observation (premise) O1.

In this paper, we hypothesize that learning how
different hypothetical scenarios (H1 and H2) can
result in different outcomes (e.g., OHj2 , Fig. 2) can
help in performing abductive inference. In order to
decide which Hi, is more plausible given observa-
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O1 : Priya decided to try a new restaurant.
O2 : Priya thought her food was delicious.

!"#$: Priya was disappointed in the quality of the food.

Hypothesis

!"#&: She was excited to try them out.

LM

Observations

LM

'" : The food that Priya
ordered was 

microwaved and 
precooked.

'( : She ordered two 
shrimp dishes What if

'( '"

Figure 2: Motivational example for αNLI : The top box
(red) shows the observations and two callout clouds
(green) contain the hypotheses. The implications (OHi

i )
– generated by the LM conditioned on each hypothesis
and the observations – are given in pink colored boxes.

tions, we assume each Hi to be true and generate a
possible next event OHi2 for each of them indepen-
dently (e.g.: What will happen if Priya’s ordered
food was microwaved and precooked?). We then
compare the generated sentences (OH1

2 ,OH2
2 in Fig.

2) to what has been observed (O2) and choose as
most plausible hypothesis the one whose implica-
tion is closest to observation O2.

We design a language model (LMI ) which,
given observations and a hypothesis, generates
a possible event that could happen next, given
one hypothesis. In order to train this language
model, we use the TIMETRAVEL (TT) corpus
(Qin et al., 2019) (a subpart of the ROCStories
corpus1). We utilize the LMI model to generate
a possible next event for each hypothesis, given
the observations. We then propose a multi-task
learning model MT L that jointly chooses from
the generated possible next events (OH1

2 or OH2
2 )

the one most similar to the observation O2 and
predicts the most plausible hypothesis (H1 or H2).

Our contributions are: i) To our best knowledge,
we are the first to demonstrate that a model that
learns to perform hypothetical reasoning can sup-
port and improve abductive tasks such as αNLI.
We show that ii) for αNLI our multi-task model
outperforms a strong BERT baseline (Bhagavatula
et al., 2020).

Our code is made publicly available.2

2 Learning about Counterfactual
Scenarios

The main idea is to learn to generate assumptions,
in a given situation, about “What could have hap-

1We ensure that αNLI testing instances are held out.
2https://github.com/Heidelberg-NLP/

HYPEVENTS

!"
!#$%

!" &'

&"

!#$(&#

(a) )*+,

(c) Learning to generate possible future event for each hypothesis  

!#

!#

-#

-#.
Counterfactual-"

-/

-/.
(b) Counterfactual Reasoning from TimeTravel

Figure 3: Different reasoning schemes and settings for
our task and approach. The arrows denote the direc-
tion (temporal flow) of the reasoning chain. The dotted
arrow in (b) denotes the derivation of a counterfactual
situation s′2 from a factual s2. In (c), the dotted arrows
denote the learned inference; the dotted lines indicate
the similarity between O2 and OHi

2 .

pened (next) if we had done X?” or “What could
happen (next) if we do X?” (Bhatt and Flanagan,
2010). Figure 3(a) depicts the αNLI task frame-
work. We hypothesize that getting to know what
will happen (next) if any of two hypotheses occurs,
will help us verifying which of them is more plau-
sible (see Fig. 3(c)). Therefore, we encourage the
model to learn how different hypothetical events
(including counterfactual events) evolving from the
same premise (s1) can lead to different or similar
outcomes (see Fig. 3(b)).

Accordingly, we teach a pre-trained GPT-2 (Rad-
ford et al., 2019) language model how to generate
a sequence of possible subsequent events given dif-
ferent hypothetical situations in a narrative setting.
Training such a model on narrative texts encourages
it to learn causal and temporal relations between
events. We train a conditional language model,
LMI , which generates a possible event that could
happen next, given some counterfactual scenarios
for a given story.

We train this model on the TIMETRAVEL (TT)
dataset (Qin et al., 2019), by fine-tuning GPT-2 to
learn about possible next events emerging from a
situation in a story, given some alternative, coun-
terfactual event. The TT dataset consists of five-
sentence instances S=(s1,s2,..,s5)3 from the ROC-
Stories corpus1 plus additional crowd-sourced sen-

3s1 = premise, s2 = initial context, s3:5 = original ending
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O1: Dotty was being very grumpy.
O2: She felt much better afterwards.
H1: Dotty ate something bad.
H2: Dotty call some close friends to chat.
OH1

2 : She started to feel sick.
OH2

2 : They all tried to make her happy.

Table 1: Example of generated possible next events
O

Hj

2 using the LMI model. Bold hypothesis (H2) is
more plausible.

tences s
′
2:5, where s

′
2 is counterfactual4 to s2 from

the original story5. There are two reasons for using
the TT dataset for our purposes: a) the domains on
which GPT-2 was pretrained are broad6 and differ-
ent from the domain of ROCStories, b) the model
can see how alternative situations can occur start-
ing from the same premise s1, resulting in similar
or different outcomes. Note that, although inter-
mediate situations may be counterfactual to each
other, the future outcome can still be similar to the
original ending due to causal invariance 7.

Concretely, the language model LMI reads the
premise (s1) and the alternative event(s) (s2 or s

′
2),

the masked token (serving as a placeholder for the
missing possible next event(s) (s3:i or s

′
3:i), then

the rest of the story (si+1:5 or s
′
i+1:5) and again

the premise (s1). We train the model to maximize
the log-likelihood of the missing ground-truth sen-
tence(s) (s3:i).

LLMI (β) =
logpβ (s3:i|[S]s1, [M ], si+1:5, [E], [S], s1, s2)

+logpβ (s
′
3:i|[S]s1, [M ], s

′
i+1:5, [E], [S], s1, s

′
2)

(1)

where i ∈ [3, 4], si={wsi1 , .., wsin } a sequence of
tokens, [S]=start-of-sentence token, [E]=end-of-
sentence token, [M ]=mask token.

3 Generating Hypothetical Events to
support the αNLI task

In this paper, we aim to investigate whether models
perform better on the αNLI task when explicitly
learning about events that could follow other events
in a hypothetical scenario. We do so by introduc-
ing two methods LMI + BERTScore and LMI +

4a counterfactual s
′

states something that is contrary to s
5During our experiments we treat them as two separate

instances: S1=(s1:5) and S2 = (s1,s
′
2:5).

6GPT-2 was trained on the WebText Corpus.
7the future events that are invariant under the counterfac-

tual conditions (Qin et al., 2019)

MT L for unsupervised and supervised settings,
respectively.

We first apply the trained model LMI on the
αNLI task, where the given observations O1 and
O2, and alternative hypothesesHj are fed as shown
in (2) below.8

O
Hj
2 = β([S], O1, [M ], O2, [E], [S], O1, Hj) (2)

We generate a possible next event for each hy-
pothetical event Hj , i.e., OH1

2 and OH2
2 (or: what

will happen if some hypothesisHj occurs given the
observations), where j ∈ [1, 2]. Table 1 illustrates
an example where different OHj2 are generated us-
ing LMI . One of the challenges when generating
subsequent events given a hypothetical situation
is that there can be infinite numbers of possible
next events. Therefore, to constrain this range, we
chose to give future events (O2) as input, such that
the model can generate subsequent events in a con-
strained context.

3.1 Unsupervised Setting

In this setting, we do not train any supervised
model to explicitly predict which hypothesis is
more plausible given the observations. Instead,
we apply the fine-tuned LMI model to the αNLI
data, generate possible next events OHj2 given O1

and Hj , as described above, and measure the simi-
larity between such possible next events (OHj2 ) and
the observation (O2) in an unsupervised way, using
BERTScore (BS) (Zhang et al., 2020) 9. We evalu-
ate our hypothesis that the generated possible next
event OHj2 given the more plausible hypothesis Hj

should be more similar to observation O2. Table 1
illustrates an example where H2 is the more plau-
sible hypothesis. We impose the constraint that
for a correctly predicted instance BS(O2

H+
, O2)

> BS(O2
H− , O2) should hold, where H+, H−

are the more plausible vs. implausible hypothesis,
respectively.

3.2 Supervised Setting

In this setting, displayed in Figure 4, we explore
the benefits of training a multi-taskMT L model
that predicts i) the most plausible hypothesis and
ii) which possible next event (OHj2 ) is more similar

8For definition of placeholders see (1).
9BERTScore is an automatic evaluation metric for text gen-

eration that leverages the pre-trained contextual embeddings
from BERT and matches words in candidate and reference
sentences by cosine similarity.
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Shared Layers

Figure 4: Overview of our LMI + MT L model for
αNLI: (a) language modelLMI takes the input in a par-
ticular format to generate different possible next events,
(b) theMT L model learns to predict the best explana-
tion (Hj) and possible next events (OHj

2 ) at the same
time to perform the αNLI task.

to the observation (O2). Multi-task learning aims
to improve the performance of a model for a task
by utilizing the knowledge acquired by learning
related tasks (Ruder, 2019). We hypothesize that a)
the possible next event OHj2 of the more plausible
hypothesis Hj should be most similar to observa-
tion O2, and that b) learning which possible next
event is more similar supports the model in the
αNLI task (inductive transfer).

The architecture of LMI + MT L model is
shown in Figure 4. The model marked (a) in Fig-
ure 4 depicts the LMI model as described in §3.
The outputs of the LMI model, which we get from
Eq. (2) for both hypotheses are incorporated as an
input to theMT L model. Concretely, we feed the
MT L classifier a sequence of tokens as stated in
part (b) of Figure 4, and aim to compute their con-
textualized representations using pre-trained BERT.
The input format is described in Table 3. Similar
to (Devlin et al., 2019), two additional tokens are
added [CLS] at the start of each sequence input and
[SEP] at the end of each sentence. In the shared
layers (see Fig 4(b)), the model first transform the
input sequence to a sequence of embedding vectors.
Then it applies an attention mechanism that learns
contextual relations between words (or sub-words)
in the input sequence.

For each instance we get four [CLS] embed-
dings (CLSHj , CLSOHj2

; j ∈ [1, 2]) which are

then passed through two linear layers, one for the
αNLI (main task) and another for predicting the

Task Train Dev Test

αNLI 169654 1532 3059
TimeTravel (NLG) 53806 2998 –

Table 2: Dataset Statistics: nb. of instances

Input Format Output
[CLS] O1 [SEP] Hi [SEP] O2 [SEP] H1 or H2

[CLS] Hi [SEP] OHi2 [SEP] O2[SEP] OH1
2 or OH2

2

Table 3: Input and output format for the αNLI task:
[CLS] is a special token used for classification, [SEP]
a delimiter.

similarity (auxiliary task) between OHj2 and O2.
We compute the joint loss function L = LαNLI +
w ∗ Lsimilarity; where w is a trainable parameter,
LαNLI and Lsimilarity are the loss function for the
αNLI task and auxiliary task, respectively.

4 Experimental Setup

Data. We conduct experiments on the ART (Bha-
gavatula et al., 2020) dataset. Data statistics are
given in Table 2. For evaluation, we measure accu-
racy for αNLI.

Hyperparameters. To train the LMI model we
use learning rate of 5e − 05. We decay the learn-
ing rate linearly until the end of training; batch
size: 12. In the supervised setting for the αNLI
task, we use the following set of hyperparameters
for ourMT L model with integrated LMI model
(LMI + MT L): batch size: {8, 16}; epochs:
{3, 5}; learning rate: {2e-5, 5e-6}. For evaluation,
we measure accuracy. We use Adam Optimizer,
and dropout rate = 0.1. We experimented on GPU
size of 11GB and 24GB. Training is performed us-
ing cross-entropy loss. The loss function is LαNLI
+ w ∗ Lsimilarity, where w is a trainable parame-
ter. During our experiment we initialize w = 1.
The input format is depicted in Table 3. We report
performance by averaging results along with the
variance obtained for 5 different seeds.

Baselines. We compare to the following baseline
models that we apply to the αNLI task, training
them on the training portion of the ART dataset
(cf. Table 2).

• ESIM + ELMo is based on the ESIM model
previously used for NLI (Chen et al., 2017).
We use (a) ELMo to encode the observations
and hypothesis, followed by (b) an attention
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Model Dev Acc.(%) Test Acc.(%)

Majority (from dev set)� – 50.8
LMI + BERTScore 62.27 60.08
Infersent � 50.9 50.8
ESIM + ELMo � 58.2 58.8
BERTLarge � 69.1 68.9±0.5
GPT-2 +MT L 68.9±0.3 68.8±0.3
COMET +MT L 69.4±0.4 69.1±0.5
LMI +MT L 72.9±0.5 72.2±0.6
Human Performance - 91.4

Table 4: Results on αNLI task, � : as in Bhagavatula
et al. (2020) (no unpublished leaderboard results). For each
row, the best results are in bold, and performance of our
models are in blue.

layer, (c) a local inference layer, and (d) an-
other bi-directional LSTM inference composi-
tion layer, and (e) a pooling operation,

• Infersent (Conneau et al., 2017) uses sentence
encoding based on a bi-directional LSTM ar-
chitecture with max pooling.

• BERT (Devlin et al., 2019) is a LM trained
with a masked-language modeling (MLM)
and next sentence prediction objective.

As baselines for using the MT L model, we
replace LMI with alternative generative LMs:

• GPT-2 + MT L. In this setup, we directly
use the pretrained GPT-2 model and task it
to generate a next sentence conditioned on
each hypothesis (OHi2 ) without finetuning it
on the TIMETRAVEL data. We then use the
supervisedMT L model to predict the most
plausible hypothesis and which of the gener-
ated observations is more similar to O2.

• COMET +MT L. In this setting, we make
use of inferential if-then knowledge from
ATOMIC (Sap et al., 2019a) as background
knowledge. Specifically, we use COMET to
generate objects with Effect10 relations for
each hypothesis as a textual phrase.

5 Results

In Table 4, we compare our models LMI +
BERTScore and LMI +MT L against the mod-
els proposed in Bhagavatula et al. (2020): a ma-
jority baseline, supervised models (Infersent and

10as a result PersonX feels; as a result PersonX wants;
PersonX then

ESIM+ELMo), as well as BERTLarge. Bhagavat-
ula et al. (2020) re-train the ESIM+ELMo and In-
fersent models on the ART dataset and fine-tuned
the BERT model on the αNLI task and report the
results.

We find that our unsupervised model with
BERTScore (LMI + BERTScore) outperforms (by
+9.28 pp. and +1.28 pp.) strong ESIM+ELMo and
Infersent baseline models. Table 5 shows some ex-
amples of our generation model LMI along with
the obtained BERTScores.

Unlike the unsupervised LMI + BERTScore,
our supervised LMI + MT L model also im-
proves over the BERTLarge baseline, by +3.3 pp.
We can attribute the improvement to the model
having been jointly trained to assess the similarity
and dissimilarity of possible next events OHj2 and
observations (O2) along with the αNLI task. One
of the advantages of training our proposed multi-
task learning (MT L) model, instead of directly
feeding the possible next events OHj2 as knowledge
inputs is that it adds an explainable component to
the model. One can view the generated next events
O
Hj
2 as natural language rationales and our multi-

task model explicitly chooses one of them. Hence,
the multi-task framework makes the model more
expressive. Finally, we compare, for the MT L
model, our embedded generation model LMI to
pre-trained GPT-2 and COMET. Table 4 shows that
LMI +MT L yields better performance compared
to both COMET +MT L (+3.1 pp.) and GPT-2 +
MT L (+3.4 pp.) – the intuitive reason being that
the next events generated by LMI are more helpful
than events generated using pretrained GPT-2 and
objects generated by COMET.

Table 5 illustrates some examples where our
MT L model not only chooses the correct hypoth-
esis, but also a likely possible next event that is
similar to the observation O2. Interestingly, dur-
ing training ofMT L we initialize w = 1, and af-
ter training the model we found the w value had
been adjusted to a range between 0.85 and 0.75,
which intuitively shows both the effectiveness of
our LMI -generated possible next events, and their
similarity to the given observations O2.

5.1 Case Study

Table 5 displays possible next events, generated by
our LMI model – along with the BERTscore mea-
sured between the possible next events OHj2 and
observation O2. We see two different scenarios:
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Observation (O) Given Hypotheses (Hj) What if Hj happens?
Generated possible next
events OHj2

MTL Reasoning
Type

BERT
Score

Human
Evalua-
tion

a. O1: Jim got ready for his
first date.

H1: Jim’s date wasn’t at-
tracted to him.

OH2
1 : He tried to get her num-

ber. She never responded to
him.

H1, OH1
2 Reaction 47.34 Non-

Contradiction

O2: Since then, she has ig-
nored all of Jim’s text mes-
sages.

H2: Jim went on the date and
said he didn’t like the girl.

OH2
2 : He told her that he

didn’t want to date her.
44.19 Contradiction

b. O1: Nate had the summer
off before college.

H1: Nate spent the summer
traveling and partying.

OH1
2 : Nate had a lot of fun. H1, OH1

2 Motivation 49.02 Non-
Contradiction

O2: Nate’s last summer
before college was a total
blast!

H2:Nate decided to spend the
entire summer working in the
Mines.

OH2
2 : Nate spent the summer

working in the mines.
44.34 Redundancy

c. O1: Dotty was being very
grumpy.

H1: Dotty ate something bad. OH1
2 : She started to feel sick. H2, OH2

2 Emotional
Effect

0.604 Contradiction

O2: She felt much better
afterwards

H2: Dotty call some close
friends to chat.

OH2
2 : They all tried to make

her happy.
0.405 Non-

Contradiction
d. O1: Cay had a crush on a

boy in her class.
H1: Cay sent a love note to
the boy.

OH1
2 : The boy responded and

said he liked Cay.
H1, OH1

2 Emotional
Effect

0.509 Non-
Contradiction

O2: He smiled at her after
and said he liked her too!

H2: She told him she did not
like him.

OH2
2 : The boy was very sad

about it.
0.423 Contradiction

Table 5: Examples of generated possible next events for solving αNLI using our LMI model. Column 3: Hy-
pothesis and possible next events chosen by our LMI +MT L model; Column 4: Reasoning type between the
hypothesis Hj and O2; Column 5: BERTScore between the OHj

2 and O2; Column5: Human evaluation of the
possible next events with respect the observation O2.

(i) examples (a), (b) and (d) depicting the scenario
where possible next events and observation pairs
correctly achieve higher BERTscores 11, (ii) exam-
ple (c) depicting the scenario where an incorrect
possible next event and observation pair achieves
higher BERTscores than the correct one. Intuitive
reasons for these scenarios are, for example, for
(a): there is a higher word overlap and semantic
similarity between a correct next event and observa-
tion O2, for example (b): there is higher semantic
similarity; whereas for example (c): although there
is a higher semantic dissimilarity, the word over-
lap between the wrong possible next event (“She
started to feel sick.”) and the observation (“She felt
much better afterwards.”) is much higher.

6 Manual Evaluation

Since the automatic scores only account for word-
level similarity between observations and gener-
ated possible next events, we conduct a manual
evaluation study, to assess the quality of sentences
generated by our LMI model.

Annotation Study on LMI generations. The
annotation was performed by three annotators with
computational linguistic background. We provide
each of the three annotators with observations, hy-
potheses and sentences, as produced by our LMI

11BERTscore matches words in candidate and reference
sentences by cosine similarity.

model, for 50 randomly chosen instances from the
αNLI task. They obtain i) generated sentences
for a next possible event for the correct and incor-
rect hypothesis, as well as ii) the sentence stating
observation O2.

We ask each annotator to rate the sentences ac-
cording to four quality aspects as stated below.

Grammaticality: the sentence is i) grammatical,
ii) not entirely grammatical but understand-
able, or iii) completely not understandable;

Redundancy: the sentence contains redundant or
repeated information;

Contradiction: the sentence contains any pieces
of information that are contradicting the given
observation O2 or not;

Relevance: the possible next event is i) relevant,
ii) partially relevant, or iii) not relevant.

For each aspect, they are asked to judge the sen-
tence generated for the correct hypothesis12. Only
for Contradiction, they are asked to judge both
sentences, for correct and the incorrect hypotheses.

Results and Discussion. Figures 5, 7, and 6
present the results of manual evaluations of the
generation quality, according to the different crite-
ria described above.

12The correct hypothesis was marked for the annotation.
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84.0%

4.0%

12.0%

Grammatical
Understandable
Gibberish

Figure 5: Human evaluation of the grammaticality of
generated sentences: ratio of i) grammatical, ii) not en-
tirely grammatical but understandable, iii) completely
not understandable sentences.

46.0%

24.0%

30.0%

Relevant

Partially 
Relevant

Irrelevant

Figure 6: Human evaluation of the Relevance of gener-
ated sentences for possible next events.

For measuring inter-annotator agreement, we
computed Krippendorff’s α (Hayes and Krippen-
dorff, 2007) for Grammaticality and Relevance, as
it is suited for ordinal values, and Cohen’s Kappa
κ for Redundancy and Contradiction. We found
α values are 0.587 and 0.462 for Grammaticality
and Relevance, respectively (moderate agreement)
and κ values 0.61 and 0.74 for Redundancy and
Contradiction (substantial agreement). We aggre-
gated the annotations from the three annotators
using majority vote. Figure 5 shows that the major-
ity of sentences (96%) are grammatical or under-
standable. Figure 7 shows that most sentences for
correct labels are non-redundant (84%) and non-
contradictory (88%), whereas for incorrect labels
39 instances are found to be contradictory with the
observation O2 (78%). The manual evaluation sup-
ports our hypothesis that the generated sentences
for correct labels should be more similar (less con-
tradictory) compared to the sentences generated for
incorrect labels. Figure 6 shows the ratio of sen-
tences considered by humans as relevant, partially
relevant, and irrelevant. The results show that 46%
of cases are relevant (based on majority agreement)
and 24% of cases are partially relevant. This yields
that the generated sentences are (partially) relevant
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Figure 7: Human evaluation of Redundancy and Con-
tradiction of generations for possible next events.

in most cases and thus should support abduction
for both unsupervised (LMI + BERTScore) and
supervised (LMI +MT L) models.

Impact of Reasoning types. Finally, to better
assess the performance of our model, we deter-
mine what types of reasoning underly the abductive
reasoning tasks in our data, and examine to what
extent our models capture or not these reasoning
types. We consider again the 50 instances that were
annotated by our previous annotators and manually
classify them into different reasoning types. We
broadly divided the data into 6 categories: (i) Moti-
vation, (ii) Spatial-Temporal, (iii) Emotional, (iv)
Negation, (v) Reaction, (vi) Situational fact. The
most frequent type was Emotional (10), most infre-
quent was Spatial (7). We ask a new annotator to
annotate the reasoning types for these 50 instances.
Considering the relevance and contradiction cate-
gories from the previous annotations we determine
that for Negation (8), Emotional (10), and Reac-
tion (8) all generated events for correct labels are
partially or fully relevant and non-contradictory.
An intuitive reason can be that we train our LMI
model to learn how different counterfactual hypo-
thetical events emerging from a single premise can
lead to the same or different outcomes through a
series of events. Some counterfactual events (s

′
2)

are negations of the original event (s2) in the TIME-
TRAVEL dataset. This may support the reasoning
class Negation. For the other categories: Moti-
vation, Spatial-temporal, and Situational fact, we
detect errors regarding (missing) Relevance in 21%,
14% and 28% of cases, respectively. Table 6 illus-
trates an example from the class Situational Fact,
where our generated next event is irrelevant and
redundant.
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O1: Jenna hit the weight hard in the gym.
O2: She took a cold bath in order to alleviate her pain.
H1: Her neck pain stopped because of this.
H2: Jenna pulled a muscle lifting weights.
OH1

2 : She decided to take a break .
OH2

2 : Jenna lost weight in the gym.

Table 6: Error Analysis: An example of generated pos-
sible next event OHj

2 from Situational Fact category.

7 Related Work

Commonsense Reasoning. There is growing in-
terest in this research field, which led to the cre-
ation of several new resources on commonsense
reasoning, in form of both datasets, such as So-
cialIQA (Sap et al., 2019b), CommonsenseQA (Tal-
mor et al., 2019), CosmosQA (Huang et al., 2019)
and knowledge bases, e.g. ConceptNet (Speer et al.,
2017), ATOMIC (Sap et al., 2019a), or Event2Mind
(Rashkin et al., 2018). Recently, many works pro-
posed to utilize external static knowledge graphs
(KGs) to address the bottleneck of obtaining rele-
vant commonsense knowledge. Lin et al. (2019)
proposed to utilize knowledge graph embeddings
to rank and select relevant knowledge triples or
paths. Paul and Frank (2019) proposed to extract
subgraphs from KGs using graph-based ranking
methods and further Paul et al. (2020) adopted the
graph-based ranking method and proposed to dy-
namically extend the KG to combat sparsity. In
concurrent work, Paul and Frank (2021) introduced
a method to dynamically generate contextually rel-
evant knowledge that guides a model while per-
forming the narrative story completion task.

Both hypothetical reasoning and abductive rea-
soning are understudied problems in NLP. Recently,
Tandon et al. (2019) proposed a first large-scale
dataset of “What if...” questions over procedural
text. They introduced the dataset to study the effect
of perturbations in procedural text. Related to our
work, Qin et al. (2019) investigated the capabili-
ties of state-of-the-art LMs to rewrite stories with
counterfactual reasoning. In our work we utilize
this dataset to model how to generate possible next
events emerging from different hypothetical and
counterfactual events. Mostafazadeh et al. (2016)
designed the narrative cloze task, a task to choose
the correct ending of a story.13 Conversely, Bha-
gavatula et al. (2020) proposed a task that requires

13Their dataset, ROCStories, was later extended in Qin et al.
(2019) and Bhagavatula et al. (2020).

reasoning about plausible explanations for narra-
tive omissions. Our research touches on the issue
of hypothetical reasoning about alternative situ-
ations. We found that making language models
learn how different hypothetical events can evolve
from a premise and result in similar or different fu-
ture events forming from a premise and how these
events can result in similar or different future events
helps models to perform better in abduction.

Explainability. Despite the success of large pre-
trained language models, recent studies have raised
some critical points such as: high accuracy scores
do not necessarily reflect understanding (Min et al.,
2019), large pretrained models may exploit super-
ficial clues and annotation artifacts (Gururangan
et al., 2018; Kavumba et al., 2019). Therefore,
the ability of models to generate explanations has
become desirable, as this enhances interpretabil-
ity. Recently, there has been substantial effort
to build datasets with natural language explana-
tions (Camburu et al., 2018; Park et al., 2018;
Thayaparan et al., 2020). There have also been
numerous research works proposing models that
are interpretable or explainable (Rajani et al., 2019;
Atanasova et al., 2020; Latcinnik and Berant, 2020;
Wiegreffe and Marasović, 2021). Our work sheds
light in this direction, as ourMT L model not only
predicts the plausible hypothesis Hj but also gener-
ates possible next events OHj2 and chooses the one
that is closer to the given context, thereby making
our model more expressive.

Abductive Reasoning. There has been long-
standing work on theories of abductive reasoning
(Peirce, 1903, 1965a,b; Kuipers, 1992, 2013). Re-
searchers have applied various frameworks, some
focused on pure logical frameworks (Pople, 1973;
Kakas et al., 1992), some on probabilistic frame-
works (Pearl, 1988), and others on Markov Log-
ics (Singla and Mooney, 2011). Recently, moving
away from logic-based abductive reasoning, Bha-
gavatula et al. (2020) proposed to study language-
based abductive reasoning. They introduced two
tasks: Abductive Natural Language Inference
(αNLI) and Generation (αNLG). They establish
baseline performance based on state-of-the-art lan-
guage models and make use of inferential struc-
tured knowledge from ATOMIC (Sap et al., 2019a)
as background knowledge. Zhu et al. (2020) pro-
posed to use a learning-to-rank framework to ad-
dress the abductive reasoning task. Ji et al. (2020)
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proposed a model GRF that enables pre-trained
models (GPT-2) with dynamic multi-hop reasoning
on multi-relational paths extracted from the exter-
nal ConceptNet commonsense knowledge graph
for the αNLG task. Paul and Frank (2020) have
proposed a multi-head knowledge attention method
to incorporate commonsense knowledge to tackle
the αNLI task. Unlike our previous work in Paul
and Frank (2020), which focused on leveraging
structured knowledge, in this work, we focus on
learning about what will happen next from dif-
ferent counterfactual situations in a story context
through language model fine-tuning. Specifically,
we study the impact of such forward inference on
the αNLI task in a multi-task learning framework
and show how it can improve performance over a
strong BERT model.

8 Conclusion

We have introduced a novel method for addressing
the abductive reasoning task by explicitly learning
what events could follow other events in a hypothet-
ical scenario, and learning to generate such events,
conditioned on a premise or hypothesis. We show
how a language model – fine-tuned for this capabil-
ity on a suitable narrative dataset – can be leveraged
to support abductive reasoning in the αNLI tasks,
in two settings: an unsupervised setting in combina-
tion with BertScore, to select the proper hypothesis,
and a supervised setting in aMT L setting.

The relatively strong performance of our pro-
posed models demonstrates that learning to choose
from generated hypothetical next events the one
that is most similar to the observation, supports
the prediction of the most plausible hypothe-
sis. Our experiments show that our unsupervised
LMI+BERTScore model outperforms some of the
strong supervised baseline systems on αNLI. Our
research thus offers new perspectives for training
generative models in different ways for various
complex reasoning tasks.
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Abstract

Deep learning (DL) based language models
achieve high performance on various bench-
marks for Natural Language Inference (NLI).
And at this time, symbolic approaches to NLI
are receiving less attention. Both approaches
(symbolic and DL) have their advantages and
weaknesses. However, currently, no method
combines them in a system to solve the task
of NLI. To merge symbolic and deep learn-
ing methods, we propose an inference frame-
work called NeuralLog, which utilizes both
a monotonicity-based logical inference engine
and a neural network language model for
phrase alignment. Our framework models the
NLI task as a classic search problem and uses
the beam search algorithm to search for opti-
mal inference paths. Experiments show that
our joint logic and neural inference system
improves accuracy on the NLI task and can
achieve state-of-art accuracy on the SICK and
MED datasets.

1 Introduction

Currently, many NLI benchmarks’ state-of-the-art
systems are exclusively deep learning (DL) based
language models (Devlin et al., 2019; Lan et al.,
2020; Liu et al., 2020; Yin and Schütze, 2017).
These models often contain a large number of pa-
rameters, use high-quality pre-trained embeddings,
and are trained on large-scale datasets, which en-
able them to handle diverse and large test data ro-
bustly. However, several experiments show that DL
models lack generalization ability, adopt fallible
syntactic heuristics, and show exploitation of anno-
tation artifacts (Glockner et al., 2018; McCoy et al.,
2019; Gururangan et al., 2018). On the other hand,
there are logic-based systems that use symbolic
reasoning and semantic formalism to solve NLI
(Abzianidze, 2017; Martínez-Gómez et al., 2017;

*The first two authors have equal contribution

Figure 1: Analogy between path planning and an entail-
ment inference path from the premise A motorcyclist
with a red helmet is riding a blue motorcycle down the
road to the hypothesis A motorcyclist is riding a motor-
bike along a roadway.

Yanaka et al., 2018; Hu et al., 2020). These systems
show high precision on complex inferences involv-
ing difficult linguistic phenomena and present logi-
cal and explainable reasoning processes. However,
these systems lack background knowledge and do
not handle sentences with syntactic variations well,
which makes them poor competitors with state-of-
the-art DL models. Both DL and logic-based sys-
tems show a major issue with NLI models: they are
too one-dimensional (either purely DL or purely
logic), and no method has combined these two ap-
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proaches together for solving NLI.
This paper makes several contributions, as fol-

lows: first, we propose a new framework in section
3 for combining logic-based inference with deep-
learning-based network inference for better perfor-
mance on conducting natural language inference.
We model an NLI task as a path-searching problem
between the premises and the hypothesis. We use
beam-search to find an optimal path that can trans-
form a premise to a hypothesis through a series of
inference steps. This way, different inference mod-
ules can be inserted into the system. For example,
DL inference modules will handle inferences with
diverse syntactic changes and logic inference mod-
ules will handle inferences that require complex
reasoning. Second, we introduce a new method in
section 4.3 to handle syntactic variations in natu-
ral language through sequence chunking and DL
based paraphrase detection. We evaluate our sys-
tem in section 6 by conducting experiments on the
SICK and MED datasets. Experiments show that
joint logical and neural reasoning show state-of-art
accuracy and recall on these datasets.

2 Related Work

Perhaps the closest systems to NeuralLog are
Yanaka et al. (2018), MonaLog (Hu et al., 2020),
and Hy-NLI (Kalouli et al., 2020). Using Martínez-
Gómez et al. (2016) to work with logic representa-
tions derived from CCG trees, Yanaka et al. (2018)
proposed a framework that can detect phrase cor-
respondences for a sentence pair, using natural de-
duction on semantic relations and can thus extract
various paraphrases automatically. Their experi-
ments show that assessing phrase correspondences
helps improve NLI accuracy. Our system uses a
similar methodology to solve syntactic variation
inferences, where we determine if two phrases are
paraphrases. Our method is rather different on this
point, since we call on neural language models to
detect paraphrases between two sentences. We feel
that it would be interesting to compare the systems
on a more theoretical level, but we have not done
the comparison in this paper.

NeuralLog inherits the use of polarity marking
found in MonaLog (Hu et al., 2020). (However,
we use the dependency-based system of Chen and
Gao (2021) instead of the CCG-based system of
Hu and Moss (2018).) MonaLog did propose some
integration with neural models, using BERT when
logic failed to find entailment or contradiction. We

are doing something very different, using neural
models to detect paraphrases at several levels of
“chunking”. In addition, the exact algorithms found
in Sections 3 and 4 are new here. In a sense, our
work on alignment in NLI goes back to MacCartney
and Manning (2009) where alignment was used to
find a chain of edits that changes a premise to a
hypothesis, but our work uses much that simply
was not available in 2009.

Hy-NLI is a hybrid system that makes infer-
ences using either symbolic or deep learning mod-
els based on how linguistically challenging a pair
of sentences is. The principle Hy-NLI followed
is that deep learning models are better at handling
sentences that are linguistically less complex, and
symbolic models are better for sentences contain-
ing hard linguistic phenomena. Although the sys-
tem integrates both symbolic and neural methods,
its decision process is still separate, in which the
symbolic and deep learning sides make decisions
without relying on the other side. Differently, our
system incorporates logical inferences and neural
inferences as part of the decision process, in which
the two inference methods rely on each other to
make a final decision.

3 Method

3.1 NLI As Path Planning

The key motivation behind our architecture and
inference modules is that the Natural Language
Inference task can be modeled as a path planning
problem. Path planning is a task for finding an
optimal path traveling from a start point to a goal
containing a series of actions. To formulate NLI as
path planning, we define the premise as the start
state and the hypothesis as the goal that needs
to be reached. The classical path planning strat-
egy applies expansions from the start state through
some search algorithms, such as depth-first-search
or Dijkstra search, until an expansion meets the
goal. In a grid map, two types of action produce
an expansion. The vertical action moves up and
down, and the horizontal action moves left and
right. Similarly, language inference also contains
these two actions. Monotonicity reasoning is a ver-
tical action, where the monotone inference moves
up and simplifies a sentence, and the antitone in-
ference moves down and makes a sentence more
specific. Syntactic variation and synonym replace-
ment are horizontal actions. They change the form
of a sentence while maintaining the original mean-
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Figure 2: Overview system diagram of NeuralLog.

ing. Then, similar to path planning, we can contin-
uously make inferences from the premise using a
search algorithm to determine if the premise entails
the hypothesis by observing whether one of the in-
ferences can reach the hypothesis. If the hypothesis
is reached, we can connect the list of inferences
that transform a premise to a hypothesis to be the
optimal path in NLI, a valid reasoning chain for
entailment.

Figure 1 shows an analogy between an optimal
path for the classical grid path planning problem
and an example of an optimal inference path for
NLI. On the top, we have a reasoning process for
natural language inference. From the premise, we
can first delete the modifier with a red helmet, then
delete blue to get a simplified sentence. Finally,
we can paraphrase down the road to along a road-
way in the premise to reach the hypothesis and
conclude the entailment relationship between these
two sentences.

3.2 Overview

Our system contains four components: (1) a polar-
ity annotator, (2) three sentence inference modules,
(3) a search engine, and (4) a sentence inference
controller. Figure 2 shows a diagram of the full
system. The system first annotates a sentence with
monotonicity information (polarity marks) using
Udep2Mono (Chen and Gao, 2021). The polar-
ity marks include monotone (↑), antitone (↓), and

no monotonicity information (=) polarities. Next,
the polarized parse tree is passed to the search en-
gine. A beam search algorithm searches for the op-
timal inference path from a premise to a hypothesis.
The search space is generated from three inference
modules: lexical, phrasal, and syntactic variation.
Through graph alignment, the sentence inference
controller selects a inference module to apply to
the premise and produce a set of new premises
that potentially form entailment relations with the
hypothesis. The system returns Entail if an in-
ference path is found. Otherwise, the controller
will determine if the premise and hypothesis form
a contradiction by searching for counter example
signatures and returns Contradict accordingly. If
neither Entail nor Contradict is returned, the sys-
tem returns Neutral.

3.3 Polarity Annotator

The system first annotates a given premise with
monotonicity information using Udep2Mono, a po-
larity annotator that determines polarization of all
constituents from universal dependency trees. The
annotator first parses the premise into a binarized
universal dependency tree and then conducts polar-
ization by recursively marks polarity on each node .
An example can be Every↑ healthy↓ person↓ plays↑

sports↑.
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3.4 Search Engine
To efficiently search for the optimal inference path
from a premiseP to a hypothesisH, we use a beam
search algorithm which has the advantage of reduc-
ing search space by focusing on sentences with
higher scores. To increase the search efficiency and
accuracy, we add an inference controller that can
guide the search direction.

Scoring In beam search, a priority queueQmain-
tains the set of generated sentences. A core opera-
tion is the determination of the highest-scoring gen-
erated sentence for a given input under a learned
scoring model. In our case, the maximum score is
equivalent to the minimum distance:

y? = argmax
s∈S

score(s,H)

y? = argmin
s∈S

dist(s,H)

where H is the hypothesis and S is a set of gen-
erated sentences produced by the three (lexical,
phrasal, syntactic variation) inference modules. We
will present more details about these inference mod-
ules in section 4. We formulate the distance func-
tion as the Euclidean distance between the sentence
embeddings of the premise and hypothesis. To ob-
tain semantically meaningful sentence embeddings
efficiently, we use Reimers and Gurevych (2019)’s
language model, Sentence-BERT (SBERT), a mod-
ification of the BERT model. It uses siamese and
triplet neural network structures to derive sentence
embeddings which can be easily compared using
distance functions.

3.5 Sentence Inference Controller
In each iteration, the search algorithm expands the
search space by generating a set of potential sen-
tences using three inference modules: (1) lexical
inference, (2) phrasal inference, and (3) syntactic
variation inference. To guide the search engine to
select the most applicable module, we designed
a inference controller that can recommend which
of the labels the overall algorithm should proceed
with. For example, for a premise All animals eat
food and a hypothesis All dogs eat food, only a lex-
ical inference of animals to dogs would be needed.
Then, the controller will apply the lexical inference
to the premise, as we discuss below.

3.5.1 Sentence Representation Graph
The controller makes its decision based on graph-
based representations for the premise and the hy-

pothesis. We first build a sentence representation
graph from parsed input using Universal Depen-
dencies. Let V = Vm ∪ Vc be the set of vertices of
a sentence representation graph, where Vm repre-
sents the set of modifiers such as tall in Figure 5,
and Vc represents the set of content words (words
that are being modified) such as man in Figure 5.
While content words in Vc could modify other con-
tent words, modifiers in Vm are not modified by
other vertices. Let E be the set of directed edges in
the form 〈vc, vm〉 such that vm ∈ Vm and vc ∈ Vc.
A sentence representation graph is then defined as
a tuple G = 〈V, E〉. Figure 3a shows an example
graph.

3.5.2 Graph Alignment
To observe the differences between two sentences,
we rely on graph alignment between two sentence
representation graphs. We first align nodes from
subjects, verbs and objects, which constitutes what
we call a component level. Define Gp as the graph
for a premise and Gh as the graph for a hypothe-
sis. Then, Cp and Ch are component level nodes
from the two graphs. We take the Cartesian product
Cp × Ch = {(cp, ch) : cp ∈ Cp, ch ∈ Ch}. In the
first round, we recursively pair the child nodes of
each cp to child nodes of each ch. We compute
word similarity between two child nodes cip and
cih and eliminate pairs with non-maximum simi-
larity. We denote the new aligned pairs as a set
A∗. At the second round, we iterate through the
aligned pairs in A∗. If multiple child nodes from
the first graph are paired to a child node in the sec-
ond graph, we only keep the pair with maximum
word similarity. In the final round, we perform the
same check for each child node in the first graph to
ensure that there are no multiple child nodes from
the second graph paired to it. Figure 3b shows a
brief visualization of the alignment process.

3.5.3 inference Module Recommendation
After aligning the premise graph Gp with hypoth-
esis graph Gh, the controller checks through each
node in the two graphs. If a node does not get
aligned, the controller considers to delete the node
or insert it depending on which graph the node be-
longs to and recommends phrasal inference. If a
node is different from its aligned node, the con-
troller recommends lexical inference. If additional
lexical or phrasal inferences are detected under
this node, the controller decides that there is a
more complex transition under this node and rec-
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(a) Sentence representation graph (b) Graph alignment visualization

Figure 3: (a) A sentence representation graph for A tall man is running down the road. (b) Visualization for
the graph alignment. The lines between two words represent their similarity. The orange lines are the pairs
with maximum similarities for a blue word. Through bi-directional alignment, we eliminate word pairs with non-
maximum similarity and gets the final alignment pairs.

ommends a syntactic variation.

3.5.4 Contradiction Detection
We determine whether the premise and the hy-
pothesis contradict each other inside the controller
by searching for potential contradiction transitions
from the premise to the hypothesis. For instance,
a transition in the scope of the quantifier (a −→
no) from the same subject could be what we call
a contradiction signature (possible evidence for a
contradiction). With all the signatures, the con-
troller decides if they can form a contradiction as
a whole. To avoid situations when multiple sig-
natures together fail to form a complete contradic-
tion, such as double negation, the controller checks
through the contradiction signatures to ensure a
contradiction. For instance, in the verb pair (not re-
move, add), the contradiction signature not would
cancel the verb negation contradiction signature
from remove to add so the pair as a whole would
not be seen as a contradiction. Nevertheless, other
changes from the premise to the hypothesis may
change the meaning of the sentence. Hence, our
controller would go through other transitions to
make sure the meaning of the sentence does not
change when the contradiction sign is valid. For
example, in the neutral pair P: A person is eating
and H: No tall person is eating, the addition of
tall would be detected by our controller. But the
aligned word of the component it is applied to, per-
son in P, has been marked downward monotone.
So this transition is invalid. This pair would then
be classified as neutral.

For P2 and H2 in Figure 4, the controller no-
tices the contradictory quantifier change around
the subject man. The subject man in P2 is up-
ward monotone so the deletion of tall is valid. Our
controller also detects the meaning transition from

signature type example
quantifier negation no dogs =⇒ some dogs
verb negation is eating =⇒ is not eating
noun negation some people =⇒ nobody
action contradiction is sleeping =⇒ is running
direction contradiction The turtle is following the fish =⇒

The fish is following the turtle

Table 1: Examples of contradiction signatures.

down the road to inside the building, which affects
the sentence’s meaning and cancels the previous
contradiction signature. The controller thus will
not classify P2 and H2 as a pair of contradiction.

Figure 4: Example of contradiction signatures. P1 and
H1 form a contradiction. P2 and H2 does not form a
contradiction because the meaning after the verb run-
ning has changed.

4 Inference Generation

4.1 Lexical Monotonicity Inference
Lexical inference is word replacement based on
monotonicity information for key-tokens including
nouns, verbs, numbers, and quantifiers. The sys-
tem uses lexical knowledge bases including Word-
Net (Miller, 1995) and ConceptNet (Liu and Singh,
2004). From the knowledge bases, we extract four
word sets: hypernyms, hyponyms, synonyms, and
antonyms. Logically, if a word has a monotone po-
larity (↑), it can be replaced by its hypernyms. For
example, swim ≤ move; then swim can be replaced
with move. If a word has an antitone polarity (↓),
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it can be replaced by its hyponyms. For example,
flower ≥ rose. Then, flower can be replaced with
rose. We filter out irrelevant words from the knowl-
edge bases that do not appear in the hypothesis.
Additionally, we handcraft knowledge relations for
words like quantifiers and prepositions that do not
have sufficient taxonomies from knowledge bases.
Some handcrafted relations include: all = every =
each ≤ most ≤ many ≤ several ≤ some = a, up ⊥
down.

4.2 Phrasal Monotonicity Inference
Phrasal replacements are for phrase-level mono-
tonicity inference. For example, with a polar-
ized sentence A ↑ woman↑ who↑ is↑ beautiful↑

is↑ walking↑ in↑ the↑ rain=, the monotone mark
↑ on woman allows an upward inference: woman
w woman who is beautiful, in which the relative
clause who is beautiful is deleted. The system fol-
lows a set of phrasal monotonicity inference rules.
For upward monotonicity inference, modifiers of
a word are deleted. For downward monotonicity
inference, modifiers are inserted to a word. The al-
gorithm traverses down a polarized UD parse tree,
deletes the modifier sub-tree if a node is monotone
(↑), and inserts a new sub-tree if a node is antitone
(↓). To insert new modifiers, the algorithm extracts
a list of potential modifiers associated to a node
from a modifier dictionary. The modifier dictionary
is derived from the hypothesis and contains word-
modifier pairs for each dependency relation. Below
is an example of a modifier dictionary from There
are no beautiful flowers that open at night:

• obl: [head: open, mod: at night]

• amod: [head: flowers, mod: beautiful]

• acl:relcl: [head: flowers, mod: that open at night]

4.3 Syntactic Variation Inference
We categorize linguistic changes between a premise
and a hypothesis that cannot be inferred from mono-
tonicity information as syntactic variations. For ex-
ample, a change from red rose to a rose which is red
is a syntactic variation. Many logical systems rely
on handcrafted rules and manual transformation to
enable the system to use syntactic variations. How-
ever, without accurate alignments between the two
sentences, these methods are not robust enough,
and thus are difficult to scale up for wide-coverage
input.

Recent development of pretrained transformer-
based language models are showing state-of-art

performance on multiple benchmarks for Natural
Language Understanding (NLU) including the task
for paraphrase detection (Devlin et al., 2019; Lan
et al., 2020; Liu et al., 2020) exemplify phrasal
knowledge of syntactic variation. We propose a
method that incorporates transformer-based lan-
guage models to robustly handle syntactic varia-
tions. Our method first uses a sentence chunker
to decompose both the premise and the hypothesis
into chunks of phrases and then forms a Cartesian
product of chunk pairs. For each pair, we use a
transformer model to calculate the likelihood of a
pair of chunks being a pair of paraphrases.

4.3.1 Sequence Chunking
To obtain phrase-level chunks from a sentence, we
build a sequence chunker to extract chunks from a
sentence using its universal dependency informa-
tion. Instead of splitting a sentence into chunks, our
chunker composes word tokens recursively to form
meaningful chunks. First, we construct a sentence
representation graph of a premise from the con-
troller. Recall that a sentence representation graph
is defined as G = 〈V, E〉, where V = Vm ∪ Vc is
the set of modifiers (Vm) and content words (Vc),
and E is the set of directed edges. To generate the
chunk for a content word in Vc, we arrange its mod-
ifiers, which are nodes it points to, together with
the content word by their word orders in the origi-
nal sentence to form a word chain. Modifiers that
make the chain disconnected are discarded because
they are not close enough to be part of the chunk.
For instance, the chunk from the verb eats in the
sentence A person eats the food carefully would
not contain its modifier carefully because they are
separated by the object the food. If the sentence
is stated as A person carefully eats the food, care-
fully now is next to eat and it would be included
in the chunk of the verb eat. To obtain chunks for
a sentence, we iterate through each main compo-
nent node, which is a node for subject, verb, or
object, in the sentence’s graph representation and
construct verb phrases by combining verbs’ chunks
with their paired objects’ chunks. There are cases
when a word modifies other words and gets mod-
ified in the same time. They often occur when a
chunk serves as a modifier. For example, in The
woman in a pink dress is dancing, the phrase in a
pink dress modifies woman whereas dress is modi-
fied by in, a and pink. Then edges from dress to in,
a, pink with the edge from woman to dress can be
drawn. Chunks in a pink dress and the woman in a
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Type Premise Hypothesis

Verb Phrase Variation
Two men are standing near the water and Two men are standing near the water and
are holding fishing poles are holding tools used for fishing

Noun Phrase Variation
A man with climbing equipment is hanging A man with equipment used for climbing is
from rock which is vertical and white hanging from a white, vertical rock.

Table 2: Examples of phrasal alignments detected by the syntactic variation module
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down

rootman
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0.98

0.99
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Figure 5: A graph representation of the monolingual phrase alignment process. Here the left graph represents the
premise: A tall man is running down the road. The right graph represents the hypothesis A man who is tall is
running along a roadway. The blue region represents phrase chunks extracted by the chunker from the graph. An
alignment score is calculated for each pair of chunks. The pair 〈 tall man, man who is tall 〉 is a pair of paraphrases,
and thus has a high alignment score (0.98). The pair 〈 tall man, running along a road way 〉 has two unrelated
phrases, and thus has a low alignment score(0.03).

pink dress will be generated for dress and woman
respectively.

4.3.2 Monolingual Phrase Alignment
After the chunker outputs a set of chunks from a
generated sentence and from the hypothesis, the
system selects chunk pairs that are aligned by com-
puting an alignment score for each pair of chunks.
Formally, we define Cs as the set of chunks from
a generated sentence and Ch as the set of chunks
from the hypothesis. We build the Cartesian prod-
uct from Cs and Ch, denoted Cs × Ch. For each
chunk pair (csi, chj) ∈ Cs × Ch, we compute an
alignment score α:

y〈csi,chi〉 = ALBERT.forward(〈csi, chi〉)
α〈csi,chi〉 = p(csi | chj)

α〈csi,chi〉 =
expy〈csi,chi〉0

∑2
j=1 exp

y〈csi,chi〉j

If α > 0.85, the system records this pair of phrases
as a pair of syntactic variation. To calculate the
alignment score, we use an ALBERT (Lan et al.,
2020) model for the paraphrase detection task, fine
tuned on the Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005). We first pass the
chunk pair to ALBERT to obtain the logits. Then
we apply a softmax function to the logits to get
the final probability. A full demonstration of the
alignment between chunks is shown in Figure 5.

5 Data

5.1 The SICK Dataset
The SICK (Marelli et al., 2014) dataset is an En-
glish benchmark that provides in-depth evaluation
for compositional distribution models. There are
10,000 English sentence pairs exhibiting a vari-
ety of lexical, syntactic, and semantic phenomena.
Each sentence pair is annotated as Entailment, Con-
tradiction, or Neutral. we use the 4,927 test prob-
lems for evaluation.

5.2 The MED Dataset
The Monotonicity Entailment Dataset (MED), is a
challenge dataset designed to examine a model’s
ability to conduct monotonicity inference (Yanaka
et al., 2019a). There are 5382 sentence pairs in
MED, where 1820 pairs are upward inference prob-
lems, 3270 pairs are downward inference problems,
and 292 pairs are problems with no monotonicity
information. MED’s problems cover a variety of
linguistic phenomena, such as lexical knowledge,
reverse, conjunction and disjunction, conditional,
and negative polarity items.

6 Evaluation

6.1 Experiment Setup
For Universal Dependency parsing, we follow
Chen and Gao (2021)’s framework and use a parser
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Model P R acc.
ML/DL-based systems

BERT (base, uncased) 86.8 85.4 86.7
Yin and Schütze (2017) – – 87.1
Beltagy et al. (2016) – – 85.1

Logic-based systems
Abzianidze (2017) 98.0 58.1 81.4
Martínez-Gómez et al. (2017) 97.0 63.6 83.1
Yanaka et al. (2018) 84.2 77.3 84.3
Hu et al. (2020) 83.8 70.7 77.2
Abzianidze (2020) 94.3 67.9 84.4

Hybrid System
Hu et al. (2020)+BERT 83.2 85.5 85.4
Kalouli et al. (2020) – – 86.5

Our System
NeuralLog (full system) 88.0 87.6 90.3
− ALBERT-SV 68.9 79.3 71.4
− Monotonicity 74.5 75.1 74.7

Table 3: Performance on the SICK test set

from Stanford’s natural language analysis pack-
age, Stanza (Qi et al., 2020). In the parser, we
use a neural parsing model pretrained on the UD
English GUM corpus (Zeldes, 2017) with 90.0
LAS (Zeman et al., 2018) evaluation score. For
Sentence-BERT, we selected the BERT-large model
pre-trained on STS-B (Cer et al., 2017). For AL-
BERT, we used textattack’s ALBERT-base model
pretrained on MRPC from transformers. For word
alignment in the controller, we select Řehůřek and
Sojka (2010)’s Gensim framework to calculate
word similarity from pre-trained word embedding.
We evaluated our model on the SICK and MED
datasets using the standard NLI evaluation metrics
of accuracy, precision, and recall. Additionally, we
conducted two ablation tests focusing on analyz-
ing the contributions of the monotonicity inference
modules and the syntactic variation module.

6.2 Results

SICK Table 3 shows the experiment results
tested on SICK. We compared our performance
to several logic-based systems as well as two deep
learning based models. As the evaluation results
show, our model achieves the state-of-art perfor-
mance on the SICK dataset. The best logic-based
model is Abzianidze (2020) with 84.4 percent accu-
racy. The best DL-based model is Yin and Schütze
(2017) with 87.1 percent accuracy. Our system out-
performs both of them with 90.3 percent accuracy.
Compare to Hu et al. (2020) + BERT, which also
explores a way of combining logic-based meth-
ods and deep learning based methods, our system

Model Up Down All
DeComp (Parikh et al., 2016) 71.1 45.2 51.4
ESIM (Chen et al., 2017) 66.1 42.1 53.8
BERT (Devlin et al., 2019) 82.7 22.8 44.7
BERT+ (Yanaka et al., 2019a) 76.0 70.3 71.6
NeuralLog (ours) 91.4 93.9 93.4

Table 4: Results comparing model compared to state-
of-art NLI models evaluated on MED. Up, Down, and
All stand for the accuracy on upward inference, down-
ward inference, and the overall dataset.

shows higher accuracy with a 4.92 percentage point
increase. In addition, our system’s accuracy has a
3.8 percentage point increase than another hybrid
system, Hy-NLI (Kalouli et al., 2020). The good
performance proves that our framework for joint
logic and neural reasoning can achieve state-of-art
performance on inference and outperforms existing
systems.

Ablation Test In addition to the standard evalua-
tion on SICK, we conducted two ablation tests. The
results are included in Table 3. First, we remove
the syntactic variation module that uses neural net-
work for alignment (−ALBERT-SV). As the table
shows, the accuracy drops 18.9 percentage points.
This large drop in accuracy indicates that the syn-
tactic variation module plays a major part in our
overall inference process. The result also proves
our hypothesis that deep learning methods for in-
ference can improve the performance of traditional
logic-based systems significantly. Secondly, when
we remove the monotonicity-based inference mod-
ules (−Monotonicity), the accuracy shows another
large decrease in accuracy, with a 15.6 percentage
point drop. This result demonstrates the impor-
tant contribution of the logic-based inference mod-
ules toward the overall state-of-the-art performance.
Compared to the previous ablation test which re-
moves the neural network based syntactic variation
module, the accuracy does not change much (only
3.3 differences). This similar performance indi-
cates that neural network inference in our system
alone cannot achieve state-of-art performance on
the SICK dataset, and additional guidance and con-
strains from the logic-based methods are essential
parts of our framework. Overall, we believe that
the results reveal that both modules, logic and neu-
ral, contribute equally to the final performance and
are both important parts that are unmovable.

MED Table 4 shows the experimental results
tested on MED. We compared to multiple deep
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learning based baselines. Here, DeComp and ESIM
are trained on SNLI and BERT is fine-tuned with
MultiNLI. The BERT+ model is a BERT model
fine-tuned on a combined training data with the
HELP dataset, (Yanaka et al., 2019b), a set of aug-
mentations for monotonicity reasoning, and the
MultiNLI training set. Both models were tested in
Yanaka et al. (2019a). Overall, our system (Neural-
Log) outperforms all DL-based baselines in terms
of accuracy, by a significant amount. Compared
to BERT+, our system performs better both on up-
ward (+15.4) and downward (+23.6) inference, and
shows significant higher accuracy overall (+21.8).
The good performance on MED validates our sys-
tem’s ability on accurate and robust monotonicity-
based inference.

6.3 Error Analysis

For entailment, a large amount of inference errors
are due to an incorrect dependency parse trees from
the parser. For example, P: A black, red, white and
pink dress is being worn by a woman, H: A dress,
which is black, red, white and pink is being worn
by a woman, has long conjunctions that cause the
parser to produce two separate trees from the same
sentence. Secondly, a lack of sufficient background
knowledge causes the system to fail to make infer-
ences which would be needed to obtain a correct
label. For example, P: One man is doing a bicy-
cle trick in midair, H: The cyclist is performing a
trick in the air requires the system to know that a
man doing a bicycle trick is a cyclist. This kind
of knowledge can only be injected to the system
either by handcrafting rules or by extracting it from
the training data. For contradiction, our analysis
reveals inconsistencies in the SICK dataset. We ac-
count for multiple sentence pairs that have the same
syntactic and semantic structures, but are labeled
differently. For example, P: A man is folding a tor-
tilla, H: A man is unfolding a tortilla has gold-label
Neutral while P: A man is playing a guitar, H: A
man is not playing a guitar has gold-label Contra-
diction. These two pair of sentences clearly have
similar structures but have inconsistent gold-labels.
Both gold-labels would be reasonable depending
on whether the two subjects refer to the same entity.

7 Conclusion and Future Work

In this paper, we presented a framework to combine
logic-based inference with deep-learning based in-
ference for improved Natural Language Inference

performance. The main method is using a search
engine and an alignment based controller to dis-
patch the two inference methods (logic and deep-
learning) to their area of expertise. This way, logic-
based modules can solve inference that requires
logical rules and deep-learning based modules can
solve inferences that contain syntactic variations
which are easier for neural networks. Our system
uses a beam search algorithm and three inference
modules (lexical, phrasal, and syntactic variation)
to find an optimal path that can transform a premise
to a hypothesis. Our system handles syntactic vari-
ations in natural sentences using the neural net-
work on phrase chunks, and our system determines
contradictions by searching for contradiction sig-
natures (evidence for contradiction). Evaluations
on SICK and MED show that our proposed frame-
work for joint logical and neural reasoning can
achieve state-of-art accuracy on these datasets. Our
experiments on ablation tests show that neither
logic nor neural reasoning alone fully solve Natural
Language Inference, but a joint operation between
them can bring improved performance.

For future work, one plan is to extend our system
with more logic inference methods such as those
using dynamic semantics (Haruta et al., 2020) and
more neural inference methods such as those for
commonsense reasoning (Levine et al., 2020). We
also plan to implement a learning method that al-
lows the system to learn from mistakes on a train-
ing dataset and automatically expand or correct
its rules and knowledge bases, which is similar to
Abzianidze (2020)’s work.
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Abstract

We present InferBert, a method to enhance
transformer-based inference models with rele-
vant relational knowledge. Our approach fa-
cilitates learning generic inference patterns re-
quiring relational knowledge (e.g. inferences
related to hypernymy) during training, while
injecting on-demand the relevant relational
facts (e.g. pangolin is an animal) at test time.
We apply InferBERT to the NLI task over a di-
verse set of inference types (hypernymy, loca-
tion, color, and country of origin), for which
we collected challenge datasets. In this set-
ting, InferBert succeeds to learn general infer-
ence patterns, from a relatively small number
of training instances, while not hurting perfor-
mance on the original NLI data and substan-
tially outperforming prior knowledge enhance-
ment models on the challenge data. It further
applies its inferences successfully at test time
to previously unobserved entities. InferBert is
computationally more efficient than most prior
methods, in terms of number of parameters,
memory consumption and training time.

1 Introduction

Transformer-based pre-trained language models
(LMs), such as BERT (Devlin et al., 2019) and
GPT (Radford et al., 2018) have recently achieved
human-level performance on standard natural lan-
guage inference (NLI) benchmarks (Wang et al.,
2019). However, the performance on this complex
task is achieved in part thanks to large training sets
that facilitate learning of dataset-specific biases and
correlations, and thanks to the similar distributions
between the training and test sets, that rewards
such models (Poliak et al., 2018; Gururangan et al.,
2018). This contrasts with humans, who can learn a
generalized solution from fewer examples (Linzen,
2020). Indeed, NLI models often fail on exam-
ples involving various linguistic phenomena such

as co-hyponymy (Glockner et al., 2018) and nega-
tion (Naik et al., 2018), which they are expected to
acquire indirectly from the NLI training set.

Prior work proposed to provide (“inoculate”)
NLI models with a small number of phenomenon-
specific training examples in order to teach the
model to address them (Liu et al., 2019a). However,
Rozen et al. (2019) showed that when the distribu-
tions of the training and test sets differ with respect
to syntactic and lexical properties, the performance
of such inoculated models drops, concluding that
they do not learn a generalized notion of the phe-
nomenon. In this paper we are motivated by the
following question: how can we facilitate learning
of generalized inference patterns, with respect to
a given linguistic phenomenon, from a relatively
small number of examples?

Ideally, we would like an NLI model to learn
inference patterns detached from their original con-
text, and to be able to apply them in new contexts
involving different concrete facts. For example, an
NLI model may learn that a word entails its hyper-
nym in upward monotone sentences from training
examples such as: Alice ate a banana→ Alice ate
a fruit. Then, to be able to apply this rule to a test
instance with the premise Bob saw a pangolin and
the hypothesis Bob saw an animal, it needs to know
that animal is a hypernym of pangolin. Training a
model on every possible hyponym-hypernym pair
is incredibly inefficient and requires re-training a
model whenever the vocabulary expands. Instead,
we propose to decouple the learning of generic in-
ference patterns from that of the factual knowledge.

To that end, we develop InferBert, a method to
enhance language models with relational knowl-
edge from a knowledge base (KB). In contrast to
recent knowledge-enhancement approaches such
as KnowBert (Peters et al., 2019) and Ernie (Zhang
et al., 2019) that incorporate into LMs knowledge
about individual entities (e.g. pangolin), we inform
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the LM of the relation between a pair of entities that
are involved in an inference instance, e.g. Hyper-
nym(pangolin) = animal. This approach is agnostic
to the identity of the specific entities, allowing mod-
els to learn inference patterns separately from the
individual facts involved in particular instances.

To evaluate the ability of NLI models to learn
inference patterns for specific linguistic phenom-
ena, we follow the evaluation approach taken in
previous work (Naik et al., 2018; Liu et al., 2019a;
Richardson et al., 2020), which demonstrated the
learning ability of models over a few chosen infer-
ence phenomena. We focus on 4 target semantic
relations: hypernymy, location, country of origin,
and color, for which we create challenge sets1 (see
Table 1 for examples). We construct the challenge
sets such that there is no overlap between the train-
ing, validation, and test sets with respect to the tar-
get entities (e.g. pangolin), to allow testing whether
the model had learned an inference phenomenon
in a generic manner, rather than performing lex-
ical memorization. The training sets are deliber-
ately small (660-960 instances), aiming to chal-
lenge models with learning from a relatively small
number of examples per semantic phenomenon.

Our results confirm that InferBert manages to
generalize inference patterns to new facts, sub-
stantially improving performance on the challenge
sets upon the knowledge-enhanced baselines (up to
+17.5 points in accuracy from the next best model),
all while maintaining the performance on the origi-
nal MultiNLI test set (Williams et al., 2018).

Moreover, InferBert not only learns from a small
number of training examples (which are insuffi-
cient for the baselines), it is also considerably more
efficient than prior knowledge-enhanced LMs in
terms of training time, resources, and memory. In-
ferBert doesn’t require LM pre-training, which is
a computationally expensive process, and doesn’t
embed entities, only a small number of relations,
substantially reducing the number of parameters
with respect to some of the prior work (e.g. only
23% of KnowBert’s parameters).

Finally, while InferBert is demonstrated on NLI,
it is a general method and may benefit additional
tasks such as question answering and co-reference
resolution which may rely on relational knowledge
between words in given instances.

1All datasets and resources are available at
https://github.com/ohadrozen/inferbert.

Hypernymy
P: He killed another jay this season.
H: He took life away from a bird this season.
Label: Entailment
Relation: Hypernym(jay)= bird

Location
P: It is not located in Baytown.
H: It is located in all cities in Texas except for

one.
Label: Neutral
Relation: LocationOf(Baytown)= Texas

Color
P: Tommy ordered tea and apricots.
H: Tommy did not order any dark brown fruits.
Label: Neutral
Relation: none*

Country of Origin
P: Viesgo deal, from beginning to end, took less

than five weeks.
H: The minimum amount of time it has ever

taken a Spanish company to close a deal is
six weeks.

Label: Contradiction
Relation: CountryOfOrigin(Viesgo) = Spain

Table 1: An example from each phenomenon-specific
challenge set. *By design, for half of the examples
there is no corresponding relation (See Section 3.2).

2 Related Work

2.1 Probing NLI Models

In natural language inference (NLI; Bowman et al.,
2015), originally referred as recognizing textual
entailment (RTE; Dagan et al., 2013), the goal is to
determine whether a first text unit (premise) entails,
contradicts, or is neutral with respect to a second
text (hypothesis). The decision involves various
syntactic and semantic phenomena, including lexi-
cal and world knowledge, coreference resolution,
geographical reasoning, etc. (Clark, 2018). While
neural models have achieved human performance
on the GLUE and SuperGLUE benchmarks (Wang
et al., 2018, 2019), the success of such models
is often due to learning non-generalizable dataset-
specific patterns (Poliak et al., 2018; Gururangan
et al., 2018; McCoy et al., 2019).

Various challenge sets were developed to test
the capabilities of state-of-the-art NLI models in
addressing specific semantic phenomena. For ex-
ample, Glockner et al. (2018) showed that substi-
tuting a single term in the premise with a simi-
lar but mutually-exclusive term (e.g. guitar and
piano) confused NLI models that predicted en-
tailment. Naik et al. (2018) further showed that
NLI models perform poorly on examples involving
antonyms, numerical reasoning, and distractions
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such as high lexical overlap and spelling errors.
NLI models also struggled with examples involving
logic and monotonicity (Richardson et al., 2020;
Yanaka et al., 2020; Geiger et al., 2020).2 Finally,
the GLUE benchmark dedicated a small set for
diagnosing models’ strengths and weaknesses on
various phenomena (Wang et al., 2018).

Liu et al. (2019a) suggested that NLI models
may perform poorly on specific phenomena they
haven’t observed enough during training, and pro-
posed to “inoculate” LM-based models against
challenge sets by fine-tuning them on a small
number of phenomenon-specific training instances.
Rozen et al. (2019) showed that the inoculation
does not necessarily teach the model a general-
ized notion of the phenomenon of interest, and that
when the challenge test set differs from the cor-
responding training sets in terms of, for example,
syntactic complexity, the performance of the inocu-
lated models drops. Richardson et al. (2020) high-
lighted the sensitivity of the inoculation training to
hyper-parameters, that may result in “catastrophic
forgetting”, i.e. a substantial drop in performance
on the original NLI task.

2.2 Knowledge-Enhanced Models

There is plenty of work on incorporating knowl-
edge from KBs into neural models. Knowledge-
based Inference Model (KIM; Chen et al., 2018)
incorporated semantic relations from WordNet into
an RNN-based NLI model, gaining a modest im-
provement on a challenge set. The incorporation at
various components of the original NLI model is
not straightforward to adapt to other models.

KnowBert (Peters et al., 2019) incorporated
knowledge from Wikipedia and WordNet into a
BERT model through entity embeddings, improv-
ing performance on relation extraction and entity
typing. Ernie (Zhang et al., 2019) and K-Adapter
(Wang et al., 2020a) both targeted similar down-
stream tasks. Ernie embeds entities and relations
from a KB, and alters the BERT pre-training to pre-
dict entities in addition to words. K-Adapter does
not re-train the LM weights, but takes a somewhat
more efficient approach of training an additional
neural component (“adapter”) for each knowledge
type as a plug-in for the LM. KEPLER (Wang et al.,
2020b) learns entity embeddings from their textual
descriptions. These entity-centric methods require

2The “Countries/Travel” genre in Richardson et al. (2020)
is similar to our location phenomenon described in Section 3.1.

pre-training the original LM or its plugins on the
KB, while increasing training time and cost and
storing the entity embeddings (increasing memory
cost). In addition, by design, the knowledge can
capture only entities seen during pre-training, thus
requiring repeating the pre-training process each
time the original input KB gets updated.

Finally, K-BERT (Liu et al., 2019b) is most sim-
ilar to our model, incorporating knowledge regard-
ing individual entities that occur in the input in-
stance. Like our model, knowledge is augmented,
per-instance, at inference time. Unlike our model,
knowledge is augmented per entity, rather than per
a relation between a pair of entities appearing in
the inference instance. Further, K-BERT injects
the KB knowledge in a textual form, which aug-
ments the input instance, while our model embeds
directly structural knowledge. As we show in Sec-
tion 6.1, this encoding is less effective than our
structured incorporation method (Section 4.2), lead-
ing to weaker learning ability of different inference
phenomena that require external knowledge.

3 Data

We focus on four types of semantic relations (Sec-
tion 3.1), each corresponding to a set of facts in the
form of semantic relation triplets. An NLI model
may learn various inference patterns pertaining to
the semantic relation type, such as “a word entails
its hypernym in an upward monotone sentence”.

To evaluate the models’ ability to learn and apply
these rules, we create an NLI challenge set for each
semantic relation, that we derive from MultiNLI
(Section 3.2). As usual, the goal is to determine
the label of a premise-hypothesis pair (p, h) among
entailment, neutral, and contradiction. For a given
semantic relation, each instance in the correspond-
ing challenge set requires applying an inference
pattern associated with the semantic relation in or-
der to determine the correct label (possibly along
with other required inferences).

3.1 Semantic Relations

Hypernymy. An NLI system might learn that a
term generally entails its generalization, for exam-
ple “I ate an apple” entails “I ate a fruit”.3 The
relevant facts for this semantic relation are pairs
of (x, y) terms that appear in a direct or indirect

3The rule applies to upward monotone premises. Down-
ward monotone premises (which typically include a negated
predicate or certain quantifiers) reverse the inference direction.
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KB entry: Emporis CountryOfOrigin (property): Germany

Extracted Premise: These forms will be posted on Apple website.
Premise: These forms will be posted on Emporis website.

Manually created hypotheses:
(1) A company in Germany will make the forms available on its website. (Entailment)
(2) The forms cannot be accessed from the website of any German company. (Contradiction)
(3) Several German websites will feature the forms. (Neutral)

Hypotheses with property replacement:
(4) A company in France will make the forms available on its website. (Neutral)
(5) The forms cannot be accessed from the website of any French company. (Neutral)
(6) Several French websites will feature the forms. (Neutral)

Table 2: Example of premise and hypotheses generation from a MultiNLI premise. Hypotheses (1)-(3) were created
by crowdworkers for the altered premise, based on the Wikidata fact that Emporis’ country of origin is Germany.
Hypotheses (4)-(6) were created by replacing German with another country of origin (France) and annotated for
entailment.

Inference Type Train Dev Test All

Hypernymy 960 114 300 1374
Location 660 114 230 1004
Color 840 108 318 1266
Country of Origin 834 114 252 1200

Total 3294 450 1100 4844

Table 3: Statistics of our challenge set.

hypernymy relation in WordNet (Miller, 1995).4

Location. A model may learn that in some con-
texts, substituting a city name by the state in which
it is located yields a factually correct generaliza-
tion (e.g. “John visited Chicago” entails “John
visited Illinois”). We retrieve entities from Wiki-
data (Vrandečić and Krötzsch, 2014), focusing on
US locations using the state property.

Color. We retrieve entities from Wikidata and
their color property. We substitute an entity (e.g.
banana) for a generalization involving its color and
hypernym (e.g. yellow fruit).

Country of Origin. We retrieve knowledge from
Wikidata about companies and their country of ori-
gin, using the country property. We substitute
an entity (e.g. Apple) for a generalization involving
its country of origin (e.g. American organization).

3.2 Challenge Sets

Some of the semantic relations we focused on are
very rare in the original MultiNLI dataset, e.g. by

4Excluding instance hypernyms.

heuristically searching for instances that exhibit
these phenomena we found that less than 0.05% of
the data contained locations. We therefore create
challenge sets focusing on each semantic relation.
In order to create challenge examples in a simi-
lar style and domain, we base our examples on
premises in MultiNLI.

For a given semantic relation r, we extract
premises in the MultiNLI training set that contain
an entity Itail0 whose type corresponds to the re-
lation argument. For example, for the country of
origin semantic relation we extract premises con-
taining company names (e.g. Itail0 = Apple) in our
data. For a given premise p, we modify it by re-
placing Itail0 by a random entity Itail1 of the same
type in the KB (e.g. Emporis), and manually check
that the sentence still makes sense. We specifically
select replacement entities Itail1 such that there ex-
ists a KB assertion R(Itail1 ) = Ihead1 . For example,
CountryOfOrigin(Emporis) = Germany.

From each premise p we created 6 hypotheses
as follows (See Table 2). Similarly to Williams
et al. (2018), we showed p to crowdsourcing work-
ers and asked them to generate a hypothesis for
each label (entailment, neutral and contradiction).
Our instructions further specified that the hypoth-
esis must include Ihead1 (e.g. Germany) but not
Itail1 (e.g. Emporis). Examples (1)-(3) in Table 2
demonstrate the instances created at this step.

After creating 3 hypotheses, all of which include
Ihead1 by design, we replaced Ihead1 with Îhead1 ,
where Îhead1 6= Ihead1 is a random value of the
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Figure 1: Relation embedding example. After ex-
tracting the related entity pairs for the relations
r1 =hypernymy and r2 =location, we place the embed-
ding vectors in R in the indices of the relevant tokens
of the entities. For example, we place ehead2 in the in-
dex of Texas as this entity is the head in the relation
location.

same property R (e.g. France). We then asked an
annotator to label the new hypotheses with respect
to p (Table 2, instances (4)-(6)).

The annotation task was performed using Ama-
zon Mechanical Turk. To ensure the quality of the
work, we required that workers had a minimum
of 96% acceptance rate for prior HITs and pass
a qualification test. We paid $1 for each premise.
The test set was further validated by two trained an-
notators. The first annotator re-labeled an example,
and, in case of disagreement with the original label
(11.9% of the annotations), the second annotator
also labeled the example, and the majority vote5

was used.

Data Split. The statistics of the challenge sets are
shown in Table 3. We split the datasets to 68%-9%-
23% train, dev and test, respectively. The datasets
are split lexically, i.e. such that head and tail enti-
ties in one set do not appear in the other sets. That
way, a good performance on the test set indicates
that the model learned a generalized notion of an
inference rule rather than specific facts, and that it
is capable of applying the rule when provided with
the necessary yet not previously observed facts.

4 InferBert

We present InferBert, a BERT-based NLI model
with a relational knowledge enhancement compo-

5All three annotations were given an equal weight.

nent. The key idea in InferBert is incorporating into
the model relational knowledge (facts) from exter-
nal knowledge resources regarding entities men-
tioned in the input instance. We adopt an inclu-
sive definition of entity, which can refer either to
a named entity (such as entries in Wikidata) or a
common noun (such as WordNet lemmas).

As we discussed in Section 2.2, most prior work
injects external knowledge into models through an
entity’s knowledge base embedding, which cap-
tures in a soft way its relationships with other KB
entities. The limitation of such methods is the cou-
pling of an inference pattern with the related factual
knowledge. Suppose that a model observed during
training that “The boy ate an apple” entails “The
boy ate a fruit”. The test example with the premise
“The woman has a dog” and the hypothesis “The
woman has a pet” is represented differently from
the training example due to the distance between
the entities (e.g. apple and dog) in the KB. Such
a model is likely to fail on examples consisting of
unseen entities.

We propose to decouple learning the inference
pattern from the facts by directly embedding the se-
mantic relations between entities in the text. In the
above example, InferBert can access the KB during
both the training and inference phases, and add an
indicator that fruit=Hypernym(apple). Af-
ter observing enough training examples with the
hypernym indicator, the model can learn a general
rule like “a word entails its hypernym in certain
common context”. During inference, the model
can apply this rule to unseen entities in the KB.

We first describe the KnowBert model (Peters
et al., 2019, Section 4.1) which is the basis for In-
ferBert. Next, we describe how we replace Know-
Bert’s Knowledge Attention and Recontextualiza-
tion component (KAR) by our Simplified KAR
(S-KAR, Section 4.2).

4.1 KnowBert’s KAR

KnowBert is a method to incorporate knowledge
from KBs into transformer-based language mod-
els, which was specifically applied to BERTBASE.
For a given input X = (x1, ..., xN ) of N word
pieces, the BERT contextual embeddings are
computed as Hi = TransformerBlock(Hi−1)
where Hi ∈ RN×D is the i-th hidden
layer (i ∈ {1, ..., L}, and L = 12 lay-
ers) and D is BERT’s embedding dimension.
TransformerBlock operates over a query, key, and
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value, and is defined as TransformerBlock(Hi) =
MLP(MultiHeadAttn(Hi,Hi,Hi)).

The Knowledge Attention and Recontextualiza-
tion component (KAR) is added between BERT
layers i and i− 1, changing the embedding mech-
anism to: H′i = KAR(Hi, C), which is computed
as follows:

Retrieval: The KB entity candidate selector pro-
vides a list of C potential entity links for X , along
with their mention spans in X .

Disambiguation: Each mention span is repre-
sented by applying self-attention pooling over all
word pieces in the span (after projection to the
entity embedding dimension E), yielding S ∈
RC×E . To select the relevant entities in the context,
mention-span self-attention is applied to compute
Se = TransformerBlock(S), followed by com-
puting candidate entity scores ψ based on Se.

Knowledge incorporation: The entity embed-
dings are averaged to ẽ based on their weight ψ,
and are used to enhance the mention-span represen-
tations, yielding S′e = Se + ẽ.

Recontextualization: The BERT word piece
representations are recontextualized using a modi-
fied transformer layer in which S′e is used as both
the key and value for MultiHeadAttn. The result-
ing vectors H′i are projected back into the BERT
dimension D.

4.2 S-KAR

The main component of InferBert is the Simpli-
fied Knowledge Attention and Recontextualization
component (S-KAR). Rather than enhancing BERT
with KB entity embeddings, InferBert embeds the
KB relations.

Similarly to KAR, S-KAR replaces BERT’s em-
bedding mechanism between two particular lay-
ers, computing: H′i = S-KAR(Hi, C), which is
then used to compute the next layer: Hi+1 =
TransformerBlock(H′i), and the remainder of
BERT is run as usual. S-KAR operates as follows:

Retrieval: We follow KnowBert (Peters et al.,
2019) and adopt a broad definition for a KB as
a collection of (tail entity, relation, head entity)
triplets, focusing on K relation types of interest:
R = {R1, ..., RK}. For each relation type Rk
we learn two embedding vectors, eheadk and etailk ,

representing the head and the tail entity slots in this
relation.6

We assume that for a given relation set R, the
KB is accompanied by a relation extractor, which
takes a text X as input and returns a list of triplets:

C = {(headm, tailm, rm)|m ∈ 1..|C|, rm ∈ R}

where headm and tailm are the indices of the first
token of the head and tail entities in the text
(1, ..., N), and rm is the relation, as illustrated in
Figure 1.

Disambiguation: We focus on unambiguous en-
tities, i.e. those with a single KB entry, with re-
spect to relation type, and extract only entities of
the relevant type.7 For example, though Pitcher
has multiple entries in Wikidata, only one of them
is a location.

Knowledge incorporation: For a given list of
triplets C, S-KAR creates the relation embedding
matrix R ∈ RN×E such that the head embedding
eheadm is in index headm, the related tail embedding
vector etailm is in index tailm, and the remaining
entries are set to ~0. We incorporate this relation
embeddings into the BERT vectors: S′i = Hproj

i +

R, where Hproj
i is the projection of Hi into the

relation embedding dimension E = 768.

Recontextualization: the recontextualization
step is identical to KAR.

5 Experimental Setup

BERT model. Our model assumes access to a
pre-trained BERT model with or without additional
fine-tuning on the target downstream task. Specif-
ically, we used the English uncased BERTBASE
model (Devlin et al., 2019) fine-tuned on the
MultiNLI dataset (Williams et al., 2018). Based on
preliminary experiments, the S-KAR layer was in-
serted between the first and second layers of BERT.

Relational data. We retrieve relational data from
WordNet and Wikidata (See Section 3.1). For a
given premise p and hypothesis h we retrieve a rel-
evant KB tuple list of triplets {(headm, tailm, rm)}
(Section 4.2) when the head is in the premise, tail is

6We did not explore symmetric relations in this work, but
they can be straightforwardly implemented by learning a sin-
gle vector for both entity slots of the relation.

7We use spaCy NER (Honnibal and Montani, 2017) to
extract the relevant entity types: LOC for locations, ORG for
names of companies, and nouns for hyponyms and colors.
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Model Entities Hypernymy Location Color Origin MultiNLI*

LM-based Model BERT seen 64.7 77.6 62.2 70.6 -
unseen 65.7 68.3 58.5 69.1 83.4

Knowledge-Enhanced
Models

KnowBert seen 74.0 83.5 67.2 78.2 -
unseen 66.7 69.1 59.1 70.6 82.3

K-BERT seen 68.0 81.7 62.2 75.0 -
unseen 68.3 67.6 56.6 71.4 83.2

InferBert seen 81.7 83.3 77.2 86.9 -
unseen 82.0 83.9 72.0 88.9 82.3

Table 4: Performance on the challenge test sets and MultiNLI. Models were tested on either entities that appear in
the training set (seen) or new entities (unseen). *Seen and unseen results are not relevant for MultiNLI.

in the hypothesis, and head 6= tail. Since we focus
on unambiguous entities (in the context of a given
relation), we do not need to use an entity linker.
We make sure that the target entities in the train,
validation, and test sets are distinct, but that they
all have entries in the relevant KB.

Training data. We train a single model on the
combination of the challenge sets to learn phe-
nomena related to all the semantic relations. To
avoid “catastrophic forgetting”, i.e. decrease in
the performance on the original task (MultiNLI),
we mix the challenge training set with a random
sample of 10K MultiNLI training set instances and
train on the mixed datasets. The training objec-
tive assigns more weight to the challenge exam-
ples: L′BERT = γ · LBERT, where γ > 1 is a hyper-
parameter fine-tuned on the validation set.

Training procedure. The model consists of a
pre-trained BERT model and randomly initialized
InferBert parameters (S-KAR weights and relation
embeddings). To embed both sets of parameters
in the same space, we follow KnowBert and train
the model in two phases. In the first phase, we
freeze the pre-trained BERT parameters and update
only the S-KAR and the relation embeddings for
3 epochs. In the second phase we freeze the re-
cently trained InferBert parameters and unfreeze
the BERT parameters, training for another epoch.8

Baselines. We compare InferBert with two repre-
sentative knowledge-informed models, KnowBert
and K-BERT, as well as a BERTBASE NLI model.
All the baselines are trained on MultiNLI and fur-
ther fine-tuned on the the joint challenge set (mixed
with a subset of MultiNLI).

For fair comparison, K-BERT used the same
entity extraction mechanism, followed the same

8The first phase of KnowBert trains only the entity em-
beddings but not KAR, while we also include the S-KAR
weights.

fine-tuning procedure, and was given access to the
exact same data as InferBert. KnowBert, on the
other hand, requires re-training a new model on
new data. Because of its resource requirements, we
used the available pre-trained KnowBert model. It
is enhanced with knowledge about 470K entities
from Wikipedia and all of WordNet, fully covering
the knowledge in our hypernymy and location chal-
lenge sets, but only some of the entities in the color
and country of origin sets9. Thus, the results for
KnowBert on these two phenomena are not fully
comparable to those of InferBert.

Hyper-parameters. Fine-tuning on MultiNLI
followed the original hyper-parameters described
in Devlin et al. (2019). When fine-tuning InferBert
on the challenge sets, we selected the best hyper-
parameter values based on the performance on the
validation sets. The learning rate for S-KAR was
chosen between 0.003-0.007 in steps of 0.001, and
was set to 0.006. The rest of the parameters were
trained with a learning rate of 9e-6 (selected be-
tween 3e-6 and 4e-5). We tested γ values among
{2, 4, 6, 8, 10, 12} and selected γ = 4. Fine-tuning
was done on a single GeForce GTX 1080 GPU
with batch size of 32. A single InferBert forward
and backward pass took 0.35 seconds. K-BERT’s
best validation performance was achieved after 3
epochs with a learning rate of 3e-5 and KnowBert’s
after 4 epochs with a learning rate of 2e-5.

6 Experiments

We present the results of InferBert and the base-
lines on the various challenge sets (Section 6.1).
We also test the ability of models to learn relational
knowledge about entities seen during training (Sec-
tion 6.2). Finally, we analyze InferBert’s efficiency

9All entities in our hypernymy challenge set are covered in
WordNet, and all entities in our location set has corresponding
entries in the Wikipedia subset used by KnowBert.
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in terms of memory and runtime compared to the
baselines (Section 6.3).

6.1 Performance on the Challenge Sets

Table 4 (“unseen" lines) shows the performance
of InferBert and the baselines on the various chal-
lenge sets and on the MultiNLI10 development set.
The knowledge-enhanced baseline models slightly
outperform BERT on all semantic relations. In-
ferBert performs the best, with a large gap from
the baselines (up to 20 points), demonstrating its
ability to learn and generalize inference patterns
and apply them to new relation instances, as well
as to new entities.

K-BERT performs slightly better than KnowBert,
yet worse than InferBert. We hypothesize that K-
BERT and InferBert enjoy the advantage of having
access to relational knowledge at inference time,
which facilitates learning general inference patterns
and applying them to new facts, on demand. With
that said, the K-BERT method of incorporating re-
lational knowledge as free text is less structured
and likely leads to less efficient learning of infer-
ence patterns (with the limited amount of available
training data).

InferBert retains a high performance on the
MultiNLI matched development set, with 2.3%
reduction from the original BERTBASE model
(84.6%). KnowBert achieve similar performance,
while K-BERT performs slightly better on it.

6.2 Seen vs. Unseen Entities

In contrast to our original test sets, in which the
entities has not been seen during training, in this ex-
periment we analyze how the models perform with
entities that were all seen in the challenge training
set. For that, we duplicated our test sets, while re-
placing test triplets (head, tail, relation) with others
that are included in the training set. The rest of the
words remained the same, and we made sure (man-
ually) that the new test examples are analogously
sensible and that their entailment labels have not
changed. Results are shown in Table 4 in the seen
rows. Evidently, InferBert shows impressive ro-
bustness when facing unseen entities, unlike other
models that seem to depend significantly on seeing
the test entities already in training time. In fact,
when faced with new entities, the other models per-
formance gets closer to that of original BERT (with
no knowledge injected).

10We used MultiNLI dev-matched.

6.3 Efficiency Analysis

While large language models lead to performance
boost on standard benchmarks, the NLP commu-
nity had begun paying more attention to develop-
ing more resource-efficient NLP models (Moosavi
et al., 2020). In the design of InferBert we took
efficiency into consideration. First, InferBert is sig-
nificantly less memory consuming than KnowBert,
which stores up-front the embeddings for all enti-
ties in memory. KnowBert trained on Wikipedia
and WordNet uses BERTBASE (110M parameters),
to which it adds the KAR component (7.3M) and
the embeddings of 471K entities (406M parame-
ters), resulting in 523.3M parameters. Conversely,
instead of entity embeddings, InferBert supports
up to K = 500 relation types × 2 vectors (tail
and head) × each with dimension E = 768, result-
ing in 768K parameters. The SKAR component
takes up 8.3M parameters. Overall, InferBert has
119.1 parameters, only 23% of KnowBert’s param-
eters. Second, as opposed to InferBert, KnowBert
required a pre-training step in which the 471K in-
stances (corresponding to KB entities) were pro-
cessed.

InferBert achieved better performance than
KnowBert on the challenge set with as little as
1,000 examples per relation (Table 4). We conjec-
ture that the InferBert training is more data effi-
cient as it is not required to learn about specific
head or tail entities (e.g. Emporis and Germany)
but about relationships, (e.g. Hypernymy) which
occur more frequently in the training data.

Finally, we note that, similar to our model, K-
BERT is also memory and parameter efficient since
it does not store entity embeddings (as KnowBert
does). Rather, it only involves fine-tuning the
BERT parameters, thanks to representing the en-
hanced knowledge in textual form as part of the
instance input. Our model does incorporate a mod-
est number of additional parameters for structured
relation embeddings, which, as shown in our exper-
iment, leads to substantial performance gains over
K-BERT’s textual representations.

7 Conclusions

We presented InferBert, a generic and efficient
method to incorporate relational knowledge into
transformer-based inference models. Our approach
targets specific inference phenomena that require
external relational knowledge, allowing the model
to learn generic inference patterns decoupled from
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the factual knowledge required for a particular in-
stance, which is injected at inference time. Our
experiments show that InferBert successfully ap-
plies the learned patterns to unseen facts, where
other knowledge enhancement models fail. Un-
like most prior work, InferBert does not require
pre-training the LM on a KB, and consumes less
memory.

Our work joins the effort of others to improve
models by teaching them specific inference phe-
nomena (Liu et al., 2019a; Richardson et al., 2020).
A natural direction for future work would be to
apply our methodology to a broader range of in-
ference phenomena and adapt them for additional
inference tasks.
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Abstract

Training and evaluation of automatic fact ex-
traction and verification techniques require
large amounts of annotated data which might
not be available for low-resource languages.
This paper presents ParsFEVER: the first pub-
licly available Farsi dataset for fact extrac-
tion and verification. We adopt the construc-
tion procedure of the standard English dataset
for the task, i.e., FEVER, and improve it for
the case of low-resource languages. Specif-
ically, claims are extracted from sentences
that are carefully selected to be more infor-
mative. The dataset comprises nearly 23K
manually-annotated claims. Over 65% of
the claims in ParsFEVER are many-hop (re-
quire evidence from multiple sources), mak-
ing the dataset a challenging benchmark (only
13% of the claims in FEVER are many-hop).
Also, despite having a smaller training set
(around one-ninth of that in Fever), a model
trained on ParsFEVER attains similar down-
stream performance, indicating the quality of
the dataset. We release the dataset and the
annotation guidelines at https://github.

com/Zarharan/ParsFEVER.

1 Introduction

The spread of false information can lead to severe
social and political problems (Wang, 2017). It
would be extremely difficult to detect and track
false information manually, given that the abun-
dance of available technology has made it possible
for these to be produced at scale and disseminated
rapidly. Therefore, there has been a lot of inter-
est in developing natural language technologies for
fact-checking (Thorne and Vlachos, 2018). Unfor-
tunately, similarly to many other fields of NLP that
rely on manually curated datasets, fact-checking
has remained restricted to a few high-resource lan-
guages for which large-scale annotated datasets are
available.

In this paper, we present ParsFEVER, the first
Farsi fact extraction and verification dataset. The
dataset opens room for research in fact-checking
and verification on low-resourced languages. Pars-
FEVER is constructed based on FEVER (Thorne
et al., 2018), the most widely used dataset for fact-
checking and fake news detection in English. We
collected 22,906 claims by altering sentences ex-
tracted from introductory sections of 358 popular
articles from Farsi Wikipedia. Annotators manually
classified these claims into SUPPORTED, REFUTED,
or NOTENOUGHINFO based on the provided ref-
erence pages. In addition, the annotators tagged
those sentences which they used as evidence for
this classification. Therefore, the dataset can be
used for both fact-checking (a 3-class classification
task) and evidence retrieval (which is a necessary
step for the classification).

The quality of the dataset was evaluated using
three different validation checks: (1) 5-way inter-
annotator agreement, (2) agreement against super-
annotators1, and (3) manual validation by the au-
thors. We also report experimental results for when
ParsFEVER was used as a benchmark for the fact-
checking task. In this task, given an input claim the
model is expected to support or refute it and pro-
vide the corresponding evidence for this decision.
If no enough evidence is found, NOTENOUGHINFO

is returned. We evaluated the baseline system pro-
vided for FEVER on our dataset. The results indi-
cate the more challenging nature of ParsFEVER:
50.0% (vs. 52.1% in FEVER) accuracy on a held-
out test set on claim classification, and 28.1% (vs.
32.6% in FEVER) for evidence retrieval. Finally,
we release ParsFEVER and related tools to allow
further research on low-resource fact-checking, par-
ticularly in Farsi.

1The annotators who were responsible for training and
leading other annotators.
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2 Related Work

The only related datasets in Farsi are those of Zarha-
ran et al. (2019) and Zamani et al. (2017). The
former is a dataset for Farsi stance detection con-
taining hundreds of instances in the news domain.
Unlike ParsFEVER, the dataset does not provide
any evidence for the claims; hence, it can only
be used for a constrained fact-checking evalua-
tion setting where evidences are already extracted
for verifying stance. Also, the dataset of Zamani
et al. (2017) is targeted towards rumor detection
in Farsi tweets, which mostly relies on Twitter-
specific features such as user profile information
and response/retweet structure. In contrast, our
dataset mostly focuses on lexical features.

ParsFEVER is mainly based on FEVER, a
dataset widely used for fact extraction and veri-
fication in English. The dataset consists of around
185K claims generated by modifying sentences ex-
tracted from Wikipedia. The claims are classified
as SUPPORTED, REFUTED, and NOTENOGHINFO.
Despite being based on FEVER, our dataset has
some fundamental differences that aim at making
a more challenging benchmark for low-resourced
languages. In the following section, we elaborate
on the construction procedure of our dataset and
the differences it has to that used for FEVER.

Other related datasets include HOVER (Jiang
et al., 2020) and LIAR (Wang, 2017). HOVER is a
dataset for many-hop fact extraction and claim ver-
ification. Unlike our dataset, which consists of sin-
gle sentence claims, HOVER includes claims from
one sentence up to one paragraph. It consists of
26K claims with SUPPORTED or NOTSUPPORTED

labels. LIAR was instead derived from the short
statements extracted from POLITIFACT.COM for
fake news detection. This dataset contains 12.8K
human-labeled instances.

Other related datasets in the social media domain
include PHEME (Zubiaga et al., 2016b) and Ru-
mourEval (Zubiaga et al., 2016a). PHEME consists
of 5,802 comment threads collected from Twitter,
with approximately 103K tweets. This dataset has
1,972 and 3,830 threads labeled as rumour and non-
rumour, respectively, resulting in an imbalanced
dataset. RumourEval was released as part of the
SemEval-2017 Task 8 (Derczynski et al., 2017).
The dataset contains 330 rumour threads (4,842
tweets) from Twitter, annotated for both stance and
veracity.

3 Dataset

Performing accurate fact-checking at scale requires
a high-quality dataset along with the necessary al-
gorithms and models. While there is a significant
volume of research on the algorithms and models,
they are generally language-agnostic. However, the
datasets must be developed for each language inde-
pendently. In this work, while using FEVER as a
baseline, we modify their approach to make it more
suitable for low-resource languages like Farsi.

Thorne et al. (2018) processed the June 2017
Wikipedia dump with Stanford CoreNLP (Manning
et al., 2014) to collect sentences from the introduc-
tory sections of approximately 5K popular pages.
In addition to this set of primary pages, all the re-
lated (secondary) pages2 are retrieved. Following
this procedure, we manually selected a set of 358
articles from the most popular Farsi pages crawled
from fa.wikipedia.org. While FEVER provides an
annotation tool, it leverages proprietary services
which are not publicly available. Hence we devel-
oped our own Wikipedia crawler and annotation
tools, which we release along with our dataset and
annotation guidelines.

Table 1 shows two samples from ParsFEVER. In
what follows in this section, we describe our proce-
dure for constructing and validating the dataset.

3.1 Construction
The construction procedure of ParsFEVER consists
of two phases; claim generation and claim labeling.

3.1.1 Phase 1 - claim generation
The objective of this phase was to generate claims
for the 358 retrieved popular Wikipedia pages. We
followed the following two steps.

(1) Sentence selection: In the construction of
FEVER, this step was carried out in a random man-
ner, i.e., a sentence was randomly selected from the
corresponding Wikipedia page to serve as claim.
Instead, we opted for a manual sentence selection.
Specifically, each annotator was asked to carefully
select a sentence from the introductory section of
the corresponding page (primary page) in a way
that directly relates to the article while containing
as many (hyper-)links as possible. The last crite-
ria were to guarantee a high number of many-hop
claims. Many-hop3 claims are essentially more

2Referenced pages from the main page.
3The number of hops of a claim is the same as the number

of necessary evidence documents for the claim.
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Verdict (English) Farsi

supports

Claim:
Maryam Mirzakhani obtained the full score of the
World Mathematical Olympiad in 1995 as an offi-
cial student at the pre-university level.

Evidence:
[Maryam_Mirzakhani]
In her junior and senior years of high school
(Tehran Farzanegan School), she won a gold medal
at the International Mathematical Olympiad in
1994 (Hong Kong) and 1995 (Canada). The follow-
ing year, in Toronto, she became the first Iranian
student to achieve a perfect score.

[Student]
A student is primarily a person who is under learn-
ing with the goal of acquiring knowledge. The
term "student" denotes those enrolled in secondary
schools and higher.

Claim:

در را ریاضی جهانی المپیاد کامل نمره میرزاخانی مریم
تحصی®ت سطح در رسمی محصل عنوان به ۱۹۹۵ سال

آورد. دست به دانشگاه از پیش
Evidence:

میرزاخانی] [مریم
تهران، فرزانگان دبیرستان در تحصیل دوران در میرزاخانی
۱۹۹۴ سالهای در ریاضی جهانی المپیاد ط®ی مدال برنده
بهعنوان سال این در و شد (کانادا) ۱۹۹۵ و (هنگکنگ)

آورد. دست به را کامل نمره ایرانی دانشآموز نخستین
[دانشآموز]

دانش که است کسی معنی به لغوی لحاظ از دانشآموز
در رسمی محص®ن به اط®ق برای اصط®ح، در و میآموزد

میرود. کار به دانشگاه از پیش تحصی®ت سطح

refutes

Claim:
Typhoid is not contagious at all.

Evidence:
[Typhoid_fever]
Typhoid fever, also known as typhoid, is a disease
caused by Salmonella serotype Typhi bacteria.

[Infection]
An infectious disease, also known as a transmissi-
ble disease or communicable disease, is an illness
resulting from an infection. Some signs of infection
affect the whole body, generally.

Claim:

نمیباشد. مسری وجه هیچ به حصبه
Evidence:

[حصبه]
که است عفونی بیماری یک تیفوئید تب یا تیفوئید حَصْبه،
تیفی سویه Salmonella enterica باکتری عفونت اثر در

میشود. ایجاد
عفونی] [بیماری

(به مسری بیماری یا واگیر بیماری یا عفونی بیماری
transmissible diseases یا Infectious diseases انگلیسی:
توسط که گویند بیماری به (communicable diseases یا

شود. ظاهر بیماری نشانههای و ع®ئم و منتقل عفونت

Table 1: Sample instances from ParsFEVER (English translations are shown for reference). For each
instance, we show the claim, the corresponding label (verdict), and the evidence (text spans from Wikipedia
articles, with the page title in brackets) used for this decision.

challenging as they require evidence retrieved from
multiple pages. Specifically, we asked the annota-
tors to produce their claims in a way that at least
half of them would require information from other
neighbouring Wikipedia pages (secondary pages,
i.e., those pages that are linked within the original
claim) with the help of a custom dictionary.4 Con-
sequently, more than 87% of the claims in FEVER
need information from only a single Wikipedia
page (one hop) (Jiang et al., 2020). However, over
65% of the claims in ParsFEVER are many-hop.
After selecting an appropriate sentence, at least two
and at most five claims were generated, constituting
our set of original claims.

(2) Claim mutation: Following Thorne et al.
(2018), we asked the annotators to mutate the orig-
inal claims. Six types of mutations were consid-

4The dictionary comprises the list of terms (hyper)linked
in the original sentence and all the other sentences from the
corresponding Wikipedia page.

ered: paraphrasing, negation, substituting an en-
tity/relation with a similar/dissimilar one, and mak-
ing the claim more general/specific. At most, five
mutated claims were generated for each mutation
type.

In both steps in claim generation, the annotators
were asked to construct claims that only target one
specific fact. This was to avoid multiple-target
claims, which can potentially have contradictions.
In addition, the claims are required to be based on
the entity of focus on the primary page.

3.1.2 Phase 2 - claim labeling
In this stage, each mutated claim is labeled with one
of the SUPPORTED, REFUTED, or NOTENOUGH-
INFO tags. This requires the annotators to identify
the appropriate evidence. The annotator specifies
one of the SUPPORTED and REFUTED tags only
when a strong evidence exists: SUPPORTED if the
reason supports the claim, and REFUTED otherwise.
If this decision needs additional knowledge (dic-
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tionary), the evidence has to be updated with the
corresponding new extra entries. Finally, in case
the information on Wikipedia pages is not enough
to justify the verdict, the claim is labeled as NOTE-
NOUGHINFO.

To simplify the annotation process, we provide
all sentences from the introductory section of the
primary and secondary pages. We let the anno-
tators use any combination of these sentences as
evidence. In contrast, Thorne et al. (2018) just
provided the first sentence of each secondary page.
Thorne et al. (2018) defined the dictionary using
the title of secondary pages and their first sentence.
It is worth mentioning that the first sentence might
not necessarily offer any valuable extra informa-
tion. The annotators could easily add an arbitrary
Wikipedia page by providing its URL. As a result,
the system automatically adds all sentences from
the introductory section of the page and its dictio-
nary. At last, by using all the provided sentences in
the annotation interface, the annotators record the
sentences necessary to justify their verdict.

3.2 Annotators
Our annotation team had 14 native Farsi speakers,
all of whom were involved in phase 1 and phase 2.
All the annotators were trained for the task prior to
the annotation. There was no intervention during
the annotation process, and annotators were paired
randomly for various instances in phase 2.

3.3 Validation
During claim labeling (task 2), we carried out a ver-
ification step to filter out noisy claims. As a result,
around 2% of all generated claims were skipped by
annotators for not satisfying the required quality
criteria. Approximately 1% contained typos, and
about 5% were flagged as too ambiguous, all of
which were excluded from our dataset.

We implemented three forms of data validation
for claim labeling: 5-way inter-annotator agree-
ment, an agreement against super-annotators, and
manual validation by the authors. To this end,
we selected 3% of claims to be annotated by five
annotators and calculated a 5-way inter-annotator
agreement. The Fleiss k score was computed as
0.599, which is lower than that reported for FEVER
(0.684). This can be attributed to the fact that Pars-
FEVER comprises significantly more many-hop in-
stances, making the annotation task more challeng-
ing. Also, Table 2 shows the results of agreement
against super-annotators of ParsFEVER compared

Precision Recall F1

FEVER 95.42 72.36 82.30
ParsFEVER 86.95 85.23 86.08

Table 2: Agreement against super-annotators of
ParsFEVER compared to FEVER.

FEVER ParsFEVER

IAA 0.84 0.71
Human 0.75 0.63

Table 3: The agreement of 500 randomly selected
claims from ParsFEVER compared to FEVER (in
terms of accuracy). IAA and Human respectively
stand for Inter-annotator agreement and annotators’
agreement against gold labels.

to FEVER: 12 of the 14 annotators had an agree-
ment of 87% with the super-annotators (the other
two had 81% and 79%).

We also randomly selected 500 claims from Pars-
FEVER and FEVER to make another comparison.
We asked two annotators to label each claim of the
selected set for FEVER and ParsFEVER. Table 3
shows evidence and label agreement. The agree-
ment of ParsFEVER is lower than FEVER. This
is because most ParsFEVER claims are many-hop,
resulting in a more challenging dataset (Jiang et al.,
2020). Finally, if we ignore the correct evidence
for ParsFEVER, the inter-annotator agreement and
annotators’ agreement against the dataset are 0.92
and 0.87 based on accuracy, respectively.

3.4 Dataset Statistics
Table 4 lists the distribution of instances across the
three classes in the training, development, and test
sets. Unlike FEVER which only includes mutated
claims, in ParsFEVER we consider both mutated
and original claims to improve training.

4 Experiments

Following Thorne et al. (2018), we implemented a
full pipeline system for fact verification and extrac-
tion with the following three modules:

1. A document retrieval component (Chen et al.,
2017) to find the most relevant page to a spe-
cific claim.

2. A sentence retrieval module to extract the
evidence sentence (DrQA-based sentence re-
trieval module).
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Split SUP REF NEI

Training 6,253 4,008 5,685
Dev 841 824 861
Test 853 833 863

Total 7,947 5,665 7,409

Table 4: Distribution of instances in ParsFEVER
across the three classes: SUPPORTED (SUP), RE-
FUTED (REF), and NOTENOUGHINFO (NEI). The
statistics are for the pruned dataset, i.e., after omit-
ting claims which are ambiguous or contain typo
(around 1,885 samples). Both mutated and original
claims are included in the dataset.

3. Two recognizing textual entailment (RTE)
models are used to classify the claim based
on collected evidences as SUPPORTED, RE-
FUTED, or NOTENOUGHINFO.

These models are based on MLP (Riedel et al.,
2017), with a single hidden layer that benefits term
frequencies and TF-IDF cosine similarity between
the claim and evidence, and Decomposable Atten-
tion (Parikh et al., 2016, DA). Given that NOTE-
NOUGHINFO instances are not associated with any
evidence, they cannot be used for training the RTE
models. To address this issue, Thorne et al. (2018)
proposed two alternatives solutions: sampling a
sentence (as evidence) from the nearest page to the
claim (NP) or using the document retrieval com-
ponent to uniformly select a random sentence (as
evidence) from Wikipedia (RS).

4.1 Results

We customized the system based on Farsi. Follow-
ing Thorne et al. (2018), we set k = 5 (k nearest
documents to the claim for document retrieval) and
l = 5 (top l-most similar sentences from the k-
most relevant documents). We also checked for
other values of the two parameters. However, no
improvements were observed on the development
set of ParsFEVER.

Table 5 shows the accuracy of the system on
ParsFEVER and FEVER. ScoreEv and NoScoreEv
respectively stand for accuracy score with respect
to correct evidence retrieval and without consid-
ering the evidence. The first row in the table be-
longs to the best result reported by Thorne et al.
(2018) using a decomposable attention model (DA)
trained on NP. We show results on ParsFEVER us-
ing the full pipeline system when either NP or RS

Model Accuracy (%)

NoScoreEv ScoreEv

FEVER DA/NP 52.09 32.57

ParsFEVER

MLP/NP 41.03 17.46
MLP/RS 43.76 14.62
DA/NP 50.02 28.06
DA/RS 48.08 19.06

Table 5: Accuracy performance of FEVER’s full
pipeline system on ParsFEVER (best results for
FEVER are reported).

methods are used to provide evidence for NOTE-
NOUGHINFO instances. DA generally performs
better than MLP, particularly when combined with
the NP strategy for sampling sentences. In fact,
the best accuracy was achieved by DA/NP, with
(ScoreEv) and without (NoScoreEv) the require-
ment to provide correct evidence with 28.06% and
50.02%, respectively.

5 Conclusion

We presented ParsFEVER, a novel and publicly
available dataset for Farsi fact extraction and ver-
ification. We elaborated the construction proce-
dure for this dataset, which focuses on having a
rich dataset suitable for low-resource languages.
Although this work uses Wikipedia as its source,
other textual structures and corpora can also be
used for fact extraction in this framework.

We evaluated the baseline system proposed for
FEVER on our dataset. However, there have been
recent developments in the field of fact-checking
with models such as QABriefs (Angel et al., 2020).
An immediate future work would be to take Pars-
FEVER as a more challenging benchmark (than
FEVER) with significant many-hop operations as
a benchmark for evaluating and analyzing existing
fact-checking models. This analysis can also shed
light on the ability of these models to go beyond
the English languages and in low-resource settings.
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Abstract

Recent question answering and machine read-
ing benchmarks frequently reduce the task to
one of pinpointing spans within a certain text
passage that answers the given question. Typ-
ically, these systems are not required to ac-
tually understand the text on a deeper level
that allows for more complex reasoning on the
information contained. We introduce a new
dataset called BiQuAD that requires deeper
comprehension in order to answer questions
in both extractive and deductive fashion. The
dataset consist of 4, 190 closed-domain texts
and a total of 99, 149 question-answer pairs.
The texts are synthetically generated soccer
match reports that verbalize the main events
of each match. All texts are accompanied by
a structured Datalog program that represents
a (logical) model of its information. We show
that state-of-the-art QA models do not perform
well on the challenging long form contexts and
reasoning requirements posed by the dataset.
In particular, transformer based state-of-the-
art models achieve F1-scores of only 39.0. We
demonstrate how these synthetic datasets align
structured knowledge with natural text and aid
model introspection when approaching com-
plex text understanding.

1 Introduction

Most of the recent question answering benchmarks
require systems to pinpoint the span of the answer
to the question in the given text. In the well-known
SQuAD 2.0 dataset (Rajpurkar et al., 2018), sys-
tems are able to extract the correct answer span in
the following paragraph as an answer to the ques-
tion: “What tactic did researchers employ to offset
the former deficit of work surrounding the complex-
ity of algorithmic problems?”:

“Before the actual research explicitly devoted to
the complexity of algorithmic problems started off,
numerous foundations were laid out by various

researchers. Most influential among these was
the definition of Turing machines by Alan Turing
in 1936, which turned out to be a very robust and
flexible simplification of a computer.” (sample from
Rajpurkar et al. (2018))

Results of state-of-the-art (SOTA) systems on
these datasets have reached Exact Match (EM) and
F1 performances of 90.9 and 93.2, respectively 1.
Some of these models even outperform the human
baseline (which lies at F1 = 89.4 for SQuAD 2.0).

It is unclear to which extent the existing bench-
marks actually require systems to comprehend texts
and to what extent these systems rely on surface
cues signalling a match between question and an-
swer span. Most state-of-the-art models rely on
transformer models such as BERT and ALBERT
(Lan et al., 2020) that are pre-trained on supple-
mentary tasks using large amounts of textual data
(Devlin et al., 2019) and employ extensive self-
attention mechanisms that have been shown to learn
many of the features of a classic natural language
processing (NLP) pipeline (Tenney et al., 2019).
It has been shown for a number of tasks that such
models rely on surface cues and on artifacts of
the datasets. A recent example is the Argument
Reading and Comprehension (ARC) task (Haber-
nal et al., 2018). A deeper analysis of the data and
the performance of transformer models has shown
that they exploit only surface cues and artefacts of
the data, failing to perform beyond chance when
systematic (adversarial) modifications are applied
on the dataset (Niven and Kao, 2019).

Our motivation in this paper is to introduce a new
question answering dataset that requires a deeper
understanding of the text to answer questions be-
yond merely matching answer spans. In particular,
in our dataset, the answers to questions can often

1Current performance of ‘FPNet (ensemble)‘ at the time
of writing according to the SQuAD 2.0 leaderboard https:
//rajpurkar.github.io/SQuAD-explorer/.
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not be found in the original text, but can be inferred
on the basis of a deeper, structural, understanding.
Examples are aggregation questions such as “‘How
many goals did Marco Reus score in the first half
of the match?’” but also questions such as “‘Who
won the game?’”, requiring a system to understand
that a balanced score leads to a tie, making the
question unanswerable. Since most models cannot
keep track of all the goals and intermediate scores
for the whole game this provides a significant chal-
lenge. The dataset we present is called BiQuAD
and comprises of 99,149 question answer pairs on
4,190 documents, averaging 23 questions per docu-
ment. The texts describe soccer matches that have
actually taken place. The texts have been generated
automatically on the basis of handcrafted templates
from structured reports of soccer games. A model
of each game is available in the form of a Datalog
program representing the meaning of the text in
terms of a model consisting of predicates relevant
to the description of a soccer game. The questions
are paraphrases of queries that can be answered
over the model of the game. Similar to extensions
from SQuAD 1.0 to 2.0 (Rajpurkar et al., 2018), a
percentage of the generated questions in the dataset
are deemed as unanswerable.

In this paper we present the dataset in more de-
tail and describe its creation (section 3). Further,
we present the results of state-of-the-art QA sys-
tems on this task in section 4. We show the limits
of current state-of-the-art QA in answering ques-
tions for which the answer is not in the text but
requires deeper inference on the basis of the infor-
mation given in the text. We show that, in spite
of text being artificially generated using 335 rel-
atively simple templates, thus being very regular,
this task is not solvable by the current state-of-the-
art in question answering. Arguably, the current
state-of-the-art focuses on extractive QA and was
not designed for deeper understanding. We posit
that results on our dataset show that extractive mod-
els in particular overfit on surface cues that do not
require deeper text understanding. In particular, we
show that while the state-of-the-art on Squad 2.0
for example yield results of EM and F1-scores of
90.7 and 93.0, results of these models for our task
range between 38.8 and 39.0 respectively.

2 Related Work

Datasets on machine reading and question answer-
ing tasks can be characterized by broad categories:

a) open vs. closed (specific) domain, and b) text-
comprehension based (e.g. extractive or Cloze-
style) vs. knowledge based QA. Table 1 catego-
rizes prominent datasets along these lines and pro-
vides an overview over the number of questions/-
documents, how each dataset was collected (e.g.
crowdsourcing / artificially generated) as well as
the current state-of-the-art (SOTA) results. This list
is necessarily non-exhaustive and we only show-
case datasets that are either prominent examples of
the space or noteworthy because of their relation to
the work presented here.

Prominent datasets focusing on open-ended ex-
tractive QA include SQuAD 1.0 (Rajpurkar et al.,
2016) and 2.0 (Rajpurkar et al., 2018), which have
enjoyed wide popularity in the research community.
Together with NewsQA (Trischler et al., 2017),
these datasets represent the largest, crowd-sourced,
extractive QA datasets available. Questions here
are answered by correctly identifying a span in a
context paragraph, with version 2.0 introducing a
subclass of unanswerable questions. More recently,
SQuAD versions in languages other than English
have been developed (Croce et al., 2018; Mozannar
et al., 2019; d’Hoffschmidt et al., 2020; Carrino
et al., 2020). The TriviaQA (Joshi et al., 2017)
dataset integrates the notion of external evidence
(Wikipedia articles) for trivia and open domain
question answering and broadens the task to infor-
mation retrieval (IR) settings.

The RACE dataset (Lai et al., 2017) relies on a
multiple choice setting and leverages data used for
the assessment of reading comprehension by hu-
mans. It features simple reasoning challenges such
as deducing relative values from mentions of abso-
lute ones. Similarly, the Open Book QA (Mihaylov
et al., 2018) requires models to involve common
sense knowledge to solve the task successfully.

There are different ways to frame the task of an-
swering questions by machine reading, including
sentence retrieval (Momtazi and Klakow, 2015),
multi-hop reasoning (Khot et al., 2020), and rea-
soning about multiple paragraphs or documents at
the same time (Dua et al., 2019; Cao et al., 2019).
Recent work has considered the development of
reasoning-based QA systems (Weber et al., 2019)
as well as the integration of external (Banerjee and
Baral, 2020) and commonsense knowledge (Clark
et al., 2020) into the QA process.

Other machine reading based QA datasets fo-
cus on answering questions on the basis of struc-
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Dataset Domain Task Type Samples ~ Acquisition Method SOTA
SQuAD 1.0, 2.0 Open Extractive QA 150,000 Crowdsourcing EM 90.724 F1 93.011
NewsQA Open Extractive QA 120,000 Crowdsourcing F1 73.6
TriviaQA Open Extractive QA 95,000 Semi-Automatic EM 90.38 F1 92.96
RACE Open Multiple Choice 100,000 Domain Experts Accuracy 90.9
Open Book QA Open Multiple Choice 6,000 Crowdsourcing Accuracy 87.20
LC-QuAD 2.0 Open Graph Retrieval 30,000 Semi-Automatic tbd.
WikiHop Open Extractive QA 50,000 Graph Traversal Accuracy 81.9
MedHop Closed Extractive QA 2,500 Graph Traversal Accuracy 60.3
QASC Open Multiple Choice 10,000 Crowdsourcing Accuracy 90
QALD-9 Open Graph Retrieval 700 * 11 Manual Annotation Macro F1 QALD 5.0
SciQA Closed Document Retrieval 10,000 Automated Extraction MAP 24.36*
DROP Both Extractive QA 97000 Crowdsourcing EM 90.10 F1 87.04

Table 1: Overview of related QA datasets. Exact match (EM), F1, Accuracy, Mean Average Precision (MAP)
scores according to their respective leaderboards at the time of writing. *Best result on BioASQ 6b test batch 3
(Nentidis et al., 2018).

tured knowledge graphs. A prominent example
is the series of Question Answering over Linked
Data (QALD) evaluation campaigns (Usbeck et al.,
2018), now in its 9th edition and going back to
2011. Solving the QALD tasks requires mapping
natural language questions in multiple languages
into a corresponding SPARQL query (Cimiano
et al., 2013). While QALD provided only hun-
dreds of training samples, recent datasets such as
LC-QuAD 2.0 (Trivedi et al., 2017; Dubey et al.,
2019) rely on automatic generation and human post-
processing to generate sufficient sample counts re-
quired for modern deep learning architectures. A
similar approach is taken by QASC (Khot et al.,
2020) or WikiHop and MedHop (Welbl et al., 2018)
that are aimed at multi hop inference across multi-
ple documents, finding answers directly from the
KG without the need to generate a query.

Most closed domain datasets are smaller than
their open domain counterparts since annotation
usually requires experts that are inherently harder
to source. Datasets such as the biomedical question
answering corpus BiQA (Lamurias et al., 2020)
make use of user generated content from other
sources instead.

The recent DROP dataset (Dua et al., 2019) fo-
cuses on complex reasoning tasks in form of both,
open and closed domain, questions. The task com-
bines the challenge of extractive QA with testing
a models ability to perform limited numerical rea-
soning, e.g. by having to calculate date differences.
At the time of this writing, graph-based models
presented in (Chen et al., 2020) rank at the top of
the DROP leaderboard with F1 of 90.1, and EM

of 87.0.2

Similar to DROP, we aim to bridge gaps required
for deeper text understanding while simultaneously
providing sample annotations that allow for proper
model introspection. The synthetic nature of gener-
ated texts in BiQuAD provides an extensible way to
test model capabilities for reasoning about various
sub-categories. We provide long form text passages
alongside structured representations, in the form
of Datalog rules, as a way to either explicitly com-
bine structured and unstructured information or a
further way for model introspection by aligning
neural model representations with their graphical
and discrete counterparts.

3 Methods

This section outlines the methodology used to gen-
erate the dataset and in what way the state-of-the-
art transformer architectures can provide a first
baseline for the BiQuAD dataset.

3.1 Dataset Generation

The BiQuAD dataset consists of two different views
on each match: a Datalog program representing a
model of each text in terms of the main events in
the match, as well as an artificially generated match
report in natural language. Each of these match
reports is accompanied by a set of, on average,
23 question/answer pairs generated in a similar
fashion.The dataset is made available as fixed 60-
20-20 training/development/test splits.

The Datalog programs and natural language
match reports are extracted and generated on the ba-
sis of structured match reports available as part of

2https://leaderboard.allenai.org/drop/
submissions/public
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the “European Soccer Database” (ESDB),3 which
aggregates real minute-by-minute data on 14,196
historic soccer matches between 2008 and 2016
from various sources. It is licensed under the
permissive Open Database License (ODbL) v1.0.
We extract data following a scheme of match ob-
jects and associated events from the database, an
overview of which is available in Fig. 1.

The structure presents a complete model of the
facts contained in the database and subsequently all
texts generated using its information. It contains in-
formation about the following eight types of events
for each match: cross (medium- / long-range
pass), foul, shot on target (goal shot at-
tempts), shot off target (shots not reaching
the goal or hitting the frame), card (yellow or red),
goal, possession (special event reporting the
minutes each team is in ball possession). The avail-
able details for each event vary from sub-types, e.g.
indicating the type of card, the reason on why it
was given, to the individual players involved in a
foul or cross pass. These details are used to create
a natural sounding output sentence from each event.
The Datalog programs capture all these events in
addition to the final result via logical predicates
and provide thus the basis for structured querying,
supporting aggregation questions.

The transformation of the data to Datalog pro-
grams relies on a number of rules that extract data
from the ESDB and transforms it into Datalog
clauses. The full set of rules, as well as a compre-
hensive overview, is available for download along-
side the QA dataset itself. Applied to a full object
hierarchy of a match and all its events in the ESDB
this generates a set of Datalog programs and docu-
ments of various sizes. While some matches only
describe major events, like goals or cards, the ma-
jority averages more than one event per minute.

The following example represents information
on the overall outcome of a certain match in both
Datalog (shown here in a standard variant) and text:

3https://www.kaggle.com/hugomathien/
soccer

EXAMPLE 1.

match(M47).
match_league(M47, "Bundesliga").
match_hometeam(M47,"Borussia Dortmund").
match_awayteam(M47, "Bayern München").
match_score(M47, "2:1").
match_hometeam_goals(M47, "2").
match_awayteam_goals(M47, "1").

The Bundesliga match ended with the
home team Borussia Dortmund beating
Bayern München 2 to 1.

Text Generation: The natural language match
report is generated via a set of templates defined
for the different types of events. An additional set
of templates describes the overall match in various
degrees of detail. Similar to the above Datalog
transformation, we represent transformations into
text as natural language with dynamic placehold-
ers:

EXAMPLE 2.

The {@data.league} game of
{@data.hometeam} versus {@data.awayteam}
ended {@data.score}.

For text generation we defined a total of 335
rules, with least 5 different rules for each relevant
event, so that some language variation is introduced.
Filter functions are used to postprocess the names
of players by removing parts of the full name to
check the ability of systems to detect and resolve
co-references. Some rules also introduce explicit
co-reference markers, allowing generated systems
to replace a player’s name that occurs in multiple
subsequent events.

EXAMPLE 3.

The {@data.league} match ended with the
home team {@data.hometeam} beating
{@data.awayteam} {@data.home_goals}
to {@data.away_goals}.

Question Templates (QTcategory) are used to
generate (question, answer) pairs on the original
Datalog program. They are used to construct a Dat-
alog query that answers the question given struc-
tured knowledge, as well as their textual representa-
tion. The answer is then retrieved by executing the
constructed query and, where possible, annotated
in text form. The templates, outlined below, have
each been designed to address a specific challenge
for the QA task. Similar to how most SQuAD
evaluations report performance on answerable and
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Figure 1: ESDB object model overview.

unanswerable questions separately, this allows re-
searchers to evaluate their models along detailed
axes and pinpoint potential for improvements. The
dataset features the following nine types of ques-
tions:

• QTSimple Facts This template takes a fact
from the Datalog program and randomly re-
moves an entity, this generates cloze style
questions answerable using a single sentence
in the textual representation, e.g. "Who won
the game?".

• QTMultiple Facts Questions that relate to mul-
tiple entities, akin to the extraction of relations
with two arguments, such as "Who did :even-
t/player1 tackle?".

• QTParaphrased Facts This is an extension of
QTSimple Facts that generates similar ques-
tions but is mapped to different text templates
that change and omit entity labels (e.g. omit-
ting the first name of a player or omitting a
subsequent use of team names). These tem-
plates require models to learn inexact match-
ing of labels to entities in the underlying
knowledge base and introduce simple patterns
of co-reference resolution.

• QTAggregation (min/max/count): Events such
as goals, cards, and fouls are discrete entries
in the Datalog program. While some result-
ing questions might be available in text, e.g.
"How many goals did Team A score?", some
require further deduction via counting ("How
many goals did Marco Reus score?"). This
also includes comparisons between multiple
entities, e.g. "Did :player1 score more goals
than :player2?".

• QTUnanswerable Aligned with Rajpurkar et al.

(2018), this template introduces an adversarial
element to the dataset by generating questions
that look valid but are in fact not answerable
by the data. These questions are generated
by randomly sampling another document and
ensuring the resulting Datalog query does not
yield a result for the current match. This leads
to realistic questions that might even overlap
in entities (e.g. player names) but make no
sense in the context of the current document.

• QTTemporal This template generates ques-
tions relating to the temporal order of match
events; it generates questions such as "Who
scored the first goal of the match?" or "Who
scored the last goal in the first half of the
match?".

• QTAggregation Temporal This template com-
bines QTMultiple Facts and QTTemporal by
asking questions such as "How many goals
did Team A score in the second half of the
match?" or "Did Team A score more goals in
the first half of the match?" (comparison).

All templates contain placeholders such as
:event/player1 that are dynamically resolved
via the knowledge in the Datalog program for each
match and can refer to individual properties or en-
tity names. Question templates may provide pre-
conditions or constraints that have to be true in
order for the question to be generated on any given
match. This ensures that questions are answerable
and compatible with the given match data.

A question about one player tackling another
for example would generate the following Datalog
query and text:
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EXAMPLE 4.

Q(m, p1) :- event_match(e, m),
event_player1(e, p1),
event_player2(e, p2),
event_type(e, "foulcommit"),
event_subtype(e, "pull").

Who pulled {@data.player2|namefilter}?

The templates in category QTUnanswerable are
generated in a second pass over the dataset, for
each four answerable questions an unanswerable
one is sampled randomly from another document
in the corpus. The answer for the sampled question
is dropped and the accompanying datalog query
is used to validate that no answer exists for the
question w.r.t. the current document. This reliably
transforms templates that generate sensible and
answerable questions into unanswerable ones.

Template annotations include a number of an-
swer types (e.g. text or numeric) that are used to
annotate the location of the answer within the con-
text document. The datalog query of the question
is automatically rewritten to obtain a sensible lo-
cation within the text to annotate an answer. In
the case of textual answers, the closest matches
are annotated since the exact location might not
contain the answer itself due to co-reference. For
numerical answers we employ two strategies: a)
temporal questions looking for the minute a partic-
ular event occurred are annotated at the appropriate
marker and b) generic numeric answers are gener-
ated at the end of the document (ensuring that at
least five multiple choices are presented, padded
with random numbers if necessary).

All questions consist of four elements:

• Question in natural language.
• Datalog query corresponding to the question.
• Answer retrieved from the knowledge base.
• Metadata, such as the answer type (text, nu-

meric) and question template category.

In Figure 2 we give an example excerpt from an
automatically generated report for a single match.
One of the questions w.r.t. this match in the dataset
is the following:

• NL Question: How many goals did Fulham
score in the first halftime?

• Datalog Query (excerpt):

Q(m, team) :- event_match(e, m),
event_type(e, "goal"),

Figure 2: Example match report excerpt between Ful-
ham and Norwich City in 2012.

event_team(e, team),
event_minute(e) <= 45.

A :- sum(Q(m, "home")).

• Answer: 3 (three)

After generation, we generate fixed splits by
shuffling all match report documents and dividing
them into sets of train (60%), development (20%),
and test (20%). The dataset, as well as an evalua-
tion script and resources for generating it, are made
available online. In order to provide a compara-
ble baseline to existing state-of-the-art models the
subset of QA pairs suitable for extractive QA is
exported into a SQuAD-compatible data format.

3.2 Model

In order to provide first reference results for the Bi-
QuAD dataset, we evaluate state-of-the-art vanilla
transformer architectures on the task, in particular
ALBERT (Lan et al., 2020). Based on hardware
constraints and hyperparameter optimization using
fine-tuned base models, all trainings ran for two
epochs, with a learning rate of 3e−5 and a batch
size of 8. The model itself uses a standard AL-
BERT architecture for question answering tasks
following (Lan et al., 2020; Rajpurkar et al., 2018).
The tasks were executed in a Linux cluster environ-
ment on GTX1080 Ti GPUs (CUDA10). A single
additional hidden layer stores answer span logits
(start and end of a span) and treats the first token
([CLS]) as an indicator for unanswerable ques-
tions. Optimization is performed through Adam
(with epsilon = 1e−8).

Input Sequences in both models are constrained
by the maximum sequence length they can pro-
cess. Similar to the size of the parameter space, the
specific maximum values (512 tokens for both mod-
els used here) depends on the maximum sequence
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length used during pre-training. We leverage the
ability of the HuggingFace implementation (Wolf
et al., 2019) to specify a document stride. This
effectively extracts features in a sliding window
approach over the full document and determines
the answer by observing the maximal logit over all
windows.

3.3 Evaluation

The evaluation of each model is performed in two
major settings: a) single question-answering and b)
document level question-answering. While the for-
mer aims to maintain compatibility with SQuAD-
like datasets and optimizes on the overall ability
of a model to extract individual answers from the
textual description of a soccer match, the latter is
designed to assess the overall ability of the model
to cover lots of different questions on a particular
complex text document.

Single Question Answering pairs are evaluated
in accordance with the SQuAD paradigm of ex-
act matches (EM) and F1 scores (Rajpurkar et al.,
2018):

• Exact Match (EM): Percentage of predictions
completely matching the ground truth answer.

• F1: Macro-averaged F1 score. Here each
answer and ground truth pair is treated as a
bag-of-words to determine an inexact overlap
and evaluate in a less strict manner. The cal-
culation of individual F1 scores follows the
classical definition of F1 = 2 Precision∗RecallPrecision+Recall
(van Rijsbergen, 1979). Unlike SQuAD our
datasets only present a singular ground truth
per question so it is unnecessary to search for
a maximal F1 score here.

For the purpose of error analysis, in this article
we report these results on a per-category level, as
well as distinguished by answerable and unanswer-
able questions. This not only showcases where
a particular model might have problems with the
dataset it is trained on, it also is of immense help
when debugging errors and guiding decisions of
where a model might require more training data.

Transfer Learning from open domain question
answering datasets such as SQuAD 2.0 is used to
assess how well the language structure itself can
be used for extractive QA in the unseen data of our
dataset. For this we evaluate the aforementioned

experimental setup after training on the SQuAD
2.0 training split and evaluating on the test split of
BiQuAD .

All results are reported on the development split,
the test split is withheld from public release for use
in an evaluation webservice. In the open source
release of the BiQuAD dataset, evaluation scripts
are provided in order to keep these evaluations con-
sistent.4 To aid in reproducibility, the MIT-licensed
open source release also contains the scripts re-
quired to generate samples.

4 Results

This section provides an overview of the dataset
and provides first results on the dataset by provid-
ing baselines relying on state-of-the-art transformer
models.

4.1 Dataset

The dataset comprises 4,190 documents with play
by play soccer matches and 99,149 questions (∼ 23
per document) and is thus of similar size as com-
parable datasets. Each textual representation of a
match contains an average of 82 sentences (759
words). The template based text generation yielded
long form documents of rather factual and sober
match descriptions. While syntactic and vocabu-
lary variability is clearly limited due to this rule-
based approach, co-reference and detailed event
descriptions make texts non-trivial to reason about.

Albeit not being leveraged in the baseline models
presented herein, the parallel construction of tex-
tual and structured descriptions enables the adop-
tion of BiQuAD for use in further downstream tasks,
such as relation extraction or knowledge base com-
pletion.

The dataset splits follow a 60-20-20 scheme,
it contains a training split with 2,514 documents
(58,807 QA pairs) and Development and Test splits
with 838 documents (19,870 QA pairs) each.

4.2 Model Results

The following results outline the performance of
SOTA models, as described in section 3, for ques-
tion answering on the BiQuAD dataset.

Single Question Answering is evaluated on in-
dividual question answer pairs in the development
dataset, table 2 shows the overall results. Individual
question templates, and subsets such as answerable

4https://github.com/ag-sc/BiQuAD
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QTAnswerable and unanswerable QTUnanswerable
questions. The latter distinction is important be-
cause both models regarded in this study explicitly
model if a question is answerable in their architec-
ture and are thus typically well equipped to make
this decision.

Question Templates EM F1

All 38.8 39.0
Answerable 25.4 25.8
Unanswerable 86.6 86.6
Simple Facts 25.0 21.6
Multiple Facts 29.7 30.1
Temporal 16.4 16.4
Aggregation 33.8 64.1
Aggregation Temporal 0.0 66.3

Table 2: Results for single QA setting, reported results
on the public development split.

On the question of answerability, the models
perform reasonably well. The fact that it does not
achieve perfect scores here indicates that they are
not able to exploit simple surface queues to make
this decision and validates the approach to generate
these samples as described in section 3. Other
template categories indicate that the model cannot
yet cope with more involved categories, such as the
temporal reasoning category.

Transfer Learning results, presented in table 3,
evaluate the QA pairs in the development set of
BiQuAD on a model trained with the training data
from SQuAD 2.0. The results show a strong abil-
ity to determine the answerability of questions but
break down in other categories. This capability
indicates that questions generated as unanswerable
might often contain easily spotted and exploited
surface clues, such as player names, that do not
occur in the document in question.

The results presented here show that modern
deep learning models such as ALBERT perform
similarly well on the proposed dataset. While
SQuAD-like datasets are commonly limited to the
evaluation of subsets such as QTAnswerable and
QTUnanswerable, the template based nature of Bi-
QuAD allows for even further inspection.

5 Conclusion

We have introduced a challenging new QA dataset
that emphasizes document-level text understand-
ing. While most of the existing benchmark datasets

Question Templates EM F1

All 24.4 25.9
Answerable 3.7 5.7
Unanswerable 99.0 99.0
Simple Facts 6.5 6.8
Multiple Facts 16.9 24.1
Temporal 0.0 0.0
Aggregation 0.0 2.5
Aggregation Temporal 0.0 0.9

Table 3: Results for the transfer learning QA setting,
reported results on the public development split.

require systems to extract answer spans from text
or to select an answer given multiple choices, we
have attempted to provide a dataset that requires
answering questions beyond the content explicitly
mentioned in the text, requiring inference and ag-
gregation on top of the information given in the text.
Our methodology builds on a structured database
of soccer matches. From this database, it generates
natural language reports of games relying on a set
of handcrafted templates in addition to a Datalog
logical representation of a text. For each document,
23 Datalog queries are generated and transformed
into NL relying on a further set of handcrafted tem-
plates. The artificial nature of the dataset allows for
clear cut error analysis and can guide the implemen-
tation of, especially closed domain, QA systems.
Downsides introduced by synthetic generation in-
clude an unnaturally factual text style and the fact
that relatively simple heuristics might be able to
generate the correct answer for some of the ques-
tion templates. These heuristics could potentially
even target the soccer domain itself, as is common
with many subtasks in closed domain corpora. We
aim to alleviate these concerns in future work by ex-
tending a) the tooling around model introspection
and b) coverage of further domains. These steps
should further improve the way reasoning tasks are
reflected in the dataset and establish BiQuAD , or
the approach of synthetic corpora, as a modeling
tool to be used alongside other corpora of natural
texts in comparable or open domain settings.

We have provided baseline systems and show
that existing state-of-the-art systems yield very low
results on the dataset, with exact match and F1-
scores of 38.8 and 39.0, respectively. Results of
EM = 24.4, F1 = 25.9 in a transfer learning
setup further strengthen the assumption that these
models cannot sufficiently answer the type of rea-
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soning tasks imposed by the dataset. While state-of-
the-art systems perform well on standard extractive
questions (QTMultiple Facts,Aggregation), we show
that on questions requiring inference and tempo-
ral reasoning, the baseline systems perform at F1

below 20 even when encoding answers in a way
compatible with extractive systems.

On the basis of these results and experience with
other datasets, we can see that explicit modelling
is required for various complex reasoning tasks.
Many recent state-of-the-art models on QA achieve
this complexity only in limited scopes, such as pure
numeric reasoning, not deeper general text under-
standing. The parallel construction of structured
Datalog knowledge about a closed world model
may be used to a) develop models that combine
textual information with external semantic knowl-
edge or b) decode how a model performs reason-
ing tasks by linking text and structural knowledge
when inspecting individual components such as
attention layers. BiQuAD allows to model and
inspect reasoning on specific categories without
necessarily overfitting on any particular subtask.
Our dataset is freely available and, in combination
with other datasets of non-synthetic nature, will
hopefully contribute to push the state of the art in
machine reading further.
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Abstract

Accurate recovery of predicate-argument
structure from a Universal Dependency (UD)
parse is central to downstream tasks such as
extraction of semantic roles or event represen-
tations. This study introduces compchains, a
categorization of the hierarchy of predicate de-
pendency relations present within a UD parse.
Accuracy of compchain classification serves
as a proxy for measuring accurate recovery of
predicate-argument structure from sentences
with embedding. We analyzed the distri-
bution of compchains in three UD English
treebanks, EWT, GUM and LinES, revealing
that these treebanks are sparse with respect to
sentences with predicate-argument structure
that includes predicate-argument embedding.
We evaluated the CoNLL 2018 Shared Task
UDPipe (v1.2) baseline (dependency parsing)
models as compchain classifiers for the EWT,
GUMS and LinES UD treebanks. Our results
indicate that these three baseline models
exhibit poorer performance on sentences with
predicate-argument structure with more than
one level of embedding; we used compchains
to characterize the errors made by these
parsers and present examples of erroneous
parses produced by the parser that were identi-
fied using compchains. We also analyzed the
distribution of compchains in 58 non-English
UD treebanks and then used compchains to
evaluate the CoNLL’18 Shared Task baseline
model for each of these treebanks. Our
analysis shows that performance with respect
to compchain classification is only weakly
correlated with the official evaluation metrics
(LAS, MLAS and BLEX). We identify gaps
in the distribution of compchains in several of
the UD treebanks, thus providing a roadmap
for how these treebanks may be supplemented.
We conclude by discussing how compchains
provide a new perspective on the sparsity of
training data for UD parsers, as well as the
accuracy of the resulting UD parses.

1 Introduction

The Universal Dependencies (UD) project
(De Marneffe et al., 2014; Nivre et al., 2016) is a
multilingual annotation scheme for dependency
grammars that has gained wide usage (Zeman
et al., 2017; Kong et al., 2017; Qi et al., 2020).
To this extent, automatically identifying whether
a dependency parse1 is correct or incorrect,
as well as the potential source of such errors,
becomes an important part of NLP pipelines. For
example, such identification can prevent errors
from propagating to downstream applications
such as the identification of predicate-argument
structure, involved in semantic role labeling and
sentiment analysis.2 Furthermore, embedding
of sentences within sentences, and in particular
embedding of predicate-argument structures within
one another, is one of the ways in which humans
have the capability to generate an infinity of
different <sentences, meaning> pairings, and so
it is important to evaluate whether a UD parser
can accurately recover the predicate-argument
structure of sentences with embedding. Thus,
characterizing the limits of how accurately and
consistently UD parsers assign predicate-argument
structure in the context of correct UD annotation
also becomes important (Nivre and Fang, 2017;
Oepen et al., 2017; Fares et al., 2018; White et al.,
2016; Reddy et al., 2017; Mille et al., 2018). That
is the goal of this study.

In this study we introduce compchains, a catego-
rization of the hierarchy of predicate dependency
relations present within a Universal Dependency
(UD) parse; this categorization serves as a proxy for

1This study only considers dependency parse trees anno-
tated with UD. We refer to such a parse tree as a UD parse
tree.

2Furthermore, (Surdeanu et al., 2003) has demonstrated
that correct annotation of predicate-argument structure can
improve the performance of information extraction systems.
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predicate-argument structure. We use compchains
to evaluate the accuracy of three (English) CoNLL
2018 Shared Task baseline models for the UDPipe
dependency parser (Zeman et al., 2018). We found
that the baseline model for the EWT UD treebank
was more accurate than the baseline models for
the LinES and GUM UD treebanks. We then use
compchains to characterize the errors (relevant to
predicate-argument structure) made by these mod-
els. We found that the accuracy of all three models
dropped significantly when restricting the test set to
samples with predicate-argument structure with em-
bedding. Finally, we extended the analysis above
to languages other than English, computing the dis-
tribution of compchains in 58 UD treebanks and
evaluating the performance of the corresponding
CoNLL 2018 Shared Task baseline models (for the
UDPipe parser) as compchain classifiers. We con-
clude by discussing deficiencies in the distribution
of predicate-argument structure with embedding
present in the UD treebanks, as identified by our
analysis.

2 Related Work

This section reviews prior work on the evaluation
of (Universal) dependency parsers and the charac-
terization of the errors these parsers make. The
CoNLL Shared Task is a well established bench-
mark for evaluating the performance of multilin-
gual (Universal) dependency parsers (Buchholz and
Marsi, 2006; Nivre et al., 2007; Zeman et al., 2017,
2018). The task uses a number of metrics to eval-
uate the accuracy of the parser including: UAS
(unlabeled attached score), LAS (labeled attach-
ment score), CLAS (Content-word LAS) (Nivre
and Fang, 2017), MLAS (Morphologically-aware
LAS) and BLEX (BiLEXical Dependency Score).
However, these metrics rely on the attachment ac-
curacy (of dependency relations)3 and do not take
into account that errors cascade – i.e. if the parser
incorrectly attaches a dependency relation, it may
then be forced to make yet another incorrect at-
tachment (Ng and Curran, 2015), thus making it
difficult to identify the provenance of the error.

In light of this, efforts to further characterize the
errors have proceeded in several directions. One
direction involves studying whether and how the
parsing errors are a result of the design of the de-
pendency parser: (McDonald and Nivre, 2007)

3E.g. UAS (unlabeled attachment score) and LAS (labeled
attachment score).

characterizes and compares the errors produced
by graph-based dependency parsers (e.g. the MST-
Parser by (McDonald and Pereira, 2006); see also
(Kiperwasser and Goldberg, 2016; Cheng et al.,
2016; Zhang et al., 2016)) and transition-based de-
pendency parsers (e.g. the MaltParser by (Nivre
et al., 2006)); (Zhang and Clark, 2008) shows how
the two approaches to dependency parsing may be
combined and documents the resulting improve-
ment in performance.

An alternative direction involves characterizing
the errors in the context of linguistic theory – e.g.
(Kummerfeld et al., 2012) has introduced a method
for classifying erroneous parse trees by repairing
the tree with a series of tree-transformations, with
each tree-transformation having a linguistic inter-
pretation; (Mahler et al., 2017) has shown that it
is possible to systematically break NLP systems
for sentiment analysis by editing sentences with
linguistically interpretable transformations. In this
study we pursue this latter direction, opting to char-
acterize erroneous parse trees by classifying their
predicate-argument structure using compchains.

3 Compchains

Within a UD parse tree, predicate-argument struc-
ture4 is encoded by core argument dependency re-
lations, along with the special dependency relation
root.5 The core-argument dependency relations fall
into two classes: predicate relations and nominal
relations. In this study, we limit our attention to
the two predicate dependency relations that encode
embedding of clausal complements: (i) ccomp – a
dependent, clausal complement, and (ii) xcomp – a
clausal complement lacking a subject; the subject
is determined by an argument that is external to the
xcomp, usually the object (or otherwise subject) of
the next higher clause.6 We will focus on catego-
rizing sequences of these two dependency relations
(with POS marked as Verb) that originate from the
root of a dependency tree (intuitively, the spine of
the predicate-argument structure). This notion is
formalized as follows:
Definition. A compchain is a finite sequence of
dependency relations that traces a path starting at

4See (Hale, 1993; Hale and Keyser, 2002) for further ref-
erence on predicate-argument structure.

5See universaldependencies.org/u/dep/ for
more details.

6xcomp is often used to model control/raising constructions
in which an argument in the embedded clause establishes a
syntactic relation with the predicate in the matrix clause.
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Figure 1: Examples of compchain classifications (left) for eight UD parses (right) produced by the UDv2.2 EWT
baseline model using UDPipe 1.2. In each parse, the node with no incoming dependency relations is the root.
Sentence 8 is classified as the /0 compchain because the root is not marked as VERB.

the root node of a dependency parse tree and pass-
ing through only xcomp and ccomp dependency
relations, subject to the constraints that: (i) every
node in a compchain must have the POS tag of
Verb; (ii) no node in a compchain should have a
child dependency relation with POS Verb that is
either an xcomp or ccomp and is not in the com-
pchain as well.7 We denote a compchain by listing
the sequence of dependency relations, starting from
the root of the tree, using the notation: R = root;
X = xcomp; C = ccomp. E.g. we would denote
the compchain [root→ xcomp→ ccomp] as RXC.
See Figure-1 for examples of UD parses and their
compchain classifications.

One way to evaluate (indirectly) how well a
UD parser can identify predicate-argument struc-
ture for sentences in a UD treebank is to evalu-
ate whether the UD parse assigned by the parser
to a sentence in the treebank has the same com-
pchain as the compchain associated with the gold

7This constraint serves to ensure that if a UD parse tree has
a compchain, it is unique and may be derived deterministically.
This constraint also implies that some valid UD parse trees do
not have a compchain – e.g. a parse in which there are two
xcomp dependency relations that are both children of the same
node. We use the symbol /0 to denote that a UD parse tree has
no compchain.

UD parse listed for that sentence (in the treebank);
we refer to this task as compchain classification.
Performance on the compchain classification task
is a proxy for performance on the task of classi-
fying predicate-argument structure that includes
predicate-argument embedding. If a UD parser
performs poorly on the compchain classification
task, predicate-argument structure cannot be reli-
ably recovered from an (output) UD parse tree via
top-down traversal of the sequence of dependency
relations that forms the associated compchain. See
Figure-2 for examples of incorrect compchain clas-
sifications that reflect the parser recovering incor-
rect predicate-argument structure.

4 Experiments

4.1 Evaluation of English UD Treebanks

We evaluated the performance of the CoNLL’18
shared task baseline (parsing) models for English
as compchain classifiers using three UD (v2.2)
English treebanks: the English Web Treebank
(EWT), with a total of 16,622 sentences (Silveira
et al., 2014; Schuster and Manning, 2016); the En-
glish side of the English-Swedish Parallel Treebank
(LinES), with a total of 4,564 sentences (Ahren-
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Figure 2: Examples of compchain classifications (left) for four UD parses (right). The parses in (1) and (2) are
for the sentence “How come no one bothers to ask any questions in this section?” The parses in (3) and (4) are
for the sentence “Even the least discriminating diner would know not to eat at Sprecher’s.” Both sentences were
taken from the UDv2.2 English Web Treebank. (1) and (3) are gold parse from the treebank whereas (2) and (4)
are produced by UDPipe using the CoNLL’18 baseline language model for UDv2.2 EWT. Both (2) and (4) are
incorrectly classified, reflecting that these two parses encode misinterpretations (compared to the interpretations in
their respective gold parses – i.e. (1) and (3)).

berg, 2007); and the GUM treebank, with a total of
4,390 sentences (Zeldes, 2017).8

We began by computing the distribution of com-
pchains in each of the sections (train, dev, test) for
each of the treebanks (see Table-1). We observed
that although the training section of the EWT (UD)
treebank includes a non-negligible number of UD
parse trees that are classified (according to their
corresponding Gold UD parse) as compchains with
three or more dependency relations, the test sec-
tion of the EWT (UD) treebank does not. This
suggests that performing well on the task of pars-
ing the test section of the EWT (UD) treebank
need not indicate competency in parsing sentences
with predicate-argument embedding of degree two
or more. We also observed that the LinES and
GUM treebanks have a negligible number of parse
trees (across all sections) that are classified as com-
pchains with three or more dependency relations –
i.e. RCC, RCX , RXC and RXX .

Next, we evaluated the CoNLL’18 shared task
baseline (parsing) models9 for the three treebanks
as compchain classifiers. We used UDPipe (v1.2), a
transition-based non-projective dependency parser,
to parse the test section of each of the three tree-

8We used the pretrained word embeddings supplied with
the CoNLL Shared Task for each of the three treebanks; these
embeddings were produced with word2vec (Mikolov et al.,
2013b,a).

9These UDPipe models were trained on the training section
of the UDv2.2 EWT/LinES/GUM respectively. We also used
the tagging and tokenization pipeline provided by UDPipe.

banks using the corresponding baseline model
(Straka and Straková, 2017). We then classified
the compchain of each UD parse and compared it
to the compchain associated with the correspond-
ing gold parse. We report the F-measures for this
classification task in Table 2. We observed that the
baseline model for EWT had the best performance
as a compchain classifier. We also computed the
per-compchain F-measures and observed that for
all three baseline models, their per-compchain F1-
score for RX was notably better than for RC. Here
we observed a steep falloff in per-compchain F1-
score as the number of dependency relations in a
compchain increases. This suggests that either the
parsers were not trained on enough examples of
sentences with predicate-argument embedding, or
that they did not adequately generalize from the
limited number of examples that they were trained
on.

Finally, we computed and analyzed the confu-
sion matrix (i.e. error matrix) for each of the
three baseline models, evaluating each model on
the test section of its associated treebank. (see
Figure 3) In each confusion matrix, off-diagonal
entries count instances of parses with erroneous
predicate-argument structure as indicated by the
predicted compchain differing from the actual com-
pchain (if two parse trees have different com-
pchains, then their predicate-argument structure
must differ as well). On-diagonal entries count
instances of parses with correctly classified com-
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Compchain EWT LinES GUM

Train Dev Test Train Dev Test Train Dev Test

/0 5230 985 1065 591 191 224 879 201 268
R 5500 815 806 1767 608 580 1661 413 419
RC 758 79 79 135 43 43 171 43 33
RX 808 100 104 202 65 50 158 43 41
RCC 47 4 6 1 0 2 8 1 2
RCX 94 7 9 17 1 6 10 2 1
RXC 48 6 3 10 2 6 6 0 2
RXX 39 2 2 12 2 3 13 3 3

Total 12543 2002 2077 2738 912 914 2914 707 769

Table 1: Distributions of compchains across the three treebanks. Counts for compchains with four or more depen-
dency relations are not listed here because their presence in the three treebanks was negligible, although they are
included in the “Total” count. Although there are very few compchains with three or more dependency relations
(e.g. RCC) in the test sections of the treebanks, there are a non-negligible number of them in the training sections.

Compchain EWT LinES GUM

F1 Prec. Rec. Support F1 Prec. Rec. Support F1 Prec. Rec. Support

/0 0.94 0.95 0.94 1065 0.74 0.72 0.75 224 0.85 0.81 0.9 268
R 0.89 0.89 0.9 806 0.85 0.87 0.83 580 0.85 0.89 0.81 419
RC 0.73 0.72 0.73 79 0.43 0.44 0.42 43 0.54 0.53 0.55 33
RX 0.79 0.8 0.79 104 0.53 0.44 0.66 50 0.64 0.57 0.73 41
RCC 0.67 0.67 0.67 6 0 0 0 2 0.4 0.33 0.5 2
RCX 0.4 0.5 0.33 9 0.25 0.5 0.17 6 0.5 0.33 1 1
RXC 0.33 0.33 0.33 3 0.55 0.6 0.5 6 0 0 0 2
RXX 1 1 1 2 0.44 0.33 0.67 3 0.4 0.5 0.33 3

W. Avg. 0.9 0.9 0.9 2077 0.78 0.78 0.77 914 0.82 0.83 0.82 769

Table 2: F-measures for the compchain classification of the parse trees in the EWT, LinES and GUM (UD) tree-
banks. The left most column refers to the true compchain from the appropriate UD treebank. Each row has the
F1-score for the evaluation of the parser (as a compchain classifier) on sentences in the treebank that had the
listed compchain, except for the bottom most row, which is the total (weighted) F1-score over all compchains – i.e.
performance as a multi-way classifier.

Figure 3: Confusion Matrices for Compchain Classification of the EWT, GUM and LinES UD (English) treebanks
using their respective CoNLL’18 UDPipe Baseline Models.

pchains, which indicates that the parse may be cor-
rect (though it may well have errors not related to
predicate-argument structure). We observed, for all
three models, that compchains of length two or less
were very rarely misclassified as compchains of
length three or more, and that compchains of length

two were often misclassified as the R compchain
(see Figure-2 for an example of such a misclassi-
fication). We also observed that in the case of the
baseline model for LinES, the compchain for RC is
frequently misclassified as RX , but the compchain
RX is rarely misclassified as RC; this asymmetry
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may reflect the difference in number of training
examples in the LinES treebank – 135 in the case
of RC and 202 in the case of RX (see Table-1).

4.2 Multilingual Evaluation of UD Treebanks
We also used the compchain classification task to
evaluate the CoNLL’18 shared task baseline mod-
els (and the respective UD treebanks they were
trained on) for languages other than English; this
was motivated by the observation that since the
UD treebanks are derived from a variety of textual
sources, and thus have varying compchain distribu-
tions, we can use them collectively to evaluate and
characterize the performance of the UDPipe depen-
dency parser under various training conditions.

Figure 4 presents the distribution of compchains
across 61 UD treebanks (including the three En-
glish treebanks analyzed earlier in this study).10

Our analysis reveals that: (i) the UD treebanks for
Hindi and Urdu have no instances of the compchain
RC in either the training or test sections; (ii) the
UD treebanks for Japanese, Korean, Turkish and
Uyghur have no instances of the compchain RC in
either the training or test sections; (iii) the UD tree-
banks for Hindi, Japanese, Turkish and Uyghur do
not include any instances of compchains of length
three or more (i.e. RXX , RCC, RXC, or RCX) in
either the training or test sections.

We computed the F1-scores for the performance
of each baseline model on the compchain classifica-
tion task.11 The F1-score for length-1 compchains
is very weakly correlated with the F1-score for
length-2 compchains, with R2 = 0.265 (see Fig-
ure 5), and F1-scores for the two length-2 com-
pchains (RC and RX) are also very weakly corre-
lated, with R2 = 0.177 (see Figure 6). This suggests
that performance in recovering predicate-argument
structures with differing embedding structures is
largely unrelated and should be measured explicitly,
just as the compchain classification task does. Ad-
ditionally, we observe (as we did with the models
trained on English treebanks) a rapid decline in the
per-class F1-score as the length of the compchain
increases, in particular for compchains of length
two or more. (See Figure 7) This is revealing be-
cause, although the lack of compchains of length

10See Table 4 in the appendix for a complete listing of the
distribution of compchains in the Test and Training treebank
for each of the 61 languages.

11See Table-5 for a complete listing of performance on the
compchain classification task for each UD treebank using the
associated baseline model, including a breakdown of perfor-
mance per-compchain.

two or more in the UD treebanks suggests that we
should not necessarily expect a dependency parser
trained on the treebank to generalize out of the
training domain, there is empirical evidence that
humans do have the capacity to acquire a grammar
from sentences with at most degree-1 embedding
(corresponding to compchains of length 2) and then
later correctly parse sentences with a degree of em-
bedding of two or more (Wexler and Culicover,
1980; Morgan, 1986; Lightfoot, 1989); thus, the
poor performance on compchains of length three
or more suggests that the CoNLL 2018 Shared Task
baseline models are not able to generalize beyond
the distribution of syntactic structures they were
trained upon, in contrast to human learners.

4.2.1 Impact of Word Ordering
Word ordering data (i.e. head-directionality) for
each of the 61 languages in the UD treebanks was
obtained from the WALS Online database (Dryer,
2013); we retrieved this information because the
word ordering dictates whether a predicate pre-
cedes or succeeds its complement with respect to
the linear ordering of the words in a sentence, and
we wanted to understand whether this had an im-
pact on the parser’s performance on the compchain
classification task. (See Table-5 in the appendix for
the word-order of each language) The 47 languages
with verb-object (VO) ordering had a median and
mean weighted average F1-score of 0.85 and 0.88
respectively; the 18 languages with object-verb
(OV) ordering had a median and mean weighted
average F1-score of 0.86 and 0.85 respectively. It
thus appears that the word-ordering does not ap-
pear to impact the weighted average F1-score. The
F1-scores associated with compchains of length
2 (i.e. RX and RC) tell a different story: in the
case of the RC compchain, the median F1-scores
for verb-object and object-verb were 0.68 and 0.55
respectively, and in the case of the RX compchain,
the median F1-scores for verb-object and object-
verb were 0.72 and 0.42 respectively; thus for both
compchains of length 2, models trained on verb-
object ordered languages performed significantly
better than models trained on object-verb ordered
languages.12 Given that the orderings of verb-
object (i.e. head-initial) and object-verb (i.e. head-
final) control whether a language will be associated
with right-branching or left-branching structures
respectively, our results suggest that the UDPipe

12These results also hold when comparing the mean F1-
scores for compchains of length 1.
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Figure 4: Distribution of Compchains in UD Training and Test Treebanks. 59 of the 61 languages had degree-2
compchains present in the test treebank; the languages with no degree-2 compchains in the test treebank were
turkish-imst and urdu-udtb.

Figure 5: F1-scores for Length 2 vs. Length 1 com-
pchains for each language in the UD treebank.

Figure 6: F1-scores for Length 2 compchains (i.e. RC
and RX) for each language in the UD treebanks.

parser has difficulty dealing with left-branching
structures.

4.2.2 Impact of Sentence Length
We carried out a regression analysis to investigate
the relationship between the correctness of com-
pchain classification and sentence length; this was

Figure 7: Distributions of F1-scores for length-3 com-
pchains over all UD languages. For each length-3 com-
pchain, F1-scores were reported for languages that had
that compchain present in the test-treebank.

motivated by the observation that sentences with
higher degrees of embedding, and thus longer com-
pchains, tend to be longer sentences. We fitted
a logistic function for each sentence in the test
treebank, with the log of the sentence length (i.e.
the number of tokens including punctuation) serv-
ing as the independent variable, and the (binary)
dependent variable being whether the compchain
associated with that sentence was correctly classi-
fied. We interpreted a good-fitting logistic function
to indicate that compchain accuracy is dependent
on sentence length. To evaluate the fit of the logis-
tic function, we computed the Area Under Curve
(AUC) measure of the Receiver Operator Charac-
teristic (ROC) curve for the fitted logistic function.
Figure 8 presents the distribution of AUCs for the
test corpus of each of: (a) the 43 UD treebanks for
languages with verb-object (VO) word-ordering,
and (b) the 18 UD treebanks for langauges with
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Figure 8: Histogram of Area-under-Curve (AUC) of
Receiver Operator Characteristic (ROC) curve for Lo-
gistic Regression model of per-Sentence Compchain
Classification Accuracy vs. log(Sentence Length). The
AUC of ROC curve was computed for each UD test
treebank.

object-verb (OV) word-ordering. We observe that
the AUC for the majority of the treebanks falls
between 0.55 and 0.65, and virtually none of the
AUCs surpass 0.7, which is generally considered
a minimum threshold for a binary-classifier to be
considered accurate. Additionally, we observe that
the OV languages tend to have a slightly higher
AUC than the VO languages. We conclude that
accuracy of compchain classification is weakly cor-
related with the log of the length of the sentence,
and that this correlation is slightly higher for OV
languages than for the VO languages. (Similar re-
sults were obtained when the analysis was carried
out directly on the length of the sentence.)

4.2.3 Comparison with Other Eval. Metrics
In order to understand whether the compchain met-
ric is simply a proxy for one of the three official
evaluation metrics (LAS, BLEX and MLAS), we
computed the pairwise linear correlation between
each of the metrics for each of the 61 UD tree-
banks.13 Table 3 presents the coefficient of de-
termination for each pairing of the metrics. We
observe that although LAS, MLAS and BLEX are
all highly correlated with one another, they are
weakly correlated with the compchain-metrics (i.e.
weighted avg. of F1-score over all compchains and
per-compchain F1-scores); notably, performance
on compchain classification for RX is very weakly
correlated with LAS, MLAS and BLEX (R2 < 0.1).

13LAS, MLAS and BLEX scores for CoNLL
Shared Task baseline models were obtained from
https://universaldependencies.org/
conll18/baseline.html#baseline-results.

LAS MLAS BLEX

Compchain:W. Avg. 0.402 0.267 0.359
Compchain:R 0.329 0.180 0.277
Compchain:RC 0.399 0.305 0.388
Compchain:RX 0.074 0.089 0.096

LAS 1.000 0.780 0.918
MLAS 0.780 1.000 0.822
BLEX 0.918 0.822 1.000

Table 3: Coefficient of determination (R2) for pair-
wise (linear) correlations of metric-scores over all
CoNLL’18 Shared Task baseline models.

This suggests that the compchain metric is mea-
suring an aspect of the parser’s performance that
is not brought to the fore by any of the three offi-
cial evaluation metrics, and that a baseline model
having a good LAS, MLAS or BLEX score does not
necessarily indicate that the model will correctly
predict the embedding structure of a sentence with
even a single level of embedding.

5 Conclusion

In this study, we defined compchains and used them
to evaluate how accurately a UD parser can parse
sentences with predicate-argument structure that
contains embedded clauses. We also used com-
pchains to classify the errors, relevant to predicate-
argument structure with embedding, made by a
UD parser. Overall model performance on the com-
pchain classification task (as measured by weighted
F-measure) was found to be dominated by parse
trees in the training set with no embedding (com-
pchain R); closer inspection of per-compchain per-
formance revealed that parser accuracy dropped
precipitously as the degree of embedding in the
predicate argument structure (i.e. length of com-
pchain) increased. Finally, our results indicate
that UD treebanks have very few parse trees with
degree of embedding (i.e. length of compchain)
greater than two. This presents an opportunity: if
the test sets of the UD treebanks were augmented
with parses with predicate-argument structure with
degree of embeddings greater than two, then UD
parsers can be evaluated in terms of their capacity
to generalize from constructions (in the training
set) with (mostly) low degree of embedding, just
as a child must in some models of first language
acquisition (Wexler and Culicover, 1980; Berwick,
1985; Lightfoot, 1989).
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A Appendix

Table-4 presents the distribution of compchains
across 61 UD treebanks (including the three
English treebanks analyzed earlier in this study).
Table-5 presents the F1-scores for the performance
of each baseline models on the compchain
classification task. The rows of Table 4 and Table 5
were seriated using the Google OR-Tools library so
that rows with similar values appear close together:
Table 4 is seriated so that languages with similar
compchain distributions are clustered together;
Table 5 is seriated so that languages with similar
F1-scores are clustered together.

Computing Infrastructure: All experiments
reported in this study were performed on a
MacBook Pro (Retina, 15-inch, Late 2013) with
a 2.3 GHz Intel Core i7 processor, and 16 GB of
1600 MHz DDR3 RAM. We used Python v3.7.9,
Pandas v1.2.1 and Matplotlib v3.2.1.

(The remainder of this page intentionally blank.
Please see the next page.)
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Treebank Total R RC RX RCC RCX RXC RXX

vietnamese-vtb 1400/800 48.1/48.9 11.4/10.8 10.9/8.2 1.1/1.5 1.6/1.4 0.6/1.0 0.9/0.2
chinese-gsd 3997/500 52.6/53.4 11.1/11.4 10.0/8.6 1.2/0.6 1.5/1.0 1.1/0.8 0.9/0.4
catalan-ancora 13123/1846 65.0/66.5 10.1/7.9 5.8/6.1 0.6/0.2 0.6/0.5 0.2/0.1 0.2/0.2
serbian-set 2935/491 53.2/58.0 10.4/10.0 4.9/5.5 0.7/0.4 1.7/0.8 0.3/- -/-
spanish-ancora 14305/1721 59.5/58.8 12.2/13.5 5.3/5.5 0.8/0.5 0.9/0.8 0.1/- 0.1/0.2
greek-gdt 1662/456 62.1/59.9 13.0/9.9 5.6/5.0 1.0/0.4 1.1/0.7 0.4/0.7 -/-
galician-ctg 2272/861 58.5/57.6 14.0/13.6 1.8/1.3 2.2/1.4 0.2/0.6 0.1/- -/0.1
persian-seraji 4798/600 46.5/46.5 15.1/18.2 0.1/- 2.4/2.2 -/- -/- -/-
romanian-rrt 8043/729 72.4/71.9 10.1/12.1 1.5/2.3 0.7/1.2 0.1/- 0.0/- -/-
korean-kaist 23010/2287 61.3/61.1 8.3/6.8 0.1/- 0.3/0.2 -/- -/- -/-
bulgarian-btb 8907/1116 66.1/64.7 9.5/14.0 3.5/1.3 0.7/0.6 0.3/0.1 0.3/- 0.1/-
slovak-snk 8483/1061 66.1/59.8 8.2/2.1 4.6/3.3 0.3/- 1.0/0.5 0.4/0.1 0.0/-
portuguese-bosque 8329/477 58.1/59.3 7.6/8.4 4.5/2.5 0.5/0.2 0.6/0.4 0.3/- 0.3/-
latin-proiel 15906/1260 67.9/64.6 7.6/6.7 5.3/6.0 0.4/0.6 0.3/0.6 0.2/0.1 0.1/0.1
latvian-lvtb 5424/1228 62.3/60.7 7.7/7.2 6.2/4.8 0.4/0.2 0.7/0.9 0.5/0.7 0.1/-
czech-fictree 10160/1291 63.7/59.5 7.7/8.1 6.3/8.1 0.3/0.4 1.0/1.0 0.5/0.7 0.0/-
hebrew-htb 5241/491 62.5/61.7 6.5/3.7 6.8/6.1 0.2/- 0.7/1.0 0.1/- -/-
english-ewt 12543/2077 43.8/38.8 6.0/3.8 6.4/5.0 0.4/0.3 0.7/0.4 0.4/0.1 0.3/0.1
basque-bdt 5396/1799 72.5/74.1 5.8/5.3 5.9/5.3 0.1/0.1 0.7/0.8 0.3/0.4 0.1/-
swedish-lines 2738/914 63.3/65.4 6.5/6.0 5.7/6.2 0.2/0.1 0.6/0.4 0.3/0.4 0.2/0.3
english-gum 2914/769 57.0/54.5 5.9/4.3 5.4/5.3 0.3/0.3 0.3/0.1 0.2/0.3 0.4/0.4
ancient_greek-proiel 15015/1047 72.9/72.5 5.6/4.9 5.2/6.7 0.2/0.3 0.2/0.6 0.1/0.1 0.1/0.1
slovenian-ssj 6478/788 65.5/62.2 6.0/7.4 4.8/5.7 0.2/0.4 0.6/0.8 0.4/0.6 0.0/0.1
danish-ddt 4383/565 59.5/57.0 6.6/9.9 3.7/4.1 0.2/0.4 0.3/0.5 0.0/0.2 0.0/-
finnish-ftb 14981/1867 65.0/64.9 5.4/6.4 4.1/4.0 0.1/0.4 0.3/0.4 0.2/0.1 0.0/-
norwegian-bokmaal 15696/1939 59.8/63.2 5.0/6.0 3.0/3.2 0.1/0.1 0.2/0.4 0.1/0.1 0.0/0.1
norwegian-nynorsk 14174/1511 53.4/54.5 4.7/4.0 3.0/2.9 0.2/0.1 0.2/0.1 0.1/- 0.1/-
italian-postwita 5368/674 46.0/47.2 4.3/4.0 3.3/2.4 0.1/0.1 0.2/- 0.2/0.3 0.1/0.1
swedish-talbanken 4303/1219 66.7/66.0 3.7/5.0 2.3/2.5 0.1/0.1 0.1/- 0.1/0.2 0.0/-
arabic-padt 6075/680 20.8/20.3 4.0/4.4 0.6/0.7 0.1/- 0.1/0.1 0.1/- -/-
korean-gsd 4400/989 69.9/70.7 4.8/5.6 -/- 0.2/0.3 -/- -/- -/-
afrikaans-afribooms 1315/425 71.1/73.2 3.8/3.3 0.3/0.2 0.2/- -/- -/- -/-
uyghur-udt 1656/900 81.0/79.6 3.1/3.7 -/- -/- -/- -/- -/-
japanese-gsd 7164/557 65.9/62.5 2.0/2.0 -/- -/- -/- -/- -/-
turkish-imst 3685/975 63.3/61.1 0.1/- -/- -/- -/- -/- -/-
urdu-udtb 4043/535 87.9/90.3 -/- 0.0/- -/- -/- -/- -/-
hindi-hdtb 13304/1684 87.5/84.7 -/- 0.0/0.1 -/- -/- -/- -/-
dutch-lassysmall 5789/876 40.1/39.8 1.1/0.8 1.8/1.5 0.0/- 0.1/- -/- 0.0/0.1
german-gsd 13814/977 69.0/59.5 2.0/9.6 2.1/3.3 0.0/0.3 0.1/0.1 0.1/0.1 0.1/-
hungarian-szeged 910/449 75.6/75.7 0.7/0.7 4.2/6.2 -/- 0.1/- -/- -/-
italian-isdt 13121/482 61.0/69.9 3.5/1.9 3.9/3.1 0.2/0.6 0.2/0.2 0.1/- 0.1/-
dutch-alpino 12269/596 63.2/63.9 4.6/5.5 4.8/4.4 0.3/0.3 0.3/0.7 0.2/1.0 0.2/-
estonian-edt 20827/2737 60.4/59.8 3.4/4.2 5.1/4.6 0.1/0.1 0.4/0.4 0.2/0.1 0.1/0.1
finnish-tdt 12217/1555 60.1/58.7 3.0/4.1 5.1/5.8 0.0/0.1 0.3/0.3 0.2/0.3 0.1/0.1
ukrainian-iu 4513/783 62.6/65.1 3.1/4.1 5.9/5.1 0.0/- 0.3/0.5 0.2/- 0.1/-
russian-syntagrus 48814/6491 60.6/60.9 3.4/2.8 6.6/6.5 0.0/0.0 0.4/0.3 0.2/0.2 0.1/0.1
ancient_greek-perseus 11476/1306 83.7/68.3 4.1/12.6 7.0/7.6 0.2/0.5 0.4/1.1 0.1/0.2 0.2/0.4
latin-ittb 15808/750 52.0/51.5 5.0/4.0 6.8/9.2 0.2/- 0.2/0.3 0.4/- 0.1/-
czech-pdt 68495/10148 53.8/54.6 4.9/4.6 6.9/6.6 0.2/0.2 0.9/0.9 0.3/0.3 0.1/0.1
croatian-set 6983/1057 53.8/55.2 5.8/8.6 7.4/6.5 0.2/0.1 1.1/1.1 0.3/0.8 0.0/0.1
gothic-proiel 3387/1029 75.4/77.5 6.7/6.3 8.6/7.7 0.2/0.3 0.5/0.5 0.1/- 0.1/0.2
old_church_slavonic-proiel 4123/1141 80.4/82.6 6.0/5.2 8.3/7.2 0.1/0.1 0.8/0.4 -/0.1 0.3/0.1
english-lines 2738/914 64.5/63.5 4.9/4.7 7.4/5.5 0.0/0.2 0.6/0.7 0.4/0.7 0.4/0.3
polish-sz 6100/1100 72.5/72.9 5.0/5.3 7.6/7.2 0.0/0.2 0.6/0.6 0.4/0.4 0.1/-
old_french-srcmf 13909/1927 79.2/78.6 4.8/4.0 7.7/8.2 0.1/0.1 0.4/0.4 0.2/0.2 0.2/0.1
french-gsd 14554/416 61.0/54.6 3.1/3.8 8.2/8.7 0.2/0.7 0.5/1.0 0.2/- 0.3/0.5
polish-lfg 13774/1727 80.9/79.7 2.8/2.7 8.4/8.9 0.0/0.1 0.3/0.6 0.2/0.2 0.1/0.1
czech-cac 23478/628 59.2/61.3 2.2/2.4 6.8/6.7 0.1/- 0.4/0.3 0.3/0.2 0.1/0.2
french-spoken 1153/726 49.6/52.6 1.6/4.8 7.7/4.5 0.1/0.1 0.2/0.8 0.2/- 0.1/0.1
indonesian-gsd 4477/557 62.0/63.9 2.2/2.9 9.0/7.7 0.1/0.2 0.3/0.2 0.1/- 0.7/0.9
french-sequoia 2231/456 44.1/41.9 3.0/3.5 13.2/12.9 -/- 1.0/1.1 1.0/0.7 0.6/0.4

Table 4: Distribution of Compchains in UD 2.2 Gold Treebanks. The column Total presents the number of trees
in the training and test sections of each treebank, and is formatted as CountTraining/CountTest ; the columns for
each compchain present the percent of trees with that compchain in the training and test sections of the treebank
respectively – e.g. with respect to the English-EWT treebank, 6% of the 12543 trees in the training section have
the compchain RC whereas only 3.8% of the 2077 trees in the test section have the compchain RC. A dash (“-”)
indicates an absence of trees with that compchain (i.e. 0%).
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Treebank Word Order W. Avg R RC RX RCC RCX RXC RXX

polish-lfg verb-object 0.94 0.97 0.84 0.89 1.00 0.87 0.29 1.00
french-gsd verb-object 0.89 0.92 0.62 0.81 0.80 0.75 - 1.00
spanish-ancora verb-object 0.89 0.92 0.81 0.78 0.55 0.60 - 0.67
english-ewt verb-object 0.90 0.89 0.73 0.79 0.67 0.40 0.33 1.00
croatian-set verb-object 0.90 0.92 0.79 0.87 0.67 0.75 0.71 1.00
czech-pdt verb-object 0.92 0.93 0.79 0.89 0.72 0.80 0.64 0.67
finnish-tdt verb-object 0.89 0.92 0.74 0.68 0.50 0.75 0.67 0.40
slovenian-ssj verb-object 0.88 0.91 0.84 0.79 0.50 0.67 0.80 0.40
russian-syntagrus verb-object 0.93 0.95 0.83 0.85 0.50 0.59 0.74 0.44
catalan-ancora verb-object 0.91 0.94 0.81 0.83 0.25 0.53 1.00 0.67
czech-cac verb-object 0.92 0.94 0.67 0.86 - 1.00 1.00 1.00
norwegian-bokmaal verb-object 0.90 0.92 0.84 0.74 0.00 0.83 0.80 0.67
french-sequoia verb-object 0.86 0.86 0.71 0.78 0.00 0.80 0.50 0.80
english-lines verb-object 0.78 0.85 0.43 0.53 0.00 0.25 0.55 0.44
latin-proiel object-verb 0.86 0.92 0.57 0.70 0.36 0.40 0.33 0.50
english-gum verb-object 0.82 0.85 0.54 0.64 0.40 0.50 0.00 0.40
bulgarian-btb verb-object 0.85 0.91 0.58 0.39 0.55 0.67 0.00 -
portuguese-bosque verb-object 0.85 0.89 0.72 0.50 0.50 1.00 - -
italian-isdt verb-object 0.91 0.94 0.60 0.72 0.40 1.00 0.00 -
serbian-set verb-object 0.92 0.95 0.81 0.84 0.29 0.67 0.00 -
ukrainian-iu verb-object 0.89 0.92 0.69 0.72 - 0.60 0.00 -
old_church_slavonic-proiel verb-object 0.89 0.94 0.61 0.65 0.00 0.67 0.00 0.00
ancient_greek-proiel object-verb 0.87 0.93 0.55 0.72 0.00 0.50 0.00 0.00
hebrew-htb verb-object 0.77 0.83 0.63 0.78 - 0.25 - -
latin-ittb object-verb 0.85 0.87 0.52 0.79 - 0.00 - -
dutch-lassysmall object-verb 0.91 0.89 0.59 0.52 - - - 0.00
arabic-padt verb-object 0.88 0.76 0.61 0.36 - 0.00 - -
japanese-gsd object-verb 0.94 0.95 0.76 - - - - -
uyghur-udt object-verb 0.87 0.93 0.56 - - - - -
afrikaans-afribooms verb-object 0.86 0.90 0.52 0.00 - - - -
korean-kaist object-verb 0.79 0.84 0.52 - 0.29 - - -
korean-gsd object-verb 0.83 0.88 0.49 - 0.50 - - -
persian-seraji object-verb 0.85 0.86 0.80 - 0.72 - - -
romanian-rrt verb-object 0.85 0.92 0.71 0.41 0.57 - - -
german-gsd object-verb 0.80 0.85 0.68 0.49 0.50 0.00 0.00 -
swedish-talbanken verb-object 0.88 0.92 0.69 0.67 1.00 0.00 0.00 -
greek-gdt object-verb 0.87 0.92 0.82 0.52 0.80 0.33 0.00 0.00
danish-ddt verb-object 0.80 0.85 0.68 0.37 0.80 0.33 0.00 -
norwegian-nynorsk verb-object 0.88 0.90 0.70 0.59 1.00 0.50 - 0.00
finnish-ftb verb-object 0.85 0.89 0.69 0.74 0.67 0.43 0.33 0.00
basque-bdt object-verb 0.85 0.91 0.64 0.69 0.67 0.29 0.44 0.00
old_french-srcmf verb-object 0.88 0.93 0.64 0.72 0.67 0.35 0.50 0.40
swedish-lines verb-object 0.84 0.89 0.67 0.59 0.50 0.50 0.75 0.00
czech-fictree verb-object 0.89 0.92 0.78 0.88 0.25 0.69 0.78 -
polish-sz verb-object 0.90 0.94 0.76 0.87 0.00 0.67 0.89 -
slovak-snk verb-object 0.92 0.93 0.74 0.84 - 0.73 0.67 0.00
dutch-alpino object-verb 0.83 0.89 0.56 0.61 0.00 0.67 0.55 -
latvian-lvtb verb-object 0.80 0.86 0.57 0.74 0.00 0.58 0.55 -
estonian-edt verb-object 0.87 0.90 0.68 0.74 0.00 0.53 0.33 0.22
french-spoken verb-object 0.80 0.83 0.60 0.47 0.00 0.50 0.00 0.40
gothic-proiel verb-object 0.82 0.91 0.38 0.59 0.00 0.33 - 0.67
italian-postwita verb-object 0.85 0.87 0.63 0.60 0.00 0.00 0.00 1.00
indonesian-gsd verb-object 0.81 0.87 0.22 0.55 0.00 0.00 0.00 0.50
ancient_greek-perseus object-verb 0.70 0.84 0.30 0.36 0.00 0.17 0.00 0.18
hindi-hdtb object-verb 0.97 0.98 - 0.00 - - - -
urdu-udtb object-verb 0.94 0.97 - - - - - -
turkish-imst object-verb 0.81 0.86 - - - - - -
vietnamese-vtb verb-object 0.51 0.63 0.21 0.29 0.20 0.08 0.00 0.00
chinese-gsd verb-object 0.61 0.72 0.35 0.34 0.22 0.00 0.33 0.00
galician-ctg verb-object 0.63 0.70 0.31 0.47 0.12 0.00 0.00 0.00
hungarian-szeged object-verb 0.85 0.91 0.00 0.79 - - - -

Table 5: F1-Scores for Compchains Classifications for each UD 2.2 Gold Treebanks. The test section of each gold
treebank was parsed using the corresponding pre-trained UDPipe language model; the compchain classification
was computed for each pair of gold and parsed treebanks, and we report: (i) the weighted average F1-score (over
all compchains); (ii) the (per-class) F1-score for each compchain. Entries for which the F1-score could not be
computed due to a lack of support are marked with a dash (“-”).
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Abstract
We propose a structured extension to
bidirectional-context conditional language
generation, or “infilling,” inspired by Frame
Semantic theory (Fillmore, 1976). Guidance is
provided through two approaches: (1) model
fine-tuning, conditioning directly on observed
symbolic frames, and (2) a novel extension to
disjunctive lexically constrained decoding that
leverages frame semantic lexical units. Au-
tomatic and human evaluations confirm that
frame-guided generation allows for explicit
manipulation of intended infill semantics,
with minimal loss in distinguishability from
human-generated text. Our methods flexibly
apply to a variety of use scenarios, and we
provide an interactive web demo.1

1 Introduction

A popular strategy for automatic story generation
is to proceed in a coarse-to-fine manner: first by
proposing a story plan, and then realizing it into
natural language form using large pretrained neu-
ral language models (Fan et al., 2018; Goldfarb-
Tarrant et al., 2019). In this work, we study the
use of FrameNet frames (Baker et al., 1998) as
representational units for such plan guidance.

In Frame Semantics (Fillmore, 1976; Fillmore
and Baker, 2010), words evoke structural situation
types (frames) that describe the common schematic
relationships between lexical items. We hypothe-
size that these structured types can be used to effec-
tively induce the semantic content of text generated
by increasingly powerful pretrained language mod-
els, yielding a flexible, controllable and domain-
general model for surface realization of story plans
with a variety of dimensions for user guidance.

†Corresponding authors.
‡ Work done during an internship at the Center for Lan-

guage and Speech Processing, JHU.
1Codebase and demo available from https://nlp.

jhu.edu/demos/infillmore.

Figure 1: The proposed generation model, applied to
the interactive story generation task. Similar to the ex-
isting infilling models, a user can insert or rewrite text
spans at any position in a story. With the proposed
extension, generation can be guided via explicit frame
semantic constraints, either provided manually or sug-
gested by the model based on surrounding context.

Based on this supposition, we fine-tune a recent
infilling model (Donahue et al., 2020) with a frame-
guided denoising objective. We contrast this ap-
proach with a novel method for frame-guided gener-
ation that modifies only the decoding step of a stan-
dard language model through lexical manipulation.
The idea originates from the annotation scheme of
FrameNet, where each semantic frame is annotated
with a set of evocative lexical units (LUs). We posit
that it is possible to guide the model’s generation
with frames without modifying its training proce-
dure by instead lexically constraining its generation
output to contain frame-associated LUs. Therefore,
we develop an extension to lexically-constrained
decoding that leverages LUs as ordered disjunc-
tive constraint sets. Given a possibly multi-frame
sequence and a generative model, our method en-
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forces the generation of one of the associated LUs
for each frame in the sequence. This decoding
method is implemented as a plug-and-play mod-
ule that can be imposed on top of any standard
generative language model.2

We evaluate through a sentence-infilling task
based on ROCStories (Mostafazadeh et al., 2016),
assessing performance on two dimensions: 1) the
quality of generation, as measured through perplex-
ity and human evaluation; and 2) the fidelity, which
scores whether generated text evokes the frames
used as guidance. We demonstrate that our methods
utilize guidance to generate frame-evoking surface
realizations without meaningfully detracting from
the contextual narrative coherence. We also demon-
strate the practical applicability of frame-guided
generation in a variety of example use cases.

2 Related work

Controlled Generation Existing work employs
a variety of pretraining strategies to guide and/or
diversify text generation. Keskar et al. (2019) train
large-scale language models on text prepended with
control codes, allowing for guided content and
style. PPLM (Dathathri et al., 2020) makes use
of lightweight attribute classifiers that guide gen-
eration without requiring language model retrain-
ing. For diverse generation of sentences in a more
general scenario, Weir et al. (2020) train models
to condition on semantic bit codes obtained from
hashing sentence embeddings.

Constrained Generation Separate lines of work
employ lexical constraints to achieve the same goal
of guided and diverse generation. As such, lexi-
cally constrained beam search methods such as
Grid Beam Search (Hokamp and Liu, 2017) and
Dynamic Beam Allocation (Post and Vilar, 2018;
Hu et al., 2019a) were proposed as the decoding
methods for causal generation with disjunctive pos-
itive constraints (Li et al., 2020b), paraphrasing
(Hu et al., 2019b; Culkin et al., 2020), machine
translation (Zhang et al., 2021), and abstractive
summarization (Mao et al., 2020). Lu et al. (2020)
generalize beam-search based methods with an al-
gorithm that supports lexical constraints in the con-
junctive normal form.

Parallel are the approaches that handle lexical
constraints in an editing manner: starting with a
sequence of keyword constraints and fleshing out a

2Fairseq-based implementation and data to be released.

sentence via editing operations such as insertion or
deletion (Miao et al., 2019; Liu et al., 2019; Sha,
2020; Susanto et al., 2020; ?; Zhang et al., 2020).
Finally, it is possible to satisfy lexical constraints
in a soft manner as external memories (Li et al.,
2020a, 2019) or constructing constraint-aware train-
ing data (Chen et al., 2020).

Story Generation Inspired by the traditional
pipeline of Reiter and Dale (2000), recent work
tackles generation of stories in a coarse-to-fine
manner (Fan et al., 2018): based on a premise,
a structured outline is generated first, and then an
outline-condition model generates the full story.
To represent the story outline, existing approaches
typically either model it as a latent variable, or
use symbolic representations such as key phrases
(Xu et al., 2018; Yao et al., 2019; Goldfarb-Tarrant
et al., 2019; Gupta et al., 2019; Rashkin et al.,
2020), short summaries (Jain et al., 2017; Chen
et al., 2019), verb-argument tuples (Martin et al.,
2018), or PropBank predicates and arguments (Fan
et al., 2019; Goldfarb-Tarrant et al., 2020). Our
work can be viewed as an extension of this direc-
tion, where a Content Planner model generates an
outline as a sequence of FrameNet frames, and our
methods generate a surface form story.

3 Data

FrameNet FrameNet is a lexical database of En-
glish based on Fillmore’s theory of Frame Seman-
tics. It defines more than 1200 frames spanning var-
ious semantic domains, where each frame schemati-
cally describes a type of event, relation, or entity. A
frame is defined with a set of corresponding Frame
Elements (FEs): the participants in the frame with
relational roles, and a set of Lexical Units (LUs):
words that evoke the frame in text.

For example, the Apply_heat frame that de-
scribes the concept of cooking consists of core
FEs Food, Cook, Container, Heating_instrument,
and Temperature_setting, and has evocative LUs
that include fry, bake, boil, and broil. Frame an-
notations provide a partial (albeit rich) picture of
sentence meaning, i.e. information not governed by
the syntax/semantics interface. We find that they
serve as an effective, theory-grounded formalism
for discrete semantic guidance of generation.

Conceptually, our choice to use FrameNet as
guiding semantics builds upon trends in generative
modeling of discourse (Ferraro and Van Durme,
2016) that treat text documents as mixtures of hi-

130



Story Charles went shopping. He bought fruit.
Then he left.

ILM Charles went shopping. [blank] Then he left.
[sep] He bought fruit.

S-FFL [sep] [Food] He bought fruit.
A-FFL [sep] [Commerce_buy] [Food] He bought fruit.

Figure 2: Training examples for frame-guided ILM
models. Examples are fed from left to right, with the
italicized portion of the ILM example replaced by the
frame-injected sequences for FFL examples.

erarchical latent variables in accordance with clas-
sical theories of frame semantics (e.g. Minsky
(1974); Fillmore (1976)). As described by Ferraro
and Van Durme (2016), FrameNet frame informa-
tion can be used to learn a hierarchical latent repre-
sentation of sentence-level semantics that produces
discourse models that better fit to natural text data.
Our work then asks whether this information can
be used to harness the increasingly powerful ability
of recent neural language models for the purposes
of controlled story generation.

ROCStories Mostafazadeh et al. (2016) intro-
duce the ROCStories corpus, which comprises over
98K 5-sentence simple stories that can serve as a
resource for commonsense narrative schema learn-
ing and story generation (Ippolito et al., 2020). We
use this dataset to evaluate the performance of our
methods (described in section 5).

4 Approach

4.1 Model Architecture

The Infilling by Language Modelling (ILM, Don-
ahue et al., 2020) framework fine-tunes pretrained
unidirectional language model such as GPT-2 (Rad-
ford et al., 2019) to generate target infill spans with
bidirectional contexts. This allows the ILM model
to flexibly generate text at any position in a doc-
ument, as shown in Figure 1. In this work, we
introduce FrameNet frame guidance into the ILM
pipeline. We propose and compare methods based
on 1) fine-tuning on frame-annotated data (4.2),
and 2) imposing lexically-constrained beam search
during decoding (4.3) with the original ILM.

4.2 Fine-Tuned “Framefilling” (FFL)

The ILM task definition comprises a context pas-
sage x containing [blank] tokens at points where
the new spans must be generated.3 The passage x

3Our work focuses primarily on infilling single sentence
spans, leaving arbitrary length spans, e.g. n-grams or full

Figure 3: Example of LCD constraint representation in
a list of 2 tries, corresponding to the given frames Com-
ing_to_believe and Cause_harm (red). Other LUs are
omitted for simplicity.

is concatenated with a [sep] token and golden span
infills (each separated by another [sep]) to form a
fine-tuning instance for an off-the-shelf unidirec-
tional language model such as GPT-2. We build on
this setup by adding one or more frame ID tokens
F1, F2, . . . (e.g. [Food]) as prefixes of each golden
infill span, as shown in Figure 2. A model fine-
tuned on this modified formulation, which we call
a “framefilling” model (FFL for short), therefore
conditions each infill on the bidirectional context
as well as one or more control codes that guide the
infill’s semantic content. If an example contains
multiple infills, subsequent infills are conditioned
on the frames and text of previous infills.

We experiment with multiple variants of the FFL
model, varying primarily in the level of frame guid-
ance. We train a variant on infilling examples that
contain a single frame ID (S-FFL), another on ex-
amples with a set of one or multiple frames (M-
FFL; number of frames sampled from a geometric
distribution with p = .4), and a final variant condi-
tioned on all frames (covered by FrameNet v1.7)
triggered by the infill (A-FFL). In all cases, the
frame ID tokens are predicted by a state-of-the-art
neural FrameNet parser (Xia et al., 2021).4

4.3 Lexically Constrained Decoding (LCD)

Given a sequence of frame ID tokensF1, F2, ..., Fn,
we build a corresponding sequence of disjunctive
lexical constraint sets C1, C2, ..., Cn, where Ci
consists of all LUs of Fi with their morphologi-

paragraphs, to the future work.
4We choose to evaluate these three variants in order to

compare the coherence of a model trained with only low frame
guidance (S-FFL), a model trained with only high (A-FFL),
and a model (M-FFL) trained on a distribution of examples
that comprises a superset of the first two.
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cal variants. During decoding, our method forces
the output to contain c1, c2, ...cn, where ci ∈ Ci.

Decoding with Ordered/Unordered Disjunctive
Constraint Sets We develop a disjunctive lex-
ically constrained decoding method (LCD) that
extends implementations in Post and Vilar (2018);
Hu et al. (2019a) and Li et al. (2020b). We also use
Dynamic Beam Allocation (DBA) (Post and Vilar,
2018; Hu et al., 2019a) for beam assignment and
next token selection, but we track our constraints
differently. As shown in Figure 3, LCD represents
a sequence of disjunctive constraint sets as a list
of tries, one per frame, each covering a set of dis-
junctive lexical units (with morphological variants)
based on the Byte Pair Encoding (BPE, Sennrich
et al., 2016) adopted by GPT-2.

Based on this representation, we develop two
versions of LCD: LCD-ordered and -unordered,
the former of which requires that the constraint sets
be completed in the order that the corresponding
frame ID tokens are specified. By providing these
two versions, we offer the user the flexibility to
either enforce the frame-evoking narration being
triggered in their desire order, or leave it to be
determined by the generative model and decoder.

To track the generation progress through con-
straint sets, we use a global pointer to the cur-
rently active disjunctive set. Whenever the active
set Ci is completed, the pointer is set to null. If
unsatisfied sets remain, the next possible set(s)
to be completed is Ci+1 for LCD-ordered and
{Cj : j 6= i ∈ {1, 2, ..., n} | Cj is not completed}
for LCD-unordered. At the beginning of generation
when no set is active, the next possible set(s) is C0

for LCD-ordered and all sets for LCD-unordered.
During the generation, when the pointer is null and
a constraint token that starts any of the next possi-
ble set(s) is picked by DBA, the global pointer is
set to the corresponding disjunctive set. Apart from
the global pointer, the bookkeeping and unwind-
ing mechanism within each trie is similar to the
implementations in (Hu et al., 2019a) and (Li et al.,
2020b), except that a trie is marked as finished and
the global pointer is updated once any path in the
trie is completed.

We implement LCD as an extension of the to-
ken generation constraint implementation in the
fairseq library. Our LCD works very similarly
to the disjunctive positive constraints decoding in
(Li et al., 2020b), where the disjunctive sets are
maintained in a single trie rather than our “list of

tries” approach. However, we support explicit or-
dering of constraint sets, and we don’t prune a
sub-trie when the corresponding constraint set is
finished.

5 Experiments
We test the effectiveness of our models on a frame-
guided sentence infilling task derived from ROC-
Stories. We use a state-of-the-art neural FrameNet
parser (Xia et al., 2021) to obtain the set of frames
evoked by each sentence in the dataset. We then
present models with a five-sentence ROC story with
one masked out. The model must infill the missing
sentence given one or many frame ID tokens parsed
from the masked-out sentence. For evaluations re-
quiring generated outputs (all but perplexity), we
use beam search with beam size 20. We find that
beam search achieves higher frame fidelity and co-
herence than the random sampling approach used
by Donahue et al. (2020).

We train our models (all GPT-2 ‘base’) using
the provided train split of ROCStories. For S/M/A-
FFL, each example contains one/multiple/all frame
ID tokens sampled randomly from the parser output.
To test LCD, we re-train the original ILM using
the identical ROCStories training data to our FFL
models but without frame tokens (training details
described in A.2). Unlike Donahue et al. (2020),
we do not include story titles. We also use this ILM
as a baseline with no guidance.

To investigate whether enforcing generated
frame order impacts model performance, we eval-
uate both LCD-ordered and -unordered; we also
evaluate FFL-ordered models fine-tuned to gener-
ate frames in the order in which they are provided.

5.1 Automatic Evaluation
We evaluate our frame-guided generation meth-
ods by measuring the rate at which they produce
sentences that trigger the desired frame(s) and by
measuring the perplexity score of the framefilling-
trained language model on test examples.

Frame Fidelity We automatically evaluate
whether a produced sequence triggers a given set of
frames by running it through the same neural frame
parser used to determine the desired frame from
a gold human-generated sentence. Table 1 shows
the rates at which methods correctly produce sen-
tences that contain every specified frame.5 For each

5Methods that condition on fewer frame IDs are evaluated
using subsets of those for multi-frame models; e.g. if the
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Fidelity ↑ Recall Perfect Recall

# Frames Single Multi All Multi All

ILM (no guidance) .169 .166 .165 .091 .026
ILM + LCD .584 .595 .610 .418 .232
ILM + LCD-ord – .598 .626 .427 .255
FFL .518 .559 .640 .381 .259
FFL (rand sample) .461 .511 .601 .338 .224
FFL-ord – .585 .669 .415 .298

Table 1: Frame fidelity, computed as frame recall ac-
cording to the neural frame parser (left). The per-
example rate at which models perfectly predict frame
sets is also given (right). Higher is better.

model, we evaluate the top-1 decoded sequence.

Perplexity The typical automatic evaluation met-
ric for a language model is test data perplexity
(PPL). Since LCD requires no training modifica-
tion to the ILM model, we only compute the PPL
for S/M/A-FFL and ILM on a test set of stories
in which one of five sentences has been masked
out.6 Following Donahue et al. (2020), we evalu-
ate models’ PPL specifically on infill tokens and
also compute PPL including the surrounding spe-
cial tokens (separators and frame IDs). Because
sequences for FFL models include one or more
frame ID tokens, the token length for a given story
example is different for ILM and each FFL variant;
PPL therefore cannot be directly compared. To con-
struct a scenario in which the ILM and FFL model
perplexities are directly comparable, we train vari-
ants of both models for which every infill sequence
is prepended with 5 special tokens, thus regulariz-
ing token length for every evaluated model.

5.2 Human Evaluation

In addition to automatic evaluation, we collect hu-
man judgements to assess models’ ability to main-
tain coherent and plausible generation. We conduct
two human evaluations that ask annotators to tell
apart model- and human-generated sentences (In-
distinguishability task) and rank model-generated
sentences relative to one another (Relative Plausi-
bility task). Details of our collection protocols and
example interfaces are provided in Appendix D.

Indistinguishability Following Donahue et al.,
we present annotators with 5-sentence stories in
which one sentence has been replaced by the output

M-FFL model must generate a set {[Food] [Size]}, the S-FFL
must predict one of [Food] or [Size].

6See Appendix C for model perplexity trained and evalu-
ated with all five sentences having been masked.

Perplexity ↓ ILM S-FFL M-FFL A-FFL A-FFL
(ord)

Infill Text 12.85 11.7 9.84 6.19 5.05
+ Sp Toks 7.24 8.32 9.5 8.95 7.04
w/ 5 Fr Slots 4.06 5.12 6.34 7.32 6.03

Table 2: Model perplexity over infill text tokens and
infill text tokens + special tokens (<start to infill>, <end
of infill>, <infill mask>). Lower is better.

of an infilling model. Annotators must identify
which sentence is model-generated.

For each model, we calculate the confusion rate
r =

Nconfused
Nall

, where Nconfused is the number of sto-
ries for which a human annotator fails to identify
the machine-generated content, and Nall is the total
number of stories. Results are shown in Table 3.
Higher confusion rate is posited to mean more nat-
ural text infilling. Optimal performance is 80%,
meaning the annotator is performing at chance.

Relative Plausibility We present human annota-
tors with a 5-sentence story where one sentence is
missing, and 10 candidate replacement sentences
(the gold plus the infills of 9 different models). An-
notators are tasked with ranking the candidate sen-
tences (via drag-and-drop) based on how plausible
they are relative to each other. Upon aggregating
judgements, each model’s score is calculated as the
average relative rank of its output sentences that
are assigned by annotators, as shown in Table 4.

6 Analysis

Fidelity From the results in Table 1, we find that
ILM+LCD, FFL and FFL-ordered all perform sim-
ilarly while substantially outperforming the base-
line unguided ILM. This shows that our methods
effectively produce text evoking the desired frame
semantic content. Both methods benefit from the
inclusion of gold frame order, more so for FFL.

There is a considerable gap between the perfor-
mance of our models and perfect performance (1.0).
This is because FFL operates only with soft “con-
trol code” constraints, and although LCD is strictly
required to generate trigger LUs for every frame,
it does not produce sentences that always success-
fully evoke the frame. While some of this gap
might be the result of imperfections of the parser,
we find word sense ambiguity to be a contribut-
ing problem. Many LUs, such as work.v, see.v, or
call.v have multiple senses each associated with a
different frame. Since neither LCD nor FFL im-
poses hard constraints on word sense, it is entirely
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Confusion rate (%) ↑ # Frames

Single Multi All

ILM (no guidance) 41 41 41
ILM+LCD 35 31∗ 20∗

FFL 33∗ 39 38
FFL-ordered 33∗ 38 37

Table 3: Confusion rate computed as the percentage of
stories for which the annotator picks a wrong sentence
as machine-generated. Higher is better. ∗ denotes sig-
nificant difference from the baseline (ILM) result, ac-
cording to the two-sided McNemar test with p < 0.05.

Story
· · · I danced terribly and broke a friend’s toe. [blank]
Frame: [Request]

Gold [Request]
The next weekend, I was asked to please stay home.

ILM+LCD [Contacting]
I went home to call my friend and tell her I broke her toe.

Figure 4: From the lexical constraints on the LUs of
the frame Request (as asked.v in the gold infill), the
decoder selects call.v, but in the generated context call
becomes a surfaces realization of frame Contacting.

possible for an unintended sense to be generated.
As illustrated in Figure 4, LCD forces picking

the LU call.v for the target frame Request, but
given the subsequent output call my friend to tell
her I was hurt, the call.v unit takes on a sense that
triggers the incorrect frame Contacting.

Perplexity Table 2 shows that the perplexity over
purely the infill tokens is inversely proportional
to the amount of frame guidance provided to the
language model. However, we find that under
the directly comparable 5 slot scenario, PPL com-
puted over the infill tokens plus all surrounding
special/frame tokens is worse for models with more
frame tokens. As this work is predominantly con-
cerned with the quality of generation given gold
frame IDs, this is less of a concern; that the perplex-
ity of infill tokens decreases considerably with the
introduction of frame guidance shows that neural
language models can be explicitly guided towards
specific semantic spaces in accordance with the
conceptual semantic structures underpinning hu-
man understanding of language.

Generation Quality Table 4 shows that in terms
of human-judged relative plausibility, FFL outper-
forms all other models (including the unconstrained
ILM) when conditioning on all frames, and un-

Average rank (1..10) ↓ # Frames

Single Multi All

ILM (no guidance) 5.48 5.48 5.48
ILM+LCD 5.85∗ 6.38∗ 7.50∗

FFL 5.88∗ 5.57 5.11
FFL-ordered 5.88∗ 5.53 5.02∗

Table 4: Average relative plausibility rank by human
annotators. Lower is better. ∗ denotes significant differ-
ence from the baseline (ILM) result, according to the
two-sided Wilcoxon signed-rank test with p < 0.05.

derperforms ILM with only a small margin with
multi-frame guidance. Table 3 shows that ILM
outperforms FFL models and LCD on the Indis-
tinguishability task in all cases, but with only a
small margin in multi/all-frame cases comparing
with FFLs. This is unsurprising, as ILM is opti-
mized to replicate human-produced text under no
constraints via semantic guidance. We observe as
in the fidelity evaluation that LCD slightly outper-
forms FFL under single frame constraints in both
human evaluations. From these results we can
conclude that in the process of achieving effective
controlled frame-guided language generation, the
fine-tuned FFL model achieves competitive perfor-
mance to its unconstrained ILM counterpart, espe-
cially in the presence of increased guiding infor-
mation. Moreover, the compromise in quality for
the LCD method is minimal particularly for single
frame guidance.

Effect of Different Levels of Guidance Table 3
and Table 4 show that as the level of guidance
(number of frames provided) increases, FFL and
LCD models show opposite trends in quality: the
former improves whereas the latter gets worse. We
illustrate this effect in Figure 5.

For FFL, this indicates that generative capabili-
ties would improve if the model were trained with
more information about semantic content. This is a
somewhat counterintuitive finding, given the effec-
tiveness of the ILM model trained with no semantic
information whatsoever beyond surface-level lexi-
cal information (words in the context).

For LCD, we posit that the increase in the size
of lexical unit constraint sets amplifies the negative
effects of the lexical units’ word sense ambiguity,
resulting in the downward trend. With more guid-
ing frames, LCD has to search through a larger
space of possible LU combinations and is therefore
more prone to the misuse of LU (sense). More-
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Story
Ari spends $20 a day on pickles.
He decides to make his own to save money.
He puts the pickles in brine.
[blank]
Ari opens the jar to find perfect pickles.

Gold
Ari waits 2 weeks for his pickles to get sour.

ILM Baseline
He puts the pickles in a jar.

FFL ILM+LCD

Single Frame: [Transition_to_State]

He ends up with a jar full of pickles. He gets the pickles and
puts them in jars.

Multiple Frames: [Cardinal_Numbers] [Transition_to_State]

He ends up with 5 jars of pickles. He puts one in the jar and opens
it to get a drink.

All Frames: [Cardinal_Numbers] [Measure_duration]
[Transition_to_State][Chemical-sense_description]

He waits for a week for the He waits for the pickles
pickles to get sour. to thaw out of the jar to thaw

one day he gets the pickles and
eats them delicious.

Figure 5: Example infills by FFL, LCD and ILM baseline under single, multiple, and all frame guidance. Under
single frame guidance, all decoding methods perform interchangeably. As the number of frames increases, FFL
approaches a surface realization of frame-specified semantic content that resembles that of the gold infill. The
unguided baseline ILM generates something relatively incoherent. Under “all frame” guidance, LCD fails to
satisfy all constraints in one sentence and generates an additional sentence that corrupts quality.

over, we observe that in some cases with many (e.g.
≥ 5) frames, LCD cannot satisfy all constraints
within one sentence and will start new sentences to
complete unmet constraints. This is likely a con-
tributing factor to LCD’s lower scores under human
evaluations.

7 Case Study: Interactive Generation

To demonstrate the practical applicability of our
frame-guided infilling methods, we qualitatively
explore them in a variety of human-in-the-loop use
cases based on recent work in text generation. In
the following cases, we use models for both frame
ID inference and text infilling conditioned on sur-
rounding context. For frame inference, we use the
forward frame token probability of an unordered-
frame M-FFL model trained as in Section 3, with
the modification that training examples have be-
tween 0 and 4 surrounding sentences as context.
This allows for more flexibilty than a model trained
only on complete 5-sentence stories. We modify
the training data by taking a random contiguous
slice of each 5-sentence example. Figure 6 shows
examples of each scenario. For infilling, we use
FFL for A, B and D and LCD for C.

A. Iterative Story Refinement For a maximally
free-form and extensible use case, we devise a sce-
nario in the spirit of Goldfarb-Tarrant et al. (2019)
in which a user interfaces with a model to collabo-
ratively construct an open-domain story given any
combination of text and/or frames. Over the course
of a human-system dialog, the user can iteratively

either choose for the model to predict new frames
at specified locations in the context or select from
candidate infills conditioned on selected frames.
As discussed in Goldfarb-Tarrant et al. (2019), this
type of process allows for a symbiotic relationship
in which the user can correct, suggest or revise
content generated by the machine and vice versa.
Injecting frame guidance into this scenario enables
for an extra degree of interactive flexibility in both
suggestion and specification.

B. Generation from Story Skeleton Recent
work (Fan et al., 2018; Goldfarb-Tarrant et al.,
2019) has used pretrained neural language models
for surface realization of structured story content.
We approximate this task by having a model accept
a seed sentence (i.e. a prompt) plus an ordered
sequence of sets of frames specifying the content
to appear in a story. We then use the frame-guided
conditional generation to complete the text. With-
out the ability to handle explicit frame semantic
guidance, this task would be incredibly difficult for
a neural generation model.

C. Diverse Candidate Generation Weir et al.
(2020) explore the task of diverse causal gener-
ation, in which a model must propose a set of se-
mantically distinct causes or effects of an input
sentence. Following their two-step approach, we
devise a frame semantic model that 1) predicts
the distinct frames that are likely to appear at a
specified index before (for causes) or after (ef-
fects) the input sentence, then 2) run a separate
beam search conditioned on each top-k predicted
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A. Iterative Refinement

User: (I) Alice went to the grocery
store. (II) [Commerce_buy]
System: (IIA) She bought all the in-
gredients for a cake. (IIB) She bought
a new pair of shoes. (IIC) She bought
a lot of fruits and veggies.
U: Choose (IIA) as (II) and infer con-
tent after (II)
S: [Food], [Cooking], [Ingredients],
[Desirability], [Time_Collocation]
U: Choose [Desirability] [Cooking]
S: (I) Alice went to the grocery store.
(II) She bought all the ingredients for
a cake. (III) She made the best cake
she ever had.
U: Infer content to replace (I)
S: [Food], [Deciding], [Social_Event],
[Building], [Quantity]
U: choose [Social_Event]
S: (I) Mary wanted to make a cake for
her birthday. (II) She bought all the
ingredients for a cake. (III) She made
the best cake she ever had.
U: Insert sentence about [Motion]
at (II) and sentence about [Tempo-
ral_Collocation] at (IV)
S: (I) Mary wanted to make a cake for
her birthday. (II) She went to the store.
(III) She bought all the ingredients for
a cake. (IV) That afternoon, she baked
the cake in the oven. (V) She made the
best cake she ever had.

B. Generation from Skeleton

User: (I) Bob went to Paris. (II)
[Buildings] (III) [Experience] (IV)
[Motion] 5 [Calendric_Unit]
System: (I) Bob went to Paris. (II)
He went to see the Louvre museum.
(III) He saw lots of paintings and
sculptures. (IV) He went to see the
Eiffel Tower. (V) It was the best day
of Bob’s life.

U: (I) Emma loved writing and
wanted to be a writer. (II) [Decid-
ing] (III) [Practice] (IV) [Publish-
ing][Text] (V) [Fame]
S: (I) Emma loved writing and
wanted to be a writer. (II) She de-
cided to enter a writing contest. (III)
Emma’s practice paid off and she won
first prize. (IV) Emma was so proud
of herself that she published a book.
(V) Now Emma is a famous author.

C. Diverse Candidate Generation

User: Infer candidates after (I) Charles slipped on a banana peel.
System: (IIA [Body_Parts]) He skinned his knee badly. (IIB [Mo-
tion_Directional]) He fell down on the ground. (IIC [Spatial_Contact]) He
landed on his arm and broke it. (IID [Kinship]) His mother brought him to
the emergency room. (IIE [Causation]) It caused him to fall down the stairs.

U: Infer candidates before (II) She hired a lawyer.
S: (IA [Submitting_Documents]) She filed a civil lawsuit. (IB [Trial]) She
sued for breach of contract. (IC [Personal_Relationship]) She filed for divorce.
(ID [Awareness]) She didn’t know how to defend herself. (IE [Desiring]) she
did not want to go to jail.

D. Counterfactual Story Rewriting

User: (I) Alec’s daughter wanted more blocks to play with. (II) Alec figured
that blocks would develop her scientific mind. (III) Alec bought blocks with
letters on them. (IV) Alec’s daughter made words with them rather than
structures. (V) Alec was happy to see her developing her verbal ability.
Replace (II) with “Alec could not afford to buy new blocks for his daughter”
and rewrite the last three sentences.
Parser: (III) [Containers] (IV) [Text_Creation] (V) [Emotion_directed]
System: (I) Alec’s daughter wanted more blocks to play with. (II) Alec could
not afford to buy new blocks for his daughter. (III) Alec’s daughter begged
him to buy her blocks. (IV) Alec wrote a letter to Santa Claus himself. (V)
She was very happy when he wrote back.

Figure 6: Example use cases of frame-guided infilling. A. depicts human-in-the-loop iterative story refinement,
in which a user provides an initial context and/or intended frame semantic content and interacts with the model
to predict and user-select new frame content and surface-realized context. B. depicts surface realization from a
frame semantic story skeleton, i.e. a seed sentence and a sequence of frame sets to appear in the specified order.
C. depicts semantically diverse candidate generation using model frame inference to identify distinct semantic
content then using conditional generation to realize each candidate. D. depicts counterfactual story revision, in
which one sentence (II) is replaced and subsequent sentences are rewritten using frames parsed from the originals.

frame. Using a frame-infused generation model
for this purpose leverages the hierarchical semantic
delineations contained within FrameNet, selecting
human-interpretable semantic spaces from which
to generate content. This is compared to other
methods for diverse sampling, such as random and
nucleus sampling (Holtzman et al., 2020), in which
there is no notion of higher level semantic rea-
soning and a tendency to hallucinate content, or
COD3S (Weir et al., 2020), which enables only
moderate interpretability not based–as FrameNet
is–in cognitive theories of semantic organization.

D. Counterfactual Story Revision Qin et al.
(2019) introduce the task of generative counterfac-
tual reasoning in narratives. Given an original story
and a counterfactual event (i.e. the replacement

of one original sentence), the task is to minimally
revise the rest of the story according to the counter-
factual replacement. We devise a frame semantic
model for this task that 1) parses the frames of
sentences following the replacement and 2) condi-
tions the generation model on the replacement text
and a sampled sequence of the parsed frames so
as to produce a revised story whose frame seman-
tics are similar to the original’s. While previous
approaches to this generation task condition only
on surrounding context, our frame-injected model
allows for explicit retention of semantic spaces.

8 Conclusion

We propose the application of frame semantics in
the context of controlled text generation. We in-
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troduce two extensions of neural text generation
that leverage FrameNet frames as guiding signals:
1) model fine-tuning with a frame-guided infilling
objective; and 2) disjunctive lexically constrained
decoding with frame-associated lexical units. Ex-
perimental results on a sentence infilling task and
the case study involving an interactive story gen-
eration setup show that both of our methods can
properly leverage the frame information to trig-
ger surface realization of frame semantic content.
Our results show that our methods enable explicit
manipulation of semantics at the frame level with
competitive generation quality, and we exhibit a
variety of use cases that enable new dimensions of
user guidance on generation.
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A Training Details

A.1 FFL
We finetune GPT-2 on examples of frame-guided
infilling using the same training parameters (to
the extend possible) as Donahue et al. (2020). We
use the fairseq library to perform training and
inference using the pretrained GPT-2 parameters
provided by HuggingFace7. Training takes 1.5
hours using 8 Quadro RTX 6000 GPUs.

fairseq-train
--task framefilling
--sample-break-mode eos
--arch ilm_gpt2
--dropout 0.1
--attention-dropout 0.1
--clip-norm 1
-optimizer adam --adam-eps 1e-08
--lr 5e-5
--weight-decay 0.0
--max-epoch 100
--patience 3

A.2 ILM
To compare ILM with FFL on a uniform basis,
we retrain ILM on sentence level infilling using
the code provided by Donahue et al. (2020),8 with
same parameters and stopping criterion.

It is worth noticing that the original ILM is
trained on stories from the ROCStories dataset
with titles provided. However, the test set portion
of ROCStories on which we formulate the frame-
guided sentence infilling task are provided without
title. We observe that the original ILM trained with
title is problematic in infilling the first sentence of
a story without title (Sometimes it outputs full stop
only, or generate a new title in addition to the sen-
tence). Therefore, we delete all titles in the training
data when retraining ILM.

B LCD Diversification

Although the LCD algorithm will explore the prefix
of each of the dozens of constraints typically associ-
ated with a frame, a few LUs will tend to dominate
the final candidates throughout beam search — this
is also observed in Li et al. (2020b). This prob-
lem is exacerbated by the rather broad definitions

7https://github.com/pytorch/fairseq/
blob/master/fairseq/models/huggingface/
hf_gpt2.py

8https://github.com/chrisdonahue/ilm

of some frames that cover both general, common
LUs, and more specific LUs, whose likelihood will
be dwarfed during decoding by the former. For
example, the Collaboration frame contains LUs
that depict the concept of collaboration from vari-
ous perspectives: the act of collaborating (e.g. col-
laborate.v, team up.v), the participants in the col-
laboration (e.g. collaborator.n, partner.n), and the
state of being in collaboration (e.g. in cahoots.a,
together.adv), etc. However, in practice the general
unit together.adv is more often selected by beam
search to satisfy the constraint because of its gener-
ally higher likelihood. This dominant LU prevents
other potentially diverse surface realizations of the
frame triggered by other LUs.

To improve the lexical and semantic diversity
in triggering frames, we construct disjunctive sets
on a more fine-grained semantic level. We divide
each set of LUs into k subsets using hierarchical
clustering over the GloVe embeddings of LUs (Pen-
nington et al., 2014). In particular, we use the
AgglomerativeClustering class of scikit-
learn 9 to perform hierarchical clustering over the
GloVe embedding of LUs to divide each set of
frame-associate LUs into subsets. In the experi-
ments, we set number of clusters to 8. For multi-
frame constraints, we set number of clusters to 4
for the frame with the most number of LUs and 2
for the frame with the second most of, we do not di-
vide any LU sets for remaining frames (if any), this
could ensure the total combination of multi-frame
LU subsets equals 8. Figure 7 shows the clustering
results of three frames: Collaboration, Ingestion
and Departing, with number of clusters set to 4.

To ensure that the decoder will be able to ex-
plore all possible combinations of LUs, we build
lists of tries for every combination of LU subsets.
The constrained beam search is then run separately
on each of them. To ensure that candidates from
each LU subset are considered, final candidates are
selected in a round-robin manner: the top-1 scored
hypothesis is picked for each subset, followed by
the top-2, and so on.

C Perplexity

We repeat the perplexity experiment from subsec-
tion 5.1, but instead of masking one out of five of a
story’s sentences at a time, we mask all five. This

9https://scikit-learn.org/stable/
modules/generated/sklearn.cluster.
AgglomerativeClustering.html
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Frames LUs clusters
Collaboration cluster 1: conspire, conspiracy, collusion, collude

cluster 2: together, in league, in cahoots,
work together, team up
cluster 3: confederate
cluster 4: partner, jointly, cooperation, associate, affiliated,
collaboration, collaborator, cooperate, collaborate

Ingestion cluster 1: have, put away, lap, put back, down
cluster 2: feed, lunch, breakfast, snack, eat, drink
cluster 3: swig, ingestion, quaff, swill, guzzle,
sup, nosh, gulp, devour, gobble, ingest,
consume, dine, nibble, imbibe, slurp, sip
cluster 4: tuck, munch, feast, nurse

Departing cluster 1: departure, depart, exit, leave
cluster 2: vamoose, decamp, skedaddle
cluster 3: exodus, disappearance, escape
cluster 4: disappear, vanish, emerge

Figure 7: clustering examples of frame Collaboration,
Ingestion, and Departing, morphological variants are
excluded for demonstration purpose.

scenario can be considered a fully generative model
of text in which no context is provided except for
frame IDs specifying general semantic content for
each sentence. Table 5 shows the resulting model
perplexities.

D Human Evaluation Details

Akin to Donahue et al. (2020), we sampled 100
stories from the test set of the ROCStories dataset.
Masking one sentence at a time in each 5-sentence
story, we obtained 500 masked stories. Each model
was then tasked to infill a missing sentence in
a masked story. We compared 10 models in to-
tal: 8 proposed in this paper (S/M/A-FFL, M/A-
FFL-ordered, and the ordered variant10 of S/M/A
ILM+LCD), as well as the gold human infill and
the ILM model. Below we further specify the de-
tails of each of the human evaluation tasks.

D.1 Indistinguishability

To achieve high comparability with Donahue et al.
(2020), we conducted this evaluation as a Human
Intelligence Task (HIT) on Amazon Mechanical
Turk. To filter out malicious workers, we used a
control model which always generates “This sen-
tence was generated by a machine.” or a synony-
mous sentence. We also validated that the gold hu-
man infill achieves 80% confusion rate (which was
attained precisely in our run), which corresponds
to picking 1 sentence out of 5 at random. Overall,
12 workers participated in the HIT, of which one
was filtered by the control model. The annotator’s
interface can be seen on Figure 8.

10Based on the Frame Fidelity and the pilot HIT results, we
chose to only evaluate the ordered variant, as the unordered
LCD performed very similarly in terms of those metrics.

Perplexity ILM S-FFL M-FFL A-FFL A-FFL
(ord)

Infill Text 13.88 11.07 8.76 5.45 4.69
+ Sp Toks 8.87 9.16 10.05 9.3 7.43
+ 5 Fr Slots 4.66 5.51 6.71 7.64 6.23

Table 5: Model perplexity over infill text tokens and
infill text tokens + special tokens with all 5 ROCStory
sentences masked out.

D.2 Relative Plausbility
Due to a relatively high complexity of this task,
compared to the Indistinguishability task, the eval-
uation was conducted with a team of skilled annota-
tors, comprised of four undergraduate students who
have previously participated in NLP/AI annotation
projects. On average, ranking 10 models’ outputs
for one story took 3 minutes 19 seconds for each
worker. The annotator’s interface can be seen on
Figure 9.
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Figure 8: Interface shown to the workers during collection of indistinguishability judgments.

Figure 9: Interface shown to the workers during collection of relative plausibility judgments.
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Abstract

We point out that common evaluation prac-
tices for cross-document coreference resolu-
tion have been unrealistically permissive in
their assumed settings, yielding inflated re-
sults. We propose addressing this issue via two
evaluation methodology principles. First, as
in other tasks, models should be evaluated on
predicted mentions rather than on gold men-
tions. Doing this raises a subtle issue regard-
ing singleton coreference clusters, which we
address by decoupling the evaluation of men-
tion detection from that of coreference linking.
Second, we argue that models should not ex-
ploit the synthetic topic structure of the stan-
dard ECB+ dataset, forcing models to confront
the lexical ambiguity challenge, as intended by
the dataset creators. We demonstrate empiri-
cally the drastic impact of our more realistic
evaluation principles on a competitive model,
yielding a score which is 33 F1 lower com-
pared to evaluating by prior lenient practices.1

1 Introduction

Cross-document (CD) coreference resolution iden-
tifies and links textual mentions that refer to the
same entity or event across multiple documents.
For example, Table 1 depicts different news stories
involving former U.S. president Barack Obama.

While subsuming the challenges of within-
document (WD) coreference, CD coreference in-
troduces additional unique challenges. Most no-
tably, lexical similarity is often not a good indi-
cator when identifying cross-document links, as
documents are authored independently. As shown
in Table 1, the same event can be referenced using
different expressions (“nominated”, “approached”),
while two different events can be referenced us-
ing the same expression (“name”). Despite these
challenges, reported state-of-the-art results on the

1https://github.com/ariecattan/coref

Subtopic 1
Doc 1: News that Barack Obama may name Dr. Sanjay
Gupta of Emory University and CNN as his Surgeon...
Doc 2: CNN’s management confirmed yesterday that Dr.
Gupta had been approached by the Obama team.

Subtopic 2
Doc 3: President Obama will name Dr. Regina Benjamin
as Surgeon General in a Rose Garden announcement...
Doc 4: Obama nominates new surgeon general: genius
grant fellow Dr. Benjamin. He emphasizes his decision..

Table 1: Example of sentences of from the ECB+. The
underlined words represent events, same color repre-
sents a coreference cluster. Different documents de-
scribe the same event using different words (e.g name,
approached), while the two predicates “name” in the
two subtopics are not coreferring.

popular CD coreference ECB+ benchmark (Cybul-
ska and Vossen, 2014) are relatively high, reaching
up to 80 F1 (Barhom et al., 2019; Meged et al.,
2020).

In this paper, we show that CD coreference mod-
els achieve these numbers using overly-permissive
evaluation protocols, namely assuming gold entity
and event mentions are given, rewarding single-
tons and bypassing the lexical ambiguity challenge.
Accordingly, we present more realistic evaluation
principles which better reflect model performance
in real-world scenarios.

First, following well established standards in
WD coreference resolution (Pradhan et al., 2012),
we propose that CD coreference models should be
also evaluated on predicted mentions. While recent
models unrealistically assume that event mentions
are given as part of the input, practical applica-
tion on new texts and domains requires performing
coreference on raw text, including automatic men-
tion detection. Using predicted mentions raises
a subtle point with regards to singletons (entities
which are only referenced once). In particular, we

143



observe that ECB+’s inclusion of singletons inac-
curately rewards models for predicting them, by
conflating the evaluation of mention identification
with that of coreference detection. To address this,
we propose reporting of singleton identification
performance in a separate metric, while reporting
coreference results without singletons.

Second, we find that ECB+ does not accurately
reflect real-world scenarios where prominent events
can be referenced in documents spanning differ-
ent subjects and domains. To facilitate its anno-
tation, ECB+ mimics this phenomenon by artifi-
cially grouping documents dealing with the same
event (e.g., the nomination of Sanjay Gupta in Ta-
ble 1) into a subtopic, and further groups two sim-
ilar subtopics into a larger topic document group
(e.g., different nominations of government officials
in Table 1). We observe that recent works exploit
ECB+’s artificially simplistic structure by practi-
cally running the coreference model at the subtopic
level, thus sidestepping a major lexical ambiguity
challenge (e.g., mentions of “nomination” across
subtopics do not co-refer). In contrast, in real-
world scenarios such clustering is much harder to
perform and is often not as easily delineated. For
example, Barack Obama and events from his presi-
dency can be referenced in news, literature, sport
reports, and more. To address this, we propose that
models report performance also at the topic level.

Finally, we show empirically that both of these
evaluation practices artificially inflate results. An
end-to end model that outperforms state-of-the-art
results on previous evaluation settings drops by
33 F1 points when using our proposed evaluation
scheme, pointing at weaknesses that future mod-
elling work could explore.

2 Background

In this work, we will examine the evaluation of CD
coreference on the popular ECB+ corpus (Cybulska
and Vossen, 2014), constructed as an augmentation
of the EECB and ECB datasets (Lee et al., 2012;
Bejan and Harabagiu, 2010). As exemplified in
Table 1, ECB+ groups its annotated documents
into subtopics, consisting of different reports of
the same real-world event (e.g., the nomination of
Sanjay Gupta), and topics, which in turn consist of
two lexically similar subtopics. Full ECB+ details
are presented in Appendix A.

The ECB+ evaluation protocol largely follows
that of CoNLL-2012, perhaps the most popular

WD benchmark (Pradhan et al., 2012), with two
major distinctions. First, barring a few notable ex-
ceptions (Yang et al., 2015; Choubey and Huang,
2017),2 most recent CD models have unrealisti-
cally assumed that gold entity and event mentions
are given as part of the input, reducing the task
to finding coreference links between gold men-
tions (Bejan and Harabagiu, 2014; Cybulska and
Vossen, 2015; Kenyon-Dean et al., 2018; Barhom
et al., 2019; Meged et al., 2020). Second, while
singletons are omitted on CoNLL-2012, they are
exhaustively annotated in ECB+.

In the following section, we present a more re-
alistic evaluation framework for CD coreference,
taking into account the interacting distinctions of
ECB+.

3 Realistic Evaluation Principles

In this paper, we suggest that CD coreference mod-
els should perform and be evaluated on predicted
mentions. To achieve this, in Section 3.1, we will
introduce the singleton effect on coreference eval-
uation and propose to decouple the evaluation of
mention prediction from coreference resolution. In
Section 3.2, we will establish guidelines allowing
to better assess how models handle the ubiquitous
lexical ambiguity challenge in real-world scenar-
ios.

3.1 Decoupling Coreference Evaluation

Our goal is to propose a more reliable evaluation
methodology of a coreference system over pre-
dicted mentions when singletons are included.

We use an example to show that evaluating sin-
gleton prediction with standard coreference metrics
(B3, CEAF, LEA) could lead to counterproductive
results which are hard to interpret (henceforth, we
refer to this phenomenon as the singleton effect).
Assume G denotes the gold clusters for Table 1
(for brevity, we omit some mentions), and S1 and
S2 denote the output of two systems, which dif-
fer in their mention detection and coreference link
performance:3

2However, as noted in (Barhom et al., 2019), they consider
only the intersection between gold and predicted mentions,
not penalizing models for false positive mention identification.

3This follows the natural distribution of singletons (about
50%), as illustrated in PreCo (Chen et al., 2018).
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MUC B3 CEAFe LEA CoNLL

CoNLL-2012
S1 75.0 53.1 44.4 42.1 57.5
S2 85.7 83.9 90.0 80.0 86.5

With Singletons
S1 75.0 77.6 77.8 69.0 76.8
S2 85.7 59.2 32.7 50.0 59.2

Table 2: Coreference results of S1 and S2 with (1) the
standard CoNLL-2012 evaluation, where S2 does bet-
ter and (2) when including singletons, where S1 does
better. S2 predicts the coreference links better than S1
but S1 achieves higher results in (2) because S1 per-
forms better the mention detection task.

G {News}, {Emory University}, {confirmed},
{yesterday}, {announcement}, {name, approached},
{names, nominates, decision}

S1 {News}, {Emory University}, {confirmed},
{yesterday}, {announcement, name, approached,
names, nominates, decision}

S2 {News that}, {Emory}, {announcement, name, ap-
proached}, {names, nominates, decision}

S1 identified the mentions of the singleton clus-
ters while S2 missed them and predicted incor-
rect span boundaries for the two first mentions
(“News that” and “Emory”). Both S1 and S2 erro-
neously merged the singleton mention “announce-
ment” with the cluster {name, approached}; how-
ever, S1 further included these mentions with the
lexically-similar cluster {names, nominates, deci-
sion}, whereas S2 successfully separated them. In
other words, S1 performs well on the mention de-
tection task, but worse on the coreference linking,
and S2 did the opposite.

Table 2 shows the results of S1 and S2 according
to (1) the common CoNLL-2012 evaluation, where
only non-singleton clusters are evaluated, and (2)
using coreference metrics also on singleton predic-
tion. With respect to (1), S2 achieves higher re-
sults according to all evaluation metrics. In (2), we
see the opposite, the results of S1 are significantly
higher than S2 w.r.t B3 (+18.4), CEAF-e (+45.1),
and LEA (+19), but not w.r.t MUC, a link-based
metric. Indeed, these evaluation metrics reward S1
in both recall and precision for all predicted single-
tons, while penalizing S2 for the wrong and miss-
ing singleton spans. Since singletons are abundant
in natural text, they contribute greatly to the over-
all score. However, as observed by Rahman and
Ng (2009), a model’s ability to identify that these
singletons do not belong to any coreference cluster
is already captured in the evaluation metrics, and
additional penalty is not desired. In Appendix B,
we introduce the aforementioned evaluation met-
rics for coreference resolution (MUC, B3, CEAF

and LEA) and explain how singletons affect them.
To address the singleton effect, we suggest de-

coupling the evaluation of the two coreference sub-
stasks, mention detection and coreference linking,
allowing to better analyze coreference results and
to compare systems more appropriately.4

Mention detection is typically a span detection
task and should be evaluated using standard span
metrics on all detected mentions, including sin-
gletons. In particular, we use the span F1 metric
and consider a predicted mention as correct if it
has an exact match with a gold mention, as com-
mon in named entity recognition (Tjong Kim Sang
and De Meulder, 2003). Using such evaluation in
our above example, S1 achieves 100 F1 and S2
achieves 66.7 F1 (recall: 60, precision: 75).

For the coreference evaluation, we propose to
follow CoNLL-2012 and apply coreference metrics
only on non-singleton (gold and predicted) clusters,
as singletons are already evaluated under the men-
tion detection evaluation. We note also that even
when omitting singletons, coreference metrics still
penalize models for making coreference errors in-
volving singletons (as S2 is penalized for linking
“announcement” to a cluster).

We further show empirically (§4.2) that when
evaluating using gold mentions, the singleton effect
is amplified and harms the validity of the current
CD evaluation protocol. Evidently, a dummy base-
line that predicts no coreference links and puts each
input gold mention in a singleton cluster achieves
non-negligible performance (Luo, 2005), while
state-of-the-art results are artificially inflated.

3.2 Confronting Lexical Ambiguity
As mentioned previously, the same event can be de-
scribed in documents from different topics, while
documents in the same topic may describe different
events (e.g. different nominations as surgeon gen-
eral, as shown in Table 1). Such settings pose a lex-
ical ambiguity problem, where models encounter
identical or lexically-similar words that should be
assigned to different coreference clusters. Accord-
ingly, while topical document clustering is useful
for CD coreference resolution in general, it does
not solve the ambiguity problem and models still
need to make subtle disambiguation distinctions
(e.g nomination of Sanjay Gupta vs. nomination of
Regina Benjamin). Aiming at simulating this chal-

4This also makes possible to compare coreference results
across datasets that include/omit singletons, addressing an
issue raised by Stoyanov et al. (2009).
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MUC B3 CEAFe LEA CoNLL

R P F1 R P F1 R P F1 R P F1 F1

Subtopic
Clustering

Singleton baseline+ 0 0 0 45.2 100 62.3 86.7 39.2 54.0 35.0 35.0 35.0 38.8
Singleton baseline− 0 0 0 0 0 0 0 0 0 0 0 0 0
Barhom et al. (2019)+ 78.1 84.0 80.9 76.8 86.1 81.2 79.6 73.3 76.3 64.6 72.3 68.3 79.5
Barhom et al. (2019)− 78.1 84.0 80.9 61.2 73.5 66.8 63.2 48.9 55.2 58.4 71.2 64.2 67.6
Meged et al. (2020)+ 78.8 84.7 81.6 75.9 85.9 80.6 81.1 74.8 77.8 64.7 73.4 68.8 80.0
Meged et al. (2020)− 78.8 84.7 81.6 60.4 73.8 66.4 65.5 49.5 56.4 57.2 71.2 63.4 68.1

Our model – Gold+ 85.1 81.9 83.5 82.1 82.7 82.4 75.2 78.9 77.0 68.8 72.0 70.4 81.0
Our model – Gold− 85.1 81.9 83.5 70.8 70.2 70.5 68.2 52.3 59.2 68.2 67.6 67.9 71.1
Our model – Predicted+ 61.7 67.4 64.5 57.8 68.4 62.6 57.2 65.5 61.1 46.6 57.7 51.6 62.7
Our model – Predicted− 61.7 67.4 64.5 47.6 56.9 51.8 53.0 41.9 46.8 44.4 53.8 48.7 54.4

Topic Level

Our model – Gold+ 80.1 76.3 78.1 77.4 71.7 74.5 73.1 77.8 75.4 62.9 59.1 61.0 76.0
Our model – Gold− 80.1 76.3 78.1 63.4 54.1 58.4 56.3 44.2 49.5 59.7 49.6 54.2 62.0
Our model – Predicted+ 61.5 62.5 62.0 55.6 56.1 55.8 52.8 66.7 59.0 43.4 46.2 44.8 58.9
Our model – Predicted− 61.5 62.5 62.0 44.7 41.4 43.0 43.9 37.9 40.7 40.9 37.4 39.1 48.6

Table 3: Event coreference on ECB+ test, while including(+)/excluding(−) singletons in the evaluation, showing
that (1) including singletons in coreference metrics inflate performance in all models, (2) using predicted mentions
(see rows marked “Predicted”) over gold mentions harms performance, (3) topic level evaluation (bottom part)
is markedly lower than subtopic performance, showing that models struggle with lexical ambiguity, and (4) our
model outperforms previous models on most F1 scores (see numbers in bold).

lenge on a manageable annotation task, the ECB+
authors (Cybulska and Vossen, 2014) augmented
each topic in the original ECB with an additional
subtopic of the same event type, allowing to chal-
lenge models with lexical ambiguity (as mentioned
in Section 2).

However, recent works (Barhom et al., 2019;
Meged et al., 2020) predict coreference clusters
separately on each subtopic, using a simple unsu-
pervised document clustering during preprocess-
ing. Such clustering performs near perfectly on
ECB+ because of its synthetic structure, where
each topic includes exactly two subtopics with only
a few coreference links across different subtopics.
Yet, document clustering is not expected to per-
form as well in realistic settings where coreferring
events can spread multiple topics. More impor-
tantly, this bypasses intentions behind the inclusion
of subtopics in the ECB+’s and avoids challenging
the coreference models on lexical ambiguity. In-
deed, the ECB+ authors, in a subsequent work, did
not apply a topic clustering (Cybulska and Vossen,
2015).

We therefore recommend that models report re-
sults also at the topic level (when document cluster-
ing is not applied). This will conform to ECB+’s
purpose and follows the original evaluation setup
of the ECB+ corpus (Bejan and Harabagiu, 2014).

4 Experiments

We show empirically that each of the previous eval-
uation practices (using gold mentions, singleton in-

clusion, and subtopic clustering) artificially inflates
the results (§4.2). As recent CD coreference mod-
els are designed to perform on gold mentions (§2),
we cannot use them to set baseline results on pre-
dicted mentions. We therefore develop a simple
and efficient end-to-end model for CD coreference
resolution by combining the successful single doc-
ument e2e-coref (Lee et al., 2017) with common
CD modeling approaches.

4.1 Model

We briefly describe the general architecture of our
model, further details are explained in (Cattan et al.,
2021) and Appendix C. Given a set of documents,
our model operates in four sequential steps: (1)
following Lee et al. (2017), we encode all possi-
ble spans up to a length n with the concatenation
of four vectors: the output representations of the
span boundary (first and last) tokens, an attention-
weighted sum of token representations in the span,
and a feature vector denoting the span length (2)
we train a mention detector on the ECB+ men-
tions, and keep further spans with a positive score,5

(3) we generate positive and negative coreference
pairs on the predicted mentions and train a pairwise
scorer, and (4) apply an agglomerative clustering
on the pairwise similarity scores to form the coref-
erence clusters at inference.

5Here, we deviate from Cattan et al. (2021) who dynami-
cally prune spans during training, because we need to predict
singleton clusters.
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4.2 Results
We first evaluate our model under the current eval-
uation setup (gold mentions, singletons, subtopic)
and compare it with two recent neural state-of-
the-art models (Barhom et al., 2019; Meged et al.,
2020). In addition, we test a dummy singleton
baseline which puts each gold mention in a sin-
gleton cluster and re-evaluate all baselines while
omitting singletons. The results in Table 3 show
that our model surpasses current state-of-the-art re-
sults in previous settings, supporting its relevance
for setting baseline results over predicted mentions.
The mention detection performance of our model
is 80.1 F1 (Recall 76 and Precision 84.7).

The results corroborate the importance of our
proposed evaluation enhancements. First, the per-
formance drops dramatically when using predicted
mentions (e.g. from 71.1 to 54.4 F1 at the subtopic
level). Second, for all models, the results are signif-
icantly higher when including singletons in corefer-
ence metrics, because, as explained in Section 3.1,
models are rewarded for singleton prediction. In-
deed, the model performs better in mention detec-
tion than in coreference linking, confirming the
importance of decoupling the evaluation of the two
subtasks. Finally, performance is lower at the topic
level than at the subtopic level (62.0 vs. 71.1 F1
using gold mentions and 48.6 vs. 54.4 F1 using
predicted mentions), indicating that models strug-
gle with lexical ambiguity (§3.2). Taken together,
evaluating over raw text without singletons while
not clustering into fine-grained subtopics, leads to
a performance drop of 33 F1 points, indicating the
vast room for improvement under realistic settings.

5 Conclusion

We established two realistic evaluation principles
for CD coreference resolution: (1) predicting men-
tions and (2) facing the lexical ambiguity challenge.
We also set baseline results for future work on our
evaluation methodology using a SOTA model.
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A The ECB+ Dataset

Documents in ECB+ were selected from various
topics in the Google News archive in English, while
annotation was performed separately for each topic.
ECB+ statistics are shown in Table 4. As opposed
to Ontonotes, only a few sentences are exhaustively
annotated in each document, and the annotations
include singletons.

In addition, it is worth noting that the ECB+
authors kept the entities from EECB (Lee et al.,
2012) only if they participate in events in the an-
notated sentences, while leaving all other enti-
ties. Accordingly, “Los Angeles” and “Los An-
geles hospital” are marked as coreferent in the
sentences “Yesterday in Los Angeles, pin-up icon
Bettie Page succumbed to complications.. and

”Pinup icon Bettie Page died Thursday evening at
a hospital in Los Angeles..” because they refer to
the location of the same event. This differs from the
standard entity coreference resolution since detect-
ing those entities involves an additional challenge
of extracting event participants, for example, using
a Semantic Role Labeling system.

Train Validation Test

# Topics 25 8 10
# Documents 594 196 206
# Sentences 1037 346 457
# Mentions 3808/4758 1245/1476 1780/2055
# Singletons 1116/814 280/205 632/412
# Clusters 411/472 129/125 182/196

Table 4: ECB+ statistics. # Clusters do not include sin-
gletons. The slash numbers for # Mentions, # Single-
tons, and # Clusters represent event/entity statistics. As
recommended by the authors in the release note, we fol-
low the split of Cybulska and Vossen (2015) that uses a
curated subset of the dataset.

B Singleton Effect on Coreference
Metrics

Here, we briefly introduce the different evalua-
tion metrics for coreference resolution (MUC, B3,
CEAF and LEA) and explain how singletons affect
them. As mentioned in the paper, all evaluation
metrics penalize models for wrongly linking a sin-
gleton to a cluster or singletons together. However,
B3, CEAF and LEA further reward models for pre-
dicting singleton clusters, as explained below.

MUC Introduced by (Vilain et al., 1995), MUC
is an early link-based evaluation metric for corefer-

ence resolution. Recall and precision are measured
based on the minimal number of coreference links
needed to align gold and predicted clusters, as fol-
lows:

Recall =

∑
ki∈K(|ki| − |p(ki)|)∑
kj∈K(|kj | − 1)

(1)

where p(ki) is the set of different predicted clusters
that contain one or more mention of the gold cluster
ki. The precision is obtained by switching the role
of the predicted and the gold clusters. Since MUC
scores are calculated over the coreference links,
singletons do not affect this metric, as observed in
our illustrative example in the paper (Section 3.1).

B3 B3 (Bagga and Baldwin, 1998) is a mention-
based evaluation metric, the recall and precision
correspond to the average of individual mention
scores. The recall is defined as the proportion of
its true coreferering mentions that the system links,
over all the gold coreferering mentions that are
linked to it, as follows:

Recall(mi) =
|Rmi ∩Kmi|
|Kmi|

(2)

where Rmi and Kmi are respectively the system
and the gold cluster containing the mention mi.
The precision is obtained by switching the role of
the predicted and gold clusters.

Here, all mentions mi (including singleton men-
tions) are scored in Eq. 2 and participate in the
overall recall and precision score. Therefore, a
singleton that was successfully predicted will be re-
warded 100% in both precision and recall, missing
singletons will affect the recall and extra-singletons
will affect the precision.

CEAF Introduced by Luo (2005), CEAF as-
sumes that each predicted cluster should be mapped
to only one gold cluster and vice versa. Using the
Kuhn-Munkres algorithm, CEAF first finds the best
one-to-one mapping g(∗) of the predicted clusters
to the gold clusters, according to a similarity func-
tion φ. Given this mapping, predicted clusters are
compared to their corresponding gold clusters, as
follows:

Recall =

∑
ri∈R φ(ri, g

∗(ri))∑
ki∈K φ(ki, ki)

(3)

where R is the set of predicted clusters, K the set
of gold clusters, g∗(ri) the gold cluster aligned to

149



the predicted cluster ri, and φ() the similarity func-
tion. The precision is obtained by switching the
role of the predicted and gold clusters in the de-
nominator. There are two variants of CEAF based
on φ, (1) a mention-based CEAFm defined as the
number of shared mentions between the two clus-
ters φ(ri, ki) = |ri ∩ ki| and (2) an entity-based
metric CEAFe: φ(ri, ki) = 2 |ri∩ki||ri|+|ki| . Here again,
a predicted singleton cluster that appears also in
the gold will be obviously mapped to it and will be
rewarded 100% in both recall and precision.

LEA Recently proposed by Moosavi and Strube
(2016), LEA is the most recent evaluation metric,
designed to overcome shortcomings in previous
evaluation metrics, notably the mention identifica-
tion effect in B3 and CEAF. LEA is a Link-Based
Entity-Aware metric, which assigns a score to each
coreference cluster, based on all coreference links
(n× (n− 1)/2) in the cluster, as follows:

Recall =

∑
ki∈K(|ki| ×

∑
rj∈R

link(ki∩rj)
link(ki)

)
∑
kz∈K |kz|

(4)

where link(ki) is the total number of links in the
gold cluster ki, link(ki, rj) is the total number of
links in the predicted cluster rj that appears in the
gold cluster ki, and |ki| is the number of mentions
in the gold cluster ki in order to give higher impor-
tance to large clusters. The precision is calculated
by switching the role of the gold clusters K and
the predicted clusters R. Singleton clusters are
also rewarded because they have self-links (links
to themselves). However, since each cluster score
is weighted by the size of the cluster, the singleton
effect is less important in LEA, as we can see in the
paper (Table 3).

C Our Coreference Model

As mentioned in the paper (§4.1), our model is in-
spired by the single document coreference resolver
e2e-coref (Lee et al., 2017). The e2e-coref model
forms the coreference clusters by linking each men-
tion to an antecedent span appearing before it in
the text. However, in the CD setting, there is no
linear ordering between the documents. We there-
fore implement a new model while modifying the
clustering method and the optimization function of
the original e2e-coref model, as elaborated below.6

6Please refer to Cattan et al. (2021) for more details, results
and ablations of the model.

Span Representation Given a set of documents,
the first step consists of encoding each document
separately using RoBERTaLARGE (Liu et al., 2019).
Long documents are split into non overlapping seg-
ments of up to 512 word-piece tokens and are en-
coded independently (Joshi et al., 2019). We then,
following Lee et al. (2017), represent each possi-
ble span up to a length n with the concatenation
of four vectors: the output representations of the
span boundary (first and last) tokens, an attention-
weighted sum of token representations in the span,
and a feature vector denoting the span length. We
use gi to refer to the vector representation of the
span i.

Mention Scorer We train a mention detector
sm(i) using a simple MLP on top of these span
representations, indicating whether i is a mention
in ECB+. This is possible because singleton men-
tions are annotated in ECB+ (§A). Unlike the e2e-
coref, we keep further only detected mentions in
both training and inference. We also tried the joint
approach but the performance drops by 0.4 CoNLL
F1 and the run-time was longer.

Pairwise Scorer Given the predicted mentions,
we first generate positive and negative training pairs
as follows. The positive instances consist of all the
pairs of mentions that belong to the same coref-
erence cluster, while the negative examples are
sampled (20x the number of positive pairs) from
all other pairs. This sampling reduces the computa-
tion time, and limits the unbalanced negative ratio
between training pairs. Then, for each pair of men-
tions i and j, we concatenate 3 vectors: gi, gj , and
the element-wise multiplication gi ◦ gj , and feed
it to a simple MLP, which outputs a score s(i, j)
indicating the likelihood that mentions i and j be-
long to the same cluster, which we optimize using
the binary cross-entropy loss on the pair label. Due
to memory constraints, we freeze output represen-
tations from RoBERTa instead of fine-tuning all
parameters.

Agglomerative Clustering As common in re-
cent CD coreference models (Yang et al., 2015;
Choubey and Huang, 2017; Kenyon-Dean et al.,
2018; Barhom et al., 2019; Meged et al., 2020),
we use an agglomerative clustering on the pairwise
scores s(i, j) to form the coreference clusters at
inference time. The agglomerative clustering step
merges the most similar cluster pairs until their pair-
wise similarity score falls below a tuned threshold
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τ .

Technical Details We conduct our experience on
a single GeForce GTX 1080 Ti 12GB GPU. Our
model has 14M parameters. On average, the train-
ing takes 30 minutes and inference over all the test
set takes 3 minutes.
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Abstract

Many modern messaging systems allow
fast and synchronous textual communication
among many users. The resulting sequence of
messages hides a more complicated structure
in which independent sub-conversations are in-
terwoven with one another. This poses a chal-
lenge for any task aiming to understand the
content of the chat logs or gather information
from them. The ability to disentangle these
conversations is then tantamount to the success
of many downstream tasks such as summariza-
tion and question answering. Structured in-
formation accompanying the text such as user
turn, user mentions, timestamps, is used as a
cue by the participants themselves who need
to follow the conversation and has been shown
to be important for disentanglement. DAG-
LSTMs, a generalization of Tree-LSTMs that
can handle directed acyclic dependencies, are
a natural way to incorporate such information
and its non-sequential nature. In this paper, we
apply DAG-LSTMs to the conversation disen-
tanglement task. We perform our experiments
on the Ubuntu IRC dataset. We show that the
novel model we propose achieves state of the
art status on the task of recovering reply-to re-
lations and it is competitive on other disentan-
glement metrics.

1 Introduction

Online chat and text messaging systems like Face-
book Messenger, Slack, WeChat, WhatsApp, are
common tools used by people to communicate in
groups and in real time. In these venues multiple
independent conversations often occur simultane-
ously with their individual utterances interspersed.

It is reasonable to assume the existence of an
underlying thread structure partitioning the full
conversation into disjoint sets of utterances, which
ideally represent independent sub-conversations.

∗ Equal contribution

[12:19] <tapia>

and some dist-upgrade [...]

[12:19] <microhaxo>
lol thats what im using

[12:19] <bob2>

tapia: you’re using hoary [...]

[12:19] <microhaxo>

and it wont connect meh

[12:19] <tapia>

bob2: no, breezy

χi φi
τj ψj = [φj ; τj ] sij

Figure 1: Excerpt from the IRC dataset (left) and our
reply-to classifier architecture (right). Blue dots repre-
sent a unidirectional DAG-LSTM unit processing the
states coming from the children of the current node.
Red dots represent the GRU units performing thread
encoding. At this point in time, we are computing the
score (log-odds) of fifth utterance replying to the third.

The task of identifying these sub-units, disentan-
glement, is a prerequisite for further downstream
tasks among which question answering, summa-
rization, and topic modeling (Traum et al., 2004;
Shen et al., 2006; Adams and Martell, 2008; El-
sner and Charniak, 2010). Additional structure can
generally be found in these logs, as a particular
utterance could be a response or a continuation of
a previous one. Such reply-to relationships implic-
itly define threads as the connected components of
the resulting graph topology, and can then be used
for disentanglement (Mehri and Carenini, 2017;
Dulceanu, 2016; Wang et al., 2008; Gaoyang Guo
et al., 2018).

Modeling work on conversation disentanglement
spans more than a decade. Elsner and Charniak
(2008, 2010) use feature based linear models to find
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pairs of utterances belonging to the same thread
and heuristic global algorithms to assign posts to
threads. Mehri and Carenini (2017) and Jiang
et al. (2018), while also adopting similar heuris-
tics, use features extracted through neural models,
LSTMSs (Hochreiter and Schmidhuber, 1997) and
siamese CNNs (Bromley et al., 1993) respectively.
Wang et al. (2011) follow a different approach by
modeling the interactions between the predicted
reply-to relations as a conditional random field.

One challenge in building automatic systems that
perform disentanglement is the scarcity of large
annotated datasets to be used to train expressive
models. A remarkable effort in this direction is the
work of Kummerfeld et al. (2019a) and the release
of a dataset containing more that 77k utterances
from the IRC #Ubuntu channel with annotated
reply-to structure. In the same paper, it is shown
how a set of simple handcrafted features, pooling
of utterances GloVe embeddings (Pennington et al.,
2014), and a feed-forward classifier can achieve
good performances on the disentanglement task.
Most of the follow-up work on the dataset relies on
BERT (Devlin et al., 2019) embeddings to gener-
ate utterance representations (Zhu et al., 2020; Gu
et al., 2020; Li et al., 2020). Zhu et al. (2020) use
an additional transformer module to contextualize
these representations, while Gu et al. (2020); Li
et al. (2020) use an LSTM. Two exceptions are Liu
et al. (2020), which models thread membership in
an online fashion and discards reply-to relation-
ships, and the recent Yu and Joty (2020a) which
uses pointer networks (Vinyals et al., 2015).

In this short paper, we use DAG-structured
LSTMs (İrsoy et al., 2019) to study disentangle-
ment. As a generalization of Tree-LSTMs (Tai
et al., 2015a), DAG-LSTMs allow to faithfully
represent the structure of a conversation, which
is more properly described as a directed acyclic
graph (DAG) than a sequence. Furthermore, DAG-
LSTMs allow for the systematic inclusion of struc-
tured information like user turn and mentions in
the learned representation of the conversation con-
text. We enrich the representation learned by the
DAG-LSTM by concatenating to it a representation
of the thread to which the utterance belongs. This
thread encoding is obtained by means of a GRU
unit (Cho et al., 2014) and captures thread specific
features like style, topic, or persona. Finally we
manually construct new features to improve user-
name matching, which is crucial for detecting user

mentions, one of the most important features for
disentanglement.

Our results are summarized in Table 1. The
DAG-LSTM significantly outperforms the BiL-
STM baseline. Ablation studies show the impor-
tance of the new features we introduce. When aug-
mented by thread encoding and a careful handling
of posts predicted to be thread starters, the DAG-
LSTM architecture achieves state of the art perfor-
mances on reply-to relation extraction on the IRC
Ubuntu dataset and it is competitive on the other
metrics which are relevant to disentanglement.

2 Methodology

2.1 Problem Statement

A multi-party chat C is a sequence of posts (ci)i,
i = 1, . . . , |C|. For each query post ci we look
for the set of link posts R(ci) such that ci replies
to, or links to, cj for cj ∈ R(ci). When a post
c is a conversation starter we define, consistently
with Kummerfeld et al. (2019a),R(c) = {c}, that
is c replies to itself, it is a self-link. This reply-to
binary relation defines a DAG over C. By taking
the union of the reply-to relation with its converse
and by calculating its transitive closure, we obtain
an equivalence relation on C whose equivalence
classes are threads, thus solving the disentangle-
ment problem.

We frame the problem as a sequence classifica-
tion task. For each query post ci we consider its L
preceding posts Oci ≡ {ci−L−1, . . . , ci} and pre-
dict one of them as its link. In the IRC Ubuntu
dataset, predicting a single link per query post is
a good approximation, holding true for more than
95% of the annotated utterances. We use L = 50
in the following. As described in Sections 2.2 and
2.3, for each query utterance ci, we construct a con-
textualized representation, φi ≡ φ(ci, C). We do
the same for each of the links cj ∈ Oci , using a
representation ψ that can in principle differ from φ.
We then calculate p(ci replies-to cj) ≡ p(cj |ci) as

p(cj |ci) ≡
exp(sij)∑

ck∈Oci exp(sik)
, (1)

where sij ≡ s(φi, ψj , fij) is a real-valued scoring
function described in Section 2.4 and fij are ad-
ditional features. The parameters of the resulting
model are learned by maximizing the likelihood
associated to Eq. 1. At inference time we predict
ĵ = argmaxcj∈Ocip(cj |ci).
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2.2 Contextual Post Representation

The construction of the φ and ψ representations
closely follows İrsoy et al. (2019). Every post ci
is represented as a sequence of tokens (tin)n. An
embedding layer maps the tokens to a sequence
of dI -dimensional real vectors (ωin)n. We use the
tokenizer and the word embeddings from Kum-
merfeld et al. (2019a), dI = 50. We generate
a representation χi of ci by means of a single
BiLSTM layer unrolled over the sequence of the
token embeddings (υin)n ≡ BiLSTM[(ωin)n] fol-
lowed by elementwise max-affine pooling χi =
maxn Affine[(υin)n].

To obtain the contextualized representations φ,
we use a DAG-LSTM layer. This is an N-ary Tree-
LSTM (Tai et al., 2015a) in which the sum over
children in the recursive definition of the memory
cell is replaced with an elementwise max opera-
tion (see Appendix). This allows the existence of
multiple paths between two nodes (as it is the case
if a node has multiple children) without the asso-
ciated state explosion (İrsoy et al., 2019). This is
crucial to handle long sequences, as in our case.

At each time step the DAG-LSTM unit receives
the utterance representation χi of the current post ci
as the input and all the hidden and cell states com-
ing from a labeled set of children, C(ci), see Fig-
ure 1. In our case C(ci) contains three elements: the
previous post in the conversation (ci−1), the previ-
ous post by the same user of ci, the previous post by
the user mentioned in ci if any. More dependencies
can be easily added making this architecture well
suited to handle structured information. The DAG-
LSTM is unrolled over the sequence ({χi, C(ci)})i,
providing a sequence of contextualized post repre-
sentations (φi)i. We also consider a bidirectional
DAG-LSTM defined by a second unit processing
the reversed sequence c̃i ≡ c|C|−i+1. Forward
and backward DAG-LSTM representations are then
concatenated to obtain φ.

2.3 Thread Encoding

The link post representation ψ can coincide with
the query one, ψj ≡ φj . One potential issue with
this approach is that ψ does not depend on past
thread assignments. Furthermore, thread-specific
features such as topic and persona, cannot be easily
captured by the hierarchical but sequential model
described in the previous section. Thus we aug-
ment the link representations by means of thread
encoding (Liu et al., 2020). Given a query, ci,

and a link cj posts pair, we consider the thread
T (cj) = (cti), ti < ti+1, t|T (cj)| = j, to which
cj has been assigned. We construct a representa-
tion τj of such thread by means of a GRU cell,
τj = GRU[(χ(c))c∈T (cj)]. ψj is then obtained by
concatenating φj and τj . At training time we use
the gold threads to generate the τ representations,
while at evaluation time we use the predicted ones.

2.4 Scoring Function

Once query and link representations are con-
structed we use the scoring function in Eq. 1 to
score each link against the query utterance, with s
a three-layer feed-forward neural network. The in-
put of the network is the concatenation [φi;ψj ; fij ],
where fij are the 77 features introduced by Kum-
merfeld et al. (2019a). We augment them by 42 ad-
ditional features based on Levenshtein distance and
longest common prefix between query’s username
and words in the link utterance (and viceversa).
These are introduced to improve mention detection
by being more lenient on spelling mistakes (see 2.5
for precise definitions).

2.5 User Features

While IRC chats allow systematically tagging other
participants (a single mention per post), users can
address each other explicitly by typing usernames.
This allows for abbreviations and typos to be in-
troduced, which are not efficiently captured by the
set of features used by Kummerfeld et al. (2019b).
To ameliorate this problem we construct additional
features. Given a pair of utterances c1 and c2 we
define the following:

• Smallest Levenshtein distance (DL) between
c1(c2)’s username and each of the word in
c2(c1); 5 bins, DL = i for i = 0, . . . , 4 or
DL > 4 .

• Largest length of common prefix (`) between
c1(c2)’s username and each of the word in
c2(c1); 5 bins, ` = i for i = 3, . . . , 6 or ` > 6.

• Binary variable indicating whether c1(c2)’s
username is a prefix of any of the words in
c2(c1).

These amount to a total of 42 additional features
for each pair of posts.
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Model Graph Cluster
P R F P R F

Kummerfeld et al. 73.7 71.0 72.3 34.6 38.0 36.2

Zhu et al.? 73.2 69.2 70.6 35.8 32.7 34.2

Li et al.? 42.3 46.2 44.1

Yu and Joty 74.7 72.7 73.7 33.0 38.9 36.0

+ self. 74.8 72.7 73.7 42.2 40.9 41.5

+ joint train, self. 74.5 71.7 73.1 44.9 44.2 44.5

BiLSTM (↓) 73.9 71.2 72.5 31.3 37.5 34.1

DAG-LSTM 74.9 72.2 73.6 37.3 42.3 39.6

− user features (↓) 74.0 71.3 72.6 33.6 39.7 36.4

− mention link 74.5 71.8 73.1 33.5 38.3 35.7

+ self. (↑) 74.9 72.6 73.8 41.1 41.1 41.1

+ thread enc. 75.0 72.3 73.7 37.3 42.5 39.7

+ thread enc., self. 75.2 72.7 73.9 42.4 41.7 42.0

Table 1: Results of our experiments (bottom, best
in bold) and literature (top, best underlined). The
↑(↓) sign indicates the model being significantly better
(worse) (p < 0.05) than the DAG-LSTM entry based
on a McNemar test (McNemar, 1947) conducted on the
test set. User features and mention links are included
in this baseline model, thread encoding and self-link
threshold tuning are not. Starred entries use contextual
embeddings.

3 Results

3.1 Evaluation
We conduct our experiments on the Ubuntu IRC
dataset for disentanglement (Kummerfeld et al.,
2019a; Kim et al., 2019). We focus on two evalua-
tion metrics defined in Kummerfeld et al. (2019a):
graph F1, the F-score calculated using the number
of correctly predicted reply-to pairs; cluster F1, the
F-score calculated using the number of matching
threads of length greater than 1.

3.2 Experiments
As a baseline, we use a BiLSTM model in which
φi(= ψi) is obtained as the hidden states of a bidi-
rectional LSTM unrolled over the sequence (χi)i.
The base DAG-LSTM model uses both username
and mentions to define the children set C of an
utterance. Bidirectionality is left as a hyperparame-
ter. All our experiments use the same architecture
from section 2 to construct the utterance represen-
tation χ. We train each model by minimizing the
negative log-likelihood for Eq. 1 using Adam op-
timizer (Kingma and Ba, 2019). We tune the hy-
perparameters of each architecture through random
search.1 Table 1 shows the test set performances of
the models which achieve the best graph F1 score

1We refer to the Appendix for details.

Model Self-links
P R F

BiLSTM 79.6 94.6 86.5

DAG-LSTM 82.8 93.8 88.0

+ self-links threshold 87.7 92.4 90.0

DAG-LSTM + thread enc. 81.4 93.8 87.2

+ self-links threshold 89.8 90.6 90.2

Table 2: Thread starters (self-links) performances for
our models in Table 1, before and after thresholding.

over the dev set. Optimizing graph over cluster
score is motivated by an observation: dev set clus-
ter F1 score displays a much larger variance than
graph F1 score, which is roughly four-fold after
subtracting the score rolling average. By picking
the iteration with the best cluster F1 score we would
be more exposed to fluctuation and to worse gener-
alization, which we observe.

3.3 Self-Links Threshold Tuning

As noted by Yu and Joty (2020b), the ability of
the model to detect self-links is crucial for its final
performances. In line with their findings, we also
report that all our models are skewed towards high
recall for self-link detection (Table 2).

To help with this, we introduce two thresholds
θ and δ, which we compare with p̂, the argmax
probability Eq. 1, and ∆p, the difference between
the top-2 predicted probabilities. Whenever the
argmax is a self-link: if p < θ, we predict the
next-to-argmax link, otherwise we predict both the
top-2 links if also ∆p̂ < δ. On the dev set, we first
fine-tune θ to maximize the self-link F1 score and
the fine-tune δ to maximize the cluster F1 score.

3.4 Results Discussion

Table 1 shows our main results. Our DAG-LSTM
model significantly outperforms the BiLSTM base-
line. We perform ablation studies on our best DAG-
LSTM model showing that while both user features
and mention link provide a performance improve-
ment for both cluster and graph score, only user
features ablation results in a significant change.
Self-links threshold tuning improves performances,
particularly on cluster score for both models, high-
lighting the importance of correctly identifying
thread starters.

The DAG-LSTM model with thread encoding
achieves state of the art performances in predicting
reply-to relations. This is particularly interesting
especially when we compare with models employ-
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ing contextual embeddings like Zhu et al. (2020).
For the cluster scores, the best model is the pointer
network model of Yu and Joty (2020a), which is
anyway within less than 0.5% of the best contex-
tual model, and within 2.5% of our model. The
difference mainly arises from a difference in recall
and corresponds to an absolute difference of less
than 10 true positive clusters on the test set. Further
comparisons with existing literature are limited by
code not being available at the moment.

4 Conclusions

In this paper we apply, for the first time, DAG-
LSTMs to the disentanglement task; they provide a
flexible architecture that allows to incorporate into
the learned neural representations the structured
information which comes alongside multi-turn dia-
logue. We propose thread encoding and a new set
of features to aid identification of user mentions.

There are possible directions left to explore. We
modeled the reply-to relationships in a conversation
by making an assumption of conditional indepen-
dence of reply-to assignments. This is possibly
a poor approximation and it would be interesting
to lift it. A challenge with this approach is the
computational complexity resulting from the large
dimension of the output space of the reply-to clas-
sifier. We notice that thread encoding allows a
non-greedy decoding strategy through beam search
which would be interesting to further explore.
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A Appendix

A.1 DAG-LSTM Equations
A DAG-LSTM is a variation on the Tree-
LSTM (Tai et al., 2015b) architecture, that is de-
fined over DAGs. Given a DAG,G, we assume that
for every vertex v of G, the edges e(v, v′) connect-
ing the children v′ ∈ C(v) to v can be assigned a
unique label `v,v′ from a fixed set of labels.

A pair of states vectors (hv, cv) and an input xv
are associated to every vertex v. The DAG-LSTM
equations define the states (hv, cv), as a function
of the input xv and the states of its children:

(hv, cv) = DAG-LSTM(xv; {(hw, cw)|w ∈ C(v)}).
(2)

The equations defining such functions are the fol-
lowing:

iv = σ

(
Wixxv +

∑

v′∈C(v)
W

`v,v′
ih hv′

)
(3)

fvv′ = σ

(
Wfxxv +

∑

v′′∈C(v)
W

`v,v′`v,v′′
fh hv′′

)
(4)

cv = iv � uv + max
v′∈C(v)

fvv′ � cv′ (5)

hv = ov � tanh(cv) (6)

The equations for the o and u gates are the same
as those for the i gate by replacing everywhere
i → o, u. Bias vectors are left implicit in the def-
inition of i, f , o, and u. � represents Hadamard
product and max in Eq. 5 represent elementwise
max operation.

A bidirectional DAG-LSTM, is just a pair of in-
dependent DAG-LSTM, one of which is unrolled
over the time reversed sequence of utterances. The
output of a bidirectional DAG-LSTM is the con-
catenation of the h states of the forward and back-
ward unit for a given utterance.

A.2 Training and Hyperparameter Tuning
We use adjudicated training, development, and test
sets from (Kummerfeld et al., 2019b). Each of
these dataset is composed a set of conversation
(153 in the training set and 10 in both development
and test set) each representing a chunk of contigu-
ous posts from the IRC #Ubuntu channel. Each
of these conversation contains strictly more than
1000 posts (exactly 1250 and 1500 for dev and test
set respectively). Annotations are available for all
but the first 1000 posts in every conversation. We
apply some preprocessing to these conversations.

We chunk the annotated section of every training
conversation in contiguous chunks of 50 posts each,
starting from the first annotated post. 2 To each of
these chunks we attach a past context of 100 posts
and a future context of 50, resulting in 200 utter-
ances long chunks. For each of these chunks we
keep only those annotated links for which the re-
sponse utterance lies in the central 50 posts. We do
not chunk development and test set, but drop the
first 900 post in every conversation.

The various architectures we consider share the
same set of parameters to fine-tune. One parameter
dh controls the dimension of the hidden state of
the LSTMs and one parameter dFF controls the
dimension of the hidden layers of the feed-forward
scorer. We use word dropout, apply dropout after
the max-affine layer, and apply dropout after activa-
tion at every layer of the feed-forward scorer. We
clip all gradient entries at 5. We use a single layer
of LSTMs and DAG-LSTMs to build the χ and
φ, ψ representations and we do not dropout any of
their units. Similarly we use a single layer GRU for
the thread encoder. We list all the hyperparameters
in Table 3 together with their range and distribution
used for the random search.

Hyperparameter optimization is performed by
running 100 training jobs for the base BiLSTM
architecture, DAG-LSTM, and DAG-LSTM with
thread encoding. Our published results are from the
best among these runs. The best sets of parameters
we find for each of these architectures are:

• BiLSTM: dh = 256, dFF = 128, no
word and max-affine dropout, a feed forward-
dropout equal to 0.3, and a learning rate of
2.4× 10−4.

• DAG-LSTM: dh = 64, dFF = 256, no
word and max-affine dropout, a feed forward-
dropout equal to 0.3, and a learning rate of
7.3× 10−4.

• DAG-LSTM with thread encoding: dh =
dFF = 256, word and max-affine dropout
equal to 0.3, a feed forward-dropout equal to
0.5, and a learning rate of 7.9× 10−4.

User feature and mention link ablations are ob-
tained by fixing all parameters of the best DAG-
LSTM run (removing the feature we are experi-
menting with) and running 10 jobs by only chang-
ing the random seed.

2This may result in the last chunk to have less than 50
posts. This happens for 45 conversations.
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Parameter Domain Distribution

dh {64, 128, 256} categorical
dFF {64, 128, 256} categorical
word dropout {0, 0.3, 0.5} categorical
max-affine dropout {0, 0.3, 0.5} categorical
feed-forward dropout {0, 0.3, 0.5} categorical
learning rate [10−5, 10−3] log-uniform
BiDAG-LSTM {true, false} categorical

Table 3: Hyperparameters of the model architectures.
During hyperparameter optimization, we perform a ran-
dom search according to the distributions described
above. Categorical distributions have uniform proba-
bility mass function.

Each training job is performed on a single GPU
and, depending on the architectures, takes from 6
to 12 hours.

A.3 Significance Estimates
We use McNemar test (McNemar, 1947) to eval-
uate the significance of performance differences
between model. Given two models MA and MB ,
we define nAB as the number of links correctly
predicted by A but not by B. Under the null hy-
pothesis both nAB ∼ Bin(nAB, n, 1/2), where
n ≡ nAB + nBA. We define a model A to be
significantly better than a model B if the null hy-
pothesis is excluded at 95% confidence level.
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Abstract

Language understanding must identify the log-
ical connections between events in a discourse,
but core events are often unstated due to
their commonsense nature. This paper fills
in these missing events by generating precon-
dition events. Precondition generation can
be framed as a sequence-to-sequence problem:
given a target event, generate a possible pre-
condition. However, in most real-world scenar-
ios, an event can have several preconditions,
requiring diverse generation – a challenge for
standard seq2seq approaches. We propose DiP,
a Diverse Precondition generation system that
can generate unique and diverse preconditions.
DiP uses a generative process with three com-
ponents – an event sampler, a candidate gen-
erator, and a post-processor. The event sam-
pler provides control codes (precondition trig-
gers) which the candidate generator uses to fo-
cus its generation. Unlike other conditional
generation systems, DiP automatically gener-
ates control codes without training on diverse
examples. Analysis against baselines reveals
that DiP improves the diversity of precondi-
tions significantly while also generating more
preconditions.

1 Introduction

Preconditions are an important part of language un-
derstanding with numerous applications, ranging
from event understanding to story generation. They
provide the semantic glue to understand (or gener-
ate) the chains of events common in narrative text.
How can we build intelligent systems to fill in these
chains, or to identify semantically related events
in context? Kwon et al. (2020) took a first step by
introducing a precondition generation task, where
given a target event mention the goal is to gener-
ate text that describes a precondition for the target.
They released the ‘PeKo’ dataset for training, and
showed that a GPT-2 model can be fine-tuned on

TARGET: [BLANK] to fill Mr. Lavelle ’s seat, for a term
that expires on Dec. 31, 2008.
The Senate voted overwhelmingly on Thursday
The Senate voted on Wednesday
The Senate voted overwhelmingly on Wednesday
The Senate voted overwhelmingly on Tuesday
Mr. Lavelle was appointed by Gov. Eliot Spitzer

Table 1: Top 5 preconditions generated from GPT-2
with beam search decoding. Key problem: the top 4
preconditions are almost identical.

input/output sequence pairs.
While PeKo is useful, it is constrained by anno-

tating a single relation for each target event. This
is contrast to the real-world where most events
have many preconditions. For example, “opening a
door” has several preconditions like approaching
the door, turning a key in the door, and pushing
the door. PeKo’s annotation limits the ability of
models to learn to generate multiple and diverse
preconditions1. In this work, we address the chal-
lenge of generating more preconditions for each
target event while still maintaining quality.

Generating non-repetitive diverse outputs is a
challenge for any conditional language generation
system. Our analysis of the GPT-2 based model
shows that this is also the case for preconditions.
Table 1 shows such top preconditions for an exam-
ple event. Standard sampling techniques produce
high-levels of lexical and semantic redundancy. In
the absence of any explicit mechanisms to force di-
versity, the model just produces minor variations of
the same event as preconditions. To obtain diverse
candidate preconditions, we have to start looking
lower in the model’s ranked lists of probable pre-
conditions, thereby sacrificing quality.

How can we induce a model to generate diverse
outputs without losing quality? Context sensitivity
might help with quality, but it also hinders diver-
sity. To address this we introduce a three-stage

1In order to observe diverse preconditions for the same (or
similar) target event we would need a much larger training set.
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generative process, which we call DiP. In the first
stage, DiP uses an event sampler whose only goal
is to generate event trigger words as precondition
candidates. In the second stage, DiP forces the
generative model to use the candidate triggers from
the first stage to produce the full description of
the precondition event. In the third stage, DiP re-
ranks and filters the generated descriptions using a
precondition classifier (also trained from the same
training data).2 A brief example is shown here:

Target Event: I apologized for the debacle of the
day before, and [BLANK] to help me make it right

Stage 1 Stage 2 Stage 3
trying I am trying now delete
use I use my time delete
used I used my time #2
asked asked me #3
hired hired a new staff #1

Experiments on the PeKo dataset show that DiP
produces more diverse and better quality precon-
ditions compared to standard beam decoding, as
well as an iterative filtering extension that applies
a standard repetition penalty in a sampling strategy.
Analyses show that DiP is able to better balance
the need for diversity against quality. While the
iterative repetition penalty method generates lexi-
cally diverse outputs, it often introduces irrelevant
information rather than producing distinct types of
preconditions. Our human evaluation shows that
DiP on the other hand is able to produce text that
is more likely to be preconditions.

All code and data are available at https://
stonybrooknlp.github.io/DiP/.

2 Related Work

Most work on logical preconditions has focused
on identification/extraction from text. For example,
Sil et al. (2010) identified preconditions using a
SVM-based score function with hand-crafted PMI
and WordNet based features. Branavan et al. (2012)
extracted domain-specific precondition relations
from instructions for the game of Minecraft. This
paper is instead focused on generating novel pre-
conditions. To the best of our knowledge, only the
prior PeKo work (Kwon et al., 2020) has attempted
this. We are building on those initial ideas.

There has been research for diverse generation
using control codes or latent variables. Some works
use explicit cues to control text generation. Huang
et al. (2018) used emotion embeddings to gener-
ate dialogue responses in a specific mood. Keskar

2We will release the source code upon acceptance.

et al. (2019) trained a LM with human readable con-
trol codes, which describe domain, style, or topics.
Then the model learns to generate text conditioned
on a given code. The model requires manually pre-
defined control codes and a corresponding training
corpus for each code.

Other diverse generation works learn latent rep-
resentations or codes from input text, and then gen-
erate text conditioned on those codes. Shu et al.
(2019) applied a sentence embedding to generate
syntactically diverse translations. They find that
syntax-based encoding with TreeLSTM (Socher
et al., 2011) yields better diversity than a contex-
tual encoding using BERT (Devlin et al., 2019)
or FastText (Bojanowski et al., 2017). Bao et al.
(2020) used K categorical latent variables to con-
trol the generation context of dialogue responses
and pick the highest probability response from
the responses generated using the latent variables.
COD3S (Weir et al., 2020) is designed to generate
diverse causal relations. It uses locality-sensitive
hashing (LSH) (Indyk and Motwani, 1998) on rep-
resentations from Sentence-BERT (Reimers and
Gurevych, 2019). Conditioning on these 16-bit
LSH signatures, it generates cause/effect sentences
using a Transformer architecture (Vaswani et al.,
2017) but with a limited vocabulary size of 10K.

These previous approaches have some draw-
backs – they either require explicit control codes
and training examples, or they have low inter-
pretability of their codes. Our approach addresses
these two limitations: control codes are learned
from non-diverse input text and the codes are
human-readable events. And these approaches
are not directly comparable to our method with-
out proper modification, which would not be fair
comparisons. Thus, we present our own baselines
for evaluation, and these baselines serve as a proxy
of ablation studies as well.

3 Diverse Precondition Generation

This section describes our diverse precondition gen-
eration task and our methodology for solving it.
Our proposed approach does not require additional
diverse training examples.

3.1 Generation Task

This paper follows the precondition definitions
from Kwon et al. (2020):
Precondition Definition – "Given a target event
mention t and a candidate event mention p, we
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assert p is a precondition event for t if p is necessary
for t to happen i.e., t likely would not have occurred
without p, in the current text context."
Precondition Generation – "Given a target event
t, generate an event p that is a precondition for t."

The precondition generation task is defined over
sentences that contain both a target and a precondi-
tion event. The precondition part is masked and a
model is asked to reconstruct the sentence includ-
ing its precondition. For masking, the syntactic sub-
tree of a precondition is replaced with [BLANK].
In order to indicate the events of interest – target
and precondition – we use special tokens <event>
.. </event> and <pre> .. </pre>.

For our new task, instead of generating the entire
sentence, we only generate a precondition clause
that would fit into the input’s [BLANK]. Since a
precondition could be stated in either preceding or
succeeding position of its target event, we mod-
eled this as a text infilling task. This approach is
inspired by Donahue et al. (2020) and this modifica-
tion allows the model to focus solely on generating
preconditions because the model doesn’t need to
copy over its input text. Thus, the model can learn
faster and more efficiently.

Figure 1: The DiP pipeline. Candidates are generated
conditioned on the Event Sampler. The Re-ranker and
Similarity Filter improve quality/diversity.

3.2 Diverse Precondition Generator

Generating preconditions is a difficult task even for
a single output setting (Kwon et al., 2020). With
the training data derived from existing news arti-
cles, generative models only get to see one possible
precondition for each target event. Not surprisingly
the top candidates in beam search tend to be fo-
cused towards a specific type of precondition event
with minor variations. This suggests that we need

to provide explicit guidance to the model to explore
diverse candidates.

How can we get such diverse guidance? A main
strength of large generative language models is that
they learn to generate text that fits with the input
context. If we can get the input context to be less
specific then we can aim to get more general out-
puts. We can exploit this behavior by training a
separate event sampler that is fed a reduced version
of the target event description. For example, we can
denote the target event by just the event trigger and
its arguments. The event sampler learns to predict
possible precondition event triggers based on this
reduced context. This task forces the sampler to
learn a more general mapping between target and
precondition events that can produce a diverse set
of starting points for generating the precondition
events. We can then train another generative model
to condition on the precondition trigger in addition
to the input sentence. This gives us a model whose
outputs we can control by providing different pos-
sible precondition triggers. Not all precondition
triggers may yield high quality preconditions. To
further assist the model, we also devise a precondi-
tion re-ranker.

Our overall system, shown in Figure 1, consists
of three components – an event sampler, a candi-
date generator, and a post processor (Precondition
re-ranker and Similarity filter). The first two stages
are used for generation – they use two separate gen-
eration models, and the last is employed to improve
the quality of generated preconditions. We refer to
this system as DiP short for Diverse Preconditions.

3.2.1 Event Sampler

The event sampler provides possible precondition
event triggers given a target event. This can be for-
mulated as a sequence to sequence problem where
the input sequence is a target event and the out-
put sequence is a precondition event trigger. Since
our goal here is to get diverse precondition events,
we can experiment with input contexts of different
levels of detail. To get more general precondition
events, we use just the target event triggers as the
input. To get more specific preconditions, we can
use larger contexts surrounding the target event
trigger as the input. During inference, we sample
top n event triggers based on their probability.

Formally, let x′ be a subset of the full description
x of the target event. The sampler can be seen as a
generative model that outputs event triggers e for
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the preconditions of the target event.

ê = argmax
e

log p(e|x′)

The generative model is trained to maximize
the probability for the correct precondition trigger
e and during inference can be used to sample a
candidate set of top n precondition event triggers.

3.2.2 Candidate Generator
The candidate generator, as the name suggests, is
a language model that we fine-tune for generating
precondition candidates. We want this model to
generate preconditions corresponding to the trig-
gers from the event sampler. To this end, in addi-
tion to the full target event description x, we also
provide a precondition trigger marked by a special
token – <E> precondition_event – at the
end of the input. This can be seen as a form of a
control code similar to those used in Keskar et al.
(2019); Weir et al. (2020). The crucial difference,
however, is that the codes in our case are dynam-
ically generated conditioned on the input and not
restricted to a predefined set.

Formally, the candidate generator is a language
model that generates a description of the precondi-
tion event ci conditioning on the full description of
the target event x and a given precondition trigger
ei from the event sampler.

ĉi = argmax
ci

log p(ci|x, ei)

The model is trained to maximize the probabil-
ity of the observed precondition text for the target
event when provided with the correct precondition
trigger. Note that during training, the precondi-
tion trigger provided as input always appears in the
correct precondition description output (ĉi). This
encourages the model to learn to incorporate the
trigger provided at the end of the input as part of its
output. During inference, the model generates a set
of preconditions one for each of the top n triggers
obtained from the event sampler.

3.2.3 Post Processor
Precondition Re-ranker We use a precondition
re-ranker to reorder the generated candidates based
on how likely they are to be preconditions of the
target event. Note that the generative model is im-
plicitly trained for a similar objective. However, the
model is also forced to include the input precondi-
tion trigger which could make it harder to focus on

ensuring the result is indeed a precondition. There-
fore, we introduce a separate precondition classifier
that scores the generated candidates. Note that the
original PeKo dataset is already setup for training
such a classifier (Kwon et al., 2020). Each instance
in this dataset consists of an input text that includes
a pair of marked event triggers (target, candidate)
and a label that indicates whether the candidate is
a precondition of the event denoted by the target
trigger. The output from the precondition gener-
ator is essentially equivalent to an instance from
this dataset. We build a classifier that scores a pair
of events in text, and we use this score as an indi-
cator of the precondition quality of the generated
candidates and re-rank them based on this score.
Iterative Redundancy Filtering The resulting
candidates are a mix of candidate precondition
events from different triggers. To further avoid re-
dundancy we also include an explicit filtering step,
where we post-process the generated text based on
their pairwise similarity. Specifically, we start with
the highest ranked instance in the output set, and
iteratively walk down the ranked list and add in-
stances to the output if the highest similarity score
they have with any of the current output set is lower
than a certain threshold.

4 Evaluation

Our goal is to investigate the impact of our DiP ap-
proach for generating diverse and high-quality pre-
conditions. We closely follow Kwon et al. (2020)
for the experimental setup and the GPT-2 based
generation system for our evaluation.

4.1 Datasets

For the fine-tuning task, we use the precondition
generation instances in the PeKo dataset. In addi-
tion, we also create a large additional pre-training
dataset that includes temporal generation instances.
With this additional dataset we can perform a form
of domain adaptive pre-training (DAPT) introduced
by Gururangan et al. (2020). The main idea here
is to create generation instances where the model
gets to see a target event but now is required to
produce an event that temporally precedes the tar-
get event. Since preconditions are supposed to be
temporally preceding this temporal generation task
can be seen as a more permissive yet related gen-
eration task, which is then subsequently restricted
to only preconditions in the fine-tuning stage. We
use the CAEVO (Chambers et al., 2014) system
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Target Event The Metropolitan Transportation Authority recently canceled some large projects
Trigger Only took, canceled, succeeded, began, scheduled, died, rejected, decision, filed, pushed
±3 tokens planned, took, began, expected, needed, approved, designed, intended, completed, brought
±5 tokens planned, intended, took, began, aimed, devised, completed, expected, designed, needed
Target Event They tried to rebuild their shattered nation
Trigger Only took, rebuilt, losing, sustained, lost, opened, came, bought, died, used
±3 tokens took, lost, war, losing, reached, brought, moved, began, fled, came
±5 tokens took, lost, war, collapsed, left, failed, abandoned, came, laid, began

Table 2: Top 10 generated event triggers from the event sampler. As more context is provided, the model generate
more specific events related to the provided context.

Input Text Generation Target
[BLANK] that donations be made to the Crohn’s and Colitis Foundation or
NYBOT Futures and Options for Kids in memory of Harry. <E> requests

In lieu of flowers, the family requests

[BLANK] to start trading an important Nymex product, West Texas intermediate
crude oil. <E> inspired

Nymex’s foray also inspired ICE

Mr. Robbins played hard and fluidly, [BLANK] to give his solos funk and shape.
<E> landing

landing heavily on unexpected notes

Table 3: Examples of training instance pairs for the candidate generator. Unlike Kwon et al. (2020), we add the
precondition event at the end of the input to help the model utilize the event trigger when generating a precondition.

to obtain temporally related event pairs from the
NYT corpus (Sandhaus, 2008). This yields 1.1
million instances and each instance contains one
temporal relation (BEFORE/AFTER). Note that all
systems are trained using the same pre-training and
fine-tuning strategy using both datasets.

4.2 Baselines

Beam Search As a baseline, we use text infilling
GPT-2 system (inspired by (Donahue et al., 2020)
with a standard beam search decoding strategy.
This beam search decoder can provide multiple
responses up to its beam size. We expect this sim-
ple baseline to contain high-levels of redundancy
in its outputs.

Repetition Penalized Sampling (RPS) For a
stronger baseline, we use a decoding strategy that
can generate diverse preconditions by penalizing
previously generated precondition event triggers.
This is done by an iterative decoding process ap-
plied to the same GPT-2 generation model. Given
a target event, the model generates k preconditions
in an iterative manner. When the model generates
a precondition trigger – after <pre> token – a rep-
etition penalty is applied to deter the model from
selecting previously generated precondition events.
We adopt the penalized sampling from Keskar et al.
(2019). Instead of using a list of all generated to-
kens, we use a list of precondition event triggers
that are generated in the previous iterations. Given
a list of generated precondition events t, the proba-
bility distribution pi for the next trigger token xi is

defined as:

pi =
exp (xi/I(i ∈ t))∑
j exp(xj/I(j ∈ t))

I(c) = λ if c is true else 1

We set λ = 1.2 as in Keskar et al. (2019). For de-
coding, we use Nucleus Sampling (Holtzman et al.,
2020) which has been claimed to generate a higher
quality of text. Finally, we test the RPS model with
the post-processor from DiP, to confirm that the
major gain of DiP is from the Event Sampler.

4.3 DiP Model
DiP has three modules – Event sampler, Candidate
generator, and Precondition re-ranker. We train
each module separately.

Event sampler We use the GPT-2 model for the
event sampler. The model is trained on the same
data instances described in Section 4.1, but instead
of using the entire target-precondition pairs, we
use target-precondition event trigger pairs. We
train three event samplers with different levels of
context – trigger only, 3 neighboring tokens, and 5
neighboring tokens – to understand how different
context affect candidate precondition sampling. As
Table 2 shows, adding more context help the model
to generate more specific events related to describe
situations while the model provides more general
events if only a trigger is given.
Candidate generator The GPT-2 model is
also used for the candidate generator. For
training, as described in 3.2, we add <E>
precondition_event at the end of input so
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Model Diversity Evaluation

Model Self-BLEU Self-BLEURT
Beam Search 0.234 -0.450
RPS 0.016 -1.273
RPS+Post-proc. 0.013 -1.280
DiP 0.038 -1.111

Table 4: Diversity evaluation for different models.
We evaluate top 10 preconditions for each model.
RPS+Post-proc. produces the most diverse outputs fol-
lowed by RPS and DiP with a small margin.

that the model can learn how to utilize the provided
event trigger as a control code. Table 3 shows the
training examples for the candidate generator.
Post-processor We train a precondition re-ranker
using BERT (Devlin et al., 2019). The F1 score of
the classifier is 71.91 with 64.65 of the precision.
To remove possibly redundant preconditions using
iterative redundancy filtering, we need to compute
cosine similarity between the generated precondi-
tions. We take the precondition classifier’s [CLS]
token representation as the embedding for precon-
ditions. Since the similarity score distributions are
different from instance to instance, instead of using
a fixed value as the threshold, we set the threshold
as µ+ σ of each instance (the mean and the stan-
dard deviation of pairwise similarity scores). This
filters out ∼16% of the most similar generated pre-
conditions. For comparison with the baselines, we
take top 10 preconditions from remaining outputs.

4.4 Automatic Evaluation Metrics

We use Self-BLEU (Zhu et al., 2018) and Self-
BLEURT score to measure the diversity of gener-
ated preconditions. Self-BLEU measures how sim-
ilar a set of sentences is to each other using BLEU
score – the average of BLEU scores for the all pairs
of sentences in the set. In addition to direct lexical
overlap, we also measure semantic overlap using
BLEURT (Sellam et al., 2020), which is a BERT-
based learned evaluation metric that is trained on
human ratings of sentence pairs. We refer to this
metric as Self-BLEURT. For both metrics, a lower
score implies more diverse preconditions.

4.5 Results

We compare the models on both diversity and qual-
ity. For diversity, we use an automatic evaluation,
and for quality we used human annotators.

Automatic Diversity Evaluation:

Figure 2: The Self-BLEURT scores across different
lengths of generated text. The numbers indicate the
number of instances in each bucket.

Quality of Preconditions
Model Average Score #Wins
RPS 0.954 30
DiP 1.101 56

Table 5: The Top 10 generated preconditions for each
target event were scored on a 0-2 scale. A model "wins"
a target if its average is highest. Using Bootstrapping
with n = 1000 the 95% conf-interval for the RPS mean
is (0.89, 1.01) and DiP is (1.05, 1.15).

Figure 3: The number of wins across generation
lengths. DiP wins more as the generations lengthen.

Table 4 shows the diversity metrics for all meth-
ods. We evaluated 5,000 preconditions generated
for 500 target events. Comparing RPS+Post-proc
to RPS, Post-proc shows little effect, we com-
pare just RPS to DiP in the rest of the evaluations
(See Appendix for more details between RPS and
RPS+Post-proc).

In both metrics, DiP and RPS generate more di-
verse output than the beam search decoder. DiP
is compatible to RPS in shorter preconditions, and
RPS produces more diverse outputs when the gen-
erated text gets longer, as shown in Figure 2.

Manual Quality Evaluation:
The automatic evaluation only measures diversity.
To see if the models generate legitimate precondi-
tions, we conducted a manual evaluation for quality.
We evaluated 960 generated outputs covering 96
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distinct target events for both DiP and the RPS
baseline. For each instance the annotators were
presented with the top ten generated outputs from
two systems. For each output the annotators pro-
vided a rating on a scale from 0 to 2, where 0 means
not a precondition, 1 is a maybe, and 2 is definitely
a precondition. We split the 96 instances across 8
different annotators3.

Table 5 shows the results in terms of two metrics:
one is the average score across all 96 instances, and
another is the number of "Wins" where a model gets
+1 point if the sum of its 10 precondition scores is
higher than the other. In both metrics, DiP outper-
forms RPS. Moreover, as shown in Figure 3, DiP
produces better preconditions across most output
lengths and is best on longer outputs.

4.6 Analysis

Examples: Table 8 shows the top 5 generations
from our main three systems. The beam search’s
failure on the diversity metric is easy to see with its
repetitive output. Most verbs are the same. Both
RPS and DiP are notably better in terms of diversity,
but RPS introduces lots of irrelevant information
that may have artificially increased its diversity
score. Long irrelevant phrases are clear to see,
and verb synonyms are common. In contrast, DiP
generates more succinct and general preconditions,
as well as fewer direct synonyms.

Context Specificity: Table 7 shows the diversity
scores when different levels of context are provided
to the event sampler. Diversity gets slightly worse
with more context. This aligns with our observation
from Table 2 that the event sampler with more con-
text generates more context-specific precondition
events, which now appear to be closer to each other
semantically. This makes intuitive sense if you
view context as closing a model’s view of broader
options.

Errors: We categorize 4 types of frequently ob-
served errors from DiP. 1) Rare target events:
some target event triggers are polysemious, and
some meanings are rarely used in the newswire.
Thus, the event sampler is biased toward generating
precondition events based on more frequent usages
of triggers. 2) Conflict with sentence structure:
the candidate generator has no ability to modify
the trigger for its syntactic context because it is
trained only as copying over the event trigger. 3)

3These were computer science graduate students

Rare target events
[BLANK] my homework,” and exercising like a de-
mon at a nearby gym. She’d lost weight and viewed
herself as training for a fight.
Event Generated Precondition
war I war with the other women in my

school, who had been working together
on

died She died of cancer in 1998, after her hus-
band was killed by an electrician who
had been working with him”

The word lost is usually used in the context of war,
election, or obituary in the newswire. That may
lead the event sampler to fail to generate proper
precondition event triggers.
Conflict with sentence structure
The proposal from Mr. Levy that the Justice Depart-
ment struck down, she added, would have violated
nondiscrimination provisions of the consent decree
and the Civil Rights Act of 1964 by [BLANK].
Event Generated Precondition
created created a new state law requiring that a

judge be present on the court
called called for a ”state level ban on political

activity” in New York City
The candidate generator is not able to modify the
provided triggers according to the context.
Re-ranking issue
China’s markets nearly disintegrated in 2005, and
one 2003 poll found [BLANK].
Event Generated Precondition
became
(#4)

that the market became more popular
than in 2000 (#2)

named
(>#10)

that the country was named the world’s
largest economy (#4)

Generated sentences are not preconditions but
ranked high after re-ranking (#4 → #2 and >#10
→ #4).
Limited available context
[BLANK] to hit a short forehand and guided it wide.
Event Generated Precondition
batted In the third round, he batted the ball with

his left hand
pitched In the first inning, the Mets pitched three

consecutive hits
The target context is related to tennis, but precondi-
tions are generated in the context of baseball because
the provided context is too limited.

Table 6: Examples from each type of errors. There
are 4 types of frequently observed errors and the first
3 types are caused by each stage in DiP. The last one is
due to data instances.

Re-ranking issue: the re-ranker can induce errors
due to its performance – 64.65 precision. 4) Lim-
ited available context: when the provided context
of a target event is too limited, the model often fails
to generate preconditions. Table 6 shows examples
for each type of error.

5 Conclusion

Real-world events often have multiple precondi-
tions, but today’s datasets do not, including the
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Context Self-BLEU Self-BLEURT
Trigger only 0.038 -1.111
±3 tokens 0.039 -1.103
±5 tokens 0.040 -1.098

Table 7: Diversity evaluation for different samplers.
Precondition candidates are generated from the event
samplers given the input with a trigger only, a trigger
with neighboring 3 tokens, or a trigger with 5 tokens.

latest PeKo, presenting a challenge for text-driven
models. Vanilla generative models have high-levels
of redundancy in their outputs and are thus not
well suited for diverse generation. This work intro-
duced an event sampler that overcomes the issue of
target context specificity to provide diverse guid-
ance to the generator. Coupled with a precondition
ranker and similarity filter, this multi-stage gener-
ation setup yields more diverse and higher quality
preconditions. Further, a new training corpus was
not required. More generally, this approach can be
seen as an instance of controllable diverse output
generation for conditional language models.
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Target Event: [BLANK] to maintain below-market rents.
Beam Search RPS DiP
In the last few years, real estate prices
have risen and real estate prices have
dropped

Wilhelmina’s stock dropped 8 percent
in early 2005 after a lull, but more ac-
tively revived the strong dollar, lending
to an expected influx of funds

The city has reached a deal with the
tenants

In the last few years, real estate prices
have risen and real estate investment
trusts have grown

The City Council’s 10-member City
Planning Committee voted 11 to 6 yes-
terday

The city will use the money

In the last few years, real estate prices
have risen and real estate prices have
dropped, but rents have continued

property values are rising, rising as the
vacancy rate is expected

In the 1980s, the city moved its building
to a new site in the East River

In the last few years, real estate prices
have risen and real estate investment
trusts have grown in size

In less than a year, such improvements
have increased through acquisitions
and capitalization at New York City
police stations, legal firms and cruise
ships, suggesting that housing can be
bought

The City Council passed a bill on
Wednesday that would give the city the
authority to build a new building at the
site of the old Erez subway station, and

In the last few years, real estate prices
have risen and real estate prices have
dropped, and rents have risen in the last
few years

Matthew Hallico, president of the Gen-
eral Electric Company in Manhattan,
and Robert Chrisin, a sales vice partner
at Ira G. Albrecht His comments about
the incentive package raised many con-
cerns about how it works, as well as
what shareholders might do

In the 1980s, the city began a program

Target Event: By about 10 p.m., the proposals appeared dead for now [BLANK].
Beam Search RPS DiP
Mr. Spitzer took office after the judge, Col Richard Kultura of

Thailand, signaled the end of his sen-
tence

after the commission filed a proposal to
provide $ 2 million in new money for
the project

Mr. Spitzer took over after city Hall learned it would begin
public comment on ways it could add
27,000 new jobs to the island

after the Senate ’s Democratic majority
has taken over control of the House

the City Council voted on them as they were rejected by legislative
leaders

after the State Legislature put them on
a vote

Mr. Spitzer took office in January when Mayor Mark Meehan heeded all
of his smaller complaints

when the State Legislature used the
budget to cut a $ 2 billion tax break

the City Council passed them to the
City Council

after the State Senate voted yes on key
issues

after a suicide bomber killed a man in
an Internet chat room

Target Event: [BLANK] to scout potential recruits.
Beam Search RPS DiP
The N.F.L. and the N.B.A. have taken
steps

The pending replacement of Carl Craw-
ford has enticed some intelligence offi-
cials and top Qaeda leaders

The police took over the department ’s
operations , and they began

The N.F.L. and the N.F.L. have taken
steps

Employees are giving them the oppor-
tunity

The department is sending a new sys-
tem

The N.C.A.A. has taken steps Most Somalis want a law that would
enable them

The New York State Department of Ed-
ucation began a program last year

The N.F.L. and the N.B.A. have taken
similar steps

Shortly after Katrina , Post servicemen
were chasing selectors after the storm
’s onset

The department has sent a handful of
officers to the police

The N.F.L. and the N.F.L. have taken
similar steps

Ever since college opened in 1983 , he
shopped for school assignments

The N.C.A.A. set up a task force

Table 8: Top 5 generations from 3 systems. Red cells are invalid preconditions. Greyed out cells are repetitions
from previous cells. DiP produces both valid and diverse preconditions.
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A Appendix

A.1 Experimental Details

A.1.1 Data Split
For the dataset for pre-training, we split into
train/dev/test with the ratio of 8:1:1. For PeKo
dataset, we follow the setting from Kwon et al.
(2020).

A.1.2 Infrastructure
All models are trained using NVIDIA Titan RTX
(24GB of GDDR6 VRAM).

A.1.3 Parameters
We use Wolf et al. (2020) library for all trans-
former models. For the beam search baseline
and RPS model we use the GPT-2 architecture,
which has 124,445,184 trainable parameters. DiP
model consists of two GPT-2 models for the
event sampler and the candidate generator – 2 ×
124,445,184 – and one BERT model for the re-
ranker – 108,313,346 parameters. In total, DiP has
357,203,714 trainable parameters.
Optimizer: We use AdamW (Loshchilov and Hut-
ter, 2019) for the optimizer across all models. For
pre-trianing, we fix the learning rate as 1e-3. For
fine-tuning, we experiment with [1e-4, 1e-5, 1e-6].
Event sampler: For pre-training, the epochs are
set to 100 with the batch size of 128 for the trigger
only, 64 for the±3 tokens, and 32 for the±5 tokens
model. For fine-tuning, the epochs are set to 10
with the batch size of 32.
Candidate generator: For pre-training, the
epochs are set to 100 with the batch size of 16.
For fine-tuning, the epochs are set to 10 with the
batch size of 16.
Precondition re-ranker: We use the classifier
provided by the authors of Kwon et al. (2020)
– https://stonybrooknlp.github.io/
PeKo/.

All Models are picked based on the losses from
the dev set.

A.2 Comparison between RPS and
RPS+Post-processing

Table 9 shows the comparison between RPS and
RPS+Post-processing. The effect of Post-processor
on RPS system is considered neutral. There are
some cases where the generation qualities are im-
proved but also other cases where the qualities are
compromised.

A.3 Manual Evaluation
Evaluation Instruction Figure 4 shows the evalu-
ation instruction that we provided to annotators.
Evaluation rating distribution Table 10 shows
the distribution of voted ratings by annotators. On
average, DiP got higher ratings than RPS and RPS
got highest votes in “Not a Precondition.”
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Target Event: [BLANK] to maintain below-market rents.
RPS RPS+Post-processor
Wilhelmina’s stock dropped 8 percent in early 2005 after a
lull, but more actively revived the strong dollar, lending to
an expected influx of funds

Mr. Berg last year signed a two-year contract with the firm

The City Council’s 10-member City Planning Committee
voted 11 to 6 yesterday

Another landlord is assembling a plan

property values are rising, rising as the vacancy rate is ex-
pected

Ms. Cianci, 32, is building an intercom tower

In less than a year, such improvements have increased
through acquisitions and capitalization at New York City
police stations, legal firms and cruise ships, suggesting that
housing can be bought

Her workers hit a brick floor a few years ago

Matthew Hallico, president of the General Electric Company
in Manhattan, and Robert Chrisin, a sales vice partner at
Ira G. Albrecht His comments about the incentive package
raised many concerns about how it works, as well as what
shareholders might do

Last week, Lloyd Pound, the influential Wall Street analyst,
gave 75 percent shares of his money

Target Event: By about 10 p.m. , the proposals appeared dead for now [BLANK].
RPS RPS+Post-processor
after the judge, Col Richard Kultura of Thailand, signaled
the end of his sentence

after negotiators from both parties reconvened in Davis Park
to talk things out

after city Hall learned it would begin public comment on
ways it could add 27,000 new jobs to the island

after the researchers analyzed DEMIC data on children and
early adults whose ages began at 8 or 15

as they were rejected by legislative leaders after Google released its pie-in-pie template during an ex-
tensive public presentation

when Mayor Mark Meehan heeded all of his smaller com-
plaints

after the Council passed it on Monday

after the State Senate voted yes on key issues after the developer, Trivata Films of New Orleans, agreed to
pay up to $14 million over seven years

Target Event: [BLANK] to scout potential recruits.
RPS RPS+Post-processor
The pending replacement of Carl Crawford has enticed some
intelligence officials and top Qaeda leaders

About the same time, Mr. Booker elicited state financing for
another program that provided some of the funds through
the Police Department’s National Guard to help workers find
mental illness or

Employees are giving them the opportunity In 2005 , Mr. SCAD sent students from Iowa and Ohio to
visit Johns Hopkins

Most Somalis want a law that would enable them In championing the elite classes last week, public school
teachers mounted an extensive publicity campaign to per-
suade parents

Shortly after Katrina , Post servicemen were chasing selec-
tors after the storm ’s onset

Joel Packer, a Detroit Pistons and assistant coach with
Brigham captured a larger campus and invited the scouts

Ever since college opened in 1983 , he shopped for school
assignments

As the trend forward moves into next season , larger colleges
are beginning with faculty members from 75 sites on an
extensive bioharker scholarship site

Table 9: Top 5 generation examples from RPS and RPS+Post-processor. Green colored events are considered
legitimate preconditions and red colored ones are not. A red colored cell indicates invalid precondition text. As
the examples show, the effect of Post-processor on RPS system is neutral – in some cases, the generation qualities
are improved but compromised in other cases.

Evaluation rating distribution
Model Not a Precond. Maybe Def. a Precond.
RPS 38.6% 27.3% 34.1%
DiP 29.8% 30.3% 39.9%

Table 10: Evaluation rating distribution. On average, DiP got higher ratings than RPS.
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Figure 4: Manual evaluation instruction
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Abstract

Semantic parsers map natural language utter-
ances to meaning representations. The lack of
a single standard for meaning representations
led to the creation of a plethora of semantic
parsing datasets. To unify different datasets
and train a single model for them, we investi-
gate the use of Multi-Task Learning (MTL) ar-
chitectures. We experiment with five datasets
(GEOQUERY, NLMAPS, TOP, OVERNIGHT,
AMR). We find that an MTL architecture that
shares the entire network across datasets yields
competitive or better parsing accuracies than
the single-task baselines, while reducing the
total number of parameters by 68%. We fur-
ther provide evidence that MTL has also bet-
ter compositional generalization than single-
task models. We also present a comparison
of task sampling methods and propose a com-
petitive alternative to widespread proportional
sampling strategies.

1 Introduction

Semantic parsing is the task of converting natural
language into a meaning representation language
(MRL). The commercial success of personal as-
sistants, that are required to understand language,
has contributed to a growing interest in semantic
parsing. A typical use case for personal assistants
is Question Answering (Q&A): the output of a se-
mantic parser is a data structure that represents the
underlying meaning of a given question. This data
structure can be compiled into a query to retrieve
the correct answer. The lack of a single standard
for meaning representations resulted in the creation
of a plethora of semantic parsing datasets, which
differ in size, domain, style, complexity, and in
the formalism used as an MRL. These datasets are
expensive to create, as they normally require expert
annotators. Consequently, the datasets are often
limited in size.

Multi-task Learning (MTL; Caruana 1997)
refers to jointly learning several tasks while shar-
ing parameters between them. In this paper, we
use MTL to demonstrate that it is possible to unify
these smaller datasets together to train a single
model that can be used to parse sentences in any of
the MRLs that appear in the data. We experiment
with several Q&A semantic parsing dataset for
English: GEOQUERY (Zelle and Mooney, 1996),
NLMAPS V2 (Lawrence and Riezler, 2018b), TOP
(Gupta et al., 2018), and OVERNIGHT (Wang
et al., 2015b). In order to investigate the im-
pact of less related tasks, we also experiment on
a non-Q&A semantic parsing dataset, targeting a
broader coverage meaning representation: AMR
(Banarescu et al., 2013), which contains sentences
from sources such as broadcasts, newswire, and
discussion forums.

Our baseline parsing architecture is a reimple-
mentation of the sequence to sequence model by
Rongali et al. (2020), which can be applied to any
parsing task as long as the MRL can be expressed
as a sequence. Inspired by Fan et al. (2017), we
experimented with two MTL architectures: 1-TO-
N, where we share the encoder but not the decoder,
and 1-TO-1, where we share the entire network.
Previous work (Ruder, 2017; Collobert and Weston,
2008; Hershcovich et al., 2018) has focussed on a
lesser degree of sharing more closely resembling
the 1-TO-N architecture, but we found 1-TO-1 to
consistently work better in our experiments.

In this paper we demonstrate that the 1-TO-1
architecture can be used to achieve competitive
parsing accuracies for our heterogeneous set of
semantic parsing datasets, while reducing the to-
tal number of parameters by 68%, overfitting less,
and improving on a compositional generalization
benchmark (Keysers et al., 2019).

We further perform an extensive analysis of alter-
native strategies to sample tasks during training. A
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number of methods to sample tasks proportionally
to data sizes have been recently proposed (Wang
et al., 2019b; Sanh et al., 2019; Wang et al., 2019a;
Stickland and Murray, 2019), which are often used
as de facto standards for sampling strategies. These
methods rely on the hypothesis that sampling pro-
portionally to the task sizes avoids overfitting the
smaller tasks. We show that this hypothesis is
not generally verified by comparing proportional
methods with an inversely proportional sampling
method, and a method based on the per-task loss
during training. Our comparison shows that there
is not a method that is consistently superior to the
others across architectures and datasets. We argue
that the sampling method should be chosen as an-
other hyper-parameter of the model, specific to a
problem and a training setup.

We finally run experiments on dataset pairs, re-
sulting in 40 distinct settings, to investigate which
datasets are most helpful to others. Surprisingly,
we observe that AMR and GEOQUERY can work
well as auxiliary tasks. AMR is the only graph-
structured, non Q&A dataset, and was therefore
not expected to help as much as more related Q&A
datasets. GEOQUERY is the smallest dataset we
tested, showing that low-resource datasets can help
high-resource ones instead of, more intuitively, the
other way around.

2 Sequence to Sequence Multi-Task
Learning

MTL refers to machine learning models that sample
training examples from multiple tasks and share
parameters amongst them. During training, a batch
is sampled from one of the tasks and the parameter
update only impacts the part of the network relevant
to that task.

The architecture for sequence to sequence se-
mantic parsing that we use in this paper consists
of an encoder, which converts the input sentence
into a latent representation, and a decoder, which
converts the latent representation into the output
MRL (Jia and Liang, 2016; Konstas et al., 2017;
Rongali et al., 2020). While the input to each task
is always natural language utterances, each task is
in general characterized by a different meaning rep-
resentation formalism. It, therefore, follows that
the input (natural language) varies considerably
less than the output (the meaning representation).
Parameter sharing can therefore more intuitively
happen in the encoder, where we learn parameters

that encode a representation of the natural language.
Nevertheless, more sharing can also be allowed, by
also sharing parts of the decoder (Fan et al., 2017).
In this work, we experiment with two MTL archi-
tectures, as shown in Figure 1: 1-TO-N, where we
share the encoder but not the decoder, and 1-TO-1,
where we share the entire network. As different
datasets normally use different MRLs, in the 1-TO-
1 architecture we also need a mechanism to inform
the network of which MRL to generate. We there-
fore augment the input with a special token that
identifies the task, following Johnson et al. (2017).

3 Experimental Setup

In this section, we describe the datasets used, base-
line architectures, and training details.

3.1 Data

While we focussed on Q&A semantic parsing
datasets, we further consider the AMR dataset in
order to investigate the impact of MTL between
considerably different datasets. Table 1 shows a
training example from each dataset. The sizes of
all datasets are shown in Table 2.

Geoquery Questions and queries about US ge-
ography (Zelle and Mooney, 1996). The best re-
sults on this dataset are reported by Kwiatkowski
et al. (2013) via Combinatory Categorial Grammar
(Steedman, 1996, 2000) parsing.

NLMaps v2 Questions about geographical facts
(Lawrence and Riezler, 2018b), retrieved from
OpenStreetMap (Haklay and Weber, 2008). To
our knowledge, we are the first to train a parser
on the full dataset. Previous work trained a neural
parser on a small subset of the dataset and used the
rest to experiment with feedback data (Lawrence
and Riezler, 2018a). We note that there exists a
previous version of the dataset (Haas and Riezler,
2016), for which state-of-the-art results have been
achieved with a sequence to sequence approach
(Duong et al., 2017). We use the latest version of
the dataset due to its larger size.

TOP Navigation and event queries generated by
crowdsourced workers (Gupta et al., 2018). The
queries are annotated to semantic frames com-
prising of intents and slots. The best results are
achieved by a sequence to sequence model (Agha-
janyan et al., 2020).
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Number of hotels in Edinburgh Encoder

Decoder NLMAPS

Decoder GEOQUERY

que ry (
a r e a (

k e y v a l ( ’ name ’ , ’ Edinburgh ’ ) ) ,
nwr (

k e y v a l ( ’ t o u r i s m ’ , ’ h o t e l ’ ) ) ,
q t y p e ( c o u n t ) )

answer (
c o u n t (

h o t e l (
l o c 2 (

c i t y i d ( ’ Edinburgh ’ ) ) ) )

<NLMAPS> Number of hotels in Edinburgh

<GEOQUERY> Number of hotels in Edinburgh

Encoder Decoder

que ry (
a r e a (

k e y v a l ( ’ name ’ , ’ Edinburgh ’ ) ) ,
nwr (

k e y v a l ( ’ t o u r i s m ’ , ’ h o t e l ’ ) ) ,
q t y p e ( c o u n t ) )

answer (
c o u n t (

h o t e l (
l o c 2 (

c i t y i d ( ’ Edinburgh ’ ) ) ) )

Figure 1: Two MTL architectures for two tasks (A and B): at the top 1-TO-N, where only the encoder is shared;
at the bottom 1-TO-1, where we also share the decoder and we add a special token at the beginning of the input
sentence.

Dataset Input Output
GEOQUERY which is the shortest river answer(

shortest(
river(all)))

NLMAPS name Localities in Nantes query(
area(keyval(’name’,’Nantes’)),
nwr(keyval(’place’,’locality’)),
qtype(findkey(’name’)))

TOP is traffic heavy downtown [IN:GET_INFO_TRAFFIC
is traffic heavy in
[SL:LOCATION
downtown]]

OVERNIGHT show me all listValue(
filter(
filter(getProperty(

singleton en.meeting)
(string !type))

(string is\_important)))

important meetings

AMR this method will not (p / pollute-01 :polarity -
:ARG0 (m / method
:mod (t / this))

:ARG1 (e / environment))

pollute the environment

Table 1: Training examples from each of the datasets used in our experiments. The output logical forms were
simplified for the sake of readability.

Dataset Train Dev Test Src Vocab Tgt Vocab

GEOQUERY 540 60 280 279 103
NLMAPS 16172 1843 10594 8628 1012
TOP 28414 4032 8241 11873 116
OVERNIGHT 18781 2093 5224 1921 311
AMR 36521 1368 1371 30169 28880

Table 2: Details of each dataset. “Train”, “Dev”, and “Test” are the number of examples (questions paired with
MRLs) in the training, development, and test splits. “Src Vocab” is the vocabulary size for the input (natural
language) and “Tgt Vocab” is the vocabulary size for the output (meaning representation).
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Overnight This dataset (Wang et al., 2015b) con-
tains Lambda DCS (Liang, 2013) annotations di-
vided into eight domains: calendar, blocks, hous-
ing, restaurants, publications, recipes, socialnet-
work, and basketball. Due to the small size of
the domains, we merged them together. The cur-
rent state-of-the-art results, on single domains, are
reported by Su and Yan (2017), who frame the
problem as a paraphrasing task. They use denota-
tion (answer) accuracy as a metric, while we report
parsing accuracies, a stricter metric.

AMR AMR (Banarescu et al., 2013) has been
widely adopted in the semantic parsing commu-
nity (Artzi et al., 2015; Flanigan et al., 2014; Wang
et al., 2015a; Damonte et al., 2017; Titov and Hen-
derson, 2007; Zhang et al., 2019). We used the
latest version of the dataset (LDC2017T10), for
which the best results were reported by Bevilacqua
et al. (2021). The AMR dataset is different from
the other datasets, not only in that it is not Q&A,
but also in the formalism used to express the mean-
ing representations. While for the other datasets
the output logical forms can be represented as trees,
in AMR each sentence is annotated as a rooted,
directed graph, due to explicit representation of
pronominal coreference, coordination, and control
structures.

In order to use sequence to sequence architec-
tures on AMR, a preprocessing step is required to
remove variables in the annotations and linearize
the graphs. In this work, we followed the lineariza-
tion method by van Noord and Bos (2017).1

3.2 Baseline Parser

Our baseline parser is a reimplementation of Ron-
gali et al. (2020): a single-task attentive sequence
to sequence model (Bahdanau et al., 2015) with
pointer network (Vinyals et al., 2015). The input ut-
terance is embedded with a pretrained ROBERTA

encoder (Liu et al., 2019), and subsequently fed
into a TRANSFORMER (Vaswani et al., 2017) de-
coder. The encoder converts the input sequence
of tokens x1, . . . , xn into a sequence of context-
sensitive embeddings e1, . . . , en. At each time step
t, the decoder generates an action at. There are
two types of actions: output a symbol from the
output vocabulary, or output a pointer to one of the
input tokens xi. The final softmax layer provides
a probability distribution, for at, across all these

1https://github.com/RikVN/
AMRwithdefaultsettings

possible actions. The probability with which we
output a pointer to xi is determined by the attention
score on xi. Finally, we use beam search to find
the sequence of actions that maximize the overall
output sequence probability.

3.3 Training

All models were trained with Adam (Kingma and
Ba, 2014) on P3 AWS machines with one Tesla
V100 GPU. To prevent overfitting, we used an
early stopping policy to terminate training once
the loss on the development set stops decreasing.
To account for the effect of the random seed used
for initialization, we train three instances of each
model with different random seeds. We then report
the average and standard deviation on the test set.

We evaluate all Q&A parsing models using the
exact match metric, which is computed as the per-
centage of input sentences that are parsed with-
out any mistake. AMR is instead evaluated using
SMATCH (Cai and Knight, 2013), which computes
the F1 score of graphs’ nodes and edges.2

We tuned hyper-parameters for each model
based on exact match accuracies on their devel-
opment sets. While AMR is typically evaluated
on SMATCH, to simplify the tuning of our models,
we use exact match also for AMR and compute
the SMATCH score only for the final models. We
performed manual searches (5 trials) for the fol-
lowing hyper-parameters: batch size (10 to 200),
learning rate (0.04 to 0.08), number of layers (2
to 6) and units in the decoder (256 to 1024), num-
ber of attention heads (1 to 16), and dropout ra-
tio (0.03 to 0.3). For the baseline, we selected
the sets of hyper-parameters that maximize perfor-
mance on the development set of each dataset. To
tune the MTL model for each dataset would be
costly: we instead selected the set of parameters
that maximizes performance on the combination
of all development sets. For analogous reasons,
when presenting results on MTL between the 40
combinations of dataset pairs, we do not re-tune
the models. Final hyper-parameters are shown in
Appendix A.

4 Experiments

In Section 4.1, we compare several sampling meth-
ods for the 1-TO-1 and 1-TO-N architectures. In
Section 4.2 we then compare the MTL models with
the single-task baselines. We turn to the issue of

2https://github.com/snowblink14/smatch
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generalization in Section 4.3, where we use a re-
cently introduced benchmark to evaluate the com-
positional generalization of our models. Finally, in
Section 4.4 we report experiments between dataset
pairs to find good auxiliary tasks.

4.1 Task Sampling

As discussed in Section 2, each training batch is
sampled from one of the tasks. A simple sampling
strategy is to pick the task uniformly, i.e., a train-
ing batch is extracted from task t with probability
pt = 1/N , where N is the number of tasks. Due
to the considerable differences in the sizes of our
datasets, we further investigate the impact of previ-
ously proposed sampling strategies that take dataset
sizes into account:

• PROPORTIONAL (Wang et al., 2019b; Sanh
et al., 2019), where pt is proportional to the
size of the training set of task t: Dt. That is:
pt = Dt/(

∑
tDt);

• LOGPROPORTIONAL (Wang et al., 2019a),
where pt is proportional to log(Dt);

• SQUAREROOT (Stickland and Murray, 2019),
where pt is proportional to

√
Dt;

• POWER (Wang et al., 2019a), where pt is pro-
portional to D0.75

t ;

• ANNEALED (Stickland and Murray, 2019),
where pt is proportional to Dα

t , with α de-
creasing at each epoch. When using propor-
tional sampling methods, smaller tasks can
be forgotten or interfered with, especially in
the final epochs and when the final layers are
shared (Stickland and Murray, 2019). The
method can therefore be particularly useful for
the 1-TO-1 architecture, where the decoder is
shared.

We further test two additional sampling strate-
gies:

• INVERSE, where pt is proportional to 1/Dt.
The idea behind proportional sampling meth-
ods is to avoid overfitting smaller tasks and
underfitting larger tasks. However, to the best
of our knowledge, this intuitive hypothesis has
not been explicitly tested. We test the opposite
strategy.

• LOSS, where pt is proportional to Lt, the loss
on the development set for task t. This strat-
egy therefore assigns higher sampling proba-
bilities to harder tasks. This strategy is rem-
iniscent of the active learning-inspired sam-
pling method by Sharma et al. (2017).

The results are shown in Table 3 for 1-TO-N and
in Table 4 for 1-TO-1. We note that the choice of a
sampling method depends on the MTL architecture
and the dataset we want to optimize. The choice
appears to be more critical for 1-TO-N than for 1-
TO-1: for instance, in the case of NLMAPS, the dif-
ference between the best sampling method and the
worst is 4.3 for 1-TO-N and only 1.3 for 1-TO-1.
This suggests that sampling methods are more rele-
vant to train the dedicated layers. 1-TO-1 appears
to work well also with PROPORTIONAL, which is
expected to suffer for interference when sharing
the final layers (Stickland and Murray, 2019). As
expected, ANNEALED, which explicitly addresses
interference, works particularly well for 1-TO-1.

We presented INVERSE as a way to test the in-
tuition behind proportional strategies. Given the
widespread use of proportional methods, we would
expect PROPORTIONAL to largely outperform UNI-
FORM and INVERSE. We instead observe that in
most cases it does not outperform INVERSE, and in
some cases underperforms it. For 1-TO-1, it does
not even match the results of UNIFORM. These
results further suggest that there is not a generally
superior sampling method, which should instead be
picked as an additional hyper-parameter. They also
highlight the need to further investigate sampling
methods in MTL. The proposed LOSS method is
faster and performs particularly well for 1-TO-N.
Henceforth, we use LOSS for 1-TO-N and AN-
NEALED for 1-TO-1, which maximize the average
accuracies across datasets.

4.2 One Semantic Parser to Parse Them All

Table 5 compares the MTL results for the chosen
sampling methods with the single-task baselines.
We also report state-of-the-art parsing accuracies
of each dataset for reference. Note that 1-TO-1
has more parameters than 1-TO-N. This is due to
the fact that the increased sharing of 1-TO-1 al-
lowed us to train a larger model with 1024 hidden
units instead of 512. In order to more directly com-
pare the two MTL architectures, we also train a
smaller 1-TO-1 model (1-TO-1-SMALL), which
uses the same number of units as 1-TO-N. The re-
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Sampling Geoquery NLMaps TOP Overnight AMR Time

UNIFORM 68.8 (±3.8) 81.4 (±2.6) 84.7 (±0.1) 67.0 (±0.8) 61.4 (±1.7) 22h (±2h)
PROP. 70.5 (±1.9) 82.0 (±0.5) 85.0 (±0.0) 68.1 (±0.4) 63.2 (±0.4) 20h (±2h)
LOGPROP. 70.7 (±1.6) 82.8 (±0.7) 85.2 (±0.1) 68.3 (±0.1) 62.9 (±0.5) 18h(±4h)
SQUAREROOT 71.1 (±2.5) 83.4 (±1.1) 84.7 (±0.0) 67.8 (±0.6) 63.6 (±1.0) 21h (±4h)
POWER 73.5 (±1.4) 84.2 (±0.5) 85.1 (±0.3) 68.3 (±0.4) 64.1 (±0.3) 23h (±7h)
ANNEALED 72.1 (±0.0) 82.1 (±0.2) 85.1 (±0.3) 67.8 (±0.2) 63.0 (±0.6) 19h (±2h)
INVERSE 69.9 (±2.4) 84.3 (±0.8) 84.9 (±0.2) 68.4 (±0.7) 64.2 (±0.7) 20h (±2h)
LOSS 73.3 (±1.9) 85.7 (±0.0) 85.2 (±0.1) 68.9 (±0.2) 64.2 (±0.4) 15h (±2h)

Table 3: Comparison of sampling strategies for the 1-TO-N architecture. We report the average over three runs
with different random seeds. The standard deviation is in parentheses. All values reported are exact match, except
for AMR, where SMATCH is reported. We also report training times (in hours).

Sampling Geoquery NLMaps TOP Overnight AMR Time

UNIFORM 78.5 (±1.4) 87.2 (±0.2) 86.8 (±0.2) 71.1 (±0.2) 66.7 (±0.5) 21h (±4h)
PROP. 77.7 (±1.0) 86.2 (±0.2) 86.5 (±0.2) 70.6 (±0.2) 65.7 (±0.6) 16h (±1h)
LOGPROP. 78.8 (±1.5) 87.2 (±0.1) 86.6 (±0.1) 71.0 (±0.3) 67.3 (±0.5) 23h (±3h)
SQUAREROOT 78.9 (±1.5) 86.8 (±0.1) 86.7 (±0.2) 70.9 (±0.0) 66.4 (±0.3) 17h (±0h)
POWER 78.9 (±0.6) 86.9 (±0.3) 86.6 (±0.1) 71.2 (±0.6) 67.2 (±0.5) 23h (±2h)
ANNEALED 79.8 (±0.7) 87.1 (±0.1) 86.4 (±0.2) 70.8 (±0.4) 67.7 (±0.3) 26h (±1h)
INVERSE 75.0 (±2.3) 87.3 (±0.4) 86.5 (±0.1) 71.2 (±0.5) 66.5 (±0.7) 20h (±3h)
LOSS 76.5 (±1.4) 87.5 (±0.2) 86.5 (±0.1) 71.1 (±0.1) 64.8 (±0.2) 11h (±3h)

Table 4: Comparison of sampling strategies for the 1-TO-1 architecture.

sults indicate that sharing also the decoder provides
generally better results, even for the smaller model.
Remarkably, compared to the single-task baseline,
1-TO-1 achieves a 68% reduction in the number
of learnable parameters. Smaller models can have
positive practical impacts as they decrease memory
consumption hence reducing costs and carbon foot-
print (Schwartz et al., 2019). We accomplish this
without sacrificing parsing accuracies, which are
competitive and in some cases higher than the base-
lines. This result is particularly promising, as we
purposedly included a heterogeneous set of tasks
and we use the same set of hyper-parameters for
all of them. We can therefore train a single model
with accurate parsing for a wide range of datasets,
with fewer parameters.

4.3 Generalization

Table 5 also shows that MTL models are slower to
converge. This is due to the regularization effect
of training multiple tasks (Ruder, 2017): as the
loss on the development set keeps improving, the
early stopping policy allows the MTL models to be
trained for more epochs, resulting in longer training

times. This regularization effect allows MTL to
have better generalization (Caruana, 1997; Ruder,
2017). In Figure 2 we compare the single-task TOP
baseline against the 1-TO-1 model trained on all
datasets and evaluated on TOP. We show training
and development accuracies as a function of the
epochs. We observe that the baseline overfits earlier
(early stopping is triggered earlier) and generalizes
less (the gap between dev set and training set is
larger) compared to the MTL model.

We further evaluate our models on the CFQ
dataset (Keysers et al., 2019), designed to test
compositional generalization. The idea behind
datasets such as CFQ is to include test examples
that contain unseen compositions of primitive el-
ements (such as predicates, entities, and question
types). To achieve this, a test set is sampled to max-
imize the compound divergence with the training
set, hence containing unseen compositions (MCD).
The dataset also contains a second test set, obtained
with a random split. A parser that generalizes well
is expected to achieve good results on both test sets.
Table 6 shows the results of our MTL model when
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Model Geoquery NLMaps TOP Overnight AMR Time Pars

SOTA 89.0 64.4(±0.1)∗ 87.1 80.6∗ 84.5

BASELINE 77.6(±2.2) 87.2(±0.7) 85.3(±0.4) 70.2(±0.9) 67.2(±0.3) 7h(±0h) 721M
1-TO-N 73.3(±1.9) 85.7(±0.0) 85.2(±0.1) 68.9(±0.2) 64.2(±0.4) 15h(±2h) 203M
1-TO-1 79.8(±0.7) 87.1(±0.1) 86.4(±0.2) 70.8(±0.4) 67.7(±0.3) 26h(±1h) 231M
1-TO-1-SMALL 76.7(±1.4) 85.0(±0.8) 85.9(±0.2) 69.7(±0.8) 64.9(±1.3) 20h(±5h) 169M

Table 5: Results of multitasking between all five datasets, compared to the baseline single-task parsers and state-
of-the-art results (SOTA) on these datasets. PARS indicates the total number of parameters (in millions). Results
marked with ∗ are not directly comparable, as discussed in Section 3.1.
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Figure 2: Accuracies on training and dev split at each
epoch for the TOP baseline and 1-TO-1 MTL parser
trained on all datasets and evaluated on TOP.

adding CFQ as the sixth task.3 We consider the
relative improvements for MCD and RANDOM, as
the baseline values are considerably different. We
note larger improvements on MCD (+27%) than
on RANDOM (+13%) when MTL is used. The re-
sults provide initial evidence that the MTL models
result in better compositional generalization than
the single-task baselines.

4.4 Auxiliary Tasks
Finally, we trained MTL models on dataset pairs
to find what datasets are good auxiliary tasks (i.e.,
tasks that are helpful to other tasks). Note that we
do not tune the hyper-parameters of each pairwise
model, as we would need to do a costly hyper-
parameter search over 40 models. The results
are shown in Table 7. The problem of choos-
ing auxiliary tasks has been shown to be challeng-
ing (Alonso and Plank, 2016; Bingel and Søgaard,

3For comparison with Keysers et al. (2019), we report
mean and 95%-confidence interval radius of 5 runs.

Model MCD Random

KEYSERS 17.9 (±0.9) 98.5 (±0.2)

BASELINE 14.9 (±1.5) 84.9 (±0.7)
1-TO-N 16.8 (±0.6) 95.9 (±0.0)
1-TO-1 18.9 (±0.8) 95.6 (±0.1)

Table 6: Results on the CFQ dataset. KEYSERS refers
to the results reported by Keysers et al. (2019) for the
TRANSFORMER model. MCD reports the average of
the three released MCD test sets.

2017; Hershcovich et al., 2018). Similar to task
sampling methods, there is not an easy recipe to
choose the auxiliary tasks. However, our results
elicit the following surprising observations:

1. AMR is the only dataset to use graph-
structured MRL, due to explicit representation
of pronominal coreference, coordination, and
control structures. It is also the only non-Q&A
dataset. Nevertheless, we note that AMR is
a competitive auxiliary task, possibly due to
its large size and scope. It is also surprising
that AMR is often more helpful in the 1-TO-
1 setup, where the whole network is shared
and more related tasks are expected to be pre-
ferred.

2. Transfer learning is often used to provide low-
resource tasks with additional data from a
higher-resource task. However, in our experi-
ments, GEOQUERY, our smallest dataset, ap-
pears to be helpful for the larger TOP dataset.

5 Related Work

A number of alternative meaning representations
and semantic parsing datasets have been developed
in recent years, spanning from broad-range mean-
ing representations such as Parallel Meaning Bank
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Model Geoquery NLMaps TOP Overnight AMR

BASELINE 77.6(±2.2) 87.2(±0.7) 85.3(±0.4) 70.2(±0.9) 67.2(±0.3)

1-TO-N

+GEOQUERY N/A 86.1 (±0.3) 85.8 (±0.0) 69.2 (±0.6) 63.3 (±2.1)
+NLMAPS 77.6 (±0.9) N/A 85.6 (±0.1) 68.2 (±0.5) 64.4 (±0.5)
+TOP 79.4 (±0.3) 83.0 (±1.0) N/A 61.9 (±1.9) 65.3 (±0.5)
+OVERNIGHT 75.7 (±0.8) 85.5 (±0.2) 85.0 (±0.3) N/A 64.1 (±0.7)
+AMR 82.0 (±0.4) 85.9 (±0.5) 85.8 (±0.1) 69.0 (±0.4) N/A

1-TO-1

+GEOQUERY N/A 87.4 (±0.6) 86.5 (±0.1) 70.9 (±0.8) 66.3 (±0.3)
+NLMAPS 80.0 (±1.8) N/A 86.4 (±0.3) 69.7 (±1.6) 67.3 (±0.1)
+TOP 80.5 (±1.5) 85.4 (±0.5) N/A 65.8 (±1.2) 66.8 (±0.5)
+OVERNIGHT 77.3 (±1.5) 87.0 (±0.3) 86.2 (±0.4) N/A 67.0 (±0.3)
+AMR 77.7 (±0.2) 86.9 (±0.3) 86.7 (±0.3) 70.9 (±0.1) N/A

Table 7: Experiments on dataset pairs. The rows are the auxiliary tasks and the columns are the main tasks.

(Abzianidze et al., 2017) and UCCA (Abend and
Rappoport, 2013), to domain-specific datasets such
as LCQUAD (Dubey et al., 2019) and KQA Pro
(Shi et al., 2020).

Following previous work on semantic parsing
(Jia and Liang, 2016; Konstas et al., 2017; Fan
et al., 2017; Hershcovich et al., 2018; Rongali
et al., 2020), the baseline parser used in this work
is based on the popular attentive sequence to se-
quence framework (Sutskever et al., 2014; Bah-
danau et al., 2015). Pointer networks (Vinyals et al.,
2015) have demonstrated the importance of decou-
pling the job of generating new output tokens from
that of copying tokens from the input. To achieve
this, our models use copy mechanisms, following
previous work on semantic parsing (Rongali et al.,
2020). We further rely on pre-trained embeddings
(Liu et al., 2019).

Compositional generalization has recently at-
tracted attention (Neyshabur et al., 2017; Lake and
Baroni, 2018; Finegan-Dollak et al., 2018; Hupkes
et al., 2018; Keysers et al., 2019). We used the CFQ
dataset (Keysers et al., 2019), with the purpose of
assessing their compositional generalization.

MTL (Caruana, 1997; Ruder, 2017) based on
sequence to sequence models has been used to ad-
dress several NLP problems such as syntactic pars-
ing (Luong et al., 2016) and Machine Translation
(Dong et al., 2015; Luong et al., 2016). For the task
of semantic parsing, MTL has been employed as
a way to transfer learning between domains (Da-
monte et al., 2019) and datasets (Fan et al., 2017;
Lindemann et al., 2019; Hershcovich et al., 2018;
Lindemann et al., 2019). A shared task on multi-
framework semantic parsing with a particular focus

on MTL has been recently introduced (Oepen et al.,
2019). The 1-TO-N and 1-TO-1 models have been
previously experimented with by Fan et al. (2017),
with the latter being an MTL variant of the mod-
els used for multilingual parsing by Johnson et al.
(2017). An alternative to MTL for transfer learning
is based on pre-training on a task and fine-tuning on
related tasks (Thrun, 1996). It has been investigated
mostly for machine translation tasks (Zoph et al.,
2016; Johnson et al., 2017; Bansal et al., 2019) but
also for semantic parsing (Damonte et al., 2019).

6 Conclusions

We used MTL to train joint models for a wide
range of semantic parsing datasets. We showed
that MTL provides large parameter count reduction
while maintaining competitive parsing accuracies,
even for inherently different datasets. We further
discussed how generalization is another advantage
of MTL and we used the CFQ dataset to suggest
that MTL achieves better compositional general-
ization. We leave it to future work to further in-
vestigate this type of generalization in the context
of MTL. We compared several sampling methods,
indicating that proportional sampling is not always
optimal, showing room for improvements, and in-
troducing a loss-based sampling method as a com-
petitive and promising alternative. We were sur-
prised to see the positive impact of low-resource
(GEOQUERY) and less-related (AMR) datasets can
have as auxiliary tasks. Challenges in finding opti-
mal sampling strategies and auxiliary tasks suggest
that they should be treated as hyper-parameters to
be tuned.
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A Hyper-parameters

Table 8 reports the final hyper-parameters used for
our experiments.
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Model Batch lr Layers Units Heads Dropout

BASELINE

GEOQUERY 100 0.05 3 512 4 0.1
NLMAPS 50 0.05 4 512 16 0.05

TOP 200 0.05 3 512 4 0.04
OVERNIGHT 10 0.05 3 700 4 0.03

AMR 10 0.05 4 512 4 0.03

1-TO-N 10 0.05 3 512 4 0.1
1-TO-1 10 0.05 3 1024 4 0.1
1-TO-1-SMALL 10 0.05 3 512 4 0.1

Table 8: Hyper-parameter selected for baselines and MTL models. From left to right the hyper-parameters are:
batch size, learning rate, number of layers and units in the decoder, number of attention heads, and dropout ratio.
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Abstract
Multilingual semantic parsing is a cost-
effective method that allows a single model to
understand different languages. However, re-
searchers face a great imbalance of availability
of training data, with English being resource
rich, and other languages having much less
data. To tackle the data limitation problem, we
propose using machine translation to bootstrap
multilingual training data from the more abun-
dant English data. To compensate for the data
quality of machine translated training data, we
utilize transfer learning from pretrained multi-
lingual encoders to further improve the model.
To evaluate our multilingual models on human-
written sentences as opposed to machine trans-
lated ones, we introduce a new multilingual se-
mantic parsing dataset in English, Italian and
Japanese based on the Facebook Task Oriented
Parsing (TOP) dataset. We show that joint
multilingual training with pretrained encoders
substantially outperforms our baselines on the
TOP dataset and outperforms the state-of-the-
art model on the public NLMaps dataset. We
also establish a new baseline for zero-shot
learning on the TOP dataset. We find that a
semantic parser trained only on English data
achieves a zero-shot performance of 44.9%
exact-match accuracy on Italian sentences.

1 Introduction

Semantic parsing is defined as the task of parsing
a natural language sentence into a logical form
that represents its meaning. The logical form, or
sometimes called the meaning representation lan-
guage (MRL) expression, can be executed against
a knowledge base to extract information; there-
fore, semantic parsing often finds its application in
question answering, code generation, information
retrieval, etc. Due to its wide range of applications,
semantic parsing has drawn a lot of research inter-
est. Among them, neural semantic parsing meth-
ods have gained popularity in recent years due to

their good results (Dong and Lapata, 2018). Neural
semantic parsing often formulates the task as a ma-
chine translation problem and uses neural networks
to translate the sentences into MRL expressions.

Multilingual neural semantic parsing is a cost-
effective method that allows a single model to un-
derstand different languages. However, similar to
other machine-learning based approaches, neural
semantic parsing requires large amounts of training
data. To understand texts in different languages, se-
mantic parsing models need training data for each
target language. Unfortunately, researchers face
a great imbalance of availability of training data
for semantic parsing: while we have lots of data in
English, the data in non-English languages is of-
ten scarce. Although there is a growing number of
datasets published for semantic parsing in English,
very few datasets are available in other languages.
Moreover, manually annotating data for semantic
parsing is difficult and time-consuming, as it re-
quires a lot of training and effort for annotators to
write MRLs.

Instead of manually annotating semantic pars-
ing data in low-resourced languages, can we boot-
strap training data for multilingual semantic pars-
ing from the more abundant English data? In this
paper, we aim to tackle the data limitation prob-
lem for multilingual semantic parsing with ma-
chine translation. We machine translate English
sentences into target non-English languages and
make use of the alignment information in the En-
glish MRL to create MRL annotations in other lan-
guages (see Section 3). We then describe our meth-
ods to build multilingual semantic parsing models
on the machine translated training data (see Sec-
tion 4). To train the multilingual semantic parser,
we mix the training data from all languages to-
gether and train a model from scratch (see Section
4.1). We base our neural semantic parser on the
sequence-to-sequence model with pointer mecha-
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nism (Sutskever et al., 2014; Vinyals et al., 2015),
where both the natural language question and the
target MRL are treated as sequences of tokens and
the parser learns from the training data a mapping
to translate questions into MRLs.

The machine translation-based data generation
method allows us to easily extend English data
to other languages. However, the quality of the
bootstrapped training data is constrained by the
accuracy of the machine translation model and
other components of the generation method, such
as alignment. To mitigate the problem of data qual-
ity of the machine translated training data, we make
use of transfer learning with pretrained multilin-
gual encoders to further improve the multilingual
semantic parsing model (see Section 4.2).

To evaluate the model performance on sentences
written by human as opposed to machine translated
ones, we introduce a new multilingual semantic
parsing dataset based on the Facebook Task Ori-
ented Parsing (TOP) dataset (Gupta et al., 2018).
We compare our method against several baselines,
including monolingual models and a popular tech-
nique in literature that relies on translating the ut-
terances and using an English model to understand
them (see Section 4.3). We report the experimen-
tal results and our analysis in Section 5. To show
that our multilingual semantic parsing models also
work with human-generated training data and to
compare them against previous work, we report the
performance of our models on the public multilin-
gual NLMaps dataset in Section 5.3.

Apart from bootstrapping training data, zero-
shot learning is also a technique that allows a mul-
tilingual model to generalize to low-resourced lan-
guages. We study how the multilingual semantic
parsers with pretrained encoders can generalize to
other languages in a zero-shot scenario (see Section
5.4).

Our main contributions are as follows:

1. We propose a method to automatically gen-
erate training data for multilingual semantic
parsing from existing English data via ma-
chine translation and we use pretrained mul-
tilingual encoders to compensate for the data
quality. We release a new multilingual se-
mantic parsing dataset in English, Italian and
Japanese based on the public TOP dataset,
with ˜30k machine-translated training and val-
idation data and ˜8k manually translated test
data for each language.

The dataset is available for download
at: https://github.com/awslabs/

multilingual-top.

2. We show that our multilingual semantic pars-
ing model achieves state-of-the-art perfor-
mance, outperforming several baselines on the
TOP dataset and existing work on the public
NLMaps dataset.

3. We establish a new baseline for zero-shot
learning on the TOP dataset with semantic
parsing model finetuned from pretrained mul-
tilingual encoders.

2 Background and Related Work

Semantic parsing has been studied for a few
decades. Earlier methods on semantic parsing rely
on defining semantic rules to parse the input sen-
tence (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005). With recent advances in neural
networks, there is a trend of formulating semantic
parsing as a machine translation problem. In par-
ticular, the sequence-to-sequence model (Sutskever
et al., 2014) is commonly used in recent works on
semantic parsing (Dong and Lapata, 2018; Jia and
Liang, 2016; Zhong et al., 2017). Typically, they
use a neural network encoder to encode the utter-
ance sentence into a latent vector representation
and use a decoder conditioned on the latent rep-
resentation to predict the MRL as a sequence of
symbols.

Due to the research interest in semantic parsing,
many public datasets have been made available
for English semantic parsing, ranging from small
datasets that contain only a few hundred or a few
thousand examples, such as GeoQuery (Zelle and
Mooney, 1996) and ATIS (Dahl et al., 1994), to
larger datasets with tens of thousands of question-
logical form pairs, such as WikiSQL (Zhong et al.,
2017) and Overnight (Wang et al., 2015).

Multilingual semantic parsing, however, has
only begun to draw research attention in more re-
cent years. Therefore, very few datasets have been
published for semantic parsing in non-English lan-
guages. So far, almost all of the multilingual seman-
tic parsing datasets are manually translated from
their English versions. Due to the cost of manual
translation, they are limited to small datasets. For
example, Jones et al. (2012) translated the Geo-
Query dataset into German, Greek, and Thai. Su-
santo and Lu (2017) translated the ATIS dataset
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into Indonesian and Chinese. Haas and Riezler
(2016) created the NLMaps dataset which contains
around 2,400 queries to a geographic database in
English. The authors translated the queries into
German but kept the MRL annotation the same
as that for English. Apart from the semantic
parsing datasets for question answering, there are
some multilingual datasets with other logical form
representations, such as multilingual GraphQues-
tions with graphs as the meaning representation
(Reddy et al., 2017), Parallel Meaning Bank with
DRT (Discourse Representation Theory) represen-
tation (Abzianidze et al., 2017), and multilingual
AMR test set with Abstract Meaning Representa-
tion (Damonte and Cohen, 2018). The logical form
representation in these datasets are very different
from the MRLs used for question answering and
thus cannot be easily harnessed by many semantic
parsers.

Among the limited literature on multilingual
semantic parsing, several different methods have
been proposed. The first attempts on multilingual
semantic parsing (Haas and Riezler, 2016; Da-
monte and Cohen, 2018) use statistical/neural ma-
chine translation methods to translate non-English
questions into English and rely on using an English
semantic parser to parse all the utterances. Annota-
tion projection is an alternative technique to deal
with the lack of multilingual data. It maps the an-
notation from one language to another using word
alignment. It has been applied to many NLP appli-
cations, including POS tagging (Yarowsky et al.,
2001), role-labeling (Akbik et al., 2015), semantic
CCG parsing (Evang and Bos, 2016), and AMR
parsing (Damonte and Cohen, 2018). In addition,
Susanto and Lu (2017) approached multilingual
semantic parsing with a multi-task learning tech-
nique. They used separate encoders to encode sen-
tences in different languages and used a shared
decoder to predict the MRL. Duong et al. (2017)
used cross-lingual word embeddings in a sequence-
to-sequence model. They observed that using cross-
lingual word embeddings improves the results on
both English and German over their baseline mod-
els on the NLMaps dataset. They also compared
training a model with a single encoder on multilin-
gual data against training with separate encoders
for each language and found that keeping separate
encoders actually harms semantic parsing accuracy.
Based on their observation, we will use a single
encoder for multiple languages in our experiments.

Question:
Any festivals this weekend

Hierarchical intent-slot representation:
[IN:GET EVENT Any
[SL:CATEGORY EVENT festivals ]
[SL:DATE TIME this weekend ] ]

Adapted MRL representation:
[IN:GET EVENT
[SL:CATEGORY EVENT festivals ]
[SL:DATE TIME this weekend ] ]

Table 1: An example of the English TOP dataset

3 Multilingual Semantic Parsing Data

To tackle the data scarcity problem for multilin-
gual semantic parsing, we aim to utilize machine
translation to automatically generate training data
from the more abundant English data for other lan-
guages. In this section, we introduce the English
semantic parsing dataset we are using and describe
our strategy to bootstrap training data for multilin-
gual semantic parsing.

3.1 English Semantic Parsing Data

We use the Facebook Task Oriented Parsing (TOP)
dataset (Gupta et al., 2018) as our source English
semantic parsing data. The TOP dataset contains
around 44k navigation and event questions created
by crowd-sourced workers. The questions are anno-
tated to semantic frames comprising of hierarchical
intents and slots. We adapted the original intent-
slot representation to a representation that is more
similar to other question answering MRLs. More
specifically, we dropped the text mentions in the
intent label and kept only the entity text in the slot
label. The resulting MRL is still a valid mean-
ing representation because the text in the intent
label does not affect the execution of the query on
a knowledge base. Table 1 shows an example of
the original TOP data and its corresponding MRL
representation in the adapted task.

We also remove the utterances where the root
intent is IN:UNSUPPORTED, as it is a noisy catch-
all class for out-of-domain utterances. The final
dataset contains 28,414 training, 4,032 validation,
and 8,241 test data points.

3.2 Bootstrapping Multilingual Semantic
Parsing Data

Creating multilingual semantic parsing data from
the English data is not a trivial task, because the
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Question (English):
Any festivals|x0 this|x1 weekend|x1

MRL:
[IN:GET EVENT
[SL:CATEGORY EVENT x0 ]
[SL:DATE TIME x1 ] ]

Table 2: Replacing text in the MRL with placeholder
tokens and marking the positions of placeholder tokens
in the question (on the same example as in Table 1).

MRL annotation is highly intertwined with the in-
put question. Directly translating the text in the
MRL into another language is likely to generate an
incorrect MRL, as it may not match the translation
of the input question. In order to obtain valid mul-
tilingual equivalents of both the natural language
question and its meaning representation, rather than
translating the MRL directly, we apply a similar
method to annotation projection. We make use of
the text alignment information between the ques-
tion and the MRL to ensure that the translated MRL
matches with the translated question. This is done
in three steps:

Step 1: First, we reformat the question-MRL
pair in English by replacing the text tokens in the
MRL with placeholder tokens x0, x1, ... that corre-
spond to text tokens in the question. We also mark
the positions of placeholder tokens in the question.
Table 2 gives an example.

Step 2: We then use the Amazon Machine Trans-
lation Service1 to translate the natural language
question into the target language. Next, we use the
fast align algorithm (Dyer et al., 2013) to align the
text between the translation and the original En-
glish sentence so as to identify the positions of the
placeholder tokens in the translation. Figure 1 il-
lustrates the alignment of texts between the source
English sentence and its Italian translation and the
identified placeholder tokens in the translation.

Figure 1: Using fast align algorithm to identify corre-
sponding placeholder tokens in the translation.

Step 3: Finally, to obtain a valid MRL in the

1https://aws.amazon.com/translate/

target language, we substitute the placeholder to-
kens in the MRL back with their corresponding text
tokens in the translation. In this way, a valid pair
of question and its MRL annotation in the target
language is created (see Table 3).

Question (Italian):
Tutti i festival questo fine settimana

MRL:
[IN:GET EVENT
[SL:CATEGORY EVENT festival ]
[SL:DATE TIME questo fine settimana ] ]

Table 3: English semantic parsing data translated into
Italian

Following this method, we generate training data
for Italian and Japanese semantic parsing from the
English TOP dataset. We machine translated the
training and validation splits of the TOP dataset
into the two target languages.

In order to evaluate the performance of our mul-
tilingual models on human-written sentences rather
than machine-translated ones, we hire professional
translators to manually translate the test set into
Italian and Japanese. Table 4 shows the data distri-
bution of the multilingual TOP dataset. It should
be noted that as the fast align algorithm may fail
to align the tokens between the translation and the
source text, especially when the source and target
languages are dissimilar, we may lose some data
points in the automatic multilingual data generation
process. Overall, the vast majority of the training
data can be bootstrapped successfully following
our method (97.9% data for Italian and 89.9% for
Japanese).

Language Train Dev Test
English 28414 4032 8241
Italian 27830 3955 8241
Japanese 25544 3629 8241

Table 4: The distribution of the multilingual TOP
dataset

4 Multilingual Semantic Parsing Models

4.1 Model Architecture

Following the work of the state-of-the-art seman-
tic parsers in English (Dong and Lapata, 2018;
Rongali et al., 2020), we base our multilingual se-
mantic parsing model on the sequence-to-sequence
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method. We train a model that is similar in archi-
tecture to the Transformer encoder-decoder model
described in Vaswani et al. (Vaswani et al., 2017).
More specifically, we use a multilayer bidirectional
Transformer encoder to encode the input question
and a Transformer decoder to predict the MRL as
a sequence of tokens. An encoder-decoder atten-
tion layer in the decoder learns to attend to the in-
put tokens. We also implement an attention-based
pointer mechanism (Vinyals et al., 2015) to learn
to copy text tokens from the input question. We
concatenate the attention scores from the attention
layer with the output vocabulary distribution from
the final layer of the decoder. We then feed the
concatenated vector to a Softmax layer to obtain a
final probability distribution of possible actions. At
each time step, the decoder either generates a sym-
bol from the output vocabulary or outputs a pointer
to one of the input tokens based on the scores from
the final probability distribution. We use beam-
search at inference time to select the prediction that
maximizes the probability of the entire sequence.
To train our baseline multilingual semantic parsing
model, we mix the data from all languages together
and train a single model from scratch to parse all
questions. We apply Byte-Pair Encoding (BPE) to-
kenization (Sennrich et al., 2016) to preprocess the
data. BPE tokenization learns to break rare words
into subword units. It is frequently used in machine
translation and has contributed to better translation
quality in many shared tasks (Denkowski and Neu-
big, 2017). For multilingual tasks, we believe that
subword representation helps to encode shared in-
formation between similar languages, and therefore
facilitates multilingual semantic parsing.

4.2 Multilingual Semantic Parsing with
Pretrained Encoders

Transfer learning is a technique that aims to transfer
information from a model trained on a source task
to improve performance of the model on a target
task. For neural network models, transfer learning
typically consists of two stages: a pretraining stage
and a finetuning stage. In the pretraining stage, the
model is trained on the source task. In the finetun-
ing stage, the knowledge of the trained model is
transferred to the target task and adapted on that
task. Existing literature has shown that transferring
knowledge from pretrained models can improve
the downstream performance on many NLP tasks
(Devlin et al., 2019).

As all our non-English semantic parsing train-
ing data are automatically generated from machine
translation, it may not be as natural as real human-
written sentences. We believe that transferring
knowledge from a model that is pretrained on a
huge amount of authentic multilingual text will
allow our multilingual semantic parser to learn a
better representation for the input utterance and to
generalize better on real human-written sentences.
To do that, we first initialize the encoder parameters
with pretrained encoder parameters. We compare
two state-of-the art multilingual encoders for ini-
tializing the multilingual semantic parser: the mul-
tilingual BERT (mBERT) model (Vaswani et al.,
2017) and the XLM-R model (Conneau and Lam-
ple, 2019). Both models cover all the languages re-
quired in our semantic parsing tasks. The mBERT
model is based on the multi-layer Transformer ar-
chitecture. It is trained using the masked language
objective and the next sentence prediction objective
(Devlin et al., 2019) on Wikipedia texts for the top
100 languages with the largest Wikipedia dumps.
In our experiment, we use the public multilingual
cased BERT-Base model2 (12-layer, 768-hidden,
12 heads) to initialize our semantic parsing encoder.
The XLM-R model is a Transformer model trained
using multilingual masked language model objec-
tives (Conneau and Lample, 2019). It is trained
for 100 languages on the CommonCrawl corpus,
which is several orders of magnitude larger than
the Wikipedia dump, especially for low-resourced
languages. We use the public XLM-R Base model3

(12-layer, 768-hidden, 12 heads) in our experiment.

After initializing the semantic parsing model
with pretrained encoder parameters, we finetune
the models on the mixed multilingual semantic
parsing data. To effectively adapt the pretrained
encoder to our data, we implement gradual unfreez-
ing (Howard and Ruder, 2018) in the finetuning
steps. Instead of tuning all encoder layers from the
beginning, which may cause the model to forget
what it learnt in pretraining, we slowly unfreeze
the encoder layer weights to be tuned, from not
changing the weights at all in the beginning until
we finetune all the layers.

2https://github.com/google-research/
bert/blob/master/multilingual.md

3https://github.com/pytorch/fairseq/
tree/master/examples/xlmr
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4.3 Baselines

We compare our multilingual semantic parsing
models against two groups of baselines: mono-
lingual models trained for each target language and
a common method in previous research that also
makes use of machine translation.

4.3.1 Monolingual Baselines

We investigate how our multilingual semantic
parsing models compare to monolingual models
trained on each language separately. In accor-
dance with the multilingual models, we build two
types of monolingual baselines: monolingual mod-
els without pretraining and monolingual models
finetuned from pretrained encoders. We use the
same model architecture as the multilingual mod-
els for the monolingual baselines. For the mono-
lingual pretrained encoders, we use the public En-
glish RoBERTa (Liu et al., 2019) model to initial-
ize the English model, because semantic parsers
finetuned from the English RoBERTa model have
achieved state-of-the-art result on the original TOP
dataset (Rongali et al., 2020). As there is no public
RoBERTa model available for Italian and Japanese,
we use Italian and Japanese BERT models trained
on Wikipedia data instead.

In addition to using monolingual pretrained en-
coders, we also investigate a baseline with multi-
lingual pretrained encoders (mBERT and XLM-R)
finetuned on monolingual data for each target lan-
guage.

4.3.2 Multilingual Semantic Parsing through
Machine Translation

An alternative to multilingual semantic parsing is
to translate all non-English languages into English
and use an English semantic parsing model to un-
derstand the translated utterances (Haas and Rie-
zler, 2016). We compare our multilingual semantic
parsing models against this method. We train an
semantic parser on the English training data by
finetuning from the RoBERTa model. We then use
the Amazon Machine Translation Service to trans-
late the Italian and Japanese sentences in the TOP
test set into English. The translated texts are fed
into the English semantic parser to get their MRL
predictions. We use the MRL annotation of the
English test set as the gold-standard for evaluation.

5 Experiments and Results

5.1 Experiment Setup
We measure the performance of the semantic pars-
ing models by exact match accuracy. By its defi-
nition, an MRL prediction is considered accurate
only if the entire predicted sequence is exactly the
same as the gold-standard MRL. The models are
trained on AWS P3 instances with Tesla V100 GPU.
We use the Adam optimizer in training and intro-
duce early stopping if the loss doesn’t improve on
the validation set. We tune the hyperparameters for
each model by random search on the validation set
and report the results on the test set.

5.2 Results and Analysis on the TOP Dataset
Table 5 shows the performance of the multilingual
models on the TOP dataset and Table 6 shows the
results of the baselines models. Comparing the
multilingual models against the monolingual base-
lines, we find that training semantic parsing models
on multilingual data jointly outperforms models
trained on monolingual data only, even without us-
ing a pretrained encoder. The joint training is not
only helpful for non-English languages, where the
training data were machine translated, but it is also
helpful for English, with or without a multilingual
pretrained encoder.

In addition, we observe that transfer learning
from pretrained encoders can improve the multilin-
gual model performance further. Among the multi-
lingual models, finetuning from pretrained XLM-R
model achieves the best performance, which yields
a parsing accuracy of 85.1% for English, 62.4%
for Italian, and 36.3% for Japanese. It substantially
outperforms the monolingual baselines as well as
the method that relies on machine translating utter-
ances into English and using the English semantic
parser to understand the utterances. The results
prove that bootstrapping training data from English
using machine translation is an effective method for
constructing training data for multilingual semantic
parsing.

On the other hand, constrained by the method
we created our training data, the semantic parsing
accuracy is heavily dependent on the machine trans-
lation quality. The better the machine translation
model is, the more similar the automatically gener-
ated multilingual training data can be to real data.
We measured the BLEU scores of the machine
translation models on a random sample of English-
Italian and English-Japanese sentences and found
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Languages
multilingual
(no pretraining)

mBERT XLM-R

English 79.1% 84.6% 85.1%
Italian 57.4% 61.4% 62.4%
Japanese 31.9% 34.2% 36.3%
Mixed 56.1% 60.1% 61.2%

Table 5: Results on the multilingual TOP dataset

Languages
monolingual baselines machine translated

to Englishno pretraining monolingual BERTs mBERT XLM-R
English 78.3% 85.3% 83.3% 83.8% 85.3% (English model)
Italian 55.9% 55.1% 59.8% 60.2% 35.3%
Japanese 28.0% 32.1% 33.0% 32.5% 15.1%

Table 6: Results from baseline models on the multilingual TOP dataset

that the BLEU scores are 57.5 for Italian and 27.2
for Japanese, which shows that the English-Italian
machine translation model is substantially more
accurate than the English-Japanese one. Therefore,
we observe a big difference between the semantic
parsing accuracy for Italian and for Japanese.

During error analysis, we find that a large group
of errors in Italian semantic parsing is due to the in-
clusion or exclusion of articles copied in the MRL,
which has minimal influence over the understand-
ing. Table 7 gives an example. As a heuristic
solution, we filter out articles from both the ex-
pectation and the prediction and the exact match
accuracy rises from 62.4% to 75.4% by our best
performing model. Similarly, a large group of er-
rors in Japanese is due to the inclusion or omission
of postpositions and grammatical particles in the
MRL when they are copied from the input question.
If we filter out the postpositions and grammatical
particles from the gold-standard and the predicted
MRLs, the exact match accuracy is raised from
36.3% to 52.3%.

5.3 Experiment on the NLMaps Dataset

Apart from experimenting on the machine trans-
lated training data, we also want to see how our
multilingual models perform with training data cre-
ated by human and how our models compare to ex-
isting work. Therefore, we report the results of our
models on the multilingual NLMaps dataset. The
multilingual NLMaps dataset (Haas and Riezler,
2016) is one of the largest multilingual semantic
parsing dataset published in previous literature. It
contains around 2,400 English utterances and their

Question (Italian):
dove posso vedere i fuochi d’artificio
questa sera

Gold-standard MRL:
[IN:GET EVENT [SL:CATEGORY EVENT i fuochi
d’artificio ] [SL:DATE TIME questa sera
]]

Predicted MRL:
[IN:GET EVENT [SL:CATEGORY EVENT fuochi
artificio ] [SL:DATE TIME questa sera ]]

Table 7: An example of missing article “i” in Italian
semantic parsing

manual translation into German. The queries are
paired with a MRL representation that can be exe-
cuted on a geographic database. Because NLMaps
doesn’t have a validation set, we randomly split
10% of the training data as the validation set and
trained our models on the remaining 90% of the
data. The resulting dataset contains 1,350 training
utterance-MRL pairs, 150 validation pairs and 880
test pairs for both English and German.

Table 8 shows the results. Our best performing
model on the NLMaps dataset is the multilingual
semantic parser finetuned from the mBERT model,
which yields an accuracy of 79.7% for English and
79.5% for German. The best result reported on
the multilingual NLMaps dataset in literature was
by Duong et al. (2017). However, their model was
trained on the full training dataset for 10k iterations
without splitting a separate validation set. There-
fore, we retrain our best performing model under
the same condition and present the result in Table
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Languages
monolingual baselines multilingual

(no pretraining)
mBERT XLM-R

no pretraining monolingual BERTs mBERT XLM-R
English 73.5% 74.1% 75.7% 63.3% 72.1% 79.7% 74.3%
German 68.0% 70.3% 71.6% 59.5% 66.9% 79.5% 73.9%
Mixed - - - - 69.5% 79.6% 74.1%

Table 8: Results on the multilingual NLMaps dataset

Languages Our best (mBERT) Duong et al. (2017)
English 85.9% 85.7%
German 85.5% 82.3%

Table 9: Comparing the mBERT-based model with
SOTA model on the NLMaps dataset (trained on the
full training data for 10k iterations)

9. The result shows that our multilingual model
outperforms the state-of-the-art model in German
by 3.2% while keeping the same level of accuracy
in English (with a slight improvement of 0.2%).

On the NLMaps dataset, we find that training
the model on mixed multilingual data does not out-
perform a monolingual model if the models are
trained without using a pretrained encoder. How-
ever, joint multilingual training is still helpful when
a pretrained encoder is used. For example, when
we finetune the mBERT model on English and Ger-
man data separately, the resulting models yield an
accuracy of 75.7% for English and 71.6% for Ger-
man, which are markedly lower than the results
from the mBERT model finetuned on mixed mul-
tilingual data. In addition, we find that using pre-
trained multilingual mBERT model outperforms
pretrained monolingual BERT models.

5.4 Experiment on Zero-shot Learning

Encoder weights unfreezing rate Italian Japanese

unfreeze all
mBERT 24.9% 4.6%
XLM-R 36.1% 1.7%

unfreeze 10%
mBERT 28.6% 7.3%
XLM-R 44.9% 4.9%

freeze all
mBERT 16.0% 2.5%
XLM-R 15.6% 3.9%

Table 10: Zero-shot learning on the TOP dataset

Zero-shot learning is a problem setup in which
a model is tested on tasks that are not observed at
training time. It studies the model’s ability to gen-
eralize to unseen tasks. For multilingual models,
we are interested in the zero-shot performance of
a model when it is trained on one language and

Question (Italian):
Concerti di Beyonce questo fine
settimana

Predicted MRL:
[IN:GET EVENT [SL:CATEGORY EVENT Concerti
] [SL:NAME EVENT Beyonce ] [SL:DATE TIME
questo fine settimana ] ]

Table 11: An example of correct zero-shot prediction

tested on other languages. To explore the zero-shot
ability of our multilingual semantic parsers on the
TOP dataset, we train a model with pretrained mul-
tilingual encoder on the English training data and
apply the model to Italian and Japanese test data
directly without further finetuning. We experiment
with different ratios for unfreezing the pretrained
encoder weights when tuning the models on the
English data. Table 10 shows the results. We find
that setting a small unfreezing rate to the pretrained
encoder leads to a higher zero-shot accuracy.

Multilingual models trained only on English data
can achieve 44.9% zero-shot accuracy when pars-
ing Italian sentences, even though it has not seen
any Italian semantic parsing data in training. Table
11 shows an example. However, their zero-shot per-
formance on Japanese sentences is very poor. This
is not surprising as English and Italian are more
similar and they share a lot more BPE subword
units than English and Japanese.

6 Conclusion

In this paper, we describe our method to build mul-
tilingual semantic parsing models when the multi-
lingual data is limited. We introduce a new multi-
lingual semantic parsing dataset in English, Italian
and Japanese based on the public TOP dataset, with
training and validation data automatically gener-
ated from English and 8k test data manually trans-
lated. The multilingual TOP test set is so far the
largest dataset for multilingual semantic parsing,
which will be useful for future research. By lever-
aging joint multilingual training and transfer learn-
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ing from pretrained encoders, our semantic parsing
models outperform several baselines on the TOP
dataset and the state-of-the-art on the NLMaps
dataset. We show that semantic parsing models
with pretrained multilingual encoders can general-
ize from English to Italian with 44.9% zero-shot
accuracy. However, we find that there is a gap be-
tween Italian and Japanese semantic parsing with
our method. In future work, we plan to improve our
models with both language-invariant and language-
specific encodings and apply our method to more
languages.

References
Lasha Abzianidze, Johannes Bjerva, Kilian Evang,

Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, and Johan Bos. 2017. The par-
allel meaning bank: Towards a multilingual corpus
of translations annotated with compositional mean-
ing representations. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 242–247, Valencia, Spain. Association
for Computational Linguistics.

Alan Akbik, Laura Chiticariu, Marina Danilevsky, Yun-
yao Li, Shivakumar Vaithyanathan, and Huaiyu Zhu.
2015. Generating high quality proposition Banks for
multilingual semantic role labeling. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 397–407, Beijing,
China. Association for Computational Linguistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages
7057–7067.

Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the atis
task: The atis-3 corpus. In HUMAN LANGUAGE
TECHNOLOGY: Proceedings of a Workshop held at
Plainsboro, New Jersey, March 8-11, 1994.

Marco Damonte and Shay B. Cohen. 2018. Cross-
lingual abstract meaning representation parsing. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1146–1155, New
Orleans, Louisiana. Association for Computational
Linguistics.

Michael Denkowski and Graham Neubig. 2017.
Stronger baselines for trustable results in neural ma-
chine translation. In Proceedings of the First Work-
shop on Neural Machine Translation, pages 18–27,

Vancouver. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731–742, Melbourne, Australia. Association
for Computational Linguistics.

Long Duong, Hadi Afshar, Dominique Estival, Glen
Pink, Philip Cohen, and Mark Johnson. 2017. Mul-
tilingual semantic parsing and code-switching. In
Proceedings of the 21st Conference on Computa-
tional Natural Language Learning (CoNLL 2017),
pages 379–389, Vancouver, Canada. Association for
Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameter-
ization of IBM model 2. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 644–648, At-
lanta, Georgia. Association for Computational Lin-
guistics.

Kilian Evang and Johan Bos. 2016. Cross-lingual
learning of an open-domain semantic parser. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 579–588, Osaka, Japan. The COL-
ING 2016 Organizing Committee.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. CoRR.

Carolin Haas and Stefan Riezler. 2016. A corpus and
semantic parser for multilingual natural language
querying of OpenStreetMap. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 740–750, San
Diego, California. Association for Computational
Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

193



Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Bevan Jones, Mark Johnson, and Sharon Goldwater.
2012. Semantic parsing with Bayesian tree transduc-
ers. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 488–496, Jeju Island,
Korea. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.
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Abstract
Scripts (Schank and Abelson, 1977) capture
commonsense knowledge about everyday ac-
tivities and their participants. Script knowl-
edge has been shown to be useful in a num-
ber of NLP tasks, such as referent prediction,
discourse classification, and story generation.
A crucial step for the exploitation of script
knowledge is script parsing, the task of tag-
ging a text with the events and participants
from a certain activity. This task is challeng-
ing: it requires information both about the
ways events and participants are usually real-
ized in surface language as well as the order
in which they occur in the world. We show
how to do accurate script parsing with a hierar-
chical sequence model. Our model improves
the state of the art of event parsing by over
16 points F-score and, for the first time, accu-
rately tags script participants.

1 Introduction

Script knowledge is a category of common sense
knowledge that describes how people conduct ev-
eryday activities sequentially (Schank and Abelson,
1977). Script knowledge of a specific scenario,
e.g. GROCERY SHOPPING, includes the events that
comprise the scenario, the participants involved,
and the relations between them. Script knowledge
is useful for various downstream NLP applications,
such as referent prediction (Ahrendt and Demberg,
2016; Modi et al., 2017), discourse sense classifica-
tion (Lee et al., 2020), story generation (Zhai et al.,
2019, 2020).

Script parsing identifies pre-defined sets of
script events and participants from surface text (see
Figure 1). For a specific scenario, script parsing es-
sentially boils down to determining what each verb
and each NP (which we term candidate) refers to
in the context of that scenario.

Script parsing is an under-investigated, complex
task. It is highly contextualized and corresponds to

Figure 1: Descriptions of FIXING A FLAT TIRE from InScript.
Script parsing identifies events and participants from surface
text.

each specific scenario. The task is challenging even
for humans: the inter-annotator agreement is quite
modest, at 0.64 and 0.77 Fleiss’ κ for event and
participant parsing, respectively (Modi et al., 2016).
Various factors need to be taken into consideration
for this task. (1) At the local level, the basic seman-
tics of the candidates. (2) At the discourse level, the
sequence of events and participants should sketch
a reasonable agenda for the activity. For example,
the events must occur in a feasible order; when
an NP is a dependent of an adjacent verb, the pre-
dicted participant type must be one that participates
in the predicted event. In Figure 1, the same verb
found was assigned different event classes: found
bike pump as get tools whereas found a small glass
shard as examine tire. One would have to consider
the arguments of the verb, and potentially where it
appears in the story to make the decision: what hap-
pens after ‘check’ as examine tire is not likely to
be get tools. Apart from the modelling difficulties,
annotated corpora are quite limited in size, given
the high cost. Many event / participant classes have
less that 10 instances across these corpora, occa-
sionally missing from a validation set generated by
random split.

We contribute the following to the area of script
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parsing: methodology-wise, (1) we propose a hier-
archical sequence model, which learns patterns in
different granularity levels with different sequence
models. (2) We investigate data augmentation ap-
proaches to this task. In terms of results, (3) we
achieve accurate participant parsing results for the
first time and (4) improve the state of the art in
event parsing by over 16 points F1-score.

2 Related Work

Theoretical considerations of scripts in AI (as de-
scribed by Schank and Abelson, 1977; Barr and
Feigenbaum, 1981) were analyzed in a wide cov-
erage empirical study by Regneri et al. (2010),
who crowdsourced event descriptions of several
everyday activities (scenarios). They applied unsu-
pervised methods to compute a graph representa-
tion of the script’s temporal structure. As a direct
extension, Modi et al. (2016) and Wanzare et al.
(2016) collected the InScript and DeScript cor-
pora of event descriptions and manually annotated
the scenario-specific types of events and partici-
pants to accommodate aligning surface text with
data-driven script knowledge. The goal is to iden-
tify spans of the text that refer to the events and
participants that are typically involved in a script.
For the case of the script about fixing a bike, the
typical events include riding a bike, noticing a flat
tire, getting tools, repairing the tire and testing it.
These events and participants are pre-defined for
each activity and the task is to label the tokens with
these abstract classes, whereby the surface forms
vary.

The model by Ostermann et al. (2017) is the state
of the art for event parsing over InScript which was
formulated as a sequence tagging task. The authors
used a linear CRF to identify the script events. Its
features include syntax, FrameNet (Ruppenhofer
et al., 2006) features, pre-trained word embeddings
and a number of script-related features encoding
script-specific aspects like event order.

Our work shares many similarities with Berant
et al. (2014). To do question answering in the bio-
logical domain, they first build a graph representa-
tion of events, participants and their relations given
a text about a biological process. Token spans that
denote an occurrence of an event are considered
event triggers. However, unlike our approach, these
events are not based on a pre-defined set. They sep-
arately train a model for identifying event triggers
and a model for finding plausible argument candi-

dates. The features used rely on syntax, semantic
roles and some external domain resources. In con-
trast, we propose a model that jointly learns how to
identify as well as label events and participants.

Much of the previous work on inferring script
knowledge from text is focused around complet-
ing an event chain by predicting the missing event
(Chambers and Jurafsky, 2008; Jans et al., 2012;
Pichotta and Mooney, 2014; Rudinger et al., 2015),
the missing text (Bisk et al., 2019) or both (Pichotta
and Mooney, 2016). These approaches consider
surface forms of event verbs and syntactic relation
types of their arguments (subj, obj), while our task
operates on abstract event and participant types.

3 Method

3.1 Data and Pre-processing

Our work is based on two English corpora, InScript
and DeScript. InScript (Modi et al., 2016) includes
around 100 stories about each of 10 daily activi-
ties (scenarios), e.g., GOING GROCERY SHOPPING,
TAKING A BATH, and RIDING IN A PUBLIC BUS.
The corpus annotates surface text with event and
participant classes, and specifies the candidates ac-
cording to their syntactic dependency (see Figure 1
for an excerpt from InScript). DeScript (Wanzare
et al., 2016) includes, among others, 50 process de-
scriptions for each of the 10 scenarios in InScript.
These process descriptions are telegram-style short
phrases, like ‘Find hole in tire. Plug hole. Find tire
pump. Insert tire pump into tire. Pump tire until
full of air’. The events in these texts are annotated
with the same set of labels as InScript. DeScript
has no participant annotations. We mainly perform
experiments on InScript, whereas DeScript is used
as auxiliary training data.

For each of the 10 scenarios in the InScript cor-
pus, the authors (Modi et al., 2016) designed pro-
totypical scenario-specific event and participant
classes. For example, the story about FIXING A

FLAT TIRE in Figure 1 shows that typically this
activity includes a bike rider, a bike, tools and a
tire. These participants are involved in the events
of riding a bike, getting tools, fixing the tire, and
checking it.

Following Ostermann et al. (2017), we distin-
guish between regular events, events correspond-
ing to the crucial steps of the respective scenario,
and irregular events, the ones that take place in
the course of the story, but are not directly related
to the scenario’s core event chain. For example,
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in Figure 1, the weather was nice is considered an
irregular event as it does not directly relate to the
core steps of the scenario, fixing a flat tire. We
collapse the classes UNREL, RELNSCR, OTHER

and UNKNOWN into a single irregular event class
for each scenario. 12,902 (33.5%) events in In-
Script are regular, whereas 4,185 (89.1%) events
in DeScript are regular. We also distinguish reg-
ular participants from irregular participants in
a similar manner. The identification of irregular
candidates is a crucial component of a script parser,
as naturally occurring text very often includes such
content, making the text more interesting and per-
sonal.

The 10 scenarios vary in complexity (TAKING

A BATH vs. FLYING IN AN AIRPLANE) and speci-
ficity (RIDING A PUBLIC BUS vs. REPAIRING A

FLAT TIRE). This is reflected in the class sizes of
regular events and regular participants. On aver-
age, each scenario has 19.2 regular event and 18.9
regular participant classes. TAKING A FLIGHT has
the largest class sizes for events and participants
(29 and 26, respectively), while PLANTING A TREE

has the smallest (14 and 15, respectively).

3.2 Model

We train a scenario agnostic model that parses all
InScript scenarios. Thus our model implicitly con-
tains a scenario detection model, which determines
the scenario that a piece of text is about. Our model
consists of two sequence models: (1) a word se-
quence model that captures how each event and
participant is usually realized in surface language,
and (2) an event sequence model that operates
on the event level, which models the sequence of
events and participants to capture procedural script
knowledge.

The Hierarchical Model. Figure 2 shows the
model architecture. The model takes as input a
story x from corpus d, an ordered set of indices
I that specifies the positions of the candidates. It
assigns an event / participant label to each of these
candidates as output. These labels are pre-defined
in InScript and specific to each scenario. The set of
candidates consists of all NPs and verbs in the text.
We use the InScript tokens as annotated in it; yet
they could also be extracted with a syntactic parser.

The word sequence model encodes the entire
story with pre-trained contextualized word embed-
dings into a list of vectors (we use xlnet-base-cased

Figure 2: The model architecture. Note that index se-
lection is performed before the Bi-LSTM layer.

(Yang et al., 2019)):

x̃ = XLNet(x) (1)

Next, to accommodate sequence modelling at the
discourse level, we only keep the representations
in x̃ that corresponds to the candidates, namely,
the NP heads and the verbs. Their positions in x̃
are specified by the ordered set of indices I . We
directly take the vector representation of these to-
kens and ignore the rest to form a sub-sequence
of x̃. This operation is termed index select in the
Pytorch library:

c = x̃.index select(I) (2)

Now, we apply the event sequence model ψ (a
Bi-LSTM) on it, to yield the features c̃ for linear
classifier γ, to generates a distribution over the
labels for each token:

p(y|x, I; θψ, θγ) = softmax(γθγ (ψθψ(c))) (3)

The model is trained by optimizing data likelihood:

θ∗ = argmax
θψ ,θγ

∑

x,I

log(p(y|x, I; θψ, θγ)) (4)

3.3 Addressing Data Sparsity
The class distribution is skewed. Some classes are
quite small: the largest regular event class has 397
instances (e.g., get groceries in GROCERY SHOP-
PING), whereas there are 26 classes with less than
10 instances (e.g., get receipt in GROCERY SHOP-
PING, scalp massage in TAKING A BATH), which
means they are hard to learn reliably. Our efforts
to address this are two-fold.

Domain Adaptation. Firstly, we use DeScript
as additional training data. We experiment with
two domain adaptation methods. Most straightfor-
wardly, (1) Data concatenates, which concatenates
DeScript with the original InScript train set. Hav-
ing noticed InScript and DeScript varying greatly in
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Index Model Train set Events Participants
Macro-F1 Micro-F1 Macro-F1 Micro-F1

1. Ostermann In 58.1 66.0 n/a n/a
2. fine-tuned XLNet In 62.11 79.31 79.7345 77.2
3. no index select In 63.31 78.31 74.3 87.12

4. hierarchical In 70.1123 83.7123 78.73 89.323

5. concatenate In, De 69.3123 82.5123 79.13 89.923

6. corpus embedding In, De 74.912345 82.9123 78.63 89.423

7. hierarchicalBT In, BT 75.11234568 85.71234568 80.3123456 90.31234568

8. corpus embeddingBT In, De, BT 74.312345 83.8123456 80.9123456 89.512345

1−8: performance improvement over the respective model is significant at α = 0.05 according to independent T-test.

Table 1: Results. The highest metrics in each column are displayed in boldface. Thanks to a larger training set, the
optimization of 7. and 8. are quite stable, thus its performance difference compared to others can be significant
despite small margins.

the style of their language, we also perform explicit
domain modelling with (2) Corpus embedding. We
follow Stymne et al. (2018) to train a vector repre-
sentation (the corpus embedding) for each corpus
to capture corpus-specific patterns. We concatenate
the corpus representation with each candidate rep-
resentation, to substitute the input term (ψθψ(c)) to
the linear classifier γ with

c̃ = ψθψ(c; ηθη(d)) (5)

Here η(·) denotes the corpus embeddings.

Data Augmentation. Secondly, we augment In-
Script via back-translation (Bojar and Tamchyna,
2011; Sennrich et al., 2016; Xie et al., 2020) to
paraphrase the original data and help the model
generalize better over the surface text. The sto-
ries are translated to French and back with Google
Translate. The participant and event annotations are
mapped to the paraphrases according to heuristics
based on word-level semantics and string matching.
The new data was concatenated with the original
InScript and both were treated as a single domain.
See the appendix for more implementation details1.
In the example below, the event verb takes a differ-
ent tense and surface form in the back-translation.

O : when Irider was ridingride myrider bikebike this
past summer

Fr : l’été dernier, je montais mon vélo

BT : when Irider roderide myrider bikebike this summer

1Our code, data and virtual environment are shared at
https://github.com/coli-saar/SSP_sem.

4 Experiments

4.1 Ablations and Baselines
We randomly split (80/10/10) InScript by entire
stories to create the train/val/test sets. We have two
external baselines: (1) the SotA model from Os-
termann et al. (2017); (2) a fine-tuned XLNet, for
which we train a linear classifier, apart from tuning
its pre-trained parameters. As for our models, Hi-
erarchical is the hierarchical model described by
formulas (1)-(4). For no index select, we ablate
the index selection (thus c = x) to neutralize the
event sequence model. Its event sequence model
now takes every token of the story as input, and
still operates on the token level. The variants con-
catenate and corpus embedding exploit DeScript
with respective domain adaptation methods.

4.2 Results
The results are shown in Table 1. A fine-tuned
XLNet already outperforms Ostermann. Yet our
model variants deliver further, substantial improve-
ments. All our models outperform Ostermann by
a considerable margin, on both event macro and
micro F1. We also see that all micro-F1s are no-
ticeably higher than the respective macro-F1s. This
difference is due to the data including many small
classes that are in general harder to learn.

hierarchical see substantial improvements over
no index select, which fails to perform sequence
modelling at the discourse level. We also note that
hierarchical improved both micro-F1s. Analysis
shows that the hierarchical models are generally
better at addressing the most frequent yet problem-
atic class, the irregular candidates. These candi-
dates do not participate in the core event chain, a
decision better made after taking the structure of
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the candidate sequences into consideration. That is
exactly the job of our event sequence model.

Participant parsing yields much higher scores
than event parsing. The reason is, a large propor-
tion of errors come from the irregular candidates
(see also Section 5). However, irregular partici-
pants (19.6%) are proportionally fewer than irregu-
lar events (66.5%). Moreover, a lot of participant
candidates refer to the protagonist (31.0%), an easy
class usually realized with first person pronouns,
making participant parsing generally easier.

For the variants that performs domain adapta-
tion, corpus embedding is clearly a better way
to exploit DeScript, due to the apparent differ-
ence between the language styles of both corpora.
hierarchicalBT sees a larger improvement over hi-
erarchical as it has paraphrased InScript as addi-
tional training data, which is larger and a more
similar domain than DeScript to InScript. These
improvements over hierarchical are more promi-
nent in event macro-F1s, which means these mod-
els are generally better at tagging smaller event
classes, achieving our original goal to alleviate the
issues caused by the uneven class sizes. Further ad-
dition of DeScript on top of hierarchicalBT (model
8.) does not yield further significant improvement,
but sees, overall, a modest performance drop: with
the addition of back-translated data thus a larger,
relatively homogeneous training set, the domain
difference between DeScript and InScript is begin-
ning to outweigh the benefit of having DeScript.

5 Error Analysis

We manually classified the validation set
errors made by our best-performing model,
hierarchicalBT , case by case. A breakdown is
presented in Table 2.

Noisy Corpus Labels. The corpus annotations
of these instances are possibly incorrect. This is
quite common, given the complexity (thus the mod-
erate inter-annotator agreement) of the task. For
example, in a story about BORROWING A BOOK

FROM A LIBRARY, ... I had to get a library card
... is a clear match for the event obtain card, as is
predicted by our model; but in the corpus it was
annotated as ‘irregular’, a mistake probably due
to the light verb ‘get’ seemingly irrelevant to the
scenario at first glance by the original annotator.

False Positives of irregular. A large proportion
of errors feature a wrongly predicted irregular.

We identified two main sources of such errors:
(1) small class sizes; (2) instances that are par-
ticularly difficult because pragmatic inference is
needed to make the right decision. As an example,
... get materials for the assignment ... corresponds
to the event class evoking library, i.e. it evokes
the scenario of BORROWING A BOOK FROM A LI-
BRARY without explicitly referring to a scenario
event. However, without taking the situational con-
text of the scenario into consideration, it cannot
be inferred that ‘get materials for the assignment’
actually means ‘borrow a book from a library’.

Wrong Category. A small number of events are
tagged as participants and vice versa, e.g. some
homonyms of verbs and nouns (board or love).

Type Events Participants
Noisy corpus label 23% 26%
False irregular predictions 49% 37%
Wrong category 2% 4%
Others 26% 33%

Table 2: A breakdown of the error types.

6 Conclusion

We present the first model that achieves high per-
formance on both event and participant parsing.
The model adopts a hierarchical design to model
both the sequence of tokens and the sequence of
script events and participants. Further exploitation
of domain adaptation and data augmentation meth-
ods yields a substantial performance boost. This
work has established methods to accurately parse
both script events and participants, in a supervised
learning framework. Our next step is approaching
this complex task with less supervision, to lift the
requirement on finely-annotated data, thus enabling
wide-coverage script parsing.
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Abstract

AMR (Abstract Meaning Representation) and
EDS (Elementary Dependency Structures)
are two popular meaning representations in
NLP/NLU. AMR is more abstract and concep-
tual, while EDS is more low level, closer to
the lexical structures of the given sentences. It
is thus not surprising that EDS parsing is eas-
ier than AMR parsing. In this work, we con-
sider using information from EDS parsing to
help improve the performance of AMR pars-
ing. We adopt a transition-based parser and
propose to add EDS graphs as additional se-
mantic features using a graph encoder com-
posed of LSTM layer and GCN layer. Our
experimental results show that the additional
information from EDS parsing indeed gives
a boost to the performance of the base AMR
parser used in our experiments.

1 Introduction

Semantic parsing has long been considered a diffi-
cult task and an important step to natural language
understanding. A number of meaning representa-
tion formalisms have been proposed. Well-known
ones include EDS (Elementary Dependency Struc-
tures; Oepen and Lønning, 2006), UCCA (Univer-
sal Conceptual Cognitive Annotation; Abend and
Rappoport, 2013), and AMR (Abstract Meaning
Representation; Banarescu et al., 2013). Among
them, AMR is more abstract from surface tokens
and tries to capture the meaning of a sentence us-
ing concepts that may not appear in the sentence.
If one views an AMR encoding as a graph, the
AMR graph is always composed of fewer nodes
than other meaning representations and some nodes
in the AMR graph cannot be anchored to tokens or
strings of tokens in the sentence. But EDS tries to
build a meaning representation using lexical terms
that are presented in the sentence, and nodes in their
parse trees are anchored. In comparison, AMR

has a much more fine-grained classification for the
named entities, total of 124 entity types (Lin and
Xue, 2019). Thus not surprisingly, AMR parsers do
not perform as well as the ones for EDS. Currently
the parsing accuracies for AMR are in low 80s,
while they can be high 90s for EDS. In this paper,
we propose to use EDS improve the performance
of the AMR parser.

Figure 1: AMR and EDS graph for ”Imports were at
$50.38 billion, up 19%.”, #20011008 sentence from
the WSJ Corpus, Penn Treebank (Marcus et al., 1993).
Take node #3 in AMR as an example. ”percentage-
entity” is the node label, ”value” is the property of this
node, and ”19” is the specific value. For node #10 in
EDS, ”<35:37>” indicates the span of the correspond-
ing surface string; ”card” is the node label, ”CARG”
which means ”constant argument” is the property, and
”19” is the value.

To see how information from EDS parsing can
be of use to AMR, consider the following sentence
“Imports were at $50.38 billion, up 19%.” from the
Wall Street Journal Corpus, Penn Treebank (Mar-
cus et al., 1993). Its graph encodings in AMR and
EDS are shown in Figure 1. We mentioned that
AMR is more abstract. This can be seen in the
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example as the graph for AMR is a lot smaller, and
the nodes are labeled with conceptual entities. Nev-
ertheless, EDS and AMR edges are labeled using
the same semantic roles (e.g., ARG1, ARG2), in-
dicating the relationship between a predicate and
its arguments (Lin and Xue, 2019). In this exam-
ple, there are some correspondences between their
nodes. For example, the AMR nodes ”percentage-
entity”, ”dollar”, and ”import-01” correspond to
the EDS nodes ” percen n of”, ” dollar n 1”, and

” import n of”, respectively. In our task, the most
important feature of EDS is anchoring. From the
EDS graph, each node has a corresponding span of
text. Conversely, we can find all related EDS nodes
for each token based on the indexes. This suggests
that EDS parsing may serve as an intermediate to
AMR parsing, which motivated this work.

To incorporate EDS parsing into an AMR parser,
we propose an EDS encoder composed of LSTM
networks that capture the contextual information
and a Graph Convolutional Network (GCN, Kipf
and Welling, 2017) that extracts the structure
knowledge. We feed EDS into our proposed en-
coder and produce token-level features. These EDS
token-level features are concatenated to word em-
bedding of tokens and participate in the AMR pars-
ing process. To demonstrate the effectiveness of
our approach, we use the AMR dataset from MRP
2019 (Oepen et al., 2019) and take as our baseline
model the HIT-SCIR (Che et al., 2019), which was
the best overall system at MRP 2019 and the 2nd
best for AMR. Our experimental results show that
our EDS-enhanced parsers clearly outperform the
baseline model. In fact, some of our new models
beat the best score of the official submitted AMR
parsers in this benchmark. We also observed that
the biggest improvements happened to be on those
test data that are least similar to the training data.

The rest of this paper is organized as follows:
Second 2 gives a brief overview on AMR parsers;
Section 3 is concerned with the baseline system we
adopt and our EDS-enhanced model. We present
experimental settings and experimental results in
Section 4 and conclude in Section 5.

2 Related Work

We classify AMR parsing systems into grammar-
based, graph-based, and transition-based ones. The
grammar-based ones generate AMR graphs directly
from grammar trees. Several early AMR parsing
systems were of this type. For example, Artzi

et al. (2015) used combinatory categorial gram-
mar (CCG) parsing to construct AMR, while Peng
et al. (2015) made use of synchronous Hyperedge
Replacement Grammar (SHRG). Generally speak-
ing, grammar-based ones suffer from information
loss during the processes of both grammar tree gen-
eration and AMR conversion. They predated the
current deep learning approaches.

Modern AMR parsers use deep learning meth-
ods. Depending on how the eventual AMR graphs
are generated, we can divide them into graph-based
and transition-based. Both approaches are popular
and their performances are competitive. Briefly, a
graph-based system splits AMR parsing into two
tasks, concept identification and edge prediction,
and then combines them to generate a final AMR
graph. The idea seems to appear first in Flanigan
et al. (2014), and is used in Lyu and Titov (2018);
Zhang et al. (2019a); Cai and Lam (2020); Zhou
et al. (2020). A transition-based system, however,
uses a sequence of transition actions to construct
the graph incrementally. We can include the sys-
tems in Wang et al. (2015); Ballesteros and Al-
Onaizan (2017); Naseem et al. (2019); Che et al.
(2019); Astudillo et al. (2020) in this category.

As we mentioned, our work is about incorporat-
ing EDS information into AMR parsing. We note
that Brandt et al. (2016) considered adding prepo-
sition semantic role labeling to an AMR parser but
found that the extra information did not seem to
help. Hershcovich and Arviv (2019) used a multi-
task learning model but found multi-task TUPA
consistently falls behind the single-task one for
AMR. Arviv et al. (2020) used multi-task learning
on EDS and UCCA parsing, however, EDS didn’t
bring any benefits to UCCA parsing. Adding extra
semantic information like EDS is not easy. It mat-
ters how EDS graphs are encoded and incorporated
into AMR parsing. We conduct our work with the
AMR dataset from MRP 2019, and pick one of
the best performing systems there, HIT-SCIR (Che
et al., 2019), as our baseline model. Our experi-
mental results show that adding EDS information
can indeed give a significant boost to the baseline
model. We believe our method is general and can
be applied to other AMR parsing systems.

3 Model

3.1 Baseline: A Transition-based Parser

Our baseline model is a transition-based system
HIT-SCIR (Che et al., 2019). However, in our
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experiments, we use BERT-base instead of BERT-
large for word embeddings (Devlin et al., 2019) due
to our constraints on computing resources. Never-
theless, when the BERT-base baseline model is en-
hanced with EDS information, it still outperforms
the best AMR parser at MRP 2019.

Task Formalization The main task of a
transition-based model is to generate a sequence of
actions to construct an AMR graph. The sequence
of actions is predicted one at a time, and the graph
is also constructed incrementally.

A state in HIT-SCIR is a tuple (S,L,B,E, V ),
where S is a stack holding processed words, L
is a list holding tokens popped out of S that will
be pushed back in the future, and B is a buffer
holding tokens waiting to be processed. E is
the sets of labeled dependency edges and V is
a set of graph nodes include concept nodes and
surface tokens. The initial state of AMR parser
was ([0], [ ], [w1, . . . , wn], [ ], V ), where V only
contains surface tokens. During parsing, each
token should be parsed individually, and AMR
nodes and edges would be generated through the
selection of actions. The final state should be
([0], [ ], [ ], E, V ′), where list L and buffer B is
empty.

Oracle An action sequence bridges the input sen-
tence and the AMR graph. So the basic require-
ment for the transition-based method is alignments.
Given a gold AMR graph and alignments, one can
convert the graph to an action sequence for model
training. For each state s, HIT-SCIR decides one
of the actions to apply and this is what we called
oracle parser. To solve the problem of parsing con-
cept nodes from surface strings, HIT-SCIR extends
the basic oracle following previous work (Liu et al.,
2018). The transition inventory is the following:

• MERGE is to connect the top two tokens in
the buffer to a single token waiting for being
converted to a concept node.

• CONFIRMX is for converting the top element
of buffer to a concept node X .

• NEWX generates a new node X and pushing
into the buffer.

• ENTITYX does the same thing as CONFIRMX

but adding internal properties of entity X ,
such as year of a date-entity.

• LEFT-EDGEX and RIGHT-EDGEX add an
edge with label X between wj and wi, where
wi is the top element of stack andwj is the top
element of buffer. But they can be performed
only when the top of buffer is a concept node.

• SHIFT is performed when no dependency ex-
ists between wj and any word in S other than
wi, which pushes all words in list and wj into
stack S. It is only allowed to perform when
the top of buffer is a concept node.

• REDUCE is performed only when wi has head
and is not the head or child of any word in
buffer, which pops wi out of stack.

• PASS will be chosen when neither SHIFT or
REDUCE can be performed, which moves wi
to the front of list.

• DROP pops the top of buffer when it is a token.

• FINISH pops the root node and marks the state
as terminal.

Stack-LSTM HIT-SCIR follows Ballesteros and
Al-Onaizan (2017) and uses Stack-LSTM to model
AMR states. The output vector of this LSTM will
consider the stack pointer instead of the rightmost
position of the sequence.

The system models S, L, B and action history
with multiple stack-LSTMs, which supports PUSH

and POP operations. Parsing states from multiple
stack LSTMs are fed into the action oracle classifier
at once. The possibility of action under state s is
calculated as

p(a|s) = exp{ga·STACK LSTM(s)+ba}∑
a′∈A exp{ga′ ·STACK LSTM(s)+ba′}

where the set A represents the actions listed in the
previous paragraph; STACK LSTM(s) encodes the
state s into a vector, ga is the embedding of action
a and ba is the bias vector for action.

In our model, items in S, L and B are the com-
bined embedding of tokens that concatenate the
original BERT word embeddings and EDS encod-
ing for the tokens, introduced in the following sec-
tion.

3.2 EDS Incorporation

In order to incorporate the EDS annotation informa-
tion in the AMR parsing, we extend the EDS graph
to include tokens. We feed the extended EDS graph
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to our proposed EDS encoder and obtain token-
level EDS features. Afterward, we concatenate
token-level EDS features with word embedding
and input them into the transition-based model.

EDS Extension Each node in the EDS graph
has an explicit many-to-many anchoring onto sub-
strings of the input sentence. It means that corre-
sponding related EDS nodes for each token can be
found based on the nodes’ span. Therefore, we add
a bottom layer consisting of the input sentence to-
kens. In this way, the updated embedding of tokens
in this layer can be extracted as EDS features for
each token.

In the preprocessing, the edges labeled as con-
tain are added between token nodes and original
nodes if their spans of strings intersect. Figure 2
is the example of an updated EDS graph for the
sentence ”Not this year.”, #20010002 from WSJ.
We only care about EDS labels in our experiments.
We show contain edges as dash lines and origi-
nal edges as solid lines. In Figure 2, the bottom

Figure 2: Example for adding contain edges in EDS
graph. The bottom layer is the token nodes we add to
the EDS graph. After EDS encoding, embeddings of
token nodes are extracted and combined with original
word embedding as extra semantic features.

four nodes are token nodes, whose embeddings are
used as EDS features. For token node vt, the hid-
den state at layer k is hkvt . The calculation details
can be found in the following paragraph. BERT
splits each token into several pieces. The system
extracts the first piece as its word embedding, de-
noted as BERT(t). Therefore, for each token t, we
get embedding from two parts, BERT embedding
BERT(t) and final hidden state hvt of correspond-

ing new added node vt. Then the concatenation of
two vectors (BERT(t)‖hvt) would be pushed in the
buffer, waiting for the next step of processing.

EDS Encoder The emergence of neural net-
works has had tremendous impacts on many fields,
including graph data parsing systems. GCNs (Kipf
and Welling, 2017; Marcheggiani and Titov, 2017)
have emerged to be the neural networks of choice
for encoding graphs. Our proposed EDS encoder
consists of an LSTM layer to capture context in-
formation and GCN layers to encode structural
knowledge.

EDS represents the meaning of a sentence in a
directed graph where nodes represent logical predi-
cates and edges to labeled arguments. The defini-
tion of EDS is G = {V, E , LV , LE} where V is a
set of nodes (v, `v), E is a set of edges (vi, vj , `e)
and LV , LE are vocabularies for node labels and
edge labels respectively.

To reinforce relations between nodes through
layers, we add self edges (vi, vi) for every node
in the graph and inverted edges (vj , vi) with la-
bel inv `e for each directed edge (vi, vj) with label
`e, including the new added contain edges. There-
fore, G becomes {V ′, E ′, LV ′ , LE ′}. V ′ = V ∪ T ,
where T is the set of token nodes. E ′ = E ∪
{contain, self}∪I , where I is the set of inverted
edges.

The goal of our EDS encoder is to update repre-
sentation of each node considering the whole EDS
graph. First, we adopt GCN to update word embed-
ding based on their neighbors. Directed edges in
the EDS graph represent the relationship of nodes,
so we make the same assumption that the GCN
parameters are label-specific as Marcheggiani and
Titov (2017). Therefore, we calculate the hidden
state of node v at k-th layer hkv as:

hkv = ReLU


 ∑

u∈N (v)

W
(k−1)
L(u,v)h

(k−1)
u + b

(k−1)
L(u,v)




where N (v) represents the neighbor nodes of v;
ReLU is the rectifier linear unit activation func-
tion. However, to reduce the size of parameters
and simplify the calculation, we classify edges into
three kinds: self edge, edges in the original direc-
tion including contain and inverted edges. There-
fore, instead of using WL(u,v), we define them as
WL(u,v) = Vdir(u,v), where dir(u, v) specifies the
kind of edge.
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EDS annotation in this experiment is automat-
ically generated by EDS parser, so accepting all
information from the EDS graph is risky. To solve
this problem, we adopt gate schema. We calculate
a scalar gate for each edge node pair in the form
as:

gku,v = σ
(
v̂kdir(u,v)h

k
u + b̂kL(u,v)

)

where σ is the logistic sigmoid function; v̂kdir(u,v)
and b̂kL(u,v) are weights and a bias for the gate.
Therefore, the final formalism of the hidden state
calculation is:

hkv =ReLU(
∑

u∈N (v)

g(k−1)u,v (V
(k−1)
dir(u,v)h

(k−1)
u + b

(k−1)
L(u,v))).

GCN introduced so far learns effective represen-
tation on the structure. Still, there is the limitation
in that nodes can only be updated based on their im-
mediate neighbors on each GCN layer. Nodes far
away from each other with n-order in the graph are
hard to encode on GCN models. Adding an LSTM
layer can compensate for this limitation. The hid-
den states of LSTM instead of embedding of EDS
nodes are fed into GCN layers, that is, h0v = sv
where sv is the final LSTM state of node v.

Figure 3: Example for EDS Encoder structure. Nodes
embedding (circles) are sequentially fed into an LSTM
layer and GCN layers. In GCN layers, solid lines are
original edges in the EDS graph, dash lines represent
the inverted edges and gray lines are self edges.

The structure of the EDS encoder is illustrated in
Figure 3. The embeddings of EDS nodes (hollow
circles) are first fed into an LSTM layer. After pro-
cessing in the LSTM layer, contextual information

is included in the light gray circles. After several
GCN layers, dark gray circles that hold edges and
neighbors information are the final hidden states of
GCN layers.

4 Experiment

4.1 Experimental Setup

Our experiments were done using the toolkit Al-
lenNLP (Gardner et al., 2018).

EDS Parser In this study, we adopted open-
source distribution LOGON (Lønning and Oepen,
2006) to generate EDS annotations. LOGON 1

package contains ERG parsers and the ERG-to-
EDS converter. Compared to the purely data-driven
parsers, general-purpose grammatical knowledge
encoded in the ERG aids EDS parsing (Oepen and
Flickinger, 2019). We applied ERG release 1214
and use LOGON in one-best mode. However, LO-
GON failed to parse part of sentences due to lim-
itation of search tree or other reasons (about 15%
of data), so we used the EDS model of Che et al.
(2019) to parse those sentences.

Baseline Model As we mentioned, we adopt
HIT-SCIR as our baseline model. However, we
use the smaller pre-trained model, BERT-base, for
word embeddings due to GPU limitation. For align-
ments, the baseline model uses an enhanced rule-
based aligner TAMR (Liu et al., 2018) to generate
transition actions for AMR graph. More details on
hyper-parameters can be found Table 3 in appendix.
Our experiments were done using GeForce RTX
2080 Ti GPU. During model training, each epoch
took about 4 hours on one GPU.

Dataset We use the dataset from MRP 2019 so
that we can compare our models with the officially
submitted models there. The shared task has con-
straints on which additional data or pretrained mod-
els can be used for reasons of comparability and
fairness. Our models meet the requirements as both
our baseline model (HIT-SCIR) and the EDS parser
that we use to generate EDS graphs for use by the
baseline model satisfy them.

There are 56,240 sentences in MRP 2019 AMR
training set. The test set contains 1,998 sentences,
and among them are 100 randomly selected sen-
tences from the novel The Little Prince. MRP 2019
provided results for AMR parsing models on both

1http://wiki.delph-in.net/
LogonProcessing
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the entire test set (called All Data) and the sub-
set of the setences from The Little Prince (called
Lpps). The reason for the special interest on the
latter was that the sentences from the novel are pre-
sumably least similar to the training data, which are
mostly from the WSJ-corpus. Indeed, most models
at MRP 2019 have lower scores on Lpps than on
All Data. We will have more to say about this in
the next section on our experimental results.

Metrics MRP 2019 used two metrics to evaluate
the models: the standard SMATCH scorer (Cai and
Knight, 2013) included in the open-source mtool
software (the Swiss Army Knife of Meaning Repre-
sentation) 2, and an MRP 2019 specific scorer that
is similar to SMATCH but can compare two mean-
ing representation graphs (the ground truth and the
model output) according to certain fine-grained at-
tributes such as edges, node labels and so on. We’ll
mainly use the SMATCH metric but also give MRP
metric for the Lpps test set. We refer the reader to
Oepen et al. (2019) for more details on MRP 2019
datasets and metrics.

4.2 Results

Results on Different Structures Our SMATCH

experimental results are summarized in Table 1.
To see the effects of different encodings of
EDS graphs, we tried five EDS-enhanced sys-
tems. Among the five, three use only GCNs
([G1],[G2],[G3]), from single layer to three lay-
ers, and two with a single BiLSTM layer plus one
or two GCN layers ([LG1],[LG2]). As can be seen
from Table 1, LG1 achieves the highest F1 score,
outperforming Amazon (Cao et al., 2019), the best
overall AMR parser at MRP 2019.

We note that all our five EDS-enhanced systems
perform better than HIT-SCIR, our reference base-
line model. Interestingly, the number of GCN lay-
ers matters and it’s not necessarily the more the
better. The reason for GCN performance degrada-
tion in our work is possible to be over-smoothing,
which was discussed in previous work (Li et al.,
2018).

Among the three with GCN layers only
([G1],[G2],[G3]), the best is G2. When BiLSTM
is added, one layer of GCN ([LG1]) is better than
two ([LG2]). It’s possible there is some theoreti-
cal explanation for this but we suspect it also has
something to do with the dataset. For example, for

2https://github.com/cfmrp/mtool

All Data, the F1 score of BiLSTM plus one layer
of GCN is the same as the one with two layers.

Results on Lpps Some interesting observations
can be made on the Lpps test set. As we mentioned,
this test set contains 100 random sentences from
the book The Little Prince. These sentences seem
to be quite different from those in the training set
given at MRP 2019. So not surprisingly, most
models have poorer performance on this test set
except for Saarland (Donatelli et al., 2019) which
somehow performs better in this test set than the
All Data set. As for HIT-SCIR, its performance on
Lpps is a lot worse than that on All Data. What
is worthwhile noting is that our models, which are
basically HIT-SCIR enhanced with EDS in various
ways, boost its performance on Lpps significantly.
Our best model is even better than Saarland on this
test set. Compared to HIT-SCIT, it increases its F1
scores by 4.6% (from .680 to .726) on Lpps while
only 1.1% on All Data (from .725 to .736). So the
extra EDS information really pays off on this test
set.

SMATCH is a general tool for computing the
overall differences between two answers. To give a
more fine-grained comparison between two mean-
ing representations, MRP has its own scorer to
compute what are called the Tops, Labels, Proper-
ties, Edges, and All scores, where the All scores
are close to the SMATCH score. Table 2 gives MRP
F1 scores for the Lpps test set for our baseline
model HIT-SCIR and our EDS-enhanced models.
Again we see that our models improve the perfor-
mance of the baseline model significantly in all
subtasks, especially in Labels and Properties. For
F1 score on Tops, Labels, Properties, the model
LG1 performs best, 5%, 6% and 9% improvement
respectively. Whereas, G2 performs best in Edge
F1 score, about 3% improvement.

Our model can handle these ”out of domain”
cases better because we have accurate EDS parsing
for them. Consider the verb ”look” in the sen-
tence ”I shall look as if I were suffering.” In the
baseline model, the predicted AMR node for it
is ”look-01”, which is wrong. Our model with
the extra information from EDS correctly labels
it ”look-02”. The possible reason why the base-
line model selects ”look-01” is that ”look-01” ap-
pears nearly twice as often as ”look-02” in train-
ing data: the former 198 times and the latter 103.
However, the EDS subgraph for the phrase ”sb.
look as if ” is node(pron)-edge(arg1)-node(look-v)-
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System Precision Recall F1
All Data Lpps All Data Lpps All Data Lpps

Amazon (Cao et al., 2019) .75 .70 .71 .71 .730 .704
Saarland (Donatelli et al., 2019) .70 .73 .63 .71 .661 .722
SJTU-NICT (Li et al., 2019) .75 .71 .68 .69 .714 .696
Suda-Alibaba (Zhang et al., 2019b) .73 .66 .70 .69 .713 .674

HIT-SCIR (Che et al., 2019) .77 .71 .69 .65 .725 .680

+EDS (GCNs, K=1)[G1] .787 .738 .683 .671 .731 .703
+EDS (GCNs, K=2)[G2] .780 .763 .691 .689 .733 .724
+EDS (GCNs, K=3)[G3] .783 .752 .689 .674 .733 .711
+EDS (BiLSTM+GCNs, K=1)[LG1] .785 .770 .692 .687 .736 .726
+EDS (BiLSTM+GCNs, K=2)[LG2] .785 .774 .690 .678 .735 .723

Table 1: SMATCH scores on the evaluation data, ”All Data” means results on all evaluation data and ”Lpps” is
results on 100 sentences of The Little Prince. In this table, the top part is the official results for four systems
achieving competitive results in MRP 2019; the middle part is the results for our baseline model; the bottom part
”+EDS” are our proposed EDS-enhanced models. For example, ”GCNs, K=1” means EDS graph encoder consists
of one GCN layer, denoted as [G1]; ”BiLSTM+GCN, K=2” represents EDS graph encoder is composed of one
BiLSTM layer and two GCN layers, denoted as [LG2].

System
Tops Labels Properties Edges All

P R F P R F P R F P R F P R F

HIT-SCIR .81 .81 .81 .78 .74 .76 .51 .57 .54 .66 .56 .61 .722 .660 .689
+EDS [G1] .84 .84 .84 .81 .77 .79 .77 .48 .59 .65 .57 .61 .746 .678 .710
+EDS [G2] .82 .84 .83 .83 .78 .81 .76 .52 .62 .69 .59 .64 .771 .697 .732
+EDS [G3] .83 .84 .83 .81 .77 .79 .73 .50 .59 .68 .58 .63 .761 .682 .720
+EDS [LG1] .86 .86 .86 .85 .79 .82 .80 .52 .63 .68 .58 .62 .779 .695 .734
+EDS [LG2] .83 .85 .84 .85 .78 .81 .84 .48 .61 .69 .58 .63 .783 .686 .732

Table 2: MRP scores of Lpps AMR sub tasks. In this table, HIT-SCIR is our baseline model (Che et al.,
2019). ”+EDS(G1)” to ”+EDS(LG2)” correspond to the EDS-enhanced model ”+EDS(GCNs, K=1)” to
”+EDS(BiLSTM+GCNs, K=2)” in Table 1 according to the indexes.

edge(arg1)-node(as+if), which suggests ”look-02”.
EDS graphs often encode multiple tokens as one
node, and this helps predict edges more accurately.
An example is ” blow v away” in ”The wind blows
them away.” The baseline model predicts the edge
label between ”blow” and ”away” as ”:ARG2”,
whereas the gold answer is ”:direction”, which can
be predicted by EDS-enhanced model. Here we
believe the EDS subgraph ”node( blow v away)-
edge(contain)-node(away)” affects the final result.

Results on gold EDS annotations Finally, we
notice that MRP provided gold EDS annotation for
Lpps test data. We tried our models using these
gold EDS annotations on the Lpps test set, and
observed that this actually resulted in a minor re-
duction in F1 scores, around 0.0001 worth than the

model using silver EDS annotations. The reason
the gold label actually performed a bit worse is be-
cause the model was trained using the actual EDS
parsing results, so seems to ”adapted” to the bias
of the EDS parser used.

As a footnote, we remark here that we are aware
of the new results on AMR parsers at MRP 2020
that were released in late November 2020. This
work was done prior to MRP 2020. While MRP
2020 also used Lpps as a test set, the results there
and our results here are not directly comparable as
they were done using different training sets. Fur-
thermore, the main purpose of this paper is about
incorporating EDS graphs into AMR parsing, so
the comparison with the baseline model is more
meaningful.

208



5 Conclusions

In this study, we incorporate the EDS, a meaning
representation that is more accessible than AMR,
to improve the performance of AMR parsing. To
encode EDS graphs for AMR parsing, we used
both LSTM and GCN layers. As a case study, we
enhanced a transition-based AMR parser with EDS
graphs, and showed that on the AMR benchmarks
that the baseline model already performs well, our
EDS-enhanced parsers can further improve its per-
formance. The improvements are especially no-
ticeable on the Lpps (The Little Prince) test set
where the baseline parser performs poorly and lags
behind other AMR parsers at MRP 2019. In fact,
on the Lpps test set, our EDS enhanced parsers
outperform even the best one submitted there.

We can also see some other implications of this
work. For us, the ultimate goal of semantic parsing
is to use it in downstream tasks such as question
answering, reasoning, and knowledge extraction
from texts. Given that almost all meaning represen-
tations are graph-based, we believe our encoding
of EDS graphs with LSTM and GCN layers can
be applied in these downstream tasks. We are cur-
rently exploring this as a future work. Another
insight from this work is about possible connec-
tions among different meaning representations. We
have demonstrated the usefulness of EDS graphs
for AMR parsing. It is likely they can also be useful
for other frameworks, even vice versa. More gen-
erally, whether there is a universal semantic parser
that can take advantages of information from each
framework is an interesting question worth investi-
gating.
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Table 3 contains the values of hyper-parameters.

HYPER PARAMETER VALUE

Word Embeddings
source BERT
dim 768

Model Parameters
Action dim 128
Entity dim 64
Relation dim 64
Hidden dim 256
Dropout 0.2
Layer dropout 0.2
Recurrent dropout 0.2
EDS nodes embedding 64
EDS LSTM hidden dim 64
EDS GCN hidden dim 128
Trainer Parameters
Learning rate scheduler slanted triangular
Gradual unfreezing True
Cut Frac 0.1
Ratio 32
Base learning rate 1× 10−3

BERT learning rate 5× 10−5

Batch size 6
Epoch 20
Gradient clipping 5
Gradient norm 5
Optimizer Adam
β1, β2 0.9,0.999

Table 3: Hyper-parameters settings

211



Proceedings of the 10th Conference on Lexical and Computational Semantics, pages 212–221
August 5–6, 2021, Bangkok, Thailand (online) ©2021 Association for Computational Linguistics

Dependency Patterns of Complex Sentences and Semantic Disambiguation
for Abstract Meaning Representation Parsing

Yuki Yamamoto* Yuji Matsumoto** Taro Watanabe*

*Nara Institute of Science and Technology
{yamamoto.yuki.yt0, taro}@is.naist.jp

**RIKEN Center for Advanced Intelligence Project
{yuji.matsumoto}@riken.jp

Abstract
Abstract Meaning Representation (AMR) is a
sentence-level meaning representation based
on predicate argument structure. One of the
challenges we find in AMR parsing is to capture
the structure of complex sentences which ex-
presses the relation between predicates. Know-
ing the core part of the sentence structure in ad-
vance may be beneficial in such a task. In this
paper, we present a list of dependency patterns
for English complex sentence constructions de-
signed for AMR parsing. With a dedicated pat-
tern matcher, all occurrences of complex sen-
tence constructions are retrieved from an input
sentence. While some of the subordinators
have semantic ambiguities, we deal with this
problem through training classification mod-
els on data derived from AMR and Wikipedia
corpus, establishing a new baseline for future
works. The developed complex sentence pat-
terns and the corresponding AMR descriptions
will be made public1.

1 Introduction
Abstract Meaning Representation (AMR) is a
sentence-level meaning representation based on
predicate argument structure (Banarescu et al.,
2013). AMR Parsing is the task of transforming a
sentence into an AMR graph with nodes and edges,
each representing a concept or relation. While
early studies (Flanigan et al., 2014; Wang et al.,
2015; Artzi et al., 2015; Pust et al., 2015) used de-
pendency parsers to integrate syntactic features to
their models, recent deep neural network-based ap-
proaches (Konstas et al., 2017; Peng et al., 2017;
Zhang et al., 2019; Cai and Lam, 2020) tend to en-
code the input sentence as a sequence without con-
sidering its syntactic structure.

Generally speaking, syntactic and semantic
structures share much in common. It is assumed

1Code and resource are available at https://github.
com/yama-yuki/skeletal-amr.
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Figure 1: Representation of as long as-construction in
dependency tree (left) and AMR graph (right).

that dependency trees and semantic role label-
ing structures have a strong correlation in that
nsubj and dobj can be used interchangeably for
ARG0 and ARG1 role (Xia et al., 2019). Since
AMR is annotated based on PropBank frames
(Palmer et al., 2005), the same could be said for
AMR structures.

This holds to be true for a simple sentence, which
is basically a matrix clause, comprised of a predi-
cate and its arguments. However, it is not always
the case with complex sentence constructions, each
of which consists of a matrix clause and one or
more subordinate clause(s). Consider Figure 1
which shows both dependency and AMR represen-
tation of a complex sentence with a subordinator
as long as. While variables S’s and V’s are inter-
changeable between the representations, predica-
tive relations and subordinator itself are expressed
quite differently. Compared to uniform structures
of simple sentences, various types of complex sen-
tence are used in human language. This charac-
teristics makes it challenging for existing AMR
parsers to capture its structure correctly.

Among AMR parsers which are aware of syntac-
tic structures, CAMR (Wang et al., 2015) directly
transforms the result of dependency parsing into an
AMR graph with transition-based algorithm. As
Figure 2(a) shows an example parse with CAMR,
existing parsers have trouble capturing the relation
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(b) Correct AMR

Figure 2: Result of parsing “As the boy seemed reliable, the girl believed him.” with CAMR.

between two clauses. In this case, CAMR predicts
the relation between believe-01 and seem-01 as
ARG1, though it should be represented as a causal
relation with cause-01 as shown in Figure 2(b).
This is a crucial error as it incorrectly determines
the very core structure of the output graph. We
assume that the solution could be achieved either
by retraining the parser on larger annotated data or
providing the parser with the core structure of the
input sentence in advance. The latter seems more
reasonable in terms of the cost of annotation.

With the motivation to aid AMR parsing task,
we present a method to retrieve all occurrences of
complex sentence constructions from an input sen-
tence using a dedicated pattern matcher. At the
moment, there is no comprehensive resource that
provides structural information about the relations
between two clauses, particularly in AMR frame-
work. Therefore, as our first step, we attempt to
develop a pattern dictionary of English complex
sentences together with the corresponding AMRs
which represent the skeleton structure of the sen-
tence (hereinafter referred to as“skeletal AMRs”).
Then, we provide a pattern matcher which captures
clausal relations between a superordinate and sub-
ordinate clauses in a complex sentence.

Our pattern matching approach faces the prob-
lem of syntactic and semantic ambiguities. When
a complex sentence has more than one subordi-
nate clause, we need to determine which pair of
clauses are related. Consider the following ex-
ample where two subordinate clauses appear in a
single sentence.

(1) ... [if you wish to look at the comparative
risks]SUB1 [if we do not confront terrorist or-
ganizations in their staging areas]SUB2, [how
many people could die as a result of weapons
of mass destruction at some point in the not
too distant future]MAT ? (AMR: bolt-eng-DF-

199-192783-6849434_0102.3)

While there has been studies regarding the syn-
tactic scope of a subordinate clause such as
Utsuro et al. (2000), this problem is beyond the
scope of this paper. We rely on the output of the
dependency parser, which we employ in our pattern
matching system, to decide which pair of clauses
are syntactically related.

Meanwhile, when a subordinator itself is am-
biguous between several senses, we need to select
the correct type of coherence relation between the
clauses. Sentences in (2) show usages of a sub-
ordinator since, which is semantically ambiguous
between causal and temporal senses.

(2) a. Since there is responsibility, we are not
afraid. (AMR: bolt12_6455_6561.15)

b. Also since he turned 80, people had
been paying more and more attention
to Mao Zedong’s birthday. (AMR:
bolt12_10511_7302.5)

In order to resolve the semantic ambiguities
of clause-level coherence relation, inspired by
the work of Shi and Demberg (2019), we take
finetuning-based approach with data augmentation
method. With the support of weakly supervised
data derived from Wikipedia, we achieve the scores
of 75.65% and 83.94% on macro and micro F1 re-
spectively, establishing a new baseline for coher-
ence relation classification of complex sentence
constructions in AMR framework.

To sum up, the contributions of this paper are
the followings:

• We create a comprehensive resource of com-
plex sentence constructions.

• We develop a pattern matching system which
takes a sentence as an input and returns a
corresponding skeletal AMR.
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• We establish a new baseline for semantic dis-
ambiguation task of complex sentence con-
structions in AMR framework.

2 Related Works
While our focus is on clause-level relation of com-
plex sentence constructions, not much study has
been done specifically on this topic in AMR frame-
work. Rather, the topic is dealt with in the field
of discourse structures, where coherence relations
between any text segments are the main focus.

In the studies of discourse parsing, vari-
ous attempts have been made to capture co-
herence relations between pairs of sentences
or clauses (Pitler et al., 2008; Rutherford et al.,
2017; Qin et al., 2017; Bai and Zhao, 2018).
These works basically rely on discourse frame-
works such as Rhetorical Structure Theory (RST;
Thompson and Mann 1987) or Penn Discourse
Tree Bank (PDTB; Prasad et al. 2008).

Most recently, Shi and Demberg (2019) has pre-
sented a finetuning-based approach using the bidi-
rectional encoder representation from transformers
(BERT; Devlin et al. 2019). They designed their
model to learn 11 classes to achieve the state-of-
the-art performance on implicit discourse relation
classification task in PDTB framework.

Their work was motivated by the method taken
by Devlin et al. (2019) to pretrain BERT, which is
called “next sentence prediction task” (NSP). In
the process of pretraining using NSP, the model
is presented with pairs of sentences. The model
predicts whether the second sentence is the actual
subsequent sentence. NSP enables BERT to repre-
sent a pair of sentences by packing them together
as a single sequence.

Some studies have focused on discourse struc-
ture in AMR framework. Donatelli et al. (2018)
enhances AMR by annontating tense and aspect
phenomena at discourse-level. The work by
O’Gorman et al. (2018) targets relations of sen-
tences and provides annotation of coreference in
multi-sentence AMR corpus. Yet, neither the
structure of the complex sentence constructions
nor the coherence relations between subordinate
and matrix clauses have been much of a concern in
this framework.

3 Pattern Matching System
In this section, we will give a description of our
pattern matching system. The entire workflow is
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Figure 3: Pattern matching system workflow for a sen-
tence “Since airline flights were disrupted, the company
chartered a plane to fly the executives back to the West
Coast.”.

illustrated in Figure 3, where the system takes a
sentence as an input and returns a skeletal AMR
if it is a type of complex sentence construction.
The disambiguation module will be described in
the later section. We will use the sentence given
as a running example throughout this paper.

3.1 Dictionary of Dependency Patterns

Complex sentence constructions in English gram-
mar can be distinguished by their consisting sub-
ordinator. When creating a pattern dictionary,
we refer to comprehensive studies on grammars
(Quirk et al., 1985; Yamaguchi, 2013), which pro-
vide a typology of subordinators. To cover various
types of constructions, we include simple (e.g. if,
because), complex (e.g. as if, so that) and corre-
late (e.g. no sooner ... than) subordinators clas-
sified in Quirk et al. (1985). In addition to that,
we also include the type of constructions involving
degree and quantity which are introduced to AMR
in Bonial et al. (2018).

Our pattern matching method depends not only
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on lexical processing but also on syntactic pro-
cessing. For syntactic framework, we follow the
annotation of dependency structure in Universal
Dependencies v2 format (UD; Nivre et al. 2020),
which makes our patterns a form of dependency
trees. The nodes in trees are represented either
by a lemma form of a lexical entry or an abstract
one defined by POS tags, where every edge has a
dependency relation label. Regular expression is
employed to place any form of a specific element.
We provide these dependency patterns with a cor-
responding skeletal AMR that describes the core
structure of an input sentence. Depending on the
type of construction, a set of variables are used
to take alignments between patterns and skeletons.
At the moment, our dictionary includes 70 distinct
patterns2.

Figure 4 illustrates an example of a paired en-
try of a dependency pattern and skeletal AMR for
because-construction:
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(a) Dependency Pattern
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(b) Skeletal AMR

Figure 4: Pattern dictionary entry of complex sentence
construction with simple subordinator because.

The dependency pattern in Figure 4(a) describes
the simplest type of structure in our dictionary.
The nodes that are represented as variables s1 and
v1 capture a predicate and its argument in a matrix
clause, whereas s2 and v2 capture a subordinate
clause. Subordinators are basically described as
a’s, where their lemma forms are given as cues.
REGEX operators are used on both nodes and edges
to flexibly match possible elements. For example,
the dependency relation of {REGEX:ˆnsubj} be-
tween s’s and v’s enables us to handle subjects of

2We make it available for users to add new patterns to the
dictionary for further expansion.

both the active (nsubj) and passive (nsubj:pass)
voice. In the case of TAG:{REGEX:ˆV}, REGEX is
used to represent any POS tag that starts from “V”,
meaning that it captures any form of a verb. Fig-
ure 4(b) shows the corresponding skeletal AMR,
which represents a core relation between the two
predicates. In all patterns in the dictionary, V1 and
V2 act as slots for the predicates of the matrix and
subordinate clauses.

Some subordinators could indicate more than
one coherence relations. For example, Figure 5
shows the case of our running example with since,
where the subordinator presents either (a) causal
or (b) temporal relation:
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(b) Temporal

Figure 5: Skeletal AMRs of ambiguous since.

In the pattern dictionary, rather than enumerating
entries for every possible structure, we describe
a primitive structure of skeletal AMR to dynami-
cally generate the actual relation, which is in ac-
cordance with the Generative Lexicon approach
(Pustejovsky, 1995). More specifically, we acco-
modate all possible relations separating them with
a vertical bar on an edge of a skeletal AMR in
the way described in Figure 6(b), which we call a
“primitive skeleton”:
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(b) Skeletal AMR

Figure 6: Pattern dictionary entry of complex sentence
construction with simple subordinator since.
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The disambiguation step will follow after the pat-
tern matcher returns the primitive skeleton. For
simplicity and consistency, we use shortcuts to
represent the relations if available, such as using
a relational role :cause instead of a predicative
frame cause-01 that can be substitutionally used.

Aside the semantic ambiguity of relation men-
tioned above, structural ambiguity could be seen
when several types of structure exists within the
same relation. Compare Figure 5(b) and 7, where
both skeletal AMRs represent temporal relation but
show different structures:
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Figure 7: Skeletal AMR of as, once, etc. representing
temporal relation.

Since the primitive skeleton only describes the sim-
plest form, recovery step needs be taken to generate
the final skeletal AMR for ambiguous subordina-
tors. Therefore, we define a possible interpretation
(such as Figure 5(b) and 7) for primitive skeleton
of each ambiguous subordinator, which will be re-
ferred to after the skeletal AMR is disambiguated.
This idea share similarity with the notion of mean-
ing postulates (Carnap, 1952; Dowty, 1979). By
following the definition, the structural ambiguity
of skeletal AMRs will be resolved.

3.2 Pattern Matching Method
Our pattern matching method builds on the
dependency matching module introduced by
Honnibal et al. (2020) that matches subtrees within
a dependency tree. The matcher works in naive
manner, searching from the top to the bottom of
the pattern dictionary. It is originally capable of
handling recursive nature of clauses. Namely, even
when an input sentence has more than two clauses,
the matcher searches all possible patterns for all
clause pairs in a single run.

Meanwhile, it suffers from the following situa-
tions: “overlap” where multiple patterns acciden-
tally match with a pair of clauses and “copula”
where the matcher fails to capture copular con-
structions due to the limitation of expressiveness
of patterns. To account for these cases, we extend
the matching method by incorporating additional
functions.

Overlap Duplicated matching may occur within
a single pair of clauses since some patterns share

their forms.

(3) As if he were still in his old job, Mr.Wright
enjoys a $120,000 annual office expense al-
lowance.

When the target sentence is (3), the dependency
matcher returns the following overlapping patterns:
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Figure 8: Overlap of patterns for as and as if.

This mostly occurs between simple and complex
subordinators in Quirkian term (e.g. as and as
far as, if and even if, etc.). To address this issue,
we assign an ID for each entry in the pattern dic-
tionary to refer to the type of subordinators. For
example, as is assigned “#1.6.1”, whereas as if is
“#2.2.1”. The first number in an ID represents the
number of words consisting the subordinator. The
second describes its sorted order while the third is
organized by the structure of the pattern. When
the matcher detects an overlap, it looks up the IDs
to select the most desirable output. In the case of
overlap between simple and complex subordina-
tors, the matcher compares the first number in ID,
selecting the pattern with more words. In this case,
as if is regarded as the desirable pattern.

Copula Verbs that show a relationship between
subjects and objects are referred to as copulas
(e.g. “is” for “John is tall.”). Since UD format
refrains from using a copula as a head of its com-
plement3, the matcher cannot find a copular clause
with complex sentence patterns alone. To avoid
redundancy of creating additional patterns substi-
tuting V’s with copulas for each entry in dictionary,
we make an extra pattern outside that describes a
copula-complement structure:

3For “John is tall.”, UD treats “tall” as a head of “is”.
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Figure 9: Dependency pattern of copular construction.

With the implementation of a converter, our system
can detect copular clauses in complex sentences
and convert it to a copular-headed structure when
matched, in the way illustrated in the gray nodes in
Figure 3.

4 Semantic Disambiguation Experiment

In this section, we describe details of our study
on semantic disambiguation. We observe that the
coherence relation between subordinate and super-
ordinate clauses are commonly ambiguous among
causal, conditional, concessional, and temporal
senses. Considering that we are dealing with re-
lations between clauses, which basically can be
regarded as pairs of simple sentences, we can cast
the problem of semantic ambiguity as a multi-class
sentence-pair classification task. To be more spe-
cific, we assign the most typical class labels in-
cluding cause, cond, conc, and time to make it a
4-class classification setting.

Throughout the experiment, we use the pre-
trained “bert-base-uncased” model for finetuning.
BERT is pretrained under next sentence prediction
as well as masked language modeling task. During
pretraining, the model predicts the actual next sen-
tence from a pair of candidate sentences. Thus, the
model is expected to learn what the next sentence
should look like. By finetuning BERT on a set of
pairs of clauses, we can further expect the model
to capture coherence relations between them.

Our input will be a separate pair of clauses with
special tokens “[CLS]” and “[SEP]”. While BERT
takes the input in sequential manner, we would like
the model to take advantage of dependency parsing,
which we apply in the process of pattern matching.
Therefore, we add artificial tags of“<”and“>”
to indicate the head verb of each clause. The input
format of our running example would look like:
“[CLS] airline flights < were > disrupted [SEP] the
company < chartered > a plane to fly the executives
back to the West Coast [SEP]”.

4.1 Experimental Setup
For creating the dataset, we use the lateset release
of AMR corpus (LDC2020T02), which provides
59.2k pairs of sentences and AMR graphs. To ex-
tract complex sentence constructions from the cor-
pus, we use the Stanza pipeline (Qi et al., 2020)
for lexical and syntactic processing of the sentences
and employ our pattern matcher with all patterns
in the dictionary. In order to check whether the
corresponding AMR graph describes the relation
we want for each class, we look for alignments be-
tween sentence tokens and AMR graphs45. Finally,
we split the sentence to obtain a pair of clauses and
a subordinator.

While the data derived from AMR corpus can
be regarded as “supervised”, the amount is rela-
tively small with the total of 1,933 pairs of sub-
ordinate and matrix clauses. As it consumes time
and money to create more supervised data, we take
weak supervision approach to augment training
data. In other words, using specific subordina-
tors that are known to be unambiguous in AMR
corpus as linguistic cues, we seek to obtain com-
plex sentences from larger corpus. We use raw data
from Wikipedia for data augmentation to generate
“weakly supervised” data. The list of subordina-
tors used in this method is shown in Table 1. The
distribution of each data, which we will refer to as
AMR and WIKI data, is illustrated in Table 2. The
data comprises (subordinate clause, superordinate
clause, subordinator, class label) quadruplets.

Label Subordinators
cause because
cond if, unless
conc although, though, even if
time once, whenever

Table 1: Subordinators used to create weakly super-
vised data (WIKI data).

Label AMR WIKI
cause 442 27,264
cond 1,002 26,756
conc 75 46,213
time 414 19,558
Total 1,933 119,791

Table 2: Distributions of labels in AMR and WIKI data.

4We use the alignments provided in the corpus that are
automatically generated.

5We only target the simple structure such as the one pre-
sented in Figure 7, which we assume represent typical relation
for each class.
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Cosidering the size of AMR data, we make 5
splits6 of the data to perform 5-fold cross valida-
tion. When training on WIKI data, we average the
scores of 5 runs with different random seeds to en-
sure stability. In addition, we perform grid search
for hyperparameter tuning over the options in Table
3. All models will be evaluated using both Macro
and micro F1 scores (FM and Fm, respectively).
Variances will be given in parentheses.

Hyperparameter Values
batch size 16, 32, 64
learning rate 2e-05, 3e-05, 5e-05
epochs 3, 5, 10

Table 3: Hyperparameter options for grid search.

4.2 Baseline Model
As our baseline, we finetuned BERT solely on
AMR data. To make best use of the data, we com-
pared BERT→AMR with BERT→AMRs (with
subordinators as a feature). One of BERT’s “un-
used tags” is placed to specify the position of a sub-
ordinator in an input sequence: “[CLS] [unused_0]
subordinator [unused_0] subordinate clause [SEP]
matrix clause [SEP]”. As presented in Table 4, it
turned out that explicit information of subordina-
tors was not effective in our experiment, as opposed
to the general tendency in explicit vs implicit con-
nective settings (Pitler et al., 2008). Therefore, we
choose BERT→AMR as our baseline and seek for
other ways to make use of subordinators.

Models FM Fm

BERT→AMR 64.06(±.06) 74.29(±.03)
BERT→AMRs 22.43(±.02) 54.77(±.03)

Table 4: Performance of baseline models.

5 Use of Weakly Supervised Data

5.1 Approaches
In the experiments, we take several approaches to
examine the effect of augmentated data on classi-
fication performance. For direct comparison of
the training data, BERT→WIKI is solely fine-
tuned on WIKI data to see whether the model
would benefit from the larger weakly supervised
data. BERT→MIX is finetuned on a combined
set of data which consists of AMR data and
certain amount of additional WIKI data. The

6Train:Dev:Test=3:1:1 for each split.

amount of WIKI data used ranges from 2～20k,
where we add 2k sentences7 at a time . We take
this approach with an expectation that WIKI data
would complement the inbalanced distribution of
AMR data to perform better than the baseline
or BERT→WIKI. Finally, we evaluate the model
marked as BERT→WIKI→AMR which is first
finetuned on WIKI data, then further finetuned on
AMR data. This is conducted under our hypothe-
sis that “prefinetuning” on WIKI data would make
BERT model fit to our task than the original model,
which is just pretrained on next sentence prediction
task.

5.2 Results and Analyses

Models FM Fm

BERT→AMR (baseline) 64.06(±.06) 74.29(±.03)
BERT→WIKI 47.67(±.00) 61.72(±.00)
BERT→MIX8k 67.12(±.01) 77.50(±.00)
BERT→WIKI→AMR 72.43(±.02) 81.22(±.00)

Table 5: Performance of each approach. Only the best
performing model is presented for BERT→MIX.

The scores of all approaches are presented to-
gether in Table 5. The results show that training on
weakly supervised data by itself does not improve
the baseline, with BERT→WIKI harming the per-
formance by 16.39% points on FM and 12.57%
points on Fm. This may be attributed to the gap of
construction types between WIKI and AMR data.
Meanwhile, we see improvements of 3.06% and
3.21% when we add 8k amount of WIKI data to
AMR data. The transition of scores by the amount
of added data is presented in Figure 10. Both FM

and Fm show an increase as we combine AMR
and WIKI data until they reach the peak at 8k.
Further addition only lead to drop the model’s per-
formance. This suggests that too much amount
of WIKI data dilutes the presence of supervised
AMR data. We could predict that training on full
addition of WIKI data would deteriorate its perfor-
mance near to that of BERT→WIKI. Among all
our approaches, BERT→WIKI→AMR achieved
the best results with 8.37% and 6.93% increase as
expected. This proves the effectiveness of prefine-
tuning on weakly supervised data when you have
supervised data of a small size.

Additionally, we checked whether our prepro-
cessing step of adding artificial tags (“<” and “>”)
in section 4 helped the model’s performance. With

7Balanced data with 0.5k for each class label.
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Figure 10: Score transitions of BERT→MIX by amount
of WIKI data added. “k” stands for 1,000.

untagged version of BERT→WIKI→AMR scor-
ing 71.21% for FM and 80.47% for Fm, we see
1.22% and 0.75% increase for tagged version. We
find that the improvements achieved are not as
much as utilizing weakly supervised data, but still
beneficial to some extent considering it is a by-
product of dependency matching.

While it was not effective to use subordinators as
features, it remains reasonable to take advantage of
its information. Therefore, we make modifications
to the trained models in Table 5. We first create
a list of ambiguous subordinators and their possi-
ble labels (e.g. since is ambiguous between cause
and time). When we feed a complex sentence, its
subordinator will be searched in the list to check
whether it is potentially ambiguous. If it turns out
to be true, a restriction will be applied to the soft-
max layer by lowering the probability of irrelevant
class labels to 0. In other words, the models are
modified to only look at possible labels defined in
the list.

Models FM Fm

BERT→AMR+r 67.11(±.05) 77.18(±.03)
BERT→MIX8k+r 70.76(±.01) 80.52(±.00)
BERT→WIKI→AMR+r 75.65(±.03) 83.94(±.01)

Table 6: Performance with subordinator as restrictions
on softmax layer.

The results after applying the restriction are
shown in Table 6 with +r in model names. Com-
pared to the performance in Table 5, we achieve
overall improvements of 3.05～3.64% on FM

and 2.72～3.02% on Fm for all models. Table
7(a) and 7(b) present precision, recall, and F1
of BERT→AMR and BERT→AMR+r by labels.

The approach seems mostly effective except for
conc where the precision decreases by 5.75%.
With further analysis on confusion matrices on
the first split of data for cross validation in Ta-
ble 8, we find the number of false positive errors of
conc increased. This is due to an error predicting
sentences with while, which we regard ambiguous
between conc and time. When the correct label
is time, the model first predicted cause or cond.
Even after the restriction was applied, the model
predicted conc. Overall, the restriction seems to
help the models reduce false positive errors.

(a) BERT→AMR
Labels P R F
cause 60.51(±.07) 68.93(±.04) 64.34(±.04)
cond 84.00(±.02) 84.91(±.03) 84.43(±.02)
conc 48.93(±.46) 43.16(±.19) 45.44(±.25)
time 72.96(±.21) 54.17(±.05) 62.01(±.08)

(b) BERT→AMR+r
Labels P R F
cause 63.71(±.07) 73.19(±.03) 68.00(±.03)
cond 89.17(±.02) 84.91(±.03) 86.97(±.02)
conc 43.18(±.21) 43.16(±.19) 43.07(±.19)
time 73.25(±.18) 67.92(±.06) 70.40(±.10)

Table 7: Performance by labels.

(a) BERT→AMR
Predicted Labels

True Labels cause cond conc time
cause 55 15 4 6
cond 10 179 1 6
conc 4 5 12 1
time 10 12 0 26

(b) BERT→AMR+r
Predicted Labels

True Labels cause cond conc time
cause 57 11 3 9
cond 10 179 1 6
conc 4 5 12 1
time 7 3 5 33

Table 8: Confusion matrices of models trained on the
first split of data for cross validation.

6 Conclusion
With the intention to capture the structure of com-
plex sentence constructions in AMR framework,
we proposed a pattern matching method using a
list of dependency patterns and its corresponding
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skeletal AMRs. In the course of creating a com-
prehensive pattern dictionary, we observed seman-
tically ambiguous entries. In order to resolve the
semantic ambiguities, we framed the problem as a
sentence-pair classification task and finetuned pre-
trained BERT models on data derived from AMR
and Wikipedia corpus. Through the experiments,
we found that the supplemental usage of weakly su-
pervised data generated from Wikipedia effectively
improves performance of the models compared to
the one trained solely on small-sized supervised
data. A natural next step will be to incorporate the
presented method in AMR parsing task, which we
leave for future work.
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Abstract

We present new results for the problem of se-
quence metaphor labeling, using the recently
developed Visibility Embeddings. We show
that concatenating such embeddings to the in-
put of a BiLSTM obtains consistent and signif-
icant improvements at almost no cost, and we
present further improved results when visibil-
ity embeddings are combined with BERT.

1 Introduction

When browsing through vision-language datasets,
one can make the intuitive observation that their
textual parts (“visual corpora”) contain more phys-
ical language, mostly descriptive, which tends to
be non-metaphorical by nature (See, for example,
typical images from the Visual Genome dataset in
Figure 1). Recently, this property was used to build
visibility embeddings, which aim to provide a good
estimation of a word’s concreteness, a feature that
has been long related to metaphoricity (Lakoff and
Johnson, 1980; Turney et al., 2011).

Many metaphors indeed involve noticeable dif-
ferences between the abstractness of words con-
structing them, like “clean conscience” (vs. “clean
air”). Metaphors are not created in isolation, com-
monly do not stand alone as non-literal expressions,
and are highly context-dependent in nature. Even
the most concrete and physical text can be consid-
ered as metaphorical when mentioned in a different
context than its original one, or in proximity to an-
other text from the target domain. For example, a
single use of a verb like “push” or “leak” can have
both literal and metaphorical meanings, in relation
to its context (see Figure 1).

Technically, the task of metaphor detection at
the sentence level is commonly approached as one
of the following two tasks:
(1) Sequence Labeling, in which each token in the
sentence is classified as either “metaphorical” or

Figure 1: Images from the Visual Genome (Krishna
et al., 2016) along with their literal (“L”) description,
and a metaphorical (“M”) sentence with a similar verb
from the MOH-X dataset (Mohammad et al., 2016)
(concrete words in green and abstract words in red).

“literal” (multiple outputs per sentence).
(2) Classification of a specific target word, usually
the main verb (one output per sentence). This task
is sometimes called “verb classification”.

Recently, Kehat and Pustejovsky (2020) pre-
sented the simply constructed Visibility Embed-
dings (VE), which use references to visual/non-
visual corpora to estimate word concreteness, and
applied it to the task of verb-classification. In this
paper we apply VE also to the sequence labeling
task, and show how they consistently improve the
result of a BiLSTM model with BERT. We also
discuss possible problems when reporting results
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on very small annotated datasets, and the effect on
adding GloVe to the model input.

2 Background and Previous Work

2.1 Visibility Embeddings

Visibility embeddings (VE) were shown by (Kehat
and Pustejovsky, 2020) to be useful for metaphor
detection when concatenated to the input of BiL-
STM models for the verb classification task. These
simple and no-cost embeddings, are created by
checking the occurrence of each word in a set of
different visual and non-visual corpora, as a way to
estimate its concreteness. They developed the big
visual corpus (BVC), which contains the textual
parts of multiple vision-language datasets, such as
Visual Genome (Krishna et al., 2016), ImageNet
(Deng et al., 2009), MSCOCO (Lin et al., 2014)
and Flick r 30K (Young et al., 2014), as well as
a “non-visual” corpus, Brown−BV C, which is
the subtraction of the BVC from the Brown corpus
(Francis and Kucera, 1964). These two corpora
were previously shown (Kehat and Pustejovsky,
2017) to be highly concrete and highly abstract on
average, respectively.

2.2 Metaphor Detection

The current state-of-the-art in metaphor detection is
achieved by neural methods, enriched with contex-
tual word embeddings (such as ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2019)), and com-
monly combined with varied linguistic features and
metrics. Some notable results are the ones by Gao
et al. (2018) who used ELMo and BiLSTM, Mao
et al. (2019) who also experimented with BERT and
features that rely on human metaphor processing,
Dankers et al. (2019) who performed joint learn-
ing with emotion prediction, and Le et al. (2020)
who used graph convolutional neural networks with
dependency parse trees.

Impressive results1 were presented in the 2018
Metaphor Detection Shared Task (Leong et al.,
2018), with most of the groups using neural models
with other linguistic elements like POS tags, Word-
Net features, concreteness scores and more (Wu
et al., 2018; Swarnkar and Singh, 2018; Praman-
ick et al., 2018; Bizzoni and Ghanimifard, 2018),
as well as in the more recent 2020 Shared Task
(Leong et al., 2020), with the majority of groups

1yet not directly comparable to ours, since they used dif-
ferent train-test separations and evaluation, see Dankers et al.
(2020)

using some variation of BERT in addition to the
other features (Su et al., 2020; Gao and Zhang,
2002; Kuo and Carpuat, 2020; Torres Rivera et al.,
2020; Kumar and Sharma, 2020; Hall Maudslay
et al., 2020; Stemle and Onysko, 2020; Liu et al.,
2020; Brooks and Youssef, 2020; Chen et al., 2020;
Alnafesah et al., 2020; Li et al., 2020; Wan et al.,
2020; Dankers et al., 2020).

Embedding-based approaches such as in Köper
and Schulte im Walde (2017) and Rei et al. (2017)
proved to work effectively on several annotated
datasets. Different types of word embeddings were
studied, including embeddings trained on corpora
representing different levels of language mastery
(Stemle and Onysko, 2018), and embeddings repre-
senting different dictionary categories in the form
of binary vectors for each word (Mykowiecka et al.,
2018). Previous work by Turney et al. (2011),
Tsvetkov et al. (2014) and Köper and Schulte im
Walde (2017) showed concreteness scores to be
effective for Metaphor Detection, however, they all
used fix concreteness score lists, such as the MRC
(Coltheart, 1981) and the 40K list by Brysbaert
et al. (2014), either as a reference or for training.

3 Model Details

As a base structure we use the simple BiLSTM
architectures presented by Gao et al. (2018). The
sequence labeling model (see Figure 2) consists of
two layers, a BiLSTM and a feedforward layer, to
get a label for each word in the sentence. We imple-
mented the model in Python using the AllenNLP
package (Gardner et al., 2017).

Figure 2: Simple sequence model with multiple out-
puts, one per word in the sentence.

We use a pretrained BERT model provided by
the AllenNLP package, with 24 layers and 1024
hidden states, trained on cased English text. The

223



input vector for the model consists of the concate-
nation of the 1024-dimensions BERT vector (using
all the layers of the BERT model), the GloVe em-
beddings (Pennington et al., 2014) (not in all cases,
see discussion in Section 4.3), and the VE of varied
length (we experimented with vectors from length
50 and 300). Hyperparameters are fine-tuned on
each dataset.

4 Experiment Setting and Results

We present results and comparison for two of the
most common datasets for metaphor detection:
VUA (Steen et al., 2010) and MOH-X (Moham-
mad et al., 2016). Annotated datasets for the valida-
tion and training of metaphor detection systems are
not easily created, and require a level of expertise.
The available datasets are therefore relatively small,
hand crafted sets of several hundreds to a few thou-
sands sentences, mostly only partially annotated
for the metaphoricity of their main verb. As a re-
sult, the F1-scores vary highly, even with the slight
change in parameters. In order to provide a consis-
tent evidence to our algorithm’s performance, we
chose to compare not only the maximal F1-scores
gained by each model, but also present a “param-
eterized” F1-score, over different learning rates.
This would allow us to analyze the results while
ignoring very highly-frequent fluctuations in the
performance of the models.

4.1 VUA

We used the labels assigned to each token by the
original VUA annotators. The verbs used for verb-
testing are the ones used by Gao et al. (2018) (a
large subset of all the verbs). Adding VE to the
simple BiLSTM-BERT model achieves very high
results (See Table 1). In order to provide more
detailed comparison with previous models, results
per POS are shown in Table 2.

Figure 3 demonstrates the consistent improve-
ment gained by using VE by comparing four types
of input vectors with different BERT - VE - GloVe
combinations. Very similar learning rates (+-
0.0001) can vary in up to +2 F1-Score, demon-
strating the high variance those models have given
the relatively small dataset. The random vector
is of the same length and value range as the VE,
with each value chosen randomly, to demonstrates
that the length of the input vector has some effect
on the results in terms of when the model reaches
its maximum F1-score, as seen by the shifted gray

Model P R F1
Verb Wu et al.* 60.0 76.3 67.2
Testing Gao et al. 68.2 71.3 69.7

Mao et al. 69.3 72.3 70.8
Su et al.* 78.9 81.9 80.4
BERT+VE 72.2 75.0 73.6

All Wu et al.* 60.8 70.0 65.1
POS Gao et al. 71.6 73.6 72.6
Testing Mao et al. 73.0 75.7 74.3

Dankers et al. — — 76.8
Su et al.* 75.6 78.3 76.9
BERT+VE 77.1 77.8 77.4

Table 1: Sequence metaphor labeling on the VUA. Re-
sults denoted by * are not directly comparable.

line (BERT only). In this specific case, adding the
GloVe vector improves the results (see discussion
in Section 4.3).

Figure 3: F1-scores as a function of the learning rate for
VUA-ALL. The lines are moving averages of the corre-
sponding points. Yellow - BERT + Visibility Embed-
dings + GloVe, Red - BERT + Visibility Embeddings,
Orange - BERT + random vector, Gray - BERT only.

Figure 4 shows a similar comparison but in this
case, the model is maximized on just the verbs
of the classification task (as opposed to all words
above). In all cases, adding visibility embeddings
to the BERT embeddings achieves a no-cost im-
provement in the F1-score, both on average and as
the maximal result gained for the model (over the
given learning-rates gaps).
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Figure 4: VUA target verbs testing. Yellow - BERT +
Visibility Embeddings, Orange - BERT + random vec-
tor, Red - BERT with embeddings based on vocabu-
lary (uniform positive value for all valid words), Gray
- BERT only.

POS P R F1
VERB 71.92 75.62 73.72
NOUN 71.33 67.85 69.55
ADP 89.36 91.55 90.44
ADJ 69.10 62.84 65.82

Table 2: Results by POS tags of the best model for
VUA-All (BERT + GloVe + VE).

4.2 MOH-X

The MOH-X dataset (as a subset of the largest
MOH dataset) was originally annotated for the
main verbs only. It is small, and contains around
650 sentences. For the sequence labeling task, we
use the default base case of assigning the rest of the
tokens a “literal” label (as demonstrated in previous
work). The results are presented in Table 3.

As a direct result from its size, testing on the
MOH-X using ten-fold-CV with random splits
yields fluctuating results. After conducting 50 ran-
dom ten-fold-CVs (500 splits over all), we got an
average F1-score of 82.3, with a maximum of 84.0
and a minimum of 81.0. Even though these two
vary significantly, the minimum F1-score obtained
is still higher in 1.0 F1-score point than the one
recently reported by Mao et al. (2019) .

The above observation makes it hard to optimize
and fine-tune the parameters of the model. We
noticed that in general, higher F1-scores are gained
for splits where the training set and evaluation set
contain instances of the same verbs. Previously

Model P R F1
Gao et al. (2018) 79.1 73.5 75.6
Le et al. (2020) 79.7 80.5 79.6
Mao et al. (2019) 77.5 83.1 80.0
BERT+VE 83.8 85.8 84.6
BERT+VE (rand-CV) 80.8 84.7 82.3

Table 3: Results on the MOH-X dataset using sequence
labeling. Our model improves upon the previous state
of the art by Mao et al. (2019).

reported results did not explicitly mention this issue.
To maintain consistency with the results by Gao
et al. (2018) and Le et al. (2020), we present our
results both on their prechosen sets, as well as on
randomly chosen splits (rand-CV).

4.3 Further Discussion
In some cases, adding the GloVe to the input vec-
tor does not help to improve the results, and even
worsens them. This is true for both the sequence
and classification tasks on the MOH-X dataset, and
varies in the VUA (as can be seen in Figures 3, 4),
though the differences are relatively small.

Concatenating GloVe to the input vector pro-
vides additional generalized non-domain-specific
(the pre-trained GloVe was trained on Wikipedia)
context for each word in a sentence. The MOH-X
dataset contains shorter sentences, so on average,
every word in the sentence has more weight when
determining the metaphoricity of the target verb.
In particular, when the verb is used metaphorically,
the few other words in the sentence play a special
role in giving us clues about it, say, when they be-
long to different domains. Adding the information
from GloVe might smooth this effect.

When applied to the VUA, the Glove’s effect is
minimized, since it contains longer sentences and
we have more words that are not directly related
to the main metaphor presented by the target verb.
In general, the VUA gets much lower results than
the MOH-X on all performed tasks, since it was
created from real sentences, while the MOH-X was
handcrafted from WordNet sample sentences for
the specific task of detecting non-direct language.
in real world texts, we should expect similar lower
performances.

5 Summary

We have presented new and improved results for se-
quence metaphor labeling for the VUA and MOH-
X datasets using visibility embeddings and BERT
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as inputs for a simply constructed BiLSTM. We
provided detailed comparison for the effect of
adding VE to the model, and showed it to be a
useful no-cost component to a metaphor detection
system.
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Abstract

Cross-lingual representations have the poten-
tial to make NLP techniques available to the
vast majority of languages in the world. How-
ever, they currently require large pretraining
corpora or access to typologically similar lan-
guages. In this work, we address these ob-
stacles by removing language identity signals
from multilingual embeddings. We exam-
ine three approaches for this: (i) re-aligning
the vector spaces of target languages (all to-
gether) to a pivot source language; (ii) remov-
ing language-specific means and variances,
which yields better discriminativeness of em-
beddings as a by-product; and (iii) increas-
ing input similarity across languages by re-
moving morphological contractions and sen-
tence reordering. We evaluate on XNLI and
reference-free MT across 19 typologically di-
verse languages. Our findings expose the limi-
tations of these approaches—unlike vector nor-
malization, vector space re-alignment and text
normalization do not achieve consistent gains
across encoders and languages. Due to the ap-
proaches’ additive effects, their combination
decreases the cross-lingual transfer gap by 8.9
points (m-BERT) and 18.2 points (XLM-R) on
average across all tasks and languages, how-
ever. Our code and models are publicly avail-
able.1

1 Introduction

Cross-lingual text representations (Devlin et al.,
2019; Conneau et al., 2019) ideally allow for trans-
fer between any language pair, and thus hold the
promise to alleviate the data sparsity problem for
low-resource languages. However, until now, cross-
lingual systems trained on English appear to trans-
fer poorly to target languages dissimilar to English
(Wu and Dredze, 2019; Pires et al., 2019) and for

1https://github.com/AIPHES/
Language-Agnostic-Contextualized-Encoders
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Figure 1: Zero-shot performance on XNLI and RFE-
val vs. language similarity to English (top), and data
sizes in Wikipedia (bottom). Each point is a language;
brackets give the Pearson correlation of points on the x-
and y-axis. Zero-shot performance is based on the last
layer of m-BERT and is standardized (zero mean, unit
standard deviation) for better comparison.

which only small monolingual corpora are available
(Conneau et al., 2019; Hu et al., 2020; Lauscher
et al., 2020), as illustrated in Fig. 1.2

As a remedy, recent work has suggested to
train representations on larger multilingual corpora
(Conneau et al., 2019) and, more importantly, to re-
align them post-hoc so as to address the deficits of
state-of-the-art contextualized encoders which have
not seen any parallel data during training (Schuster
et al., 2019; Wu and Dredze, 2019; Cao et al., 2020).
However, re-mapping (i) can be costly, (ii) requires
parallel data on word or sentence level, which may
not be available abundantly in low-resource set-

2We consider language similarity as the cosine similarity
between the average representations of two languages over
monolingual corpora from Wikipedia.
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tings, and (iii) its positive effect has not yet been
studied systematically.

Here, we explore normalization as an alternative
to re-mapping. To decrease the distance between
languages and thus allow for better cross-lingual
transfer, we normalize (i) text inputs to encoders
before vectorization to increase cross-lingual sim-
ilarity, e.g., by reordering sentences according to
typological features, and (ii) the representations
themselves by removing their means and standard
deviations, a common operation in machine and
deep learning (LeCun et al., 1998; Rücklé et al.,
2018). We evaluate vector normalization and post-
hoc re-mapping across a typologically diverse set
of 19 languages from five language families with
varying sizes of monolingual corpora. However,
input normalization is examined on a smaller sam-
ple of languages, as it is not feasible for languages
whose linguistic features cannot be obtained au-
tomatically. We investigate two NLP tasks, and
two state-of-the-art contextualized cross-lingual
encoders—multilingual BERT (Devlin et al., 2019)
and XLM-R (Conneau et al., 2019). Further, we
provide a thorough analysis to investigate the ef-
fects of these techniques: (1) across layers; (2) to
decrease the cross-lingual transfer gap, especially
for low-resource and dissimilar languages; and (3)
to eliminate language identity signals from multi-
lingual representations and thus induce language-
agnostic representations.

We evaluate on two cross-lingual tasks of vary-
ing difficulty: (1) zero-shot cross-lingual natural
language inference (XNLI) measures the transfer
ability of inference from source to target languages,
where only the source language is annotated;and
(2) reference-free machine translation evaluation
(RFEval) measures the ability of multilingual em-
beddings to assign adequate cross-lingual semantic
similarity scores to text from two languages, where
one is frequently a corrupt automatic translation.

Our contributions: We show that: (i) input nor-
malization leads to performance gains of up to
4.7 points on two challenging tasks; (ii) normal-
izing vector spaces is surprisingly effective, rivals
much more resource-intensive methods such as re-
mapping, and leads to more consistent gains; (iii)
all three techniques—vector space normalization,
re-mapping and input normalization—are orthog-
onal and their gains often stack. This is a very
important finding as it allows for improvements on
a much larger scale, especially for typologically

dissimilar and low-resource languages.

2 Related Work

Cross-lingual Transfer Static cross-lingual rep-
resentations have long been used for effective cross-
lingual transfer and can even be induced without
parallel data (Artetxe et al., 2017; Lample et al.,
2018). In the monolingual case, static cross-lingual
embeddings have recently been succeeded by con-
textualized ones, which yield considerably better re-
sults. The capabilities and limitations of the contex-
tualized multilingual BERT (m-BERT) representa-
tions is a topic of vivid discourse. Pires et al. (2019)
show surprisingly good transfer performance for m-
BERT despite it being trained without parallel data,
and that transfer is better for typologically similar
languages. Wu et al. (2019) show that language rep-
resentations are not correctly aligned in m-BERT,
but can be linearly re-mapped. Extending this, Cao
et al. (2020) find that jointly aligning language
representations to be more useful than language-
independent rotations. However, we show that the
discriminativeness of the resulting embeddings is
still poor, i.e., random word pairs are often assigned
very high cosine similarity scores by the upper lay-
ers of original encoders, especially for XLM-R.

Libovický et al. (2019) further observe that m-
BERT representations of related languages are
seemingly close to one another in the cross-lingual
embedding space. They show that removing
language-specific means from m-BERT can elimi-
nate language identity signals. In contrast, we re-
move both language-specific means and variances
as well as morphological contractions, and reorder
sentences to reduce linguistic gaps between lan-
guages. In addition, our analysis covers more lan-
guages from a typologically broader sample, and
shows that vector space normalization is as effec-
tive as other recently proposed fixes for m-BERT’s
limitations (especially re-mapping), but is much
cheaper and orthogonal to other solutions (e.g., in-
put normalization) in that gains are almost additive.

Linguistic Typology in NLP. Structural prop-
erties of many of the world’s languages can be
queried via databases such as WALS (Dryer and
Haspelmath, 2013). O’Horan et al. (2016); Ponti
et al. (2019) suggest to inject typological informa-
tion into models to bridge the performance gap
between high- and low-resource languages. Bjerva
and Augenstein (2018); de Lhoneux et al. (2018);
Bjerva and Augenstein (2021) show that cross-
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Figure 2: Histograms of cosine similarity scores of word pairs.

lingual transfer can be more successful between
languages which share, e.g., morphological prop-
erties. We draw inspiration from Wang and Eisner
(2016), who use dependency statistics to generate a
large collection of synthetic languages to augment
training data for low-resource languages. This in-
tuition of modifying languages based on syntac-
tic features can also be used in order to decrease
syntactic and morphological differences between
languages. We go further than using syntactic fea-
tures, and remove word contractions and reorder
sentences based on typological information from
WALS.

3 Language-Agnostic Representations

Analyses by Ethayarajh (2019) indicate that ran-
dom words are often assigned high cosine simi-
larities in the upper layers of monolingual BERT.
We examine this in a cross-lingual setting, by ran-
domly selecting 500 German-English mutual word
translations and random word pairs within paral-
lel sentences from Europarl (Koehn, 2005). Fig. 2
(left) shows histograms based on the last layers of
m-BERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2019), respectively, which show that
XLM-R wrongly assigns nearly perfect cosine sim-
ilarity scores (+1) to both mutual word transla-
tions (matched word pairs) and random word pairs,
whereas m-BERT sometimes assigns low scores
to mutual translations. This reaffirms that both m-
BERT and XLM-R have difficulty in distinguishing
matched from random word pairs. Surprisingly,
vector space re-mapping does not seem to help for
XLM-R, but better separates random from matched
pairs for m-BERT (Fig. 2 (middle)). In contrast,
the joint effect of normalization and re-mapping
leads to adequate separation of the two distribu-
tions for both m-BERT and XLM-R, increasing the
discriminative ability of both encoders.

3.1 Vector space re-alignment
m-BERT and XLM-R induce cross-lingual vector
spaces in an unsupervised way—no parallel data is
involved at training time. To improve upon these
representations, recent work has suggested to re-
map them, i.e., to use small amounts of parallel
data to restructure the cross-lingual vector spaces.
We follow the joint re-mapping approach of Cao
et al. (2020), which has shown better results than
rotation-based re-mapping.

Notation. Suppose we have k parallel corpora
C1, . . . , Ck, i.e., Cν = {(s1, t1), . . . , (sn, tn)} is
a set of corresponding sentence pairs from source
and target languages, for ν = 1, . . . , k. We denote
the alignments of words in a sentence pair (s, t)
as a(s, t) = {(i1, j1), . . . , (im, jm)}, where (i, j)
denotes that si and sj are mutual translations. Let
f(i,u) be the contextual embedding for the i-th
word in a sentence u.

Joint Alignment via Fine-tuning. We align the
monolingual sub-spaces of a source and target lan-
guage by minimizing the distances of embeddings
for matched word pairs in the corpus Cν :

L(Cν , fΘ)

=
∑

(s,t)∈Cν

∑

(i,j)∈a(s,t)

‖fΘ(i, s)− fΘ(j, t))‖22

(1)

where Θ are the parameters of the encoder f . As in
Cao et al. (2020), we use a regularization term to
avoid for the resulting (re-aligned) embeddings to
drift too far away from the initial encoder state f0:

R(Cν , fΘ) =
∑

t∈Cν

len(t)∑

i=1

‖fΘ(i, t)− f0(i, t)‖22
(2)

Like for the multilingual pre-training of m-BERT
and XLM-R, we fine-tune the encoder f on the con-
catenation of k parallel corpora to handle resource-
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lean languages, which is in contrast to offline align-
ment with language-independent rotations (Aldar-
maki and Diab, 2019; Schuster et al., 2019). As-
sume that English is a common pivot (source lan-
guage) in all our k parallel corpora. Then the fol-
lowing objective function orients all non-English
embeddings toward English:

min
Θ

k∑

ν=1

L(Cν , fΘ) +R(Cν , fΘ) (3)

In §5, we refer to the above described re-
alignment step as JOINT-ALIGN.

3.2 Vector space normalization

We add a batch normalization layer that constrains
all embeddings of different languages into a distri-
bution with zero mean and unit variance:

f̄(i, s) =
f(i, s)− µβ√

σ2
β + ε

(4)

where ε is a constant value for numerical stability,
µβ and σβ are mean and variance, serving as per
batch statistics for each time step in a sequence.
In addition to a common effect during training,
i.e., reducing covariate shift of input spaces, this
additional layer in the cross-lingual setup may al-
low for 1) removing language identity signals, e.g.
language-specific means and variances, from multi-
lingual embeddings; and 2) increasing the discrim-
inativeness of embeddings so that they can distin-
guish word pairs with different senses, as shown
in Fig. 2 (right). We apply batch normalization
to the last layer representations of m-BERT and
XLM-R, and use a batch size of 8 across all se-
tups. In §5, we refer to the above batch normal-
ization step as NORM and contrast this with layer
normalization. The latter yields batch-independent
statistics, which are computed across all time steps
for individual input sequences in a batch. This is
predominantly used to stabilize the training process
of RNN (Ba et al., 2016) and Transformer-based
models (Vaswani et al., 2017).

3.3 Input normalization

In addition to joint alignment and vector space
normalization, we investigate decreasing cross-
linguistic differences between languages via the
following surface form manipulation of input texts.

Removing Morphological Contractions. In
many languages, e.g. Italian, prepositions and defi-
nite articles are often contracted. For instance, de
il (‘of the’) is usually contracted to del. This leads
to a mismatch between, e.g., English and Italian in
terms of token alignments, and increases the cross-
lingual difference between the two. We segment an
orthographic token (e.g. del) into several (syntac-
tic) tokens (e.g. de il).3 This yields a new sentence
which no longer corresponds to typical standard
Italian grammar, but which we hypothesise reduces
the linguistic gap between Italian and English, thus
increasing cross-lingual performance.

Sentence Reordering. Another typological fea-
ture which differs between languages, is the order-
ing of nouns and adjectives. For instance, WALS
shows that Romance languages such as French
and Italians often use noun-adjective ordering, e.g.,
pomme rouge in French, whereas the converse is
used in English. Additionally, languages differ
in their ordering of subjects, objects, and verbs.
For instance, according to WALS, English firmly
follows the subject-verb-object (SVO) structure,
whereas there is no dominant order in German.
We apply this reordering in order to decrease the
linguistic gap between languages. For instance,
when considering English and French, we reverse
all noun-adjective pairings from French to match
English. This alignment is done while considering
a dependency tree. We re-align according to the
typological features from WALS. Since such fea-
ture annotations are available for a large amount of
languages, and can be obtained automatically with
high accuracy (Bjerva et al., 2019a), we expect
this method to scale to languages for which basic
dependencies (such as noun-adjective attachment)
can be obtained automatically. In §5, we refer to
the above re-alignment step as TEXT.

4 Experiments

4.1 Transfer tasks

Cross-lingual embeddings are usually evaluated
via zero-shot cross-lingual transfer for supervised
text classification tasks, or via unsupervised cross-
lingual textual similarity. For zero-shot transfer,
fine-tuning of cross-lingual embeddings is done
based on source language performance, and eval-
uation is performed on a held-out target language.

3We use UDPipe (Straka et al., 2016), which is a pipeline
trained on UD treebank 2.5 (Nivre et al., 2020).
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Language Lang.
family

Distance
(EN-X)

Wiki-articles
(in millions)

Sim
level

Res
level

Tagalog α 29.3 0.08 low low
Javanese α 26.5 0.06 low low
Bengali γ 24.8 0.08 low low
Marathi γ 24.0 0.06 low low
Estonian η 23.8 0.20 low middle
Hindi γ 22.2 0.13 middle low
Urdu γ 21.7 0.15 middle middle
Finnish η 20.1 0.47 middle middle
Hungarian η 19.8 0.46 middle middle
Afrikaans β 19.6 0.09 middle low
Malay α 19.2 0.33 middle middle
Spanish δ 18.5 1.56 high high
French δ 18.2 2.16 high high
Italian δ 18.0 1.57 high high
Indonesian α 17.7 0.51 high middle
Dutch β 16.3 1.99 high high
Portuguese δ 16.2 1.02 high high
German β 15.6 2.37 high high
English β 0.0 5.98 high high

Table 1: Languages used, with their language families:
Austronesian (α), Germanic (β), Indo-Aryan (γ), Ro-
mance (δ), and Uralic (η). The cosine distances be-
tween target languages and English are measured using
m-BERT.

This is, however, not likely to result in high quality
target language embeddings and gives a false im-
pression of cross-lingual abilities (Libovický et al.,
2020). Zhao et al. (2020) use the more difficult task
of reference-free machine translation evaluation
(RFEval) to expose limitations of cross-lingual
encoders, i.e., a failure to properly represent fine-
grained language aspects, which may be exploited
by natural adversarial inputs such as word-by-word
translations.

XNLI. The goal of natural language inference
(NLI) is to infer whether a premise sentence en-
tails, contradicts, or is neutral towards a hypothesis
sentence. Conneau et al. (2018) release a multilin-
gual NLI corpus, where the English dev and test
sets of the MultiNLI corpus (Williams et al., 2018)
are translated to 15 languages by crowd-workers.

RFEval. This task evaluates the translation qual-
ity, i.e. similarity of a target language translation
and a source language sentence. Following Zhao
et al. (2020), we collect source language sentences
with their system and reference translations, as well
as human judgments from the WMT17 metrics
shared task (Bojar et al., 2017), which contains
predictions of 166 translation systems across 12
language pairs in WMT17. Each language pair has
approximately 3k source sentences, each associ-

ated with one human reference translation and with
the automatic translations of participating systems.
As in Zhao et al. (2019, 2020), we use the Earth
Mover Distance to compute the distances between
source sentence and target language translations,
based on the semantic similarities of their contex-
tualized cross-lingual embeddings. We refer to this
score as XMoverScore (Zhao et al., 2020) and re-
port its Pearson correlation with human judgments
in our experiments.

4.2 A Typologically Varied Language Sample
We evaluate multilingual representations on two
sets of languages: (1) a default language set with 4
languages from the official XNLI test sets and 2 lan-
guages from the WMT17 test sets; (2) a diagnostic
language set which contains 19 languages with dif-
ferent levels of data resources from a typologically
diverse sample4 covering five language families
(each with at least three languages): Austronesian
(α), Germanic (β), Indo-Aryan (γ), Romance (δ),
and Uralic (η). For RFEval, we resort to pairs of
translated source sentences and system translations.
The former ones are translated from English human
reference translations into 18 languages, obtained
from Google Translate. For XNLI, we use trans-
lated test sets of all these languages from (Hu et al.,
2020). Tab. 1 shows the overview of 19 languages
which are labeled with 1) Similarity Level, i.e., the
degree of similarity between target languages and
English; and 2) Resource Level, i.e., the amount of
data resources available in Wikipedia.

4.3 Cross-lingual Encoders
Our goal is to improve the cross-lingual abilities
of established contextualized cross-lingual embed-
dings. These support around 100 languages and are
pre-trained using monolingual language modeling.

m-BERT (Devlin et al., 2019) is pre-trained on
104 monolingual corpora from Wikipedia, with: 1)
a vocabulary size of 110k; 2) language-specific tok-
enization tools for data pre-processing; and 3) two
monolingual pre-training tasks: masked language
modeling and next sentence prediction.

XLM-R (Conneau et al., 2019) is pre-trained
on the CommonCrawl corpora of 100 lan-
guages, which contain more monolingual data than
Wikipedia corpora, with 1) a vocabulary size of
250k; 2) a language-agnostic tokenization tool,

4This sample was chosen as it yields a large typological
variety, with representatives from several language families
across the world.
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translated test sets. Likewise, results on XNLI are av-
eraged over four selected language pairs (en-fr, en-de,
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Sentence Piece (Kudo and Richardson, 2018) for
data pre-processing; and 3) masked language mod-
eling as the only monolingual pre-training task. We
apply NORM, TEXT, JOINT-ALIGN and the combi-
nations of these to the last layer of m-BERT and
XLM-R, and report their performances on XNLI
and RFEval in §5. To investigate the layer-wise
effect of these modifications, we apply the modifi-
cations to individual layers and report the perfor-
mances in §6. See the appendix for implementation
details.

5 Results

Unlike re-mapping and vector space normalization,
scaling input normalization to a large language sam-
ple is more difficult, as typological features differ
across languages. Thus, we report the results of
re-mapping and vector space normalization across
19 languages, while text normalization is evaluated
on a smaller sample of languages.

Re-mapping and Vector Space Normalization.
In Tab. 2, we show results on machine translated
test sets. The m-BERT space modified by JOINT-

ALIGN ⊕ NORM achieves consistent improve-
ments on RFEval (+10.1 points) and XNLI (+7.6
points) on average. However, effects are different
for XLM-R. The modified XLM-R outperforms
the baseline XLM-R on RFEval by the largest mar-
gin (+33.5 points), but the improvement is much
smaller (+2.8 points) on XNLI. These gains are not
an artefact of machine-translated test sets: we ob-
serve similar gains on human-translated data (see
Fig. 3).

In Tab. 3, we tease apart the sources of improve-
ments. Overall, the impacts of NORM and JOINT-
ALIGN are substantial, and their effect is additive
and sometimes even superadditive (e.g., m-BERT
improves by 10.1 points on RFEval when both
NORM and JOINT-ALIGN are applied but only by
1.7 and 7.6 points individually). We note that the
improvement from NORM is more consistent across
tasks and encoders, despite its simplicity and negli-
gible cost. In contrast, JOINT-ALIGN has a positive
effect for m-BERT but it does not help for XLM-R
on the XNLI task, notwithstanding the minor dif-
ference of two encoders, e.g., much larger training
data and a different tokenizer used in XLM-R. We
believe the poor discriminative ability of XLM-R,
viz., that it cannot distinguish word translations
from random word pairs, leads to the inconsistent
behavior of JOINT-ALIGN. As a remedy, negative
examples such as random pairs could be included
in Eq. (3) during training so as to decrease the
discriminative gap between m-BERT and XLM-R.
This suggests that future research efforts should
focus on the robustness of cross-lingual alignments.

Batch vs. Layer Normalization. Unsurpris-
ingly, the choice of batch size greatly influences
XNLI performance when applying batch normal-
ization for m-BERT and XLM-R (Fig. 4). We find
that (i) the larger the batch size is, the smaller the
impacts on XNLI, and (ii) a batch size of 8 per-
forms best. Interestingly, layer normalization does
not help for XNLI, even though it yields batch-
independent statistics and is effective in stabilizing
the training process (Vaswani et al., 2017). We note
that per batch sequences with varying time steps
(i.e., sentence length) are often padded with zero
vectors in practice. This leads to inaccurate batch-
independent statistics, as they are computed across
all time steps, unlike batch normalization with per
batch statistics for individual time steps. In addi-
tion to batch and layer normalizations, other nor-
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Language Families
Model Avg 4 α(4) 4 β(3) 4 γ(4) 4 δ(4) 4 η(3) 4
Original cross-lingual embeddings
M-BERT 38.0 - 36.6 - 40.4 - 28.2 - 49.8 - 34.8 -
XLM-R 12.9 - 13.5 - 17.4 - 2.9 - 25.9 - 11.6 -

Modified cross-lingual embeddings
M-BERT ⊕ JOINT-ALIGN ⊕ NORM 48.1 +10.1 45.9 +9.3 47.5 +7.1 32.4 +4.2 53.4 +3.6 46.0 +11.2
XLM-R ⊕ JOINT-ALIGN ⊕ NORM 46.4 +33.5 46.5 +33.0 48.2 +30.8 37.0 +34.1 53.8 +27.9 47.2 +35.6

(a) Cross-lingual Semantic Text Similarity on the RFEval task

Language Families
Model Avg 4 α(4) 4 β(3) 4 γ(4) 4 δ(4) 4 η(3) 4
Original cross-lingual embeddings
M-BERT 64.7 - 60.8 - 69.1 - 57.9 - 73.1 - 63.4 -
XLM-R 74.8 - 72.4 - 76.3 - 70.9 - 78.4 - 76.1 -

Modified cross-lingual embeddings
M-BERT ⊕ JOINT-ALIGN ⊕ NORM 72.3 +7.6 72.3 +11.5 75.8 +6.7 65.2 +7.3 77.4 +4.3 72.0 +8.6
XLM-R ⊕ JOINT-ALIGN ⊕ NORM 77.6 +2.8 74.8 +2.4 79.6 +3.3 73.7 +2.8 80.9 +2.5 78.8 +2.7

(b) Cross-lingual Zero-shot transfer on the XNLI task

Table 2: Overall results of established cross-lingual baselines and our modifications, for RFEval and XNLI. Brack-
ets denote the number of languages per group. Results are averaged per group. 4 is the difference between the
performance of the original and the modified encoders.
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Figure 5: Performance gains on RFEval and XNLI obtained by three types of TEXT operations .

Model XNLI RFEval

M-BERT ⊕ NORM +1.9 +1.7
M-BERT ⊕ JOINT-ALIGN +5.2 +7.6
M-BERT ⊕ JOINT-ALIGN ⊕ NORM +7.6 +10.1
XLM-R ⊕ NORM +2.5 +27.1
XLM-R ⊕ JOINT-ALIGN −0.2 +11.6
XLM-R ⊕ JOINT-ALIGN ⊕ NORM +2.8 +33.5

Table 3: Ablation tests of our modified encoders. Per-
formance gains are averaged over all languages.

malizers such as GroupNorm (Wu and He, 2018)
and PowerNorm (Shen et al., 2020) also receive
attention in many communities. This raises another
concern towards a systematic investigation of nor-
malizers for future work.

Linguistic Manipulation. We apply input modi-
fications to language pairs that contrast in either of

Model XNLI RFEval Avg

M-BERT 17.4 24.5 21.0
XLM-R 11.1 37.8 24.5
M-BERT ⊕ JOINT-ALIGN ⊕ NORM 9.8 14.4 12.1
XLM-R ⊕ JOINT-ALIGN ⊕ NORM 8.4 4.3 6.3

Table 4: Performance gap (lower is better) for cross-
lingual classification transfer, and reference-based and
reference-free MT.

three typological features: word contractions, noun-
adjective and object-verb orderings. Fig. 5 shows
that reducing the linguistic gap between languages
by TEXT can sometimes lead to improvements
(exemplified by m-BERT). Both French and Italian
benefit considerably from both removing contrac-
tions (a) and reversing the order of adjectives and
nouns (b), with no changes observed for Spanish.
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Figure 6: Results of m-BERT and XLM-R and our modifications across layers on the RFEval and XNLI tasks.
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Figure 7: Results of m-BERT across layers on RFEval.

As for reversing object-verb order (c), we again see
improvements for 2 out of 3 languages. We hypoth-
esize that the few cases without gains are due to the
differing frequencies of occurrences of linguistic
phenomena in XNLI and RFEval. Another error
source is the automatic analysis from Straka et al.
(2016), and improving this pre-processing step may
further increase the performance of TEXT.

6 Analysis

(Q1) How sensitive are normalization and post-hoc
re-mapping across layers?

In Fig. 6, rather than checking results for the last
layer only, we investigate improvements of our
three modifications on RFEval across all layers of
and XLM-R for one high-resource language pair
(de-en) and one low-resource pair (jv-en) (see ap-
pendix). This reveals that, (1) for XNLI, applying
JOINT-ALIGN, NORM and TEXT to the last layer
of m-BERT and XLM-R consistently results in the
best performance. This indicates that the modi-
fications to the last layer could be sufficient for
supervised cross-lingual transfer tasks. (2) How-
ever, the best results on RFEval are oftentimes
obtained from an intermediate layer. Further, (3)
we observe that JOINT-ALIGN is not always effec-
tive, especially for XLM-R. E.g., it leads to the
worst performance across all layers on XNLI for
XLM-R, even below the baseline performance. (4)
Reporting improvements on only the last layer may

sometimes give a false and inflated impression, es-
pecially for RFEval. E.g., the improvement (on
RFEval) of the three modifications over the orig-
inal embeddings is almost 30 points for the last
layer of XLMR, but it is less than 15 points for
the penultimate layer. (5) Normalization and re-
mapping typically stabilize layer-wise variances.
(6) The gains of the three modifications are largely
complementary across layers. (see also Fig. 7).

(Q2) To what extent can our modifications decrease
the cross-lingual transfer gap, especially in low-
resource scenarios and dissimilar languages?

Tab. 4 shows that applying re-mapping and vec-
tor space normalization5 to the last layer of m-
BERT and XLM-R considerably reduces perfor-
mance gaps viz.: a) zero-shot transfer performance
on XNLI between the English test set and the aver-
age performance on the other 18 languages; b) the
difference between mono- and cross-lingual textual
similarity on RFEval, i.e., the difference between
the average correlations of XMoverScore and hu-
man judgments on 19 languages obtained from
reference-based6 and reference-free MT evaluation
setups. Although smaller, the remaining gaps in-
dicates further potential for improvement. Fig. 9
shows the largest gains are on (1) low-resource lan-
guages and (2) languages most distant to English.

(Q3) Are our modifications to contextualized cross-
lingual encoders language-agnostic?

Fig. 8 (a) shows that the centroid vectors7 of lan-
guages within the same language family lie closely
in the vector space, further showing that language

5We do not apply text normalization in this setup because
not all languages are covered in UDPipe.

6Reference-based evaluation assigns semantic similarity
scores to pairs of system and reference translations in English.

7Language centroids are representative (sentence) embed-
dings of languages averaged over monolingual Wikipedia data,
as in Libovický et al. (2019). Although they use language fam-
ilies as a proxy, recent work shows that structural similarities
of languages are a more likely candidate (Bjerva et al., 2019b).
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(a) Original Space (b) Re-aligned Space (c) Normalized Space

Figure 8: t-SNE distributions of language centroids based on the last m-BERT layer.
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Figure 9: Performance gains across language groups
for M-BERT ⊕ JOINT-ALIGN ⊕ NORM.

Model τ r ρ

M-BERT 53.2 74.7 71.8
XLM-R 54.4 70.1 73.5
M-BERT ⊕ JOINT-ALIGN ⊕ NORM 17.5 57.3 21.2
XLM-R ⊕ JOINT-ALIGN ⊕ NORM 15.9 57.7 26.0

Table 5: Correlations (Kendall τ , Pearson r and Spear-
man ρ) between language similarities induced by m-
BERT/XLM-R and WALS for 19 languages.

identity signals are stored in the m-BERT embed-
dings. Fig. 8 (b)+(c) shows that these signals are di-
minished in both re-aligned and normalized vector
spaces, suggesting that the resulting embeddings in
them are more language-agnostic.

(Q4) To what extent do the typological relations
learned from contextualized cross-lingual encoders
deviate from those set out by expert typologists?

Tab. 5 shows that language similarities, between
English and other 18 languages, obtained from m-
BERT and XLM-R have high correlations with
structural language similarities8 obtained from
WALS9 via the syntactic features listed, indicat-
ing that language identifiers stored in the original
embeddings are a good proxy for the annotated
linguistic features. In contrast, this correlation is
smaller in the modified embedding spaces, which

8The language similarity induced by WALS is the frac-
tion of structural properties that have the same value in two
languages among all 192 properties.

9WALS covers approximately 200 linguistic features over
2500 languages, annotated by expert typologists.

we believe is because language identity is a much
less prominent signal in them.

7 Conclusion

Cross-lingual systems show striking performance
for transfer, but their success crucially relies on two
constraints: the similarity between source and tar-
get languages and the size of pre-training corpora.
We comparatively evaluate three approaches to ad-
dress these challenges, removing language-specific
information from multilingual representations, thus
learning language-agnostic representations. Our
extensive experiments, based on a typologically
broad sample of 19 languages, show that (vector
space and input) normalization and re-mapping are
oftentimes complementary approaches to improve
cross-lingual performance, and that the popular
approach of re-mapping leads to less consistent im-
provements than the much simpler and less costly
normalization of vector representations. Input nor-
malization yields benefits across a small sample of
languages; further work is required for it to achieve
consistent gains across a larger language sample.
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Abstract

We suggest to model human-annotated Word
Usage Graphs capturing fine-grained seman-
tic proximity distinctions between word uses
with a Bayesian formulation of the Weighted
Stochastic Block Model, a generative model
for random graphs popular in biology, physics
and social sciences. By providing a probabilis-
tic model of graded word meaning we aim to
approach the slippery and yet widely used no-
tion of word sense in a novel way. The pro-
posed framework enables us to rigorously com-
pare models of word senses with respect to
their fit to the data. We perform extensive ex-
periments and select the empirically most ade-
quate model.

1 Introduction

Word Usage Graphs (WUGs) are a relatively new
model of graded word meaning in context (Erk
et al., 2013; McCarthy et al., 2016; Schlechtweg
et al., 2021). They represent word uses (i.e., words
in context) within a weighted undirected graph,
with edge weights reflecting the semantic proxim-
ity between uses. WUGs may be obtained via hu-
man annotation by presenting annotators with pairs
of words uses and asking them for proximity judg-
ments. The WUGs may then be clustered into sets
of uses exhibiting high semantic proximity, in order
to reflect traditional word sense distinctions (Mc-
Carthy et al., 2016), and to provide insight into key
aspects of word meaning such as polysemy, vague-
ness, and lexical semantic change (Schlechtweg
et al., 2020, 2021).

We suggest to model WUGs with a Bayesian for-
mulation of the Weighted Stochastic Block Model
(WSBM), a generative model for random graphs
popular in biology, physics and social sciences
(Aicher et al., 2014; Peixoto, 2017). The basic
assumption of WSBMs is that vertices belong to la-
tent blocks (clusters), and that vertices in the same

block are stochastically equivalent (i.e., they have
edges drawn from the same distribution). Fitting
the model is equivalent to determining the opti-
mal latent block structure providing a clustering
of word uses.

By using a Bayesian probabilistic model of
WUG data we aim to approach graded word mean-
ing in a rigorous scientific way: We perform model
selection, i.e., different models are compared ac-
cording to their fit to the data, and the model which
explains the data best is chosen as most adequate
representation of the semantic structure behind
human-annotated word uses. If blocks are equated
with word senses, this allows us to approach this
slippery and yet widely used concept in a novel
way. We may test long-standing hypotheses such
as whether a graded model allowing sense overlap
is a better model than a discrete one (Kilgarriff,
1997; Erk et al., 2013; McCarthy et al., 2016).

As a probabilistic model, the WSBM allows to
generate data from a fitted model, which is useful
for simulating realistic WUGs, e.g. when planning
annotation studies. A fitted WSBM may also be
used to predict values of unobserved edge weights,
which is helpful for enhancing annotations.
Our contributions can be summarized as follows:

• Introducing a rigorous scientific way to infer
the number and the nature of word senses.
• Improving WSBM with marginalizing over

edge probabilities.
• Model selection: inferring the most likely

number of discrete word senses for words in
DWUG DE/EN data sets (Schlechtweg et al.,
2021).
• Model checking: validating WSBMs as a rea-

sonable model of WUGs and word senses with
respect to external criteria.
• Publication of fitted WSBM models which

can be used for simulating realistic data.
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• Analysis: identifying shortcomings of WS-
BMs (such as edge probabilities, hub effect).

2 Related Work

Our approach generally falls within the area of
Bayesian probabilistic modeling (Koch, 2007).
More specifically, it is related to model-based graph
clustering techniques, e.g., Latent Space models
such as Gaussian Mixture Models (Hoff et al.,
2002; Duda and Hart, 1973). These methods are
common in the field of community detection (Abbe,
2017). Within computational linguistics our ap-
proach is most strongly related to generative prob-
abilistic topic models, where words in documents
are modeled as being drawn from a latent topic
distribution (Steyvers and Griffiths, 2007). Topics
are often interpreted as senses (Frermann and Lap-
ata, 2016; Perrone et al., 2019). Another common,
yet non-probabilistic, modeling approach for word
senses is to group word uses expressing similar
meanings into clusters based on contextual features
(Schütze, 1998; Biemann, 2006).

As to our knowledge, only a small set
of studies is concerned with the modeling of
human-annotated WUGs (McCarthy et al., 2016;
Schlechtweg et al., 2020, 2021). This research
line is motivated by insights from lexical seman-
tics that word senses are no discrete objects (Kil-
garriff, 1997; Erk et al., 2013). Most important
to note is the pioneering work of McCarthy et al.
(2016) as the first to represent human-annotated
word uses within graphs and then clustering the
uses based on heuristics such as connected compo-
nents and cliques. McCarthy et al. derived edge
weights from human lexical substitution judgments
for the respective target words and binarized them
according to a threshold. This idea was recently
modified and extended by Schlechtweg et al. (2020,
2021). Schlechtweg et al. used semantic proximity
judgments to annotate edges. They applied correla-
tion clustering (Bansal et al., 2004) in connection
with a global threshold to group vertices with high
edge weights and developed an efficient iterative
sampling strategy for edges to reduce annotation
load. However, these approaches are ad-hoc clus-
tering methods which do not provide a probabilistic
model for WUGs.

3 Data

A Word Usage Graph G = (U,E,W) is a
weighted, undirected graph, where vertices u ∈ U

x

4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

Table 1: DURel relatedness scale (Schlechtweg et al.,
2018).

represent word uses and weights w ∈ W rep-
resent the semantic proximity of a pair of uses
(u1, u2) ∈ E (Schlechtweg and Schulte im Walde,
submitted). In practice, semantic proximity can
be measured by human annotator judgments on
a scale of relatedness (Brown, 2008; Schlechtweg
et al., 2018) or similarity (Erk et al., 2013). Human-
annotated WUGs are often sparsely observed and
noisy, i.e., only a small percentage of edges from
the full graph are annotated, and annotators often
show disagreements, e.g. for ambiguous uses, as
can be seen in Figure 1.

Recently, Schlechtweg et al. (2020, 2021) devel-
oped a large-scale multi-lingual resource of WUGs.
Annotators were asked to judge the semantic relat-
edness of pairs of word uses (such as the two uses
of grasp in (1) and (2)) according to the scale in
Table 1.1

(1) He continued to grasp, between forefinger
and thumb, the edge of the cloth I had been
sewing.

(2) For just a moment he didn’t grasp the import
of what the old man had said.

The uses were sampled from diachronic corpora of
four languages (English, German, Latin, Swedish).
The data was annotated in four rounds. After each
round the accumulated annotations from the previ-
ous rounds wer represented in a WUG, which was
then clustered with correlation clustering (Bansal
et al., 2004), and then further use pairs were chosen
according to heuristics aiming to compare uses to
clusters to which they had not yet been compared.
Annotators showed high agreement, and compara-
ble to previous studies. The final resource consists
of WUGs for 168 words with a total of 100,000
judgments including nouns, verbs and adjectives
as well as monosemous and polysemous words. In
our experiments we use the German and English
subparts of the data set comprising 88 WUGs.

While for some WUGs a clustering structure
grouping vertices with high edge weights together

1https://www.ims.uni-stuttgart.de/
data/wugs
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Figure 1: Word Usage Graphs of German Festspiel (left), Abgesang (middle) and zersetzen (right). Vertices
represent uses of the respective target word. Edge weights represent the median of relatedness judgments between
uses (black/gray lines for high/low edge weights, i.e., weights ≥ 2.5/weights < 2.5).

is obvious, for others this is not the case (cf. Mc-
Carthy et al., 2016). For example, see Figure 1
showing the annotated uses for three words from
Schlechtweg et al. (2021).

The uses of the word Festspiel on the left and
zersetzen on the right can be clearly partitioned
into one/two main clusters, while the uses of Abge-
sang in the middle have a less clearly clusterable
structure. Hence, it is unclear how many senses
Abgesang has and what the assignment of uses to
senses should be. We approach these two questions
by searching for the model which best explains the
data. The block structure inferred by this model
will then give us a number of blocks and an assign-
ment of uses to blocks.

4 Stochastic Block Model

The Stochastic Block Model (SBM) (Holland et al.,
1983) is a simple generative process of random
graphs based on the notion of groups of vertices.
It assumes that each vertex of an observed graph
G is member of a latent block (group) and that G
was generated by first sampling vertices and then
sampling edges between these vertices where the
probability of observing an edge between two ver-
tices is only determined by the block membership.
Once this process is formulated mathematically,
the optimal latent block structure can be inferred
from G. For this, given the partition b = {bi} of G
into B blocks, where bi ∈ [0, B − 1] is the block
membership of vertex i, we define a model that
generates a graph A with a probability

P (A|θ, b)

where θ are additional model (edge bundle) param-
eters that govern how the vertex partition affects
the placing of edges (Peixoto, 2014a). Therefore,
if we observe a graph A, the likelihood that it was

generated by a given partition b is given by the
Bayesian posterior probability

P (b|A) =

∑
θ P (A|θ, b)P (θ, b)

P (A)

where P (θ, b) is the prior probability of the model
parameters, and P (A) is called the evidence,
and corresponds to the total probability of the
data summed over all model parameters (Peixoto,
2014a). The standard SBM takes as parameters the
partition of the vertices into blocks b and a B ×B
matrix of edge counts e, where ers is the number
of edges between groups r and s.

4.1 Edge weights
The Weighted Stochastic Block Model (WSBM)
is an extension of the standard SBM to weighted
graphs (Aicher et al., 2014; Peixoto, 2017). In the
WSBM the inference of the latent block structure
is driven by both edge existence and edge weights.
This is achieved by treating edge weights as co-
variates that are sampled from some distribution
(e.g. binomial) conditioned on the vertex partition
(Peixoto, 2014a), i.e.,

P (A, x|θ, γ, b) = P (x|A, γ, b)P (A|θ, b)

with the covariates being sampled only on existing
edges, and where γrs is a set of parameters that
govern the sampling of the weights between groups
r and s. The posterior partition distribution is then

P (b|A, x) =
P (x|A, b)P (A|b)P (b)

P (A, x)
,

omitting the parameters θ, γ as in the non-
parametric WSBM through the use of marginal
likelihoods (Peixoto, 2017). In our experiments
we use the non-parametric, micro-canonical imple-
mentation of the WSBM which avoids explicitly
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Figure 2: Word Usage Graphs of German Festspiel (left), Abgesang (middle) and zersetzen (right) with inferred
block structure.

encoding distribution parameters for edge weights
by replacing them with hard quantities (Peixoto,
2014c).2 The non-parametric model avoids over-
fitting, and micro-canonical distributions are easier
to compute while approaching their canonical coun-
terparts asymptotically (Peixoto, 2017).3

4.2 Marginalizing over edge probabilities
The basic assumption of the WSBM is that ver-
tices in the same block are stochastically equivalent.
This should hold with respect to edge weights x
and edge probabilitiesA. However, the distribution
of edge probabilities in our case is guided exclu-
sively by Schlechtweg et al.’s sampling procedure.
Hence, the assumption of stochastic equivalence of
edge probabilities does not hold for WUGs. Thus,
we aim to make the block structure independent
from the observed edge probability distribution be-
tween blocks as far as possible.4 We reach this by
marginalizing over edge probabilities, while keep-
ing their number the same between groups. The
latter is needed as the edge probabilities build the
support of the edge weights. The posterior partition
distribution is then

P (b|x) =
P (x|b)P (b)

P (x)

2We recover the non-microcanonical versions of the distri-
butions by fitting these to the observed edge weights between
blocks after fitting the WSBM.

3All experiments were done with graph-tool:
https://graph-tool.skewed.de/. Additional
code is provided at https://github.com/kicasta/
Modeling_WUGS_WSBM.

4Note that degree-correction relaxes the homogeneity as-
sumption and would thus serve as a first modeling approach
(Karrer and Newman, 2011; Peixoto, 2019). However, the
degree-corrected model still suffers from the hub effect, i.e.,
vertices with many edges tend to be assigned to the same
block (Peixoto, 2020). This effect could be avoided with La-
tent Poisson models (Peixoto, 2020). However, we want the
inferred block structure to be largely independent from edge
probabilities, which neither of the models fully guarantees.

where

P (x|b) =
∑

A∈Λ

P (x|A, b)P (A|b)

and Λ is the set of all networks A that have the
same number of edges between groups as the ob-
served network A′ under block assignment b. We
sum over all possible edge assignments with the
same number of edges between groups. In this way
edge probabilities are marginalized and the poste-
rior distribution P (x|b) is mainly driven by edge
weights.

4.3 Inference
Finding the maximum of the posterior distribu-
tion of the WSBM is NP-hard (Peixoto, 2015).
Hence, we infer the optimal partitioning of vertices
P (b|x) asymptotically with multilevel agglomera-
tive Markov chain Monte Carlo Peixoto (2014b).
The central idea is to sample from P (b|x) by first
starting from some initial state and making move
proposals depending on the current state such that,
ultimately, the Markov Chain converges to P (b|x).
In order to alleviate the problem of metastable
states the chain is first equilibrated for a larger
number of blocks, which are then merged. (Find a
discussion of the problem of metastable states in
Peixoto (2014b).)

4.4 A Model for Word Senses?
The basic assumption of the WSBM with marginal-
ized edge probabilities is that vertices in the same
block are stochastically equivalent with respect to
edge weights. We argue that this assumption is rea-
sonable for word senses: From previous work we
inherit the insight that graded proximity judgments
reflect single-sense judgments (Erk et al., 2013;
McCarthy et al., 2016). This is to say that use pairs
expressing the same sense receive high values on
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Figure 3: Inferred number of blocks with best-fitting models (left). Correspondence to clustering result from
Schlechtweg et al. (2021) (right).

the annotation scale, while use pairs expressing
different senses receive low values. This behavior
can be modeled by assuming that same-sense pairs
receive edge weights chosen from a common dis-
tribution with a high mean, while the same holds
for different-sense pairs with a distribution with a
low mean. The interesting question is, though, how
well the WSBM (or any other model) can model the
unclear cases, i.e., use pairs receiving intermediate
judgments on the annotation scale. The WSBM is
a very general model that can learn many different
structures. It can handle heterogenous and over-
lapping edge weight distributions and also allows
blocks to be more or less related to each other. In
principle, it also allows mixed membership of ver-
tices in blocks (Peixoto, 2015). The advantage of
our approach is that we do not have to define senses
in any further way. As latent variables, they can be
found by themselves, guided by the independent
criterion of how well they explain the data.

Note that this approach does not in any way de-
pend on the concept of sense. In principle, any
other probabilistically formulated model aiming
to explain WUG data can be introduced. Such a
model does not have to rely on the idea of stochas-
tically equivalent blocks. If this model were to
explain the data better, the WSBM could be ne-
glected.

5 Model Selection5

Following Peixoto (2015) we select the best model
according to the Minimum Description Length
Principle (Grünwald and Grunwald, 2007). The
description length of a graph measures the amount
of information required to describe the data, if we

5We provide all fitted models as well as our code
at https://github.com/kicasta/Modeling_
WUGS_WSBM.

encode it using a particular parametrization of the
model being tested. This approach corresponds to
an implementation of Occam’s razor, where the
simplest model is selected, among all possibilities
with the same explanatory power (Peixoto, 2014a).

5.1 Number of blocks
88 WUGs were fitted using three different distri-
butions for edge weights (see below). The optimal
number of blocks is found during fitting (Peixoto,
2014b). We start fitting by choosing an initial num-
ber of blocks 1 ≤ b ≤ 30. Peixoto’s algorithm then
tries to find a partition of the Graph into 1 ≤ b ≤ 30
blocks with minimum description length. It does so
by choosing some b′ > b, finding the best partition
of the graph into b′ blocks and then greedily merg-
ing these b′ into b blocks. Then, it repeats this step
for a b1 and b2, such that b1 < b < b2 and decides
whether it should increase the number of blocks
or decrease it depending on whether it results in
a decrease in description length. This is done un-
til convergence. Figure 3 (left) shows the optimal
number of blocks obtained for each WUG in the
above-described way. We see a tendency to favor
simpler structures over more complex ones. That
is, most WUGs are modeled best with one or two
blocks. The highest number of blocks found is 5.
The inferred block structure for the three graphs in
Figure 1 is displayed in Figure 2 with 1/3/3 blocks
respectively.6

5.2 Edge Weight Distribution
Each WUG was fitted using three different distribu-
tions for edge weights: (micro-canonical versions
of) binomial, poisson and geometric. Figure 4 (left)
shows the number of graphs for which each dis-

6For further example plots see Figures 7 and 8 in Ap-
pendix A.
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Figure 4: Comparison of model fit wrt. edge weight distributions (left), where Y-axis gives number of graphs for
which the respective distribution had minimum description length. Evaluation result of link prediction (right).

tribution type yielded the best fit. The binomial
distribution shows the best fits in the large major-
ity of cases. This makes sense, because it is also
the most general and flexible of the three distribu-
tions. Figure 5 shows the observed edge weight
distributions of the graphs between blocks after fit-
ting (red) and within blocks (blue), as well as the
respective inferred distributions (curve). Despite
the fact that edge weight distributions may be het-
erogenous (middle), there is a clear tendency for
negative edges between blocks and positive edges
within blocks. The inferred distributions reflect this
pattern.7

5.3 Analysis
We now take a closer look at the WUGs from Fig-
ures 1 and 2 and their block-related edge weight
distributions in Figure 5. For example, the fol-
lowing two use pairs of Festspiel homogeneously
received high ratings of 3 and 4. The best fit is
reached with one block and a binomial distribution.

(3) ...war die DDR bei den Wiener Festwochen,
den Salzburger Festspielen und...

‘...the GDR was represented at the Wiener
Festwochen, the Salzburg Festival and...’

(4) ...im Rahmen der Wettbewerbe und
Festspiele der Volkskunst...

‘...as part of the competitions and festivals of
folk art...’

Abgesang is a different case: It received heteroge-
nous judgments across the scale from 1–4. No clear
block structure is visible at first in Figure 1. The
best fit is obtained with three blocks and a binomial
distribution. The three blocks reflect meaningful

7Note that Figure 5 shows only the combined distributions
within and between blocks across all combinations. The per-
block distributions are very similar though, as can be seen in
Figure 9 in Appendix A for zersetzen.

fine-grained sense differences as displayed by the
following three examples:

(5) In den ersten Strophen der Klage der Ceres
findet sich ein [...] 4 zeiliger Aufgesang mit
einem 8 zeiligen Abgesang.

‘In the first stanzas of Ceres’ lament there is a
[...] 4-line stance start with an 8-line stance
end.’

(6) ...und radelte unter dem Abgesang
schmutziger Lieder davon.

‘...and cycled off while singing dirty songs.’

(7) ...daß dieser Vorgriff auf den Sommer nicht
schon den Abgesang des Wintersports
bedeutet...

‘...that this anticipation of summer doesn’t
mean the swan song of winter sports...’

We observe that the sparsity of the annotation has a
strong influence: if a word use is richly annotated
with several edges, then the model has information
on its relation to other blocks and can infer a reason-
able block assignment, even if there are annotation
errors. If, however, the use is only annotated with
e.g. one low-valued edge, the model is likely to
assign it to a block with semantically very different
uses which also tend to have low judgments with
other uses. That is, unrelated uses may appear ho-
mogeneous to the model, because they have similar
(as sparsely observed) relations to third uses. This
effect disappears with richer annotation.

Just as Abgesang, zersetzen yields the best fit
with three blocks and a binomial distribution. As
can be seen in Figure 5, the weights also cover
the whole scale. However, in this case they are
more homogeneously distributed within and be-
tween blocks. This is because zersetzen has two
main and clearly distinguishable senses, as illus-
trated by (8) and (9):
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Figure 5: Combined weight distributions of German Festspiel (left), Abgesang (middle) and zersetzen (right). The
curves show the inferred distributions.

(8) ...dass die Pflanzen das kohlensaure Gas
beym Sonnenlichte zersetzen...

‘...that the plants decompose the carbonic
acid gas in the sunlight...’

(9) Das System des Frontstadtsenats hat die
westberliner Schule bedrohlich zersetzt.
‘The system of the front city senate has
destroyed the West Berlin school.’

There is a third block where uses are mostly varia-
tions of the sense in (9), e.g. referring to a rather
physical than chemical decomposition, or uses
where the meaning is unclear. We made a simi-
lar observation for other graphs (e.g. rag): There
are separate and semantically heterogeneous blocks
for unclear and sparsely annotated uses. German
zersetzen also illustrates an effect that we observe
across many graphs: While the inferred binomial
distribution within blocks (see Figure 5) can be
closely fit, the distribution between blocks has a
considerable error. This is mostly because weights
of 1 are rare, while weights of 4 are common. The
probability mass of weights between blocks is con-
centrated at 2, not 1. The binomial distribution
has considerable problems modeling this behavior.
Other distributions are also deficient, however: the
geometric distribution cannot model right-skewed
distributions at all, and thus has high errors for
within-block distributions. Consequently, the cases
where it yields the best fits, are the ones with a high
number of low edge weights (e.g. tip) which lead
to strongly left-skewed distributions. The poisson
distribution suffers from the problem that it cannot
model steep and peeked distributions. An impor-
tant challenge for future modeling approaches will
be to find appropriate distributions to model the
behavior of edge weights. We believe that a signed
(invertible) geometric distribution will yield good
fits in many cases. Another important challenge
will be to avoid sparsity of annotation, e.g. by de-
veloping efficient and iterative sampling techniques
for edges. It also should be examined how much

the inferred block structure is influenced by the dif-
ference in the way a particular annotator interprets
uses, yielding homogeneous judgments for edges
annotated exclusively by this annotator. This could
be modeled by multi-graph models (Peixoto, 2017)
where the information from each annotator can be
represented individually.

6 Model Checking

In order to validate the fitted models externally we
test whether the inferred clustering corresponds to a
clustering obtained with an independent algorithm.
Additionally, we use two internal validation criteria
which test how well the structural properties of the
observed graphs are recoverable from the inferred
models. For this we apply two strategies: (i) Poste-
rior Predictive Checking (Gelman et al., 2013) and
(ii) Link Prediction (Liben-Nowell and Kleinberg,
2007).

6.1 Correspondence to Independent
Clustering Algorithm

Figure 3 (right) shows the correspondence (accu-
racy) of the inferred block structures to those found
by Schlechtweg et al. (2021) with correlation clus-
tering and a global threshold on edge weights. The
results often show strong correspondence (> .9)
to Schlechtweg et al., although they were obtained
with a completely different approach. For a number
of graphs with one inferred block the structures are
exactly the same. However, there are also clear dif-
ferences: Especially for graphs with complex block
structures (e.g. tip or rag) the correspondence to
Schlechtweg et al. is very low. This also holds
for some cases with simpler block structure (e.g.
Gesichtsausdruck or multitude). Our three graphs
from Figure 1 nicely display this pattern: Festspiel
has a simple one-block structure and high accuracy
(≈ 1.0), while Abgesang has a complex structure
and low accuracy (< 0.6). zersetzen has three
blocks (as Abgesang), but two main and clearly
separated blocks and rather high accuracy.
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Figure 6: Sampled Word Usage Graphs of German Festspiel (left), German Abgesang (middle) and zersetzen
(right).

In summary, the two clustering algorithms often
make similar decisions, but different decisions es-
pecially where the clustering structure is complex
and unclear.

6.2 Posterior Predictive Checking
We now test how well a model P (b|A, x) fitted
to a WUG G = (U,E,WG) retains the structural
properties of G. For this we create a new graph
H = (U,E,WH = {}) with the same vertices and
edges as G, but without the weights. This means
UG = UH and EG = EH . Then for all edges e
∈ EH we sample from the inferred distribution D
with parameters P that best describes the weight
distribution for the respective block combination
(be1 , be2) of e. For a model with a very close fit to
the data the drawn edge weights will resemble the
observed weights. We then visually compare the
observed and the sampled graphs (Figures 6 vs. 2).

In Figure 6 we can see that in simple graphs
like Festspiel the inferred structure coincides com-
pletely with the observed one. However, in graphs
with a more complex structure like Abgesang and
zersetzen (see Figure 5, middle and right) no dis-
tribution is flexible enough to fully describe the
observed weight distributions, reflecting the obser-
vations from above. This is clearly manifested in
the amount of high weights (black edges) inferred
between the different blocks which are not present
in the observed graph (see Figure 2).

6.3 Link Prediction
With link prediction we test how well a fitted model
P (b|A, x) from a WUG G = (U,E,WG) can pre-
dict unobserved annotations, i.e., missing edges in
the graph. For this we randomly delete 5% of the
edges of G and predict them by drawing from the
distribution D as described above. We then quan-
tify the difference between each predicted wp and

the corresponding observed edge weight wo and
define the Inverse Mean Error

IME = 1− |wo − wp|
4− 1

as a measure of how well a model structure predicts
the observed graph structure (Figure 4, right). For
about half of the graphs this score is quite high
(IME > .8), i.e., the sampled weights are close to
the observed values. Again, simpler block struc-
tures are easier to fit and are thus better predictable.
For half of the graphs the predictability is lower
though, for some even < .5. These results quantita-
tively confirm our observations from above, i.e., the
fitted distributions often do not model the observed
graphs sufficiently well.

7 Conclusion

We suggested to model human-annotated Word Us-
age Graphs with a Bayesian formulation of the
Weighted Stochastic Block Model, compared sev-
eral variations of the model and chose the best-
fitting model in a principled way. In addition, we
demonstrated how to interpret the inferred model
as a model of word senses, but also that this in-
terpretation is in no way necessary. The inferred
models provide a stochastically-driven clustering
and can be used to simulate realistic WUGs. An
analysis of the model fits illustrated that more flex-
ible distributions for edge weights are needed to
yield good fits for a range of graphs.

We would like to emphasize that we do not
claim that the WSBM is the best model for WUGs.
Rather, we propose WSBMs as a reasonable prob-
abilistic model for our data that can be rigorously
compared against competing models in a Bayesian
probabilistic framework, and potentially be ne-
glected.
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In the future, we aim to test more flexible edge
weight distributions and to compare WSBMs to
further probabilistic models, such as Gaussian Mix-
ture models (Duda and Hart, 1973) and Latent
Space models (Hoff et al., 2002). These models
are interesting because they explicitly enforce the
triangular property on graphs, which certain types
of proximity judgments are known to obey (Erk
et al., 2013). We also aim to explore Mixed Mem-
bership SBMs (Airoldi et al., 2008; Peixoto, 2015)
and multi-graph models (Peixoto, 2017) where the
information from each annotator can be represented
individually.
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A Additional Plots

Find additional plots in Figures 7, 8 and 9.
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Figure 7: Word Usage Graphs of German Ausnahmegesetz (left), stroke (middle) and plane (right).

Figure 8: Word Usage Graphs of German Sensation (left), German artikulieren (middle) and verbauen (right).

Figure 9: Detailed weight distribution of German zersetzen. Distribution within blocks in the diagonal and between
blocks outside. Block ‘0’ maps the cyan cluster, Block ‘1’ the green cluster and Block ‘2’ the yellow one in Figure
2. The bars represent the observed values while the curves represent the inferred binomial distribution.
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Abstract
Predicting the difficulty of domain-specific vo-
cabulary is an important task towards a bet-
ter understanding of a domain, and to en-
hance the communication between lay people
and experts. We investigate German closed
noun compounds and focus on the interaction
of compound-based lexical features (such as
frequency and productivity) and terminology-
based features (contrasting domain-specific
and general language) across word represen-
tations and classifiers. Our prediction experi-
ments complement insights from classification
using (a) manually designed features to charac-
terise termhood and compound formation and
(b) compound and constituent word embed-
dings. We find that for a broad binary distinc-
tion into easy vs. difficult general-language
compound frequency is sufficient, but for a
more fine-grained four-class distinction it is
crucial to include contrastive termhood fea-
tures and compound and constituent features.

1 Introduction

In times of a constant growth of domain-specific
data, it is more important than ever to analyse char-
acteristics of domain-specific vocabulary. Domains
are topically restricted subject fields containing
domain-specific vocabulary that encode domain
knowledge. The more technical the terminology in
the domain vocabulary, the more difficult it is per-
ceived by lay people unfamiliar with the domain.
Predicting the difficulty of domain-specific vocabu-
lary is therefore an important task for enhancing the
communication between lays and experts. A promi-
nent example in this respect is the medical domain,
where the prediction of difficulty of medical terms
can enhance the communication between doctors
and patients, e.g. by simplifying medical texts
(Abrahamsson et al., 2014; Grabar and Hamon,
2014; Wandji Tchami and Grabar, 2014). While
the medical domain represents a well-researched

focus, the problem of miscommunication appears
across domains.

Previous research on automatic term difficulty
prediction already explored a large number of pa-
rameters, but as to our knowledge there is yet no
study that investigated how difficulty can be at-
tributed to complex phrase formation processes (a
language phenomenon) in interaction with domain
specialization (a domain phenomenon). The cur-
rent study investigates these aspects, goes beyond
domain peculiarities (such as Latin words in the
medical domain), and performs analyses across
three rather different domains: Cooking, DIY (’do-
it-yourself’) and Automotive.

While we choose a diverse set of domains, we
otherwise focus on a special phenomenon within
domain-specific vocabulary: German closed com-
pounds. Closed compounds are complex expres-
sions that consist of several lexemes and are writ-
ten in a single string of characters. An example
is Bremsflüssigkeit ’brake fluid’, which is com-
posed of the two simple words Bremse ’brake’ and
Flüssigkeit ’fluid’. By focusing on closed com-
pounds, the boundaries of the phrases to pre-extract
in text are unambiguous, and feature analysis will
not be biased by how the extraction method is de-
signed. Furthermore, closed compounds are a fre-
quent phenomenon in German: Baroni et al. (2002)
found that 47% of the word types in a general-
language corpus in German are compounds, and
according to Clouet and Daille (2014) compound-
ing is even more productive in specialized domains.
The interaction of domain features and lexical fea-
tures can be easily demonstrated at the examples
of closed compounds: For example, the compound
Hydraulikleitung ‘hydraulic line’ is considered dif-
ficult because it contains the rather technical con-
stituent ’hydraulic’. In contrast, the compound
Blaukochen (lit: ‘blue boiling’, a special kind of
boiling fish by adding acid) only contains con-
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stituents that are well-known to lay people but is
nevertheless difficult for them because the com-
pound is not semantically transparent regarding its
constituent ’blue’, i.e. it is not obvious what the
constituent contributes to the meaning of the com-
pound. In sum, the difficulty of a compound cannot
be derived from only compound attributes; in addi-
tion, it is influenced by the role and properties of
the constituents.

In this study, we want to empirically investi-
gate how phrase formation and domain-specific
termhood1 attributes interact in the automatic pre-
diction of compound difficulty. In order to train
predictive models, we use a German compound
dataset with a total of 1,030 compounds across the
above-mentioned three domains. Based on two set-
tings of the gold standard dataset (a four-class and
a binary version) we apply a decision tree classifier
using manually designed features to characterize
termhood and compound formation, and neural
classifiers using word embeddings.

2 Related Work

Term difficulty prediction (also referred to as term
familiarity or term technicality prediction) can be
seen as a subtask of automatic term extraction.
For automatic term extraction, a major strand of
methodologies are contrastive techniques, where a
term candidate’s distribution in a domain-specific
text corpus is compared to the distribution in a
reference corpus, for example a general-language
corpus (Ahmad et al., 1994; Rayson and Garside,
2000; Drouin, 2003; Kit and Liu, 2008; Bonin
et al., 2010; Kochetkova, 2015; Lopes et al., 2016;
Mykowiecka et al., 2018, i.a.). Many term diffi-
culty prediction studies rely on some variant of
contrastive approaches, mostly frequency-based;
notable exceptions are Zeng-Treitler et al. (2008),
who apply a contextual network, and Bouamor et al.
(2016), who use a likelihood ratio test based on two
language models. Most studies fall into the medi-
cal, biomedical or health domain. They rely on clas-
sical readability features such as frequency, term
length, syllable count, the Dale-Chall readability
formula or affixes (Zeng et al., 2005; Zeng-Treitler
et al., 2008; Vydiswaran et al., 2014; Grabar et al.,
2014). Some features are tailored to the medical
domain, for example relying on neo-classical word

1Termhood refers to the degree to which a lexical unit can
be considered a domain-specific concept (Kageura and Umino,
1996).

components, since medical terminology is consid-
ered to be highly influenced by Greek and Latin
(Deléger and Zweigenbaum, 2009; Bouamor et al.,
2016).

As to our knowledge, there is no previous work
that investigated term difficulty prediction for com-
plex phrases. Regarding the more general task of
automatic term extraction, a few studies included
complex phrases and their constituents. For exam-
ple, the C-value (Frantzi et al., 1998) combines lin-
guistic and statistical information and takes nested
terms into account for evaluating termhood. The
FGM score (Nakagawa and Mori, 2003) relies on
the geometric mean of the number of distinct left
and right neighboring words for each constituent
in a complex term. Contrastive Selection via
Heads (CSvH) (Basili et al., 2001) is a corpora-
comparing measure that computes termhood for a
complex term by biasing the termhood score with
the general-language frequency of the head. Hätty
et al. (2017) combine termhood measures within a
random forest classifier to extract single and mul-
tiword terms and apply the measures recursively
to the components. Hätty and Schulte im Walde
(2018) demonstrate that propagating constituent in-
formation through neural networks improves the
prediction of compound termhood.

3 Data

3.1 German Closed Noun Compounds

Closed compounds are complex expressions that
consist of several lexemes and that are written in a
single string of characters. The lexemes are called
constituents. The constituents of a two-part com-
pound can be divided into modifier and head, where
the latter is word-final in German.

An important empirical compound attribute is
the morphological family size (De Jong et al., 2000)
of a lexeme, which we refer to as productivity
henceforth. Morphological family size is defined as
the type count of morphological family members,
which comprise compounds and derived words that
contain the given lexeme as a constituent. We dis-
tinguish between two kinds of productivity as a
compound attribute: The productivity of a modifier
refers to the number of compound types where a
certain word type occupies the position of the mod-
ifier, and the productivity of a head refers to the
number of compound types where a certain word
type occupies the position of the head.
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3.2 Corpora

As corpus for general language, we rely on the
SdeWaC (Faaß and Eckart, 2013), a cleaned version
of the web-crawled corpus deWaC (Baroni et al.,
2009), containing ≈ 880 million words.

As domain-specific corpora, we use the three
domain corpora that are described by Bettinger
et al. (2020). The corpora were crawled for the
domains of Cooking, DIY and Automotive. They
were selected to include a variety of different do-
mains; for example, the Automotive domain was
chosen because it was expected to be more techni-
cal than the Cooking domain. The domain cor-
pora consist of both user-generated and expert
content. User-generated content was extracted
from Wikipedia, wikihow.de and wikibooks.de,
filtered by domain-related categories. Further,
domain-specific homepages such as kochwiki.org
were crawled. Expert texts include tool manuals
and books (e.g. on Automotive and on Handicraft),
as well as redacted text crawled from homepages
such as 1-2-do.com. Finally, all corpora were re-
duced to the size of the smallest corpus and are
equally-sized with 5.6 million tokens. The texts
are tokenized, lemmatized and POS-tagged with
spaCy2.

3.3 Gold Standard

We rely on the domain-specific compound diffi-
culty gold standard developed on the basis of the
just-described domain-specific corpora (Bettinger
et al., 2020). The gold standard contains 1,030
closed compounds from the domains of Cooking,
DIY and Automotive. Compounds were automat-
ically identified in text by applying the Simple
Compound Splitter (Weller-Di Marco, 2017). All
compounds with a frequency smaller than three
were excluded, which resulted in a pool of 12,400
Cooking compounds, 16,935 DIY compounds and
20,468 Automotive compounds, A subset was se-
lected which was balanced for the following fea-
tures: frequency of the compound, productivity
of the head, productivity of the modifier and fre-
quency of the head. The final dataset was rated
by 26 annotators on a Likert-like difficulty scale
(Likert, 1932) from 1 (easy; the term does not re-
quire specialized knowledge to be understood) to 4
(difficult; the term requires specialized knowledge).
After the annotation process, the 20 annotations
were selected where annotators agreed most. The

2https://spacy.io/

average pairwise Spearman’s ρ correlations of the
20 annotators is 0.61.
We base our models on two specifications of the
gold standard:
four-class: For each compound, we calculate the
median.3 In case of being between values, we
decide for the upper median (i.e. if the value is .5,
it is rounded up).
binary: We simplify the annotation and break
down the four graded classes into two broader
classes: easy and difficult. We decide to cluster
classes 2, 3 and 4 into a new class ‘difficult’ and
keep class 1 as ‘easy’ for the following reasons:
Annotators agreed most for class 1, so this is by
far the biggest class. Our binary grouping balances
the class sizes more equally and we believe that
annotators can easily recognize when they find a
compound to be easy (because they fully under-
stand it, which is why we get such a good agree-
ment), but when it comes to specifying difficulty
they have more problems to express to which de-
gree they do not understand the compound (due to
the fact that they cannot know how much they do
not understand).

Figure 1 presents the binary and four-class distri-
butions across the three gold standards. The graphs
show that there are more difficult compounds in
Automotive than in Cooking and DIY.

4 Experiments on Predicting Difficulty

Our prediction experiments investigate and com-
plement insights from decision tree classification
using manually designed features to characterise
termhood and compound formation (section 4.1),
and logistic regression (LR) and multilayer per-
ceptron (MLP) classification using compound and
constituent word embeddings (section 4.2).
For evaluation, we use 5-fold cross-validation and
Micro- and Macro-F1 score. As a comparison to
the model results, we apply a majority-class base-
line. When testing for significance, we use the
McNemar’s significance test (McNemar, 1947), a
paired non-parametric statistical hypothesis test.

4.1 Classification with Term and Compound
Features

A core research question for the classification ex-
periments is to which degree attributes that are

3Alternatively, one could calculate the mean compound
difficulty values, but the means are more sensitive to outliers,
and in our dataset therefore less appropriate.
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Figure 1: Gold standard: binary and four-class distributions across gold standards (figures taken from Bettinger
et al. (2020)).

related to compoundhood influence the prediction,
in contrast and in combination with attributes that
are related to termhood. The feature types tailored
to represent these attributes are the following:

• COMPOUNDHOOD (C) FEATURES4:
frequencies and productivities of compounds,
heads and modifiers in the general-language
and the domain-specific corpora; cosine dis-
tances between compound modifier and com-
pound head embeddings

• TERMHOOD (T) FEATURES:
contrastive measures Weirdness Ratio (Ahmad
et al., 1994), TFITF – Term Frequency In-
verse Term Frequency (Bonin et al., 2010),
and CSvH – Contrastive Selection via Heads
(Basili et al., 2001)

• COMBINED C+T FEATURE:
FGM-Score, a termhood measure that com-
bines compound and termhood attributes
(Nakagawa and Mori, 2003)

Note that we decided against a direct compu-
tation of compound–constituent compositionality
(Reddy et al., 2011; Schulte im Walde et al., 2013,
2016) as a feature, because the compound dataset
was balanced for frequency. It includes infrequent
compounds for which word embeddings and com-
positionality measures would be imprecise.
Method: Decision Trees. Decision tree classi-
fiers (DTs) are supervised machine learning meth-
ods that are represented as tree structures. DTs
were chosen for this task because they are easy to

4Note that for all but one of these features we have a bal-
anced set of compounds in the gold standard, see section 3.3.

interpret. We identify the optimal tree depth of our
decision trees by constantly growing the trees until
results decrease, with relying on Gini impurity as
the branch splitting criterium. In this way we found
an optimal depth of three for the decision tree in
the binary task, and an optimal depth of five for the
decision tree in the four-class task.

Overall results. Table 1 shows the results for
the decision tree classification using all features.
The classification models significantly outperform
the respective baselines in the binary classification
tasks, but in the four-class distinctions this only
applies to the Automotive domain and across all
domains (non-significant results are in italics). For
the binary task, the results for Automotive are better
than for Cooking and DIY. We assume that this
divergence is due to a higher imbalance of class
sizes across the domains, cf. figure 1.

Results by feature group. Having looked at the
results when using all features at the same time, we
now use coherent groups of features:

1. Domain-specific corpus-related features:
frequencies of compounds, heads and modi-
fiers; productivities of heads and modifiers;
FGM-Score

2. General-language corpus-related features:
frequencies of compounds, heads and mod-
ifiers; productivity of heads and modifiers;
FGM-Score

3. Contrastive features:
weirdness scores and TFITFs of compounds,
heads and modifiers; CSvH

4. Cosine distance features: cosine scores of
word2vec and fastText constituent vectors
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Baselines and Binary Four-class
Gold Standards Micro-F1 Macro-F1 Micro-F1 Macro-F1
Baseline Cooking 0.519 0.342 0.498 0.166
Baseline DIY 0.584 0.369 0.407 0.145
Baseline Automotive 0.667 0.400 0.325 0.123
Baseline All 0.604 0.377 0.376 0.137
Cooking 0.646 0.631 0.543 0.312
DIY 0.712 0.684 0.519 0.406
Automotive 0.750 0.720 0.471 0.286
All 0.732 0.707 0.492 0.405

Table 1: Results for classification using all features. All results but those in italics are significant.

Feature Group Micro-F1 Macro-F1
Baseline 0.604 0.377

Cosine 0.594* 0.391*
Head 0.608* 0.568*

Domain 0.635* 0.593*
Modifier 0.656 0.627

Constituent 0.661 0.648
Contrastive 0.713 0.690

All 0.732 0.707
General 0.735 0.703

Compound 0.736 0.713

Table 2: Binary: results by feature groups.

Feature Group Micro-F1 Macro-F1
Baseline 0.376 0.137

Cosine 0.400* 0.258*
Domain 0.405* 0.300*

Head 0.418 0.287
Constituent 0.455 0.364

Modifier 0.457 0.370
General 0.458 0.359

Compound 0.480 0.342
All 0.492 0.405

Contrastive 0.510 0.408

significant
improve-
ment

Table 3: Four-class: results by feature group.

Feature Micro-F1 Macro-F1
Baseline 0.604 0.377

comp TFITF 0.637 0.566
FREQ head gen 0.642 0.571
FREQ mod gen 0.645 0.619
PROD mod gen 0.653 0.616
comp WEIRD 0.709 0.690
FGM gen 0.713 0.696
FREQ gen 0.732 0.706

Table 4: Binary: individual features which signifi-
cantly outperform the baseline.

Feature Micro-F1 Macro-F1
Baseline 0.376 0.137

comp TFITF 0.412 0.238
FREQ mod dom 0.415 0.280
Num comp 0.417 0.248
PROD head gen 0.426 0.306
FREQ head gen 0.435 0.290
FREQ mod gen 0.454 0.322
PROD mod gen 0.455 0.298
comp WEIRD 0.462 0.330
FREQ gen 0.464 0.343
FGM gen 0.467 0.339

Table 5: Four-class: individual features which sig-
nificantly outperform the baseline.

5. Compound features:
compound frequencies in general-language
and domain-specific corpora; numbers of com-
pound constituents; weirdness scores and
TFITFs of compounds

6. Modifier features:
frequencies and productivities of modifiers
in general-language and domain-specific cor-
pora; weirdness scores and TFITFs of modi-
fiers; CSvH

7. Head features:
frequencies and productivities of heads in
general-language and domain-specific cor-
pora; weirdness scores and TFITFs of heads;
CSvH

8. Constituent features:
union of modifier and head features

Tables 2 and 3 show the results obtained by fea-
ture group, sorted by increase in Micro-F1. We
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Chosen Feature Micro-F1 Macro-F1
+FREQ gen 0.732 0.706

+PROD mod dom 0.739 0.720
+PROD mod gen 0.744 0.725

+mod WEIRD 0.746 0.727
+FREQ dom 0.746 0.727

Table 6: Binary: feature selection.

Chosen Feature Micro-F1 Macro-F1
+FGM gen 0.467 0.339

+head TFITF 0.487 0.350
+PROD mod gen 0.493 0.362
+PROD head gen 0.511 0.370

+NUM comp 0.511 0.370

Table 7: Four-class: feature selection.

can see that most feature groups achieve lower re-
sults in comparison to using all features (in bold
font), but at the same time ‘All’ does not achieve
the best results. The categories Cosine, Domain
and Head perform worst and do in most cases not
even significantly improve over the baseline. The
modifier features are better than the head features,
which is in line with the results in (Hätty et al.,
2017) where the modifier features are more impor-
tant for detecting termhood than head features. For
both the binary and the four-class tasks, the groups
General, Compound and Contrastive perform best,
with Compound as the winner for the binary task
and Contrastive as the winner for the four-class
task. The arrows in the result tables indicate which
group results are significantly different to the win-
ner group result.

Individual features. Tables 4 and 5 show the re-
sults for those individual features which perform
significantly better than the respective baseline,
sorted by increase in F1. For the four-class task,
three more features perform significantly better
than the baseline in comparison to the binary task;
these features are marked in bold. The best indi-
vidual features are the same for both tasks, with
almost the same rankings. The best three individual
features address distinct attributes of a compound
term: a compound’s general-language frequency
(FREQ gen), a termhood measure involving con-
stituents (FGM gen), and a contrastive termhood
measure (comp WEIRD).

Best feature combination. Tables 6 and 7 an-
alyze how features interact: We perform feature
selection by repeatedly adding the best-performing
individual feature for each task, based on Micro-F1,
until the scores stagnate or decrease. The resulting
best feature combinations provide us with the best
results for each task, while only comprising five
individual feature types in both tables. The opti-
mal combinations address attributes of the whole
compounds and attributes of constituents.

Analyzing frequency and productivity. For in-
vestigating the influence of frequency and produc-
tivity properties of compounds and constituents, we
created subsets of the gold standard where we dis-
tinguished between tertiles regarding compound
frequency and constituent productivity: ‘low’,
‘mid’ and ‘high’. Each property type is assessed
once for the general-language and once for the
domain-specific language. The 6 × 3 tertiles are
determined by sorting all elements regarding one
property and cutting the data into three equally-
sized portions. The resulting ranges are shown in
table 8.

We then compare the classifier results for the two
extreme tertiles, ‘low’ and ‘high’, using all features
on these subsets. The results are shown in the right-
hand part of table 8. It is obvious that across all
properties better results are achieved for the ‘low’-
category, as indicated by the bold font. The gap
between the results for ‘low’ and ‘high’ is espe-
cially large for the productivities of modifiers and
heads. Thus low productivity represents a rather
clear indicator for a compound to be either easy
or difficult (given that the model achieves better
results in the prediction), while high productivity is
an attribute of harder to distinguish easy and diffi-
cult terms. In order to investigate this effect further,
we inspect the gold label distribution in the ‘low’
and ‘high’-categories. We find a dominance of
difficult compounds in the ‘low’-categories, while
there is a higher balance between easy and difficult
compounds in the ‘high’-categories. This shows
that low productivity and frequency are indicators
of difficulty, while high productivity and frequency
are less distinctive.

4.2 Classification with Word Embeddings

For our second kind of classification experiments,
we do not use hand-crafted features anymore but
semantic representations of compounds and com-
ponents for general-language and domain. Two
kinds of word embeddings are used in the follow-
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Compound and Constituent Tertiles and Ranges Micro-F1
Properties low mid high low high
compound frequency (domain) 3–4 4–8 8–444 0.773 0.722
compound frequency (general) 0 0–17 17–53,569 0.779 0.722
modifier productivity (domain) 1–14 14–55 55–665 0.863 0.658
modifier productivity (general) 0–101 103–588 590–4,976 0.884 0.661
head productivity (domain) 1–14 14–61 62–1,157 0.802 0.652
head productivity (general) 0–119 119–786 786–8,293 0.812 0.693

Table 8: Ranges of selected properties across tertiles, and results on binary classification for extreme ‘low’ and
‘high’ tertiles when using all features (cf. All in Table 2 with Micro-F1=0.732).

ing: word2vec (Mikolov et al., 2013) and fastText
(Bojanowski et al., 2017).5

We use the word2vec model, because it is a stan-
dard model for natural language processing appli-
cations. The fastText model works on character
n-grams and not on words, and Bojanowski et al.
(2017) argues that it performs well on closed com-
pounds. This model is particularly interesting for
us because a compound embedding is learned par-
tially from the same n-grams as the embeddings
of its constituents. Thus, we implicitly have a rep-
resentation of the constituents in the compound
embedding, which we expect to be beneficial for
our classification task. Inspecting some words and
their nearest neighbors for the two models con-
firms our intuition. For the verb kochen (“cook”)
the following six words are the most similar ac-
cording to word2vec: sieden (“to boil”), garen (“to
refine”), brutzeln (“to sizzle”), braten (“to fry”),
grillen (“to barbecue”) and zubereiten (“to pre-
pare”). According to fastText we find the near-
est neighbors erkochen (“to reach by cooking”),
garkochen (“to cook sth. well”), teekochen6 (“to
make tea”), reiskochen (“to cook rice”), eierkochen
(“to cook eggs”) and bekochen (“to cook for some-
one”). The similarity in word2vec neighbors is
more on the semantic level in contrast to fastText,
where the words are highly similar on a surface
morphological level. The embeddings are trained
for each domain individually, by concatenating
SdeWaC and the respective domain data as input.

Methods: LR and MLP We use our pre-trained
word embeddings for compounds and constituents
as features and apply two kinds of classifiers:

5We do not use state-of-the-art contextualized word em-
beddings such as BERT (Devlin et al., 2019), because we
predict difficulty on a type-based, not context-dependent level.

6We cite words in their original lowercased version as used
in the model.

• logistic regression: simple neural network
with only input and output layers but no hid-
den layer,

• multilayer perceptron: neural network with
each one input, hidden and output layer.

For the binary classification task, the classifiers use
a sigmoid activation in the output layer, for the four-
class task the classifiers use softmax activation. For
the multilayer perceptron, we also use a sigmoid
activation for the hidden layer. Concerning the
parameters, the batch size is set to 32, there are 50
epochs and the hidden layer has a dimension of 64.

Results. We compare three different input set-
tings for the classification tasks: The first model
only takes the compound word embeddings as in-
put (see ‘compound’ in table 9). For all settings, we
distinguish between two differently trained word
embeddings: the word-based word2vec and the
character-based fastText word embedding models.
The second model (‘comp+const’) takes the con-
catenated embeddings of the compound and of its
constituents (binary split, i.e. two constituents) as
input, to evaluate the impact of the constituents.
The third model (‘only const’) only uses the con-
catenated constituent vectors, to evaluate if this
information is competitive.

The results for the classifications are shown in
table 9. For the binary task we reach the best results
(marked in bold) with word2vec when using a com-
bination of compound and constituent information,
and with fastText when only using the compound
embeddings. This tendency was expected: Since
fastText embeddings are character-based, the con-
stituents are implicitly encoded as well. Using
only constituent information provides lower result
scores in comparison to using compound informa-
tion, which is in line with the results of the previous
section.
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The distribution of the results of the four-class
task in table 9 is similar to the binary task, except
for now also for fastText the combination of com-
pound and constituent information works best. This
might be caused by the more difficult task and is
also indicated by the fact that for the four-class task
MLP with the additional hidden layer produces the
best results, while for the binary task the simpler
model LR obtains the best results.

Interestingly, word2vec models mostly perform
better than fastText models, although fastText im-
plicitly contains constituent information. We argue
that because 171 infrequent compound vectors are
missing for word2vec (with a minimum frequency
threshold for word vectors to be trained), these 171
compounds are assigned to the same random vector.
Given that low frequency is a reasonable indicator
for difficulty, the model might learn from the miss-
ing vectors which compounds are infrequent.

Although models using both compound and con-
stituent information seem to be superior to models
using only compound information, these results
can only be treated as a tendency. For word2vec
and both the binary and the four-class tasks, models
using both compound and constituent embeddings
are not significantly better than models using only
compound embeddings. However, although models
using compound embeddings perform significantly
better than models using only constituent embed-
dings (which is intuitive), the latter still perform
significantly better than the baseline. This shows
that constituent embeddings carry informative char-
acteristics for classifying compounds for difficulty.

4.3 Discussion

Our experiments investigated how compound for-
mation and termhood and domain attributes influ-
ence the prediction of compound difficulty.

Compounds and constituents. The binary task,
as the presumably simpler task, reached better re-
sults with simpler means: General-language fre-
quency of the compound is a good indicator (2%
better than the second-best feature for Micro-F1);
in addition, there is a 5% gap between compound
and constituent features (table 4), which shows that
compound features are sufficient for this task. For
the four-class task, features differ less; the best
results include compound and constituent informa-
tion (table 5). However for both tasks we can see: a
combination of compound and constituent features
leads to best results (tables 6 and 7).

The experiments with using neural networks
show the same tendency (table 9): While for half
of the cases in the binary task the compound vector
is sufficient, the improvement over ‘comp+const’
is not significant, and overall using both compound
and constituent vectors (‘comp+const’) provides
the best results. We conclude that constituents in-
fluence the degree of difficulty of the compounds.

Termhood. Contrastive features (i.e. termhood
features) are more important for the four-class task
than for the binary task (tables 2 and 3): For the
four-class task, they perform significantly better
than the general-language features, while for the
binary task ‘FREQ gen’ is the best individual fea-
ture (table 4). In sum, for a broad difficulty dis-
tinction as for the binary task, general-language
information might be sufficient, but for the more
fine-grained four-class task contrastive termhood
features are supportive.

Domains. There are no striking differences in the
predictive power of the models across domains (ta-
ble 1). For all three gold standards, the binary clas-
sification models outperform the respective base-
lines. In the four-class distinction, this is only the
case for Automotive, which includes more difficult
compounds than Cooking and DIY. Presumably,
prediction differences are due to the differently
(im)balanced sizes of the classes.

Low versus high productivity and frequency.
When contrasting the lower and upper tertile value
ranges for compound frequency and constituent
productivity, we found that low productivity and
low frequency are very salient indicators for the
level of difficulty. This seems counterintuitive: e.g.
high frequency could be a reliable indicator for
simplicity of a compound, while low frequency
could indicate difficulty, but low frequency could
also indicate that concepts are newly coined (which
does not mean that they are difficult), or because
of spelling or inflection errors. The dataset was
cleaned for the latter, but the former case was not
paid attention to. Concerning productivity, the gap
between ‘high’ and ‘low’ is even more extreme. We
hypothesize that this could be due to a compound
being judged as difficult because of one difficult
constituent, but an easy compound requires all con-
stituents to be easy. This is why single easy con-
stituents might be no good indicators – difficulty
depends on the other constituent for the compound
to be easy or difficult.
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network word2vec fastText word2vec fastText
Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

compound LR 0.760 0.722 0.746 0.724 0.514 0.385 0.459 0.338
MLP 0.761 0.729 0.738 0.720 0.518 0.383 0.469 0.341

comp+const LR 0.771 0.758 0.734 0.715 0.515 0.429 0.465 0.355
MLP 0.749 0.735 0.732 0.716 0.525 0.431 0.477 0.369

only const LR 0.701 0.685 0.703 0.679 0.460 0.362 0.447 0.355
MLP 0.714 0.697 0.713 0.696 0.493 0.389 0.469 0.365

Table 9: LR/MLP Classifiers: Mi(cro)-F1 and Ma(cro)-F1 results for the Binary (left) and Four-Class (right) task.

5 Conclusion
This study investigated the automatic prediction of
difficulty for domain-specific German compounds
across three domains. We asked to what extent com-
pound formation attributes and domain-specific
termhood attributes influence and interact in the
prediction. We found that plain general-language
compound frequency is a reliable indicator for dif-
ficulty in our dataset, which shows that effects of
domain-specialization and compound formation
are reflected to a large extent by general corpus
frequency. However, for a more fine-grained four-
class distinction of difficulty going beyond a broad
binary distinction into ’easy’ and ’difficult’, con-
trastive termhood features and compound and con-
stituent information are crucial.
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Splitting of compound terms in non-prototypical
compounding languages. In Proceedings of the First
Workshop on Computational Approaches to Com-
pound Analysis, pages 11–19, Dublin, Ireland. As-
sociation for Computational Linguistics and Dublin
City University.

Nivja H. De Jong, Robert Schreuder, and Harald R.
Baayen. 2000. The morphological family size ef-
fect and morphology. Language and Cognitive Pro-
cesses, 15(4–5):329–365.
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Abstract

Recent work in cross-topic argument mining
attempts to learn models that generalise across
topics rather than merely relying on within-
topic spurious correlations. We examine the
effectiveness of this approach by analysing the
output of single-task and multi-task models for
cross-topic argument mining through a com-
bination of linear approximations of their de-
cision boundaries, manual feature grouping,
challenge examples, and ablations across the
input vocabulary. Surprisingly, we show that
cross-topic models still rely mostly on spu-
rious correlations and only generalise within
closely related topics, e.g., a model trained
only on closed-class words and a few common
open-class words outperforms a state-of-the-
art cross-topic model on distant target topics.

1 Introduction

When a sentiment analysis model associates the
word Shrek with positive sentiment (Sindhwani
and Melville, 2008), it relies on a spurious cor-
relation. While the movie Shrek was popular at
the time the training data was sampled, this is un-
likely to transfer across demographics, platforms
and years. While there exists a continuum from
sentiment words such as fantastic to spurious cor-
relations such as Shrek, with words such as Holly-
wood or anticipation being perhaps in a grey zone,
demoting spurious correlations is key to learning
robust NLP models (Sutton et al., 2006; Søgaard,
2013; Tu et al., 2020).

This paper studies a similar problem in state-of-
the-art cross-topic argument mining systems. The
task of argument mining is to recognise the exis-
tence of claims and premises in a text span. The

All code will be publicly available at https://
github.com/terne/spurious_correlations_
in_argmin

Figure 1: In human interaction, it is evident that rely-
ing on topic words for recognizing an argument is non-
sensical. It is, nevertheless, what a BERT-based cross-
topic argument mining model does.

standard evaluation protocol is to evaluate argu-
ment mining systems across topics, i.e., on held-
out topics, precisely to avoid over-fitting to a single
topic (Daxenberger et al., 2017; Stab et al., 2018;
Reimers et al., 2019). This study shows that despite
this sensible cross-topic evaluation protocol, state-
of-the-art systems nevertheless rely primarily on
spurious correlations, e.g., guns (Figure 1). These
spurious correlations transfer across some topics in
popular benchmarks, but only because the topics
are closely related.

Contributions We present experiments with an
out-of-the-box learning architecture for argument
mining, yet with state-of-the-art performance,
based on Microsoft’s MT-DNN library (Liu et al.,
2019). We train models on the UKP Sentential
Argument Mining Corpus (Stab et al., 2018), the
IBM Debater Argument Search Engine Dataset
(Levy et al., 2018), the Argument Extraction corpus
(Swanson et al., 2015), and the Vaccination Corpus
(Morante et al., 2020). We analyse the models with
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respect to spurious correlations using the post-hoc
interpretability tool LIME (Ribeiro et al., 2016)
and we find that the models rely heavily on these.
This analysis is the paper’s main contribution: In
§5, we: a) evaluate our best-performing model on
a small set of challenge examples, which we make
available, and which motivate our subsequent anal-
yses; b) manually analyse how many of the words
our models rely the most on are spurious correla-
tions; c) evaluate how much weight our models at-
tribute to open class words and whether multi-task
training effectively moves emphasis to closed-class
items that likely transfer better across topics; d)
evaluate how much weight our models attribute
to words in a manually constructed claim indica-
tor list (Morante et al., 2020; Stab and Gurevych,
2017), and whether multi-task training effectively
moves emphasis to such claim indicators that likely
transfer better across topics; and lastly e) evaluate
the performance of models trained only on closed-
class words or closed class and open class words
that are shared across topics. Surprisingly, we find
that models with access to only closed-class words,
and a few common (topic-independent) open-class
words, perform better across distant topics than our
baseline, state-of-the-art models (Table 5).

2 Argument mining

We first describe the task of argument mining, fo-
cusing, in particular, on the subtle difference be-
tween argument mining (‘this is an argument for or
against x’) and stance detection (‘this is an expres-
sion of opinion for or against x’). Both tasks are
very relevant for social scientists, monitoring the
dynamics of public opinion. Still, whereas stance
detection can be used to see what fractions of demo-
graphic subgroups are in favor of or against some
topic, argument mining can be used to identify the
arguments made for and against policies in political
discussions.

What is an argument? An argument is made
up of propositions (claims), which are statements
that are either true or false. Traditionally, an ar-
gument must consist of at least two claims, with
one being the conclusion (major claim) and at least
one reason (premise) backing up that claim. Some
argument annotation schemes ask annotators to la-
bel premises and major claims separately (Lindahl
et al., 2019). Others simplify the task to identifying
claim or claim-like sentences (Morante et al., 2020)
or to whether sentences are claims supporting or

opposing a particular idea or topic (Levy et al.,
2018; Stab et al., 2018). The resources used in our
experiments below are of the latter type: Sentences
are labeled as arguments if they present evidence
or reasoning in relation to a claim or topic and are
refutable.

The resources used in our experiments are anno-
tated with arguments in the context of a particular
topic, as well as the argument’s polarity, i.e., what
is annotated relates to stance. The key difference
between the current task and stance detection is that
arguments require the author to present evidence
or reasoning for or against the topic.

Spurious correlations of arguments Argu-
ments for or against a policy typically refer to dif-
ferent concepts. Take, for example, discussions of
minimum wage and the terms living wages and jobs.
Since these terms are frequent in arguments for and
against minimum wage, they will be predictive of
arguments (in discussions of minimum wage). Still,
mentions of the terms are not themselves markers
of arguments, but simply spurious correlations of
arguments. We use the same definition of spurious
correlations as Wang and Culotta (2020), mainly
that a relationship between a term and a label is
spurious if one cannot expect the term to be a deter-
mining factor for assigning the label.1 Examples
of the contrary are terms such as if and because
(and to some degree stance terms), which one can
reasonably expect to be determining factors for an
argument to exist (and therefore to be stable across
topics and time).

3 Datasets

The UKP Sentential Argument Mining Corpus
(UKP) (Stab et al., 2018) contains 25,492 sen-
tences spanning eight controversial topics (abor-
tion, cloning, death penalty, gun control, marijuana
legalization, school uniforms, minimum wage and
nuclear energy), each annotated at the sentence
level as one of three classes; NO ARGUMENT, AR-
GUMENT AGAINST, and ARGUMENT FOR. For
example, a sentence about death penalty may not
be arguing for or against death penalty (NO ARGU-
MENT), may present an argument against having
death penalty as a punishment for a severe crime

1Arjovsky et al. (2019) provides the example of a classifier
trained to distinguish between images of cows and camels; if
prone to spurious correlations, the classifier may be challenged
by a picture of a cow on a sandy beach. Bommasani and
Cardie (2020) also refer to spurious correlations as reasoning
shortcuts.
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(ARGUMENT AGAINST), or may present an ar-
gument in favor of the same (ARGUMENT FOR).
The data is annotated such that the evaluation of a
sentence (being an argument or not) is not strictly
dependent on the topic. However, it should still
be unambiguously supportive of or against a topic.
Claims will not be annotated as an argument unless
they include some evidence or reasoning behind
the claim; however, Lin et al. (2019) do find a few
wrongly annotated sentences in this regard. The
corpus comes with a fixed 70-10-20 split.

The IBM Debater Argument Search Engine
Dataset (IBM) is from a larger dataset of argu-
mentative sentences defined through query patterns
by Levy et al. (2017, 2018). We use only the 2,500
sentences that are gold labelled — with binary la-
bels, where positive labels were given to statements
that directly support or contest a topic. The sen-
tences are from Wikipedia articles and span 50
topics. Since the authors used queries to mine the
examples, the data is imbalanced (70% positive).
We introduce a random 70-30 split.

The Argument Extraction Corpus (AQ)
(Swanson et al., 2015) contains 5,374 sentences
annotated with argument quality on a continuous
scale between 0 (hard to interpret the argument)
and 1 (easy to interpret the argument). Of the
corpora included in our study, this differs most
from the others; however, the topics included are
controversial topics (gun control, gay marriage,
evolution, and death penalty), similar to the UKP
Corpus. The sentences are partly from the Internet
Argument Corpus (Walker et al., 2012) and partly
from createdebate.com. We introduce a random
70-30 split.

The Vaccination Corpus (VacC) was presented
in Morante et al. (2020) and consists of 294 doc-
uments from online debates on vaccination with
marked claims. A claim is defined as opinionated
statements wrt. vaccination. For our purpose, we
split the documents into sentences (23,467). We
use binary labels (claim or not) and introduce a
random 70-10-20 split.

4 Experimental setup

We now describe our learning architecture, an al-
most out-of-the-box application of the MT-DNN
architecture in Liu et al. (2019). It is a strong model
that achieves a better performance than previously
reported across the benchmarks.

The MT-DNN model of Liu et al. (2019) com-
bines the pre-trained BERT architecture with multi-
task learning. The model can be broken up into
shared layers and task-specific layers. The shared
layers are initialised with the pre-trained BERT
base model (Devlin et al., 2019). We add a task-
specific output layer for each task and update all
model parameters during training with AdaMax.
The task-specific layers are logistic regression clas-
sifiers with softmax activation, minimising cross-
entropy loss functions for classification tasks or
mean squared error for regression tasks. If we only
have a single output layer, we refer to the archi-
tecture as single-task DNN (ST-DNN) rather than
MT-DNN. We train all models over 10 epochs with
a batch size of 5 for feasibility and otherwise use
default hyperparameters.

Following Stab et al. (2018), we iteratively com-
bine the training and validation data from seven
of the eight topics of the UKP Corpus for training
and parameter tuning and use the test data of the
held-out topic for testing. We firstly treat the task
as a single-sentence classification task and train
an ST-DNN with the BERT-base model as shared
layers. Since Tu et al. (2020) argues multi-task
learning effectively reduces sensitivity to spurious
correlations, we experiment with MT-DNN mod-
els based on different data and task combinations:
For each auxiliary dataset (IBM, AQ, and VAcC),
we train an MT-DNN model with the UKP Cor-
pus as one task and the auxiliary data as another
task. We denote the MT-DNN models as follows:
MT-DNN+IBM refers to a model trained with the
IBM data as an auxiliary claim classification task;
MT-DNN+AQ is trained with AQ as an auxiliary
regression task; MT-DNN+VacC is trained with
VAcC data as an auxiliary claim classification task;
MT-DNN+AQ+IBM+VacC is our largest model
trained with all auxiliary tasks. Topic-MT-DNN
provides us with an upper bound: In this setting,
all topics are used in training and tuning, including
the target topic, as eight separate tasks.

5 Analysis

We evaluate the models on the UKP Corpus using
the cross-topic evaluation protocol of (Stab et al.,
2018) – training with seven topics and testing on
a held-out topic. We report the average macro F1

across five random seeds. Table 1 shows the aver-
age cross-topic results as well as results for each
held-out topic for all models. With single-task mod-
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Model Average abortion cloning death
penalty

gun
control

marijuana
legal

school
uniforms

minimum
wage

nuclear
energy

IN-TOPIC MODELS (upper bounds)

Topic-MT-DNN† .665 .571 .733 .595 .611 .724 .707 .716 .662

CROSS-TOPIC MODELS

ST-DNN .642±.011 .473±.012 .715±.012 .595±.009 .593±.011 .703±.010 .698±.015 .710±.013 .650±.002
MT-DNN+IBM .643±.009 .466±.019 .726±.010 .595±.006 .582±.004 .704±.010 .703±.010 .718±.009 .655±.006
MT-DNN+AQ .643±.011 .479±.015 .716±.006 .600±.012 .590±.010 .699±.011 .710±.010 .698±.008 .649±.015
MT-DNN+VacC .641±.010 .472±.016 .716±.008 .589±.009 .601±.009 .701±.011 .690±.010 .699±.013 .660±.006
MT-DNN+VacC+IBM+AQ .644±.011 .476±.009 .720±.021 .587±.011 .598±.005 .716±.011 .696±.003 .701±.018 .655±.006

CONSTRAINED CROSS-TOPIC MODELS (lower bounds)

CLOSED .481±.014 .472±.016 .492±.006 .467±.013 .452±.015 .515±.021 .478±.012 .520±.012 .519±.008
CLOSED+SHARED .501±.010 .426±.012 .508±.016 .475±.009 .469±.006 .552±.004 .490±.005 .565±.017 .519±.008

Table 1: Macro F1 scores across topics of the three-class UKP data. IN-TOPIC models are (also) trained on the
training data of the target topic. CONSTRAINED models only rely on closed-class words and open class words
shared across all topics. In-topic, cross-topic and constrained models cannot be directly compared. Still, in-topic
and constrained models provide upper and lower bounds in the sense that they represent scenarios where models
are encouraged, respectively prohibited, to rely on spurious features. We report averages across 5 random seeds
except †, which is only one run. The best performances per column within cross-topic models are boldfaced.

els, we achieve an average macro F1 of .642, which
is a big improvement from the .429 reported by
Stab et al. (2018). Our ST-DNN model also out-
performs the best-reported score in the literature,
which, as far as we know, is .633 by Reimers et al.
(2019). Reimers et al. (2019) used BERT Large
and, unlike us, integrated topic information in the
model. Multi-task learning can improve the perfor-
mance to .644, a 35% error reduction relative to
the upper bound of training a model on all eight
topics, i.e., including in-topic training data. We see
a large variation in the performance across topics
for all models, with the abortion topic being hard-
est to classify and cloning being easiest. With two
classes – argument or not – the average macro F1

is .776, again with large differences across topics;
abortion being hardest to classify (.656) and min-
imum wage being easiest (.828). To analyze our
models, we use the popular post-hoc interpretabil-
ity tool LIME (Ribeiro et al., 2016). By training
linear (logistic regression) models on perturbations
of each instance, LIME learn interpretable mod-
els that locally approximate our models’ decision
boundaries. The weights of the LIME models tell
us which features are locally important.2

2LIME has several weaknesses: LIME is linear (Bramhall
et al., 2020), unstable (Elshawi et al., 2019) and very sensitive
to the width of the kernel used to assign weights to input
example perturbations (Vlassopoulos, 2019; Kopper, 2019), an
increasing number of features also increases weight instability
(Gruber, 2019), and Vlassopoulos (2019) argues that with
sparse data, sampling is insufficient. Laugel et al. (2018)
argues the specific sampling technique is suboptimal. Since we
use aggregate LIME statistics across hundreds of data points,
these weaknesses should have limited impact on our results;
LIME remains a de facto standard, and most alternatives suffer

a) Challenge examples For an initial qualitative
error analysis, 19 short text pieces are taken from
exercises made by Jon M. Young for his Criti-
cal Thinking course at Fayetteville State Univer-
sity.34 Of these, the first six are examples of sen-
tences that comprise an argument or not, and if
they do, the conclusions and premises have been
annotated by Young. The last 13 examples are
from exercises where we annotated the correct an-
swers. We contrast the LIME analyses of the pre-
dictions of our best performing model, i.e. MT-
DNN+VacC+IBM+AQ, as well as our ST-DNN
baseline.5 An example of the LIME explanations
can be seen in Figure 2. The remaining LIME
explanations are in the appendix in Figures 4-7.

Out of the 19 examples, seven were incorrectly
classified by our best model. Common to these
misclassified examples is either a rather uncontro-
versial, everyday topic (4c, 4g, 5e) or a very in-
formative language (4h, 5g, 5h). Since the model
was mainly trained on controversial topics, it is not
surprising that these uncontroversial cases make
the model misstep. While this is a tiny sample,
these incorrect classifications do suggest that our
models do not transfer well to any topic, possibly
indicating they rely more on topic words than on

from similar weaknesses or are prohibitively costly to run.
3https://tinyurl.com/y6ldjtvh
4https://tinyurl.com/yyw5uhtm
5For LIME, we use a neighbourhood of size 500 both here

and in the following experiments. We use models trained with
random seed 2018 for the current and following LIME exper-
iments, and for the current analysis, we use models trained
with the cloning topic as our held-out topic.
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Topic Argument words Topic words Stance words Other

abortion if, that, for abortion, life, women,
woman, human, pregnancy,
unborn

right, legal, hates the , is, to, in, it, be

cloning would, will, if, could,
potential

cloning, clone, cloned,
genetic

not, no, abnormalities the , to, is, it, have, be, do

death penalty would, if death, penalty, punishment,
killing, crime

not, murder, murderers the , to, in, is, of, are,
people, it

gun control gun, guns, criminals,
background, checks, disarm,
arms, armed

no, safer, right, more, not,
abiding

a , the, are, and, in, is

marijuana legalization would marijuana, use, effects,
legalizing, legalization,
drug, prohibition, drugs

no, not, more, abuse, costs is , the, are, it

school uniforms if, but uniforms, uniform, school,
students, clothing, wears

not, less, improve,
decreased, uncomfortable,
costs

to , can, it, without

minimum wage would, that, if wage, minimum, workers,
wages, living, jobs, hour

cost, more, no, many the , it, is, are, can

nuclear energy that, if, for nuclear, power, energy,
reactors, plants, waste,
chernobyl, fuel

safety, less is , the, to, has, can, it

Table 2: Top 20 words for each topic based on accumulated LIME weights towards the predicted label of each
sentence. Divided into word categories.

(a)

(b)

Figure 2: Non-argumentative example sentence (because it is question rather than argument) explained with LIME.
The orange highlights indicate words weighted positively towards the ARGUMENT AGAINST class. The darker
the colour, the larger the weight. a) using MT-DNN+AQ+IBM+VacC as the predictor. b) using ST-DNN as the
predictor. Both models used were trained with the cloning topic held out.

argument markers. This is supported by the ob-
servation that open-class words – rather than argu-
mentative language patterns – are given most of the
weight towards the argument classes. Open-class
words are defined as nouns, verbs and adjectives,
and closed-class words are the remains. For ex-
ample, we see “guns” as an argument indicator
rather than “if” in 2a and 2b; we see “people” and
“needs” emphasized more than “if” in 5f; and in 5i,
the stance indicator “disastrous” and the open-class
word “television” have large weights, while “seems”
and “caused” are not emphasized at all. Overall,
this suggests our models learn what arguments are
about but not what constitutes an argument. The
single-task model exhibits similar patterns. In fact,
there seems to be little difference between what the
two models attend to.

This initial evaluation raises two questions: To
what extent do our models rely on topic-specific
spurious correlations with limited ability to transfer

across (distant) topics instead of relying on more
generic argument markers? And to what extent
do simple regularization techniques like multi-task
learning, as suggested in Tu et al. (2020), prevent
our models from over-fitting in this way?

b) How many of the words we rely on are spu-
rious? We generate and accumulate LIME ex-
planations for our single-task models over the cor-
responding held-out topics’ development sets to
evaluate how much our models rely on spurious cor-
relations. We accumulate LIME weights for words
towards the predicted class. Words are sorted by
accumulated weights, and we manually annotate
the top k words for whether they are spurious.

Specifically, and to better understand the distri-
bution of word types, we divide the top 20 words
into four categories: argument words, topic words,
stance words, and other. We define argument
words as words that likely appear when present-
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ing claims, independent on the topic, including
markers of evidence and reasons such as “if”, “that”
and “because” and similar lexical indicators based
on (Stab and Gurevych, 2017). Contrary to argu-
ment words, we define topic words as words that
have no relation to the act of presenting an argu-
ment but are clearly related to the specific topic,
e.g., nouns or verbs frequently used when debating
or merely describing the topic. Lastly, we define
stance words as opinionated words that express
a stance toward a topic (but is not only used in
the context of arguments, i.e., presenting evidence).
Examples include describing death penalty as “mur-
der” or school uniforms as “uncomfortable”. Three
annotators agreed on the classification. Words that
did not fit our scheme were categorised as other.
Table 2 shows the top 20 words, categorised, for all
development sets.6

Our first observation is that 62.5% of the top
20 words are topic words, and for the GUN CON-
TROL topic, none of the words are argument words.
Instead, topic words such as “criminals”, “back-
ground” and “checks” receive high weights. These
words are neither indicative of an argument or
stance – hence, they are spurious correlations. In-
terestingly, the only topic where argument words is
the majority category is cloning – the held-out topic
where all our models perform best. This suggests
reducing our models’ reliance on topic words can
improve the cross-topic performance of argument
mining models, which we will investigate in the
following experiments. Of course, our models, nev-
ertheless, show relatively good performance across
topics, suggesting that some topic words transfer
across topics in the UKP corpus. We will discuss
recommendations for experimental protocols and
the importance of evaluating across distant topics
below.

Note that we do not normalize the accumulated
LIME weights by word frequency, which favors
frequent words. When normalising the weights,
our models also rely heavily on low-frequency
stance words and for all topics, except cloning,
there are many topic words among the top 20. High-
frequency words (as well as most argument words)
are naturally ranked much lower after normalisa-
tion. Stance words are, of course, not spurious for
our three-way classification problem, but a near dis-

6Top 20 words along with their frequency and
LIME weights are provided at github.com/terne/
spurious_correlations_in_argmin/top_
words

appearance of argument words in the normalized
top 20 suggests our models are unlikely to capture
low-frequency argument markers.

c) How much weight do our models attribute to
open class words, and does multi-task learning
move emphasis to closed-class items? Multi-
task learning is a regularization technique (Søgaard
and Goldberg, 2016; Liu et al., 2019) and may, as
suggested by Tu et al. (2020), reduce the extent to
which our models rely on spurious correlations,
which tend to be open class words. To compare
the weight attributed to open-class words, across
single-task and multi-task models, we define a
score reflecting the weight put on open class words
in a sentence: For each word in the sentence, we
consider the maximum LIME weight of the two
weights towards the argument classes ARGUMENT

AGAINST and ARGUMENT FOR. We then take the
sum of LIME weights put on open class words,
normalised by the total sum of weights, and divide
the normalised weight by the sentence fraction
of open-class words. Table 3 shows the average
sentence scores for each topic and model. We
observe that the weights are very similar across
single-task and multi-task models (and topics), and
a Wilcoxon signed-rank test confirms that there
is no significant difference between single-task
and multi-task open class sentence scores. We also
performed the test with sentence scores defined
for each class separately (rather than taking the
maximum weight) and again found no significant
differences.

Topic ST MT

abortion 1.447 1.408
cloning 1.404 1.416
death penalty 1.441 1.421
gun control 1.436 1.381
marijuana legalization 1.387 1.414
school uniforms 1.461 1.402
minmum wage 1.398 1.412
nuclear energy 1.379 1.366

mean 1.419 1.402

Table 3: The sentence scores reflecting the weight put
on open class words across domains and model types.
There is no significant difference between mean sen-
tence scores of ST and MT models.

d) How much weight do our models attribute to
claim indicators, and does multi-task learning
move emphasis to such indicators? As a set of
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Claim indicators indicates, because, proves, however, shows, re-
sult, opinion, conclusion, given, accordingly, since,
clearly, mean, truth, consequently, must, would,
points, therefore, whereas, obvious, demonstrates,
thus, fact, if, that, hence, i, could, should, for, con-
trary, potential, may, believe, suggests, probable,
conclude, clear, point, sum, entails, think, implies,
explanation, follows, reason

Shared open political, single, debate, had, asked, made, policy,
last, legal, cause, long, few, said, want, person, is-
sue, say, group, possible, use, people, believe, good,
have, fact, point, society, time, such, going, put,
used, come, based, question, think, example, part,
other, are, year, including, argument, only, way, ef-
fects, go, many, support, more, several, end, has,
day, see, need, make, get, means, public, is, high,
help, money, find, found, same

Table 4: Claim indicators (see text) and shared open
class words across the UKP topics.

words indicative of arguments, we use the claim
indicator list provided in the appendix for the Vac-
cination Corpus’ annotation guideline (Morante
et al., 2020), which is in turn based on (Stab and
Gurevych, 2017). We simplify the indicators to
unigrams and combine the set with a few additions
from Young’s Critical Thinking course website;
see Table 4. For each held-out topic, we com-
pute the average LIME weight of each claim in-
dicator. Figure 3 shows a boxplot with these av-
erages across single-task and multi-task models.
We test for significance using the Wilcoxon signed-
rank test. Argument words are weighted signif-
icantly higher in the two argument classes com-
pared to NO ARGUMENT, at the 0.01 significance
level, as would be expected. With ARGUMENT

AGAINST, we find significantly higher weights at-
tributed to argument words by the multi-task mod-
els. However, with ARGUMENT FOR, the opposite
scenario is observed. Hence, multi-task learning
does not robustly move emphasis to claim indica-
tors. Moreover, when normalising the weights by
frequency before averaging, the significant differ-
ence between single-task and multi-task in ARGU-
MENT FOR disappears.

e) Removing spurious features We have seen
how our models rely on spurious features such as
gun and marijuana. What happens if we remove
this? Obviously, removing only such words would
require expensive manual annotation (like we did
for the top-20 LIME words), but we can do some-
thing more aggressive (with high recall), namely
to remove all open class words. If a model that
relies only on closed-class words exhibits better
performance across distant topics than state-of-the-
art models, this is strong evidence that this model
overfits to spurious features.

Figure 3: Boxplot of argument word LIME weights
with each point representing the topic mean of the ar-
gument word weights. We find significant differences
between the weights resulting from a single-task and
multi-task model towards the two argument classes AR-
GUMENT AGAINST and ARGUMENT FOR at the 5 and
1 percent significance level, respectively. Furthermore,
argument words are weighted significantly higher in
the two argument classes than in the NO ARGUMENT
class, at the 0.01 significance level.

To this end, we train single-task models (ST-
DNN) with all open class words replaced by un-
known tokens. We call this model CLOSED. We
report macro F1 on UKP for each held-out topic, as
well as an average across topics, in Table 1. We also
train a model with closed-class words and the open
class words that are shared across all eight topics.
This amounts to 67 open class words, in total; see
Table 4.7 We include these 67 open class words in
CLOSED+SHARED (in Table 1) – and find that this
small set of words increase the average macro F1

with 2 percentage points over CLOSED. Another
effect of training CLOSED and CLOSED+SHARED

models is that the large variance in performance
across topics largely disappears.

To explore whether removing open class words
may improve generalization to more distant topics,
we test the constrained models on the test sets of
VacC and IBM. While the UKP dataset has three
classes, the evaluation datasets have two. We, there-

7It is worth noting that the set of 67 common open class
words above reflects that some words common across topics
are in fact of an argumentative nature, with verbs such as
“said”, “find” and “found” that are often used for referencing
sources when providing reasons for claims. We inspected
common words among the highest-ranking open class words.
We found that very few highly weighted words transfer across
more than a few topics, e.g. even at the top 200 level, only one
word, namely cost, transfer across four, i.e. half, of the topics.
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Model IBM VacC

ST-DNN .656 .504
CLOSED+SHARED .670 .569

Supervised (upper bound)

MT-DNN+VacC+IBM+AQ .813 .856

Table 5: ST-DNN and CLOSED+SHARED models are
trained solely on the UKP corpus, and we here report
these model’s performance (macro F1) on the binary,
out-of-domain corpora (IBM and VacC). The super-
vised upper bound is (multi-task) trained on the train-
ing data of all four datasets.

fore, merge the two argument classes in UKP when
evaluating test performance on VacC and IBM. We
report the average test score of the eight models
(holding out different UKP topics). Results are
found in Table 5 along with a single-task model
baseline, i.e., the standard ST-DNN model trained
on the UKP corpus, as well as the upper bound
on performance provided by an MT-DNN model
trained on all four datasets, including the two target
datasets. The CLOSED+SHARED model – some-
what surprisingly and very encouragingly – per-
forms better than the unconstrained ST-DNN for
both test sets (by some margin). This indicates that
state-of-the-art argument mining systems overfit
to spurious correlations, as well as the need for
evaluation on more distant topics.

6 Related Work

Feature analysis in argument mining Daxen-
berger et al. (2017) underline, like us, the chal-
lenge of cross-domain generalization in argument
mining, finding that models performing best in-
domain may not be the ones performing best out-
of-domain, which they argue may in part be due to
different notions of claims in the dataset develop-
ment. Through experiments with different feature
groups, such as embeddings, syntax or lexical fea-
tures, they find lexical clues to be the “essence”
of claims and that simple rules are important for
cross-domain performance. Simple lexical clues
are also found to be effective for argument mining
in Levy et al. (2018), who create a claim lexicon,
as well as in Lin et al. (2019) who investigate the
effectiveness of integrating lexica (a claim lexicon,
a sentiment lexicon, an emotion lexicon and the
Princeton WordNet8) in the attention mechanism
of a BiLSTM, but evaluate this only in the context

8https://wordnet.princeton.edu/

of in-domain argument mining.

Feature analysis in deep neural networks Fea-
ture analysis in deep neural networks is not straight-
forward but, by now, several approaches to attribute
importance in deep neural networks to features
or input tokens are available. One advantage of
LIME is that it can be applied to any model post-
hoc. Other approaches for interpreting transform-
ers, specifically, focus on inspections of the atten-
tion weights (Abnar and Zuidema, 2020; Vig, 2019)
and vector norms (Kobayashi et al., 2020).

Spurious correlations in text classification
Landeiro and Culotta (2018) provide a thorough
description of spurious correlations deriving from
confounding factors in text classification and out-
line methods from social science of controlling for
confounds. However, these methods require the
confounding factors to be known, which is often
not the case. This problem is tackled by Wang
and Culotta (2020) who, in contrast, develop a
computational method for distinguishing spurious
from genuine correlations in text classification to
adjust for the identified spurious features to im-
prove model robustness. They consider spurious
correlations in sentiment classification and toxicity
detection. McHardy et al. (2019) identified similar
problems in sarcasm detection and suggested ad-
versarial training to reduce sensitivity to spurious
correlations. Kumar et al. (2019) present a simi-
lar method to avoid “topical confounds” in native
language identification.

MTL to regularize spurious correlations Tu
et al. (2020) suggest multi-task learning increase
robustness to spurious correlations. Multi-task
learning has previously been shown to be an ef-
fective regularizer (Søgaard and Goldberg, 2016;
Sener and Koltun, 2018), leading to better gen-
eralization to new domains (Cheng et al., 2015;
Peng and Dredze, 2017). Jabbour et al. (2020),
though, presents experiments in automated diagno-
sis of disease based on chest X-rays suggesting that
multi-task learning is not always robust to spurious
correlations. In our study, we expected multi-task
learning to move emphasis to closed-class items
and claim indicators and away from the spurious
correlations that do not hold as general markers of
claims and arguments across topics and domains.
Still, our analysis of feature weights does not in-
dicate that multi-task learning is effective to this
end.
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7 Conclusion

We have shown that cross-topic evaluation of ar-
gument mining is insufficient to prevent models
from relying on spurious features. Many of the
spurious correlations that our models rely on are
shared across some pairs of UKP topics but fail to
generalise to distant topics (IBM and VacC). This
shows cross-topic evaluation can encourage learn-
ing from signals, rather than spurious features; the
problem with the protocol in Stab et al. (2018) is
using multiple source topics. When using multi-
ple source topics for training (and if the annotation
relies on arguments being related to these topics),
the models may overly rely on features that are
frequent in debates of these topics but are not re-
lated to the forming of an argument and hence do
not generalise well to unseen topics. The variance
in cross-topic performance may be explained by
some topic words transferring across a few topics,
since the large variance disappears when removing
open-class words. We propose evaluating on more
distant held-out topics or simply considering the
worst-case performance across all pairs of topics to
estimate real-world out-of-topic performance.9
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Stefan Rüd, Massimiliano Ciaramita, Jens Müller, and
Hinrich Schütze. 2011. Piggyback: Using search en-
gines for robust cross-domain named entity recogni-
tion. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 965–975, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Ozan Sener and Vladlen Koltun. 2018. Multi-task
learning as multi-objective optimization. In Ad-
vances in Neural Information Processing Systems,
volume 31, pages 527–538. Curran Associates, Inc.

Vikas Sindhwani and Prem Melville. 2008. Document-
word co-regularization for semi-supervised senti-
ment analysis. In ICDM.

Anders Søgaard. 2013. Part-of-speech tagging with an-
tagonistic adversaries. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
640–644, Sofia, Bulgaria. Association for Computa-
tional Linguistics.

Anders Søgaard and Yoav Goldberg. 2016. Deep multi-
task learning with low level tasks supervised at lower
layers. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 231–235, Berlin,
Germany. Association for Computational Linguis-
tics.

Christian Stab and Iryna Gurevych. 2017. Parsing ar-
gumentation structures in persuasive essays. Com-
putational Linguistics, 43:619–659.

Christian Stab, Tristan Miller, Benjamin Schiller,
Pranav Rai, and Iryna Gurevych. 2018. Cross-topic
argument mining from heterogeneous sources. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3664–3674.

Md Arafat Sultan, Jordan Boyd-Graber, and Tamara
Sumner. 2016. Bayesian supervised domain adap-
tation for short text similarity. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 927–936, San
Diego, California. Association for Computational
Linguistics.

272



Charles Sutton, Michael Sindelar, and Andrew McCal-
lum. 2006. Reducing weight undertraining in struc-
tured discriminative learning. In Proceedings of
the Human Language Technology Conference of the
NAACL, Main Conference, pages 89–95, New York
City, USA. Association for Computational Linguis-
tics.

Reid Swanson, Brian Ecker, and Marilyn Walker. 2015.
Argument mining: Extracting arguments from on-
line dialogue. In Proceedings of the 16th annual
meeting of the special interest group on discourse
and dialogue, pages 217–226.

Lifu Tu, Garima Lalwani, Spandana Gella, and He He.
2020. An empirical study on robustness to spuri-
ous correlations using pre-trained language models.
Transactions of the Association for Computational
Linguistics, 8:621–633.

Jesse Vig. 2019. A multiscale visualization of atten-
tion in the transformer model. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
37–42, Florence, Italy. Association for Computa-
tional Linguistics.

Georgios Vlassopoulos. 2019. Decision boundary ap-
proximation: A new method for locally explaining
predictions of complex classification models. Tech-
nical report, University of Leiden.

Marilyn A Walker, Jean E Fox Tree, Pranav Anand,
Rob Abbott, and Joseph King. 2012. A corpus for
research on deliberation and debate. In LREC, vol-
ume 12, pages 812–817. Istanbul.

Zhao Wang and Aron Culotta. 2020. Identifying spu-
rious correlations for robust text classification. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 3431–3440, Online.
Association for Computational Linguistics.

273



Appendix

(a) This is an argument with the claim as the first sentence. The model has predicted ARGUMENT AGAINST. This
makes sense because it is an argument against censorship, with this being the focus of the conclusion.

(b) The model has rightly predicted the example as not being an argument.

(c) This is an argument with the last sentence as the conclusion. The model incorrectly predicts it as not being an
argument.

(d) This is not an argument. The model incorrectly predicts it as being an argument against something. This example
is not formally an argument because it is formulated as a question. We note that Stab et al. (2018) likewise found
questions among false positives in their error analysis.

(e) This is an argument with the conclusion as the last sentence. The model correctly predicts it as an argument for
something (for stricter controls on the content of entertainment).

(f) This is an argument with the conclusion as the last sentence. The model correctly predicts it as an argument for
something (for exercise).

(g) This is an example is an argument with the confusion as the first sentence. The model incorrectly predicts it as
not being an argument.

(h) This is an argument with the conclusion as the first sentence. The model incorrectly predicts it as not being an
argument.

Figure 4: LIME explanations of the first eight challenge examples predicted by the best MT model, MT-
DNN+AQ+IBM+VacC. Highlight colours represents weight towards a class; blue: NO ARGUMENT; orange: AR-
GUMENT AGAINST; green: ARGUMENT FOR. Darker colours mean larger weights.
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(a) This example is not an argument. The model correctly predicts it so.

(b) This example is an argument with the conclusion as the last sentence. The model correctly predicts it as an
argument, although as an argument against something rather than for (U.S. involvement).

(c) This example is not an argument, and the model correctly predicts it so.

(d) This example is an argument with the conclusion as the first sentence. The model correctly predicts it as an
argument for something (for student class attendance).

(e) This is an argument with the conclusion as the last sentence. The model incorrectly predicts is as not being an
argument.

(f) This example is an argument with the conclusion as the last sentence. The model correctly predicts it as an
argument against something (against an upcoming catastrophe caused by not acquiring new territories).

(g) This example is an argument with the conclusion as the first sentence. The model incorrectly predicts it as not
being an argument.

(h) This example is an argument with the conclusion as the first sentence. The model incorrectly predicts it as not
being an argument.

(i) This example is an argument with the conclusion as the first sentence. The model correctly predicts it as an
argument against something (against children watching television).

(j) This example is not an argument and the model correctly predicts it so.

(k) This example is an argument with the conclusion as last sentence. The model correctly predicts it as an argument
against something (against drinking and driving).

Figure 5: LIME explanations of the last 11 challenge examples predicted by the best model MT model, MT-
DNN+AQ+IBM+VacC. Highlight colours represents weight towards a class; blue: NO ARGUMENT; orange: AR-
GUMENT AGAINST; green: ARGUMENT FOR. Darker colours mean larger weights.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure 6: LIME explanations of the first 12 challenge examples predicted the single-task model. Highlight colours
represents weight towards a class; blue: NO ARGUMENT; orange: ARGUMENT AGAINST; green: ARGUMENT
FOR. Darker colours means larger weights.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 7: LIME explanations of the last seven challenge examples predicted by the single-task model. Highlight
colours represents weight towards a class; blue: NO ARGUMENT; orange: ARGUMENT AGAINST; green: ARGU-
MENT FOR. Darker colours means larger weights.
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Abstract
Word embedding techniques depend heavily
on the frequencies of words in the corpus, and
are negatively impacted by failures in provid-
ing reliable representations for low-frequency
words or unseen words during training. To ad-
dress this problem, we propose an algorithm
to learn embeddings for rare words based on
an Internet search engine and the spatial loca-
tion relationships. Our algorithm proceeds in
two steps. We firstly retrieve webpages corre-
sponding to the rare word through the search
engine and parse the returned results to extract
a set of most related words. We average the
vectors of the related words as the initial vec-
tor of the rare word. Then, the location of the
rare word in the vector space is iteratively fine-
tuned according to the order of its relevances
to the related words. Compared to other ap-
proaches, our algorithm can learn more accu-
rate representations for a wider range of vocab-
ulary. We evaluate our learned rare-word em-
beddings on the word relatedness task, and the
experimental results show that our algorithm
achieves state-of-the-art performance.

1 Introduction

Since Bengio et al. (2003) introduced the idea
of learning continuous vectors for words using
network-based language models, many word em-
bedding techniques have been proposed such
as Word2vec (Mikolov et al., 2013a,b), GloVe
(Pennington et al., 2014), etc. However, nearly all
existing word embedding approaches need words
that have a high frequency in the corpus and can-
not learn good representations for rare words (in-
cluding low-frequency words and unseen words).
As words in a corpus follow a Zipfian distribution,
only a small proportion of the total tokens are fre-
quent words, while most of them are rare words.
Therefore, how to learn qualified embeddings for
rare words is an essential issue to be solved.

From the human perspective, when encounter-
ing a new word, it is an instinct to take a look at its

structure or to look up its definition in a dictionary.
The essence of both behaviours is to transform a
rare word to a set of familiar words expressing the
same meaning to it. Based on the above ideas,
some proposed techniques have attempted to ex-
ploit subword information or lexical resources to
predict the rare word representation.

In the area of subword-based approaches, Fast-
Text (Bojanowski et al., 2017) learns representa-
tions for character n-grams and represents words
as the sum of the n-gram vectors. Ngram2vec
(Zhao et al., 2017) learns n-gram representations
from n-gram co-occurrence statistics and incor-
porates this information into the word represen-
tations. Pinter et al. (2017) proposed the Mim-
ick model to predict vectors for out-of-vocabulary
words by learning a function from spellings to dis-
tributional embeddings. The attentive mimicking
model (AM) (Schick and Schütze, 2019a) and the
form context model (FCM) (Schick and Schütze,
2019b) jointly use surface form and context infor-
mation to improve representations of rare words.

In another way, lexical resources are used to in-
fer the representation for a rare word from the vec-
tors of the words having a semantic association
with it. SemLand (Pilehvar and Collier., 2017) in-
fers the representations for rare words by exploit-
ing the definitions and relationships in an exter-
nal lexicon WordNet (Miller, 1995). Faruqui et al.
(2015) proposed to use word relation knowledge
found in semantic lexicons to retrofit word vec-
tors. Bahdanau et al. (2018) proposed to train a
Long Short-Term Memory (LSTM) network to
predict the representations of rare words based on
auxiliary data (e.g., a dictionary definition) from
knowledge bases. Prokhorov et al. (2019) embed-
ded a knowledge base into a vector space by the
node2vec (Grover and Leskovec, 2016) graph em-
bedding algorithm and then mapped the embed-
ded words from this space to a corpus-based space.
However, the performance of these approaches
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heavily depends on the coverage of external data
sources. If a rare word is uncovered by the lexicon,
the rare-word embedding will not be available.

In addition to the approaches outlined above,
a great concern has been raised over the pre-
trained language models for their outstanding
performance in various natural language pro-
cessing (NLP) tasks. Among the pre-trained
models, ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2019) are two most typical ones.
Based on the pre-trained language model, we can
use a function of the internal layers as the vector
of a word. The pre-trained language models have
strong coverage ability and can predict vectors for
nearly all rare words. However, based on our ex-
perimental results (section 3.4), we found the se-
mantics of rare words are not learned well when
the context information is not provided or the rare
words come from specific domains.

As the largest source of information in the
world, the Internet consists of billions of pages of
data in all fields. To figure out the meaning of
a rare word, almost everyone’s first priority has
changed to retrieve it on the Internet and extract
the useful information from the associated web-
pages. Inspired by this, we propose a two-step al-
gorithm to learn rare-word embeddings using the
Internet search engine and the spatial location re-
lationships. We firstly find the top-n most rele-
vant words to a rare word from the webpages re-
turned by the Internet search engine and compute
the initial embedding of the rare word by averag-
ing the vectors of these extracted words. Accord-
ing to the order of the top-n most relevant words,
we further iteratively fine-tune the location of the
rare word in the vector space to make it satisfy the
constraints of spatial location relationships. The
constraints are that if a rare word is more relevant
to a word than other words, the distance between
the rare word and this word is closer than the dis-
tances between the rare word to others in the vec-
tor space. Compared to the existing approaches,
there are three advantages of our approach: (i) we
can obtain a powerful coverage for rare words; (ii)
we can provide more accurate vector representa-
tions for rare words; (iii) we can support represent-
ing multilingual rare words.

This paper is organized as follows: Section 2
describes our methodology in detail. Section 3
presents the experimental results. The paper is
concluded in Section 4.

2 Methodology

In this section, we will begin by introducing our
motivation, then describe how we define the rele-
vance metric and obtain the top-n related words
to a rare word using the Internet search engine,
and finally present the fine-tuning process toward
achieving the more precise embedding learning.

2.1 Motivation

To solve the rare word representation problem, as
mentioned above, the most direct way is to find
a series of familiar tokens expressing the same
meaning to the rare word. Further, the embed-
ding of a rare word can be induced by the em-
bedding of its semantically related tokens in the
word embedding model. Based on the above anal-
ysis, there are two main challenges in the task of
the rare word representation: (i) how to obtain the
semantically related words for more rare words?
and (ii) how to ensure the quality of the learned
rare-word embeddings? To address these issues,
we propose an algorithm to learn embeddings for
rare words, as shown in Figure 1, which consists
of two processes: a coarse-tuning one and a fine-
tuning one. The coarse-tuning process is to obtain
the semantically related words for a rare word and
to predict its approximate location in the vector
space (i.e., the coarse-grained representation). The
fine-tuning process is to adjust the coarse-grained
vector of the rare word intensively to optimize
its meaning representation accuracy; and the final
learned-vector is the fine-grained representation.
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Figure 1: Procedure of learning rare-word embeddings.

To extend the coverage for rare words in the
coarse-tuning process, we use information on the
Internet as the data source and utilize the Inter-
net search engine to achieve fast acquisition of the
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topic-related webpages to the rare word. With the
help of the large-scale data on the Internet, we
can find the semantically related information for
nearly all of the words in different fields, which
brings better coverage capacity than the existing
lexicon-based approaches. As the webpage docu-
ments vary widely in their internal structure and
contain a lot of interference information such as
advertisements, navigation texts, etc, we use only
the titles from the retrieved documents to extract
the semantically related words of the rare word.

For a rare word w, we firstly use a search engine
to search for w and capture the first m relevant
records: P = {p1, p2, p3, ..., pm}. Then, a set of
n most related words W = {w1, w2, w3, ..., wn}
to the rare word are extracted from the titles of
these m relevant webpages and these n words are
ranked by relevance from high to low. The vectors
of these n related words is averaged as the initial
vector of the rare word (see Equation (1)), which
is the coarse-grained representation of w.

w⃗ =

∑n
i=1 w⃗i

n
, (1)

where w⃗i is the vector representation of the related
word wi ∈W . To further ascertain the location of
the rare word in the vector space, we consider the
constraints of spatial location relationships among
the rare word and its n semantically related words.
As the related words have been ranked by the rele-
vance to the rare word w, the semantic relatedness
between the rare word and a high-ranking word in
W is higher than that between the rare word and a
low-ranking word in W , i.e.:

rel(w, wi) > rel(w, wj),

∀i, j ∈ [1, n], wi ∈W,wj ∈W, i < j,
(2)

where rel is a metric function of the semantic re-
latedness. In the word embedding model, the se-
mantic relatedness between two words can be rep-
resented as the cosine distance of their vectors in
the vector space. Therefore, the constraints can be
expressed as follows:

cos(w⃗, w⃗i) > cos(w⃗, w⃗j),

∀i, j ∈ [1, n], wi ∈W,wj ∈W, i < j.
(3)

To satisfy the constraints of the spatial location
relationships, the vector of the rare word is itera-
tively fine-tuned as follows:

w⃗ = w⃗ + (w⃗i − w⃗j)×∆,

if : (cos(w⃗, w⃗i) < cos(w⃗, w⃗j))and(i < j),
(4)

where w⃗i − w⃗j is the movement direction of w,
and ∆ is the step length. As shown in Figure 1,
the location of the rare word w is the center of its
four semantically related words after the coarse-
tuning process, where the hyper-parameter n is set
to 4 as an example. However, the current coarse-
grained vector of w does not satisfy the constraint:
cos(w⃗, w⃗1) > cos(w⃗, w⃗2). In the fine-tuning pro-
cess, the location of w gradually heads toward w1

in the direction of w⃗1 − w⃗2, and the final location
of w is closer to its real location.

2.2 Coarse-grained Rare Word
Representation

The specific procedure of the coarse-tuning pro-
cess is described in Algorithm 1. We define a dic-
tionary of key-value pairs to store the relevance
scores among the rare word and its semantic re-
lated words (Line 3). Given a rare word w, the
search engine S is invoked to query the related
webpages P (Line 4). For each page, the lxml
module of Python is exploited to extract its title.
We decompose it into a set of distinct words and
delete the stop words from the segmentation re-
sult (Lines 8-11). Based on our tests, there is a
list of titles lacking of discrimination and inter-
fering the acquisition of related words. Take the
English word “self-discipline” for example, the
title of one of its related webpages is “what is
self-discipline - definitions”. The word “defini-
tions” is not exclusively related to “self-discipline”
in meaning, because this word also appears in
the titles of the retrieved webpages for numer-
ous other search words. To address this issue,
we define a noise word set Γ which currently in-
cludes 10 words: {“definition”, “wiktionary”,
“synonyms”, “antonyms”, “dictionary”, “blog”,
“html”, “www”, “ encyclopedia”, “ journal”}. If
a title contains a word of Γ, it will be abandoned
in our algorithm (Line 13).

At this point, the keys of map (i.e., semantic re-
lated words) are assigned with the words included
in the filtered webpage titles. To measure the rel-
evance score between two words, we take the co-
occurrence information and the number of word
meanings into account. The co-occurrence fre-
quency is defined by the number of titles that con-
tain the related word. Since the vector of a pol-
yseme is actually a compromise of all its meanings,
the polyseme is likely to locate far from the rare
word in the vector space. According to this con-
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Algorithm 1 Coarse-tuning.
Input: The word embedding model, M ; the rare

word, w /∈ M ; the max number of related
words, n; the Internet search engine, S; the
semantic lexicon L; the noise word set Γ;

Output: The semantically related word set of w,
W ; the coarse-grained embedding of w, w⃗c;

1: Initialize w⃗c ← 0⃗;
2: // key is a semantically related word to w, and

value is the relevance score
3: map← dict(key, value);
4: P ← Search(S,w);
5: for each p ∈ P do
6: // Extract the title of the webpage p
7: S ← GetT itle(p);
8: // Decompose S into some distinct tokens
9: T ← Decompose(S);

10: // Remove the stop words
11: T ← RemoveStopWords(T );
12: // Exclude the titles including noise words
13: if T ∩ Γ = ∅ then
14: for each t ∈ T do
15: if t ∈M and t ∈ L then
16: // Update the relevance score
17: s = 1/GetSenseNum(L, t);
18: map[t]← map[t] + s;
19: end if
20: end for
21: end if
22: end for
23: // Rank the semantic words by the relevance

score from high to low
24: map.Sort();
25: for each key ∈ map.keys do
26: // Get the first n words out of map as the

semantically related word set W
27: if |W | < n then
28: W.append(key);
29: w⃗c ← w⃗c + M [key];
30: end if
31: end for
32: if |W | > 0 then
33: w⃗c ← w⃗c/|W |;
34: end if
35: return w⃗c, W ;

sideration, we put more emphasis on the univocal
words than the polysemes to infer the rare-word
embeddings. The relevance score is proportional
to the co-occurrence frequency and inversely pro-

portional to the number of word meanings, i.e.:

Score(w, v) =
mv

GetSenseNum(L, v)
, (5)

where v is a word related to the rare word w; mv

is the number of webpage titles that include the
word v; GetSenseNum is an abstract function to
obtain the number of meanings of v, and the pa-
rameter L is a semantic lexicon used as a sense in-
ventory. For example, if WordNet (Miller, 1995) is
used as the lexicon, the function GetSenseNum
is to find the number of synsets that a word be-
longs to. To provide the candidate meanings and
the vector representation for each related word, it
requires the semantically related words to be cov-
ered by the lexicon and the pre-trained word em-
bedding model (Line 12). It should be noted that
there is a clear difference between our algorithm
and the lexicon-based approaches. We do not need
the rare word to be covered by the lexicon but seek
to find a list of related words in the lexicon to learn
the rare word vector representation. Therefore, our
algorithm is not susceptible to the coverage of the
semantic lexicon. Uniformly, for each rare word,
we use the top-n most related words and average
their embeddings as the coarse-grained represen-
tation (Lines 24-34). The parameter n is used
to limit the number of semantically related words
when the size of map is greater than n.

2.3 Fine-grained Rare Word Representation
The fine-tuning process builds on the coarse-
tuning process to optimize the rare word vectors.
The main idea of the fine-tuning process is that
the more related the two words are, the closer
their word embeddings locate in the vector space.
Based on this, the specific procedure of this pro-
cess is described in Algorithm 2. On account of
the semantically related words in the order of rel-
evance and the coarse-grained embedding of w,
the vector w⃗f is iteratively fine-tuned to fulfill
the constraints of the spatial location relationships.
The hyper-parameter K is used to control the to-
tal number of fine-tuning epochs (Line 5). Dur-
ing a fine-tuning epoch, if the relevance score be-
tween the rare word w and each semantically re-
lated word wi ∈W is less than the relevance score
between the rare word w and each semantically re-
lated word wj ∈W with lower order than i, as de-
clared by Equation (4), the rare word w will move
one step (∆) to get closer to wi (Lines 14-15). Fi-
nally, the vector of w will be updated to a new po-
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sition in the vector space, where the meaning of w
can be more accurately represented.

Algorithm 2 Fine-tuning.
Input: The word embedding model, M ; the rare

word, w /∈ M ; the semantically related word
set of w, W ; the coarse-grained embedding of
w, w⃗c; the number of epochs, K; the step size,
∆.

Output: The fine-grained embedding of w, w⃗f ;
1: Initialize w⃗f ← w⃗c;
2: // The number of the semantically related

words
3: n = |W |;
4: if n > 1 then
5: for k = 1 to K do
6: for i = 1 to n− 1 do
7: wi ←W [i− 1];
8: w⃗i ←M [wi];
9: reli = cos(w⃗f , w⃗i);

10: for j = i + 1 to n do
11: wj ←W [j − 1];
12: w⃗j ←M [wj ];
13: relj = cos(w⃗f , w⃗j);
14: if reli < relj then
15: // w moves one step in the

direction of w⃗i − w⃗j

16: w⃗f ← w⃗f +(w⃗i−w⃗j)×∆;
17: end if
18: end for
19: end for
20: end for
21: end if
22: return w⃗f ;

3 Experiments

In this section, we present our experimental set-
tings and results. We take the word relatedness
task as the evaluation framework, and the Spear-
man correlation coefficient (ρ × 100) is adopted
to assess the quality of the learned embeddings.
Also, the percentage of missed pairs (PMP) is
used to evaluate the vocabulary coverage of our
model. Baidu1 search engine is used to retrieve
the relevant webpages in our coarse-tuning pro-
cess. All experiments use the same fine-tuning set-
tings: K = 50, ∆ = 0.1.

We first report the performance of our algorithm
in different hyper-parameters. Then, we compare

1http://www.baidu.com

the quality of the rare-word embeddings before
and after the fine-tuning process to verify the ef-
fectiveness of our two-step approach. Next, we
compare our algorithm with the CBOW algorithm
and six state-of-the-art English rare-word embed-
ding learning algorithms. Finally, we evaluate our
algorithm on two Chinese word datasets to investi-
gate the scalability of our approach for a language
other than English.

3.1 Experimental Settings

Training corpus: We select the English
Wikipedia2 dump on April 1, 2015, as the
training corpus.
Benchmark datasets: We use four benchmark
datasets to perform evaluations and comparisons
for different rare word representation techniques,
including the Stanford Rare Word (RW) dataset
(Luong et al., 2013), the Cambridge Rare Word
(Card-660) dataset (Pilehvar et al., 2018), the
UMNSRS dataset (Pakhomov et al., 2010) and
the MayoSRS dataset (Pakhomov et al., 2011).
Among them, RW (2,034 pairs) and Card-660
(660 pairs) are two general domain datasets, while
UMNSRS (566 pairs) and MayoSRS (101 pairs)
are two datasets in the biomedical field.
Baseline algorithms: We compare our algo-
rithm with the CBOW algorithm (Mikolov et al.,
2013a) and six rare-word learning algorithms:
(i) FastText (Bojanowski et al., 2017), (ii)
FCM (Schick and Schütze, 2019b), (iii) SemLand
(Pilehvar and Collier., 2017), (iv) Align
(Prokhorov et al., 2019), (v) ELMo (Peters et al.,
2018) and (vi) BERT (Devlin et al., 2019). Among
these approaches, FastText and FCM are two
subword-based approaches, SemLand and
Align are two lexicon-based approaches, ELMo
and BERT are two pre-trained language models.
The lexion WordNet (Miller, 1995) is selected as
the word meaning inventory, and we use the CBOW
word embedding model as the pre-trained model
to induce the vectors of rare words.

3.2 Influences of Hyper-parameters

In this experiment, we investigate the influences of
the two hyper-parameters in the coarse-tuning pro-
cess for the quality of the learned rare-word em-
beddings including the number of relevant records
(m) and the number of semantically related words
(n), and seek the optimal range of the two hyper-

2https://dumps.wikimedia.org/enwiki/20150401
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parameters. We randomly select a third of records
from the four benchmark datasets respectively and
form four sub-datasets to evaluate the performance
of our algorithm in different hyper-parameters.
We first set m to 100 and change n from 1 to 10,
then record the Spearman coefficients on the four
sub-datasets. The dimension of all the vectors is
300, and the results are presented in Figure 2. We
can see that the Spearman coefficients of our algo-
rithm on the four sub-datasets all increase at the
early stage and then decrease with the parameter
n. When the parameter n is between 4 and 8, the
quality of the learned rare-word embeddings is op-
timal. To analyze the reason, when n < 4, the
semantic information of the related words is lim-
ited for its lower quantity, which is insufficient to
predict the accurate vectors of rare words. At one
extreme (when n = 1), the vector of a rare word
directly equals to that of the only one related word
without the fine-tuning process. Unless the rare
word and its related word are synonymous, the rare
word will obtain a wrong representation. When
n > 8, it increases the likelihood of introducing
noise words that are actually not related to the rare
word into the semantic word set, which will also
produce a negative effect on the right place of the
rare word in the vector space.
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Figure 2: Spearman performance in different number
of semantically related words

In the next experiment, the parameter n is set
to 5, and the other parameter m is changed from
20 to 200. We record the Spearman coefficients on
the four sub-datasets as well. We can see from Fig-
ure 3 that the performance reaches the peak values
on the two general domain sub-datasets when the
parameter m are set to 140 and 160 respectively.
On the other side, the Spearman coefficients on the
two biomedical field sub-datasets increase with

the parameter m, then show some small fluctua-
tions when m > 100. The results indicates that
more retrieved records are required for general-
domain rare words to obtain high-quality word rep-
resentations. One reason is that the titles of the re-
trieved records for general-domain rare words are
more likely to contain the words in the defined
noise word set, and these records will be aban-
doned in the coarse-tuning process. Moreover, it
may be unnecessary to use too many records as
well because the lower-ranking records have de-
clined in the relevance with the rare word. Based
on the above results, we set m and n to 100 and 5
respectively to learn better rare-word embeddings
in the follow-up experiments.

20 40 60 80 100 120 140 160 180 200

Number of relevant records

0

10

20

30

40

50

60

ρ
×
1
0
0

RW Card-660 UMNSRS MayoSRS

Figure 3: Spearman performance in different number
of relevant records

3.3 Performance Comparison between
Coarse-tuning and Fine-tuning

The coarse-tuning operation in our algorithm pro-
vides a coarse-grained vector representation from
scratch for each rare word by averaging the vec-
tors of the semantically related words, while the
fine-tuning process constantly adjusts the coarse-
grained embedding of the rare word to a fine-
grained vector with a more suitable position in
the vector space. In this experiment, we compare
the Spearman correlations of the learned coarse-
grained embeddings with that of the fine-grained
embeddings to verify the effectiveness of the fine-
tuning operation. To have a fair comparison, we
report the performance of the learned rare-word
embeddings on the multiple datasets in four dif-
ferent dimensions: 100, 200, 300 and 400.

We can see from Figure 4 that the Spearman cor-
relations of the fine-grained embeddings outper-
form that of the coarse-grained embeddings on the
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four datasets regardless of the vector dimensions.
It demonstrates that the quality of the coarse-
grained embeddings can be further enhanced by
the fine-tuning process with consideration of the
constraints of spatial location relationships. The
order information of the relevances between the
rare word to its semantically related words is fully
utilized to correct the vector of the rare word. Ow-
ing to the fine-tuning process, the relevance score
is not required to precisely measure the relatedness
between two words, but only needs to compare the
relatednesses among the rare word and its seman-
tic words relatively, which has effectively reduced
the difficulty of the relevance metric design in the
coarse-tuning process.
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Figure 4: Performance comparison between coarse-
tuning and fine-tuning over vector dimensions.

3.4 Performance Comparison with Previous
Work

In this experiment, the dimension of all vectors is
set to 300. Table 1 shows the comparison results,
in which the best result is shown in bold. Among
the baseline approaches, ELMo and BERT have the
best coverage ability due to their character-based
representation. Even so, we still achieve almost
the same coverage performance as these two pre-
trained language models except for failing to cover
a tiny part (0.75%) of the word pairs in Card-660.
Compared to the PMP values on domain-general
datasets, the coverage performance of FastText
and FCM on domain-specific datasets decline sig-
nificantly. The reason is that the domain-specific
terms and their subwords both rarely appear in
the training corpus, which causes the vectors of
many subwords in the biomedical field to be un-
available in these two models. SemLand and

Align opt for WordNet as the general domain lex-
ical resource and use the Medical Subject Head-
ings (MeSH)3 as the medical lexical resources.
However limited by the coverage of the lexical re-
sources, the PMP performance of these two ap-
proaches is unsteady on different datasets. We
use all the information resources on the Internet to
find the semantically related words of a rare word,
which is far beyond the scopes of any lexical re-
source. Whether for domain-general rare terms or
domain-specific rare terms, nearly all the vectors
can be learned by our algorithm with their seman-
tically related words.

With respect to the quality of rare word repre-
sentations, our algorithm outperforms the other ap-
proaches on the four benchmark datasets. Let us
go further to identify the reasons for the superior-
ity of our algorithm. Although ELMo and BERT
have the powerful coverage ability for rare words,
the learned rare-word embeddings do not have
high quality, especially for the domain-specific
rare terms. Compared to FastText, the vector
of a rare word in our algorithm is represented by
its semantically related words instead of the inner
subwords, which can provide more explicit seman-
tic meanings than the subwords. FCM leverages
the context information in addition to the n-gram
information and learns higher-quality embeddings
than FastText for the domain-general words,
but fails to achieve the same performance on the
domain-specific datasets. The reason is that most
of the domain-specific terms are unseen in the
Wikipedia corpus, so the context information is in-
sufficient to learn the FCM word embeddings. In
contrast to SemLand and Align, our algorithm
is independent of specific lexical resources and has
stable coverage for rare words in different fields.
Therefore, our algorithm can induce eligible em-
beddings for more words and eventually achieve
better Spearman correlations on the datasets.

3.5 Performance on Chinese rare words

To investigate the scalability of our approach for
multilingual words, we evaluate our algorithm
on Chinese rare words in this section. We se-
lect the Chinese Wikipedia4 dump on November
20, 2016, as the corpus and use two Chinese
benchmark datasets to perform evaluations, in-
cluding the wordsim-240 (Chen et al., 2015) word

3https://www.nlm.nih.gov/mesh/
4https://dumps.wikimedia.org/zhwiki/20161120/
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Table 1: The Performance of Spearman correlation and coverage on four English datasets.

Approach
RW Card-660 UMNSRS MayoSRS

PMP ρ× 100 PMP ρ× 100 PMP ρ× 100 PMP ρ× 100

CBOW 14% 35.5 54% 2.2 19% 15.9 64% 11.9

FastText 3% 38.8 5% 20.4 14% 17.6 34% 14.4
FCM 3% 39.5 5% 24.2 14% 18.8 34% 13.7

SemLand 0% 40.0 39% 33.2 15% 20.1 29% 10.9
Align 0% 42.0 39% 32.5 15% 22.4 29% 14.5

ELMo 0% 44.8 0% 20.2 0% 17.2 0% 7.8
BERT 0% 20.7 0% 16.2 0% 8.8 0% 7.7

Ours 0% 44.8 0.75% 41.5 0% 37.3 0% 22.9

pairs and the wordsim-296 (Jin and Wu, 2012).
We compare our algorithm with the CBOW algo-
rithm and four rare-word learning algorithms: (i)
CWE (Chen et al., 2015), (ii) cw2vec (Cao et al.,
2018), (iii) ELMo and (iv) BERT. The lexicon
Tongyici Cilin (Tian and Zhao, 2010) is selected
as the Chinese sense inventory.

We can see from Table 2 that our algorithm
and the four baseline approaches all have out-
standing coverage ability for the Chinese rare
words. The character-based approach CWE and
the stroke-based approach cw2vec fail to deduce
the embedding of an outlier word “OPEC” in the
wordsim-296, which brings a little loss for their
performance. However, it is not a problem for
our algorithm because we can extract the related
words from the Internet to infer its vector includ-
ing “ó¹ (fossil fuel)”, “ÄÇ (organization)”,
etc. Compared to the coverage results, our al-
gorithm has more significant advantages over the
other baseline approaches in terms of the quality
and achieves the highest Spearman correlations on
the two datasets. To analyze the reason, we note
the extracted related words in our algorithm are
more helpful to induce the embedding of a rare
word than the characters in CWE and the strokes
in cw2vec. Take the rare word “lÉ�³
(Maradona)” for example, it is actually not related
with the character “l (horse in Chinese)”. Con-
versely, we can extract the semantically related
words like “³� (soccer)”, “?9÷ (Argentina)”,
etc, to represent this word, which can more accu-
rately reflect its meaning, i.e., name of an athlete.
Moreover, the fine-tuning operation can promote
the quality of the rare-word embeddings as well.

Table 2: Evaluation results on the wordsim-240 dataset
and the wordsim-296 dataset.

Approach
wordsim-240 wordsim-296

PMP ρ× 100 PMP ρ× 100

CBOW 4% 34.5 11% 26.1

CWE 0% 35.5 0.3% 38.2
cw2vec 0% 42.5 0.3% 43.4
ELMo 0% 6.0 0% 14.6
BERT 0% 15.9 0% 29.7

Ours 0% 44.0 0% 47.2

4 Conclusions

In this paper, we have proposed a novel algorithm
to learn embeddings for rare words, which consists
of a coarse-tuning process and a fine-tuning pro-
cess. In the coarse-tuning process, we use an In-
ternet search engine to retrieve webpages relevant
to the rare word on Internet and extract n most re-
lated words from their titles to infer the rare word’s
initial vector. In the fine-tuning process, we iter-
atively adjust the position of the rare word in the
vector space to satisfy the constraints of the spatial
location relationships and get close to its semantic
meaning. We evaluated our approach on multiple
datasets and compared the performance with other
state-of-the-art approaches. The experimental re-
sults demonstrate that our algorithm is superior to
existing approaches in both the accuracy of seman-
tic expression and the coverage for rare words.

In future, we plan to extend our algorithm
to learn contextualized representations for rare
words. At present, existing work on contextu-
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alized rare word representation concentrates on
the improved versions of attentive mimicking
(AM) architecture such as the adapted AM model
(Schick and Schütze, 2020b) and the BERTRAM
model (Schick and Schütze, 2020a). We consider
combining our algorithm with the AM architec-
ture, and utilize the semantically relevant infor-
mation together with the surface-form information
and context information to learn higher-quality
context-dependent representations for rare words.

Other future work involves evaluating our al-
gorithm leveraging other search engines (e.g.,
Google, Bing, etc) on multiple languages. On this
basis, we seek to bring further improvements on
our algorithm by selecting the most suitable search
engine for a specific language to induce the embed-
dings of the rare words of this language.
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Abstract

Modern natural language understanding mod-
els depend on pretrained subword embeddings,
but applications may need to reason about
words that were never or rarely seen during
pretraining. We show that examples that de-
pend critically on a rarer word are more chal-
lenging for natural language inference mod-
els. Then we explore how a model could learn
to use definitions, provided in natural text, to
overcome this handicap. Our model’s under-
standing of a definition is usually weaker than
a well-modeled word embedding, but it recov-
ers most of the performance gap from using a
completely untrained word.

1 Introduction

The reliance of natural language understanding
models on the information in pre-trained word em-
beddings limits these models from being applied
reliably to rare words or technical vocabulary. To
overcome this vulnerability, a model must be able
to compensate for a poorly modeled word embed-
ding with background knowledge to complete the
required task.

For example, a natural language inference (NLI)
model based on pre-2020 word embeddings may
not be able to deduce from “Jack has COVID” that
“Jack is sick.” By providing the definition, “COVID
is a respiratory disease,” we want to assist this
classification.

We describe a general procedure for enhancing a
classification model such as natural language infer-
ence (NLI) or sentiment classification, to perform
the same task on sequences including poorly mod-
eled words using definitions of those words. From
the training set T of the original model, we con-
struct an augmented training set T ′ for a model
that may accept the same token sequence option-
ally concatenated with a word definition. In the
case of NLI, where there are two token sequences,

the definition is concatenated to the premise se-
quence. Because T ′ has the same form as T , a
model accepting the augmented information may
be trained in the same way as the original model.

Because there are not enough truly untrained
words like “COVID” in natural examples, we probe
performance by scrambling real words so that their
word embedding becomes useless, and supplying
definitions. Our method recovers most of the per-
formance lost by scrambling. Moreover, the pro-
posed technique removes biases in more ad hoc
solutions like adding definitions to examples with-
out special training.

2 Related Work

We focus on NLI because it depends more deeply
on word meaning than sentiment or topic classi-
fication tasks. Chen et al. (2018) pioneered the
addition of background information to an NLI
model’s classification on a per-example basis, aug-
menting a sequence of token embeddings with fea-
tures encoding WordNet relations between pairs of
words, to achieve a 0.6% improvement on the SNLI
(Bowman et al., 2015) task. Besides this explicit
reasoning approach, implicit reasoning over back-
ground knowledge can be achieved if one updates
the base model itself with background informa-
tion. Lauscher et al. (2020) follows this approach
to add information from ConceptNet (Speer et al.,
2018) and the Open Mind Common Sense corpus
(Singh et al., 2002) through a fine-tuned adapter
added to a pretrained language model, achieving
better performance on subsets of NLI examples
that are known to require world knowledge. Talmor
et al. (2020) explore the interplay between explic-
itly added knowledge and implicitly stored knowl-
edge on artificially constructed NLI problems that
require counting or relations from a taxonomy.

In the above works, explicit background infor-

288



mation comes from a taxonomy or knowledge base.
Only a few studies have worked with definition
text directly, and not in the context of NLI. Tissier
et al. (2017) used definitions to create embeddings
for better performance on word similarity tasks,
compared to word2vec (Mikolov et al., 2013) and
fastText (Bojanowski et al., 2017) while maintain-
ing performance on text classification. Their work
pushes together embeddings of words that co-occur
in each other’s definitions. Recently, Kaneko and
Bollegala (2021) used definitions to remove biases
from pretrained word embeddings while maintain-
ing coreference resolution accuracy. In contrast,
our work reasons with natural language definitions
without forming a new embedding, allowing atten-
tion between a definition and the rest of an exam-
ple.

Alternatively, Schick and Schütze (2020) im-
proved classification using rare words by collecting
and attending to all of the contexts in which they
occur in BookCorpus (Zhu et al., 2015) combined
with Westbury Wikipedia Corpus.1 Like the meth-
ods above that use definitions, this method con-
structs a substitute or supplementary embedding
for a rare word.

3 Methods

3.1 Critical words
The enhanced training set T ′ will be built by pro-
viding definitions for words in existing examples,
while obfuscating the existing embeddings of those
words. If a random word of the original text is ob-
fuscated, the classification still may be determined
or strongly biased by the remaining words. To
ensure the definitions matter, we select carefully.

To explain which words of a text are important
for classification, Kim et al. (2020) introduced the
idea of input marginalization. Given a sequence of
tokens x, let x−i represent the sequence without
the ith token xi. They marginalize the probability
of predicting a class yc over possible replacement
words x̃i in the vocabulary V as

p(yc|x−i) =
∑

x̃i∈V
p(yc|x̃i,x−i)p(x̃i|x−i) (1)

and then compare p(yc|x−i) to p(yc|x) to quantify
the importance of xi. The probabilities p(x̃i|x−i)
are computed by a language model.

1http://www.psych.ualberta.ca/
˜westburylab/downloads/westburylab.
wikicorp.download.html

We simplify by looking only at the classification
and not the probability. Like Kim et al. (2020), we
truncate the computation of p(yc|x̃i,x−i) to words
such that p(x̃i|x−i) exceeds a threshold, here .05.
Ultimately we mark a word xi as a critical word if
there exists a replacement x̃i such that

argmaxyp(y|x̃i,x−i) 6= argmaxyp(y|x) (2)

and
p(x̃i|x−i) > .05. (3)

Additionally we require that the word not appear
more than once in the example, because the mean-
ing of repeated words usually impacts the classifi-
cation less than the fact that they all match. Table 1
shows an example.

Premise A young man sits, looking out of
a train [side→ Neutral, small→
Neutral] window.

Hypothesis The man is in his room.
Label Contradiction

Table 1: An SNLI example, with critical words shown
in italics and replacements shown in brackets.

A technicality remains because our classifica-
tion models use subwords as tokens, whereas we
consider replacements of whole words returned
by pattern.en. We remove all subwords of xi
when forming x−i, but we consider only replace-
ments x̃i that are a single subword long.

3.2 Definitions

We use definitions from Simple English Wiktionary
when available, or English Wiktionary otherwise.2

Tissier et al. (2017) downloaded definitions from
four commercial online dictionaries, but these are
no longer freely available online as of January
2021.

To define a word, first we find its part of speech
in the original context and lemmatize the word
using the pattern.en library (Smedt and Daele-
mans, 2012). Then we look for a section labeled
“English” in the retrieved Wiktionary article, and
for a subsection for the part of speech we identi-
fied. We extract the first numbered definition in this
subsection. In practice, we find that this method
usually gives us short, simple definitions that match
the usage in the original text.

2We use the 2018-02-01 dumps.
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When defining a word, we always write its defi-
nition as “word means: definition.” This common
format ensures that the definitions and the word
being defined can be recognized easily by the clas-
sifier.

3.3 Enhancing a model
Consider an example (x, yc) ∈ T . If the example
has a critical word xi ∈ x that appears only once
in the example, and x̃i is the most likely replace-
ment word that changes the classification, we let
x′ denote the sequence where xi is replaced by
x̃i, and let y′c = argmaxyp(y|x′). If definitions
hi and h′i for xi and x̃i are found by the method
described above, we add (x,hi, yc) and (x′,h′i, y

′
c)

to the enhanced training set T ′.
In some training protocols, we scramble xi and

x̃i in the examples and definitions added to T ′, re-
placing them with random strings of between four
and twelve letters. This prevents the model from
relying on the original word embeddings. Table 2
shows an NLI example and the corresponding ex-
amples generated for the enhanced training set.

Original A blond man is drinking from a
public fountain. / The man is
drinking water. / Entailment

Scrambled
word

a blond man is drinking from
a public yfcqudqqg. yfcqudqqg
means: a natural source of water;
a spring. / the man is drinking
water. / Entailment

Scrambled
alternate

a blond man is drinking from
a public lxuehdeig. lxuehdeig
means: lxuehdeig is a transparent
solid and is usually clear. win-
dows and eyeglasses are made
from it, as well as drinking
glasses. / the man is drinking wa-
ter. / Neutral

Table 2: Adding background information to examples
from SNLI

4 Experiments

4.1 Setup
We consider the SNLI task (Bowman et al., 2015).
We fine-tune an XLNet (base, cased) model (Yang
et al., 2019), because it achieves near state-of-the-
art performance on SNLI and outperforms Roberta
(Liu et al., 2019) and BERT (Devlin et al., 2019)

on later rounds of adversarial annotation for ANLI
(Nie et al., 2020). For the language model probabil-
ities p(x̃i|x−i), pretrained BERT (base, uncased)
is used rather than XLNet because the XLNet prob-
abilities have been observed to be very noisy on
short sequences.3

One test set SNLIfullcrit is constructed in the same
way as the augmented training set, but our main
test set SNLItruecrit is additionally constrained to use
only examples of the form (x,hi, yc) where yc is
the original label, because labels for the examples
(x′,h′i, y

′
c) might be incorrect. All of our derived

datasets are available for download.4

In each experiment, training is run for three
epochs distributed across 4 GPU’s, with a batch
size of 10 on each, a learning rate of 5× 10−5, 120
warmup steps, a single gradient accumulation step,
and a maximum sequence length of 384.

4.2 Results

Table 3 compares the accuracy of various training
protocols.

Protocol SNLItruecrit

Original 85.1%
No scrambling, no defs 84.6%
No scrambling, defs 85.2%
Scrambling, no defs 36.9%
Scrambling, defs 81.2%
Scrambling, subs 84.7%
Train on normal SNLI, test on
scrambled no defs

54.1%

Train on normal SNLI, test on
scrambled defs

63.8%

Train on unscrambled defs, test
on scrambled defs

51.4%

Table 3: Accuracy of enhancement protocols

Our task cannot be solved well without read-
ing definitions. When words are scrambled but no
definitions are provided, an SNLI model without
special training achieves 54.1% on SNLItruecrit . If
trained on T ′ with scrambled words but no defini-
tions, performance drops to 36.9%, reflecting that
T ′ is constructed to prevent a model from utilizing
the contextual bias.

With definitions and scrambled words, per-
formance is slightly below that of using the orig-
inal words. Our method using definitions applied

3https://github.com/huggingface/transformers/issues/4343
4https://figshare.com/s/edd5dc26b78817098b72
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to the scrambled words yields 81.2%, compared to
84.6% if words are left unscrambled but no defi-
nitions are provided. Most of the accuracy lost by
obfuscating the words is recovered, but evidently
there is slightly more information accessible in the
original word embeddings.

If alternatives to the critical words are not in-
cluded, the classifier learns biases that do not
depend on the definition. We explore restricting
the training set to verified examples T ′true ⊂ T ′ in
the same way as the SNLItruecrit , still scrambling the
critical or replaced words in the training and testing
sets. Using this subset, a model that is not given the
definitions can be trained to achieve 69.9% perfor-
mance on SNLItruecrit , showing a heavy contextual
bias. A model trained on this subset that uses the
definitions achieves marginally higher performance
(82.3%) than the one trained on all of T ′. On the
other hand, testing on SNLIfullcrit yields only 72.3%
compared to 80.3% using the full T ′, showing that
the classifier is less sensitive to the definition.

Noisy labels from replacements do not hurt
accuracy much. The only difference between the
“original” training protocol and “no scrambling, no
defs” is that the original trains on T and does not in-
clude examples with replaced words and unverified
labels. Training including the replacements reduces
accuracy by 0.5% on SNLItruecrit , which includes
only verified labels. For comparison, training and
testing on all of SNLI with the original protocol
achieves 90.4%, so a much larger effect on accu-
racy must be due to harder examples in SNLItruecrit .

Definitions are not well utilized without spe-
cial training. The original SNLI model, if pro-
vided definitions of scrambled words at test time as
part of the premise, achieves only 63.8%, compared
to 81.2% for our specially trained model.

If the defined words are not scrambled, the
classifier uses the original embedding and ig-
nores the definitions. Training with definitions
but no scrambling, 85.2% accuracy is achieved, but
this trained model is unable to use the definitions
when words are scrambled: it achieves 51.4%.

We have not discovered a way to combine the
benefit of the definitions with the knowledge in
the original word embedding. To force the model
to use both techniques, we prepare a version of
the training set which is half scrambled and half
unscrambled. This model achieves 83.5% on the
unscrambled test set, worse than no definitions.

Definitions are not simply being memorized.
We selected the subset SNLInewcrit of SNLItruecrit

consisting of the 44 examples in which the defined
word was not defined in a training example. The
definition scrambled model achieves 68.2% on this
set, well above 45.5% for the original SNLI model
reading the scrambled words and definitions but
without special training. Remembering a defini-
tion from training is thus an advantage (SNLItruecrit

accuracy was 81.2%), but not the whole capability.
Definition reasoning is harder than simple

substitutions. When definitions are given as one-
word substitutions, in the form “scrambled means:
original” instead of “scrambled means: definition”,
the model achieves 84.7% on SNLItruecrit compared
to 81.2% using the definition text. Of course this
is not a possibility for rare words that are not syn-
onyms of a word that has been well trained, but
it suggests that the kind of multi-hop reasoning in
which words just have to be matched in sequence
is easier than understanding a text definition.

4.3 A hard subset of SNLI

By construction of the SentencePiece dictionary
(Kudo and Richardson, 2018), only the most fre-
quent words in the training data of the XLNet
language model are represented as single tokens.
Other words are tokenized by multiple subwords.
Sometimes the subwords reflect a morphological
change to a well-modeled word, such as a change
in tense or plurality. The language model probably
understands these changes well and the subwords
give important hints. The lemma form of a word
strips many morphological features, so when the
lemma form of a word has multiple subwords, the
basic concept may be less frequently encountered
in training. We hypothesize that such words are
less well understood by the language model.

To test this hypothesis, we construct a subset
SNLItruemulti of the test set, consisting of examples
where a critical word exists whose lemma form
spans multiple subwords. This set consists of 332
test examples. The critical word used may be dif-
ferent from the one chosen for SNLItruecrit . This
subset is indeed harder: the XLNet model trained
on all of SNLI attains only 77.7% on this subset
using no definitions, compared to 90.4% on the
original test set.

In Table 4 we apply various models constructed
in the previous subsection to this hard test set. Ide-
ally, a model leveraging definitions could compen-
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Protocol SNLItruemulti

Normal SNLI on unscrambled 77.7%
Defs & unscrambled on defs &
unscrambled

77.1%

Defs & some scrambling on defs
& unscrambled

73.8%

Defs & scrambled on defs &
scrambled

69.9%

Defs & scrambled on defs & un-
scrambled

62.7%

Table 4: Accuracy on the hard SNLI subset

sate for these weaker word embeddings, but the
method here does not do so.

5 Conclusion

This work shows how a model’s training may be en-
hanced to support reasoning with definitions in nat-
ural text, to handle cases where word embeddings
are not useful. Our method forces the definitions to
be considered and avoids the application of biases
independent of the definition. Using the approach,
entailment examples like “Jack has COVID / Jack
is sick” that are misclassified by an XLNet trained
on normal SNLI are correctly recognized as entail-
ment when a definition “COVID is a respiratory
disease” is added. Methods that can leverage def-
initions without losing the advantage of partially
useful word embeddings are still needed. In an
application, it also will be necessary to select the
words that would benefit from definitions, and to
make a model that can accept multiple definitions.
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Abstract

We introduce a new approach for smoothing
and improving the quality of word embed-
dings. We consider a method of fusing word
embeddings that were trained on the same
corpus but with different initializations. We
project all the models to a shared vector space
using an efficient implementation of the Gen-
eralized Procrustes Analysis (GPA) procedure,
previously used in multilingual word transla-
tion. Our word representation demonstrates
consistent improvements over the raw models
as well as their simplistic average, on a range
of tasks. As the new representations are more
stable and reliable, there is a noticeable im-
provement in rare word evaluations.

1 Introduction

Continuous (non-contextualized) word embeddings
have been introduced several years ago as a stan-
dard building block for NLP tasks. These models
provide efficient ways to learn word representations
in a fully self-supervised manner from text corpora,
solely based on word co-occurrence statistics. A
wide variety of methods now exist for generating
word embeddings, with prominent methods includ-
ing word2vec (Mikolov et al., 2013a), GloVe (Pen-
nington et al., 2014), and FastText (Bojanowski
et al., 2017). Recently, contextualized embeddings
(Peters et al., 2018; Devlin et al., 2019), replaced
the use of non-contextualized embeddings in many
settings. Yet, the latter remain the standard choice
for typical lexical-semantic tasks, e.g., semantic
similarity (Hill et al., 2015), word analogy (Jurgens
et al., 2012), relation classification (Barkan et al.,
2020a), and paraphrase identification (Meged et al.,
2020). These tasks consider the generic meanings
of lexical items, given out of context, hence the use
of non-contextualized embeddings is appropriate.
Notably, FastText was shown to yield state-of-the-
art results in most of these tasks (Bojanowski et al.,

2017).
While word embedding methods proved to be

powerful, they suffer from a certain level of noise,
introduced by quite a few randomized steps in the
embedding generation process, including embed-
ding initialization, negative sampling, subsampling
and mini-batch ordering. Consequently, different
runs would yield different embedding geometries,
of varying quality. This random noise might harm
most severely the representation of rare words, for
which the actual data signal is rather weak (Barkan
et al., 2020b).

In this paper, we propose denoising word em-
bedding models through generating multiple model
versions, each created with different random seeds.
Then, the resulting representations for each word
should be fused effectively, in order to obtain a
model with a reduced level of noise. Note, how-
ever, that simple averaging of the original word
vectors is problematic, since each training session
of the algorithm produces embeddings in a differ-
ent space. In fact, the objective scores of both
word2vec, Glove and FastText are invariant to mul-
tiplying all the word embeddings by an orthogonal
matrix, hence, the algorithm output involves an
arbitrary rotation of the embedding space.

For addressing this issue, we were inspired by
recent approaches originally proposed for aligning
multi-lingual embeddings (Chen and Cardie, 2018;
Kementchedjhieva et al., 2018; Alaux et al., 2019;
Jawanpuria et al., 2019; Taitelbaum et al., 2019).
To obtain such alignments, these methods simulta-
neously project the original language-specific em-
beddings into a shared space, while enforcing (or
at least encouraging) transitive orthogonal transfor-
mations. In our (monolingual) setting, we propose
a related technique to project the different embed-
ding versions into a shared space, while optimizing
the projection towards obtaining an improved fused
representation. We show that this results in im-
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proved performance on a range of lexical-semantic
tasks, with notable improvements for rare words,
as well as on several sentence-level downstream
tasks.

2 Word Averaging in a Shared Space

Assume we are given an ensemble of k pre-trained
word embedding sets, of the same word vocabulary
of size n and the same dimensionality d. In our
setting, these sets are obtained by training the same
embedding model using different random parame-
ter initializations. Our goal is to fuse the k embed-
ding sets into a single “average” embedding that is
hopefully more robust and would yield better per-
formance on various tasks. Since each embedding
set has its own space, we project the k embedding
spaces into a shared space, in which we induce av-
eraged embeddings based on a mean squared error
minimization objective.

Let xi,t ∈ Rd be the dense representation of the
t-th word in the i-th embedding set. We model
the mapping from the i-th set to the shared space
by an orthogonal matrix denoted by Ti. Denote
the sought shared space representation of the t-th
word by yt ∈ Rd. Our goal is to find a set of
transformations T = {T1, ..., Tk} and target word
embeddings y = {y1, ..., yn} in the shared space
that minimize the following mean-squared error:

S(T, y) =
k∑

i=1

n∑

t=1

‖Tixi,t − yt‖2 . (1)

For this objective, it is easy to show that for a set
of transformations T1, ..., Tk, the optimal shared
space representation is:

yt =
1

k

k∑

i=1

Tixi,t.

Hence, solving the optimization problem pertains
to finding the k optimal transformations.

In the case where k = 2, the optimal T can be
obtained in a closed form using the Procrustes Anal-
ysis (PA) procedure (Schönemann, 1966), which
has been employed in recent bilingual word trans-
lation methods (Xing et al., 2015; Artetxe et al.,
2016; Hamilton et al., 2016; Artetxe et al., 2017a,b;
Conneau et al., 2017; Artetxe et al., 2018a,b; Ruder
et al., 2018). In our setting, to obtain an improved
embedding, we wish to average more than two em-
bedding sets.

However, if k > 2 there is no closed form so-
lution to (1) and thus, we need to find a solution
using an iterative optimization process. To that
end, we follow several works that suggested em-
ploying the General Procrustes Analysis (GPA) pro-
cedure, which is an extension of PA to multi-set
alignment (Gower, 1975; Kementchedjhieva et al.,
2018). Generally, the GPA consists of an alternate
minimization procedure where we iterate between
finding the orthogonal transformations and comput-
ing the shared space. The optimal transformation
from each embedding space to the shared space is
found by minimizing the following score,

S(Ti) =

n∑

t=1

‖Tixi,t − yt‖2 , i = 1, ..., k.

The minimum of S(Ti) can then be found by
the closed form PA procedure. The updated trans-
formation is Ti = UiV

>
i , where UiΣiV

>
i is the

singular value decomposition (SVD) of the d× d
matrix

∑n
t=1 ytx

>
i,t. At each step in the iterative

GPA algorithm, the score (1) is monotonically de-
creased until it converges to a local minimum point.

Algorithm 1 Shared Space Embedding Averaging
1: Input: Ensemble of k word embedding sets.
2: Task: Find the optimal average embedding.
3: Preprocessing:
4: Compute the cross-correlation matrices:
5: Cij = C>

ji =
∑n

t=1 xj,tx
>
i,t 1 ≤ i < j ≤ k

6: Initialization: T1 = · · · = Tk−1 = 0, Tk = I
7: while not converged do
8: for i = 1, ..., k do
9: UΣV > = SVD

(∑
j 6=i TjCij

)

10: Ti ← UV >

11: end for
12: end while
13: Compute the average embedding:
14: yt ← 1

k

∑k
i=1 Tixi,t t = 1, ..., n

For large vocabularies, GPA is not efficient,
because, in each iteration, when computing the
SVD we need to sum over all the vocabulary
words. To circumvent this computational cost, we
adopt the optimization procedure from Taitelbaum
et al. (2019), which we apply within each itera-
tion. Instead of summing over the whole vocab-
ulary, the following extension is proposed. Let
Cij =

∑
t xj,tx

>
i,t be the cross-correlation matrix
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original denoised

word2vec 0.40± 0.005 0.059± 0.003
GloVe 0.38± 0.006 0.058± 0.003
FastText 0.35± 0.003 0.054± 0.001

Table 1: Average MSE scores of the embedding models
with and without applying the SSEA algorithm.

for a pair (i, j) of two original embedding spaces,
which can be computed once, for all pairs of spaces,
in a pre-processing step. Given the matricesCij the
computational complexity of the iterative averag-
ing algorithm is independent of the vocabulary size,
allowing us to compute efficiently the SVD. The re-
sulting algorithm termed Shared Space Embedding
Averaging (SSEA) is presented in Algorithm 1.1

3 Experimental Setup and Results

This section presents our evaluation protocol,
datasets, data preparation, hyperparameter configu-
ration and results.

3.1 Implementation Details and Data
We trained word2vec (Mikolov et al., 2013a), Fast-
Text (Bojanowski et al., 2017) and GloVe (Pen-
nington et al., 2014) embeddings. For word2vec
we used the skip-gram model with negative sam-
pling, which was shown advantageous on the evalu-
ated tasks (Levy et al., 2015). We trained each
of the models on the November 2019 dump of
Wikipedia articles2 for k = 30 times, with dif-
ferent random seeds, and used the default reported
hyperparameters; we set the embedding dimension
to d = 200, and considered each word within the
maximal window cmax = 5, subsampling3 thresh-
old of ρ = 10−5 and used 5 negative examples for
every positive example. In order to keep a large
amount of rare words in the corpus, no preprocess-
ing was applied on the data, yielding a vocabulary
size of 1.5 · 106. We then applied the SSEA algo-
rithm to the embedding sets to obtain the average
embedding. The original embedding sets and aver-
aged embeddings were centered around the 0 vector
and normalized to unit vectors.

3.2 Improved Embedding Stability
We next analyze how our method improves em-
bedding quality and consistency, notably for rare

1The algorithm demonstration code is available at
github.com/aviclu/SSEA. In practice, we utilized an efficient
PyTorch implementation based on Taitelbaum et al. (2019).

2dumps.wikimedia.org/enwiki/latest/
3To speed up the training.

Figure 1: Average MSE for word embeddings vs their
corpus occurrence count (binned with resolution of 50).

words. To that end, for any two embedding sets,
u and v, we can find the optimal mapping Q be-
tween them using the PA algorithm and compute
its mean square error (MSE), 1

n

∑
t=1 ‖Qut−vt‖2.

We define the stability of an embedding algorithm
by the average MSE (over 10 random pairs of sam-
ples) between two instances of it. This score mea-
sures the similarity between the geometries of ran-
dom instances generated by a particular embedding
method , and thus reflects the consistency and sta-
bility of that method. The scores of the different
models are depicted in Table 1. As observed, after
applying SSEA the Average MSE drops by an or-
der of magnitude, indicating much better stability
of the obtained embeddings.

We can perform a similar analysis for each word
separately. A consistent embedding of the t-th
word in both sets u and v should result in a small
mapping discrepancy ‖Qut−vt‖2. Figure 1 depicts
MSE for the models and their computed SSEA, as
a function of the word’s frequency in the corpus.
The denoised version of the models is marked with
a ‘D-’ prefix. For clarity of presentation, we did
not include the results for GloVe (which are similar
to word2vec). As expected, embedding stability
always increases (MSE decreases) with word fre-
quency. SSEA is notably more stable across the
frequency range, with the error minimized early on
and reduced most drastically for low frequencies.

3.3 Comparison of methods
We next compare our denoised model, denoted with
a ‘D-’ prefix, with the original embedding models.
As an additional baseline, we considered also the
naı̈ve averaged embedding model, denoted with
a ‘A-’ prefix, where for every word we computed
the simplistic mean embedding across all origi-
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Method SimLex999 MEN WS353 AP Google MSR SemEval2012(2) BLESS RW

word2vec 33.7 72.4 60.7 62.2 69.5 51.3 19.2 79 42
A-word2vec 33.1 72.3 60.8 61.9 69.2 51.2 19 78.1 41.7
D-word2vec 33.9 73.2 60.8 63.1 70.3 51.9 20 79.6 43.4

GloVe 34.4 73.4 62.3 63.3 75.1 54.5 19.7 79.2 47.2
A-GloVe 34.2 73.1 61.9 62.8 74.7 54.2 19.6 79 47.1
D-GloVe 34.8 75.1 62.7 64.3 75.9 55.2 20.1 79.9 48.5

FastText 41.2 78.6 70.7 72.2 75.7 63.4 19.8 81.5 47.1
A-FastText 41 78.1 69.7 72.1 74.1 62.8 19.4 80.8 46.6
D-FastText 42.2 79.3 71.8 72.9 77.4 63.8 20.2 82.7 50.3

Table 2: Results for lexical-semantic benchmarks. Best performance is bolded.

nal spaces. Note that we did not compare other
proposed embeddings or meta-embedding learn-
ing methods, but rather restricted our analysis to
empirically verifying our embedding aggregation
method and validating the assumptions behind the
empirical analysis we performed.

3.4 Evaluations on Lexical Semantic Tasks

We evaluated the performance of our method over
lexical-semantic tasks, including word similarity,
analogy solving, and concept categorization: Sim-
Lex999 (Hill et al., 2015), MEN (Bruni et al.,
2014), WS353 (Finkelstein et al., 2002), AP (Al-
muhareb and Poesio, 2004), Google (Mikolov
et al., 2013b), MSR (Mikolov et al., 2013c),
SemEval-2012 (Jurgens et al., 2012), BLESS (Ba-
roni and Lenci, 2011) and RW (Luong et al., 2013),
(focusing on rare words). For the analogy task, we
reported the accuracy. For the remaining tasks, we
computed Spearman’s correlation between the co-
sine similarity of the embeddings and the human
judgments.

Results The results of the lexical-semantic tasks
are depicted in Table 2, averaged over 30 runs for
each method. Our method obtained better perfor-
mance than the other methods, substantially for
FastText embeddings. As shown, the naı̈ve averag-
ing performed poorly, which highlights the fact that
simply averaging different embedding spaces does
not improve word representation quality. The most
notable performance gain was in the rare-words
task, in line with the analysis in Fig. 1, suggesting
that on rare words the raw embedding vectors fit
the data less accurately.

3.5 Evaluations On Downstream Tasks

For completeness, we next show the relative ad-
vantage of our denoising method also when ap-
plied to several sentence-level downstream bench-
marks. While contextualized embeddings domi-

nate a wide range of sentence- and document- level
NLP tasks (Peters et al., 2018; Devlin et al., 2019;
Caciularu et al., 2021), we assessed the relative
advantage of our denoising method when utilizing
(non-contextualized) word embeddings in sentence-
an document- level settings. We applied the ex-
act procedure proposed in Li et al. (2017) and
Rogers et al. (2018), as an effective benchmark
for the quality of static embedding models. We
first used sequence labeling tasks. The morphologi-
cal and syntactic performance was evaluated using
part-of-speech tagging, POS, and chunking, CHK.
Both named entity recognition, NER, and multi-
way classification of semantic relation classes, RE,
tasks were used for evaluating semantic informa-
tion at the word level. For the above POS, NER
and CHK sequence labeling tasks, we used the
CoNLL 2003 dataset (Sang and Meulder, 2003)
and for the RE task, we used the SemEval 2010
task 8 dataset (Hendrickx et al., 2010). The neural
network models employed for these downstream
tasks are fully described in (Rogers et al., 2018).
Next, we evaluated the following semantic level
tasks: document-level polarity classification, PC,
using the Stanford IMDB movie review dataset
(Maas et al., 2011), sentence level sentiment po-
larity classification, SEN, using the MR dataset of
short movie reviews (Pang and Lee, 2005), and clas-
sification of subjectivity and objectivity task, SUB,
that uses the Rotten Tomatoes user review snippets
against official movie plot summaries (Pang and
Lee, 2004). Similarly to the performance results in
Table 2, the current results show that the suggested
denoised embeddings obtained better overall per-
formance than the other methods, substantially for
FastText embeddings.

4 Related Work

A similar situation of aligning different word em-
beddings into a shared space occurs in multi-lingual
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Method POS CHK NER RE PC SEN SUB

word2vec 81.5 80.1 93.3 71.4 89.2 73.9 76.4
A-word2vec 78 77.5 90.9 67.4 86.4 64.3 75.6
D-word2vec 81.6 80.2 93.6 73.1 89.7 74 77.4

GloVe 77.5 70.4 85.2 66.7 80.2 70.2 72.7
A-GloVe 77.1 70.2 84.9 62.3 77.7 62.2 71.8
D-GloVe 77.8 71.1 86.6 68.2 80.8 71.3 73.9

FastText 80.6 79.1 92.2 74 88.9 74.9 73.9
A-FastText 78.4 78.8 90.2 73.6 89 74.1 73.3
D-FastText 82.4 81.2 94.9 75.2 90.5 77.3 76.7

Table 3: Results for downstream task. Best perfor-
mance is bolded.

word translation tasks which are based on distinct
monolingual word embeddings. Word translation
is performed by transforming each language word
embeddings into a shared space by an orthogonal
matrix, for creating a “universal language”, which
is useful for the word translation process. Our set-
ting may be considered by viewing each embedding
set as a different language, where our goal is to find
the shared space where embedding averaging is
meaningful.

The main challenge in multilingual word trans-
lation is to obtain a reliable multi-way word corre-
spondence in either a supervised or unsupervised
manner. One problem is that standard dictionar-
ies contain multiple senses for words, which is
problematic for bilingual translation, and further
amplified in a multilingual setting. In our case of
embedding averaging, the mapping problem van-
ishes since we are addressing a single language
and the word correspondences hold trivially among
different embeddings of the same word. Thus, in
our setting, there are no problems of wrong word
correspondences, neither the issue of having differ-
ent word translations due to multiple word senses.
Studies have shown that for the multi-lingual trans-
lation problem, enforcing the transformation to
be strictly orthogonal is too restrictive and perfor-
mance can be improved by using the orthogonal-
ization as a regularization (Chen and Cardie, 2018)
that yields matrices that are close to be orthogonal.
In our much simpler setting of a single language,
with a trivial identity word correspondence, enforc-
ing the orthogonalization constraint is reasonable.

Another related problem is meta-embedding
(Yin and Schütze, 2016), which aims to fuse in-
formation from different embedding models. Var-
ious methods have been proposed for embedding
fusion, such as concatenation, simple averaging,
weighted averaging (Coates and Bollegala, 2018;

Kiela et al., 2018) and autoencoding (Bollegala and
Bao, 2018). Some of these methods (concatenation
and autoencoding) are not scalable when the goal
is to fuse many sets, while others (simple averag-
ing) yield inferior results, as described in the above
works. Note that our method is not intended to
be a competitor of meta-embedding, but rather a
complementary method.

An additional related work is the recent method
from (Muromägi et al., 2017). Similarly to our
work, they proposed a method based on the Pro-
crustes Analysis procedure for aligning and averag-
ing sets of word embedding models. However, the
mapping algorithm they used is much more compu-
tationally demanding, as it requires to go over all
the dictionary words in every iteration. Instead, we
propose an efficient optimization algorithm, which
requires just one such computation during each it-
eration, and is theoretically guaranteed to converge
to a local minimum point. While their work fo-
cuses on improving over the Estonian language, we
suggest evaluating this approach on English data
and on a range of different downstream tasks. We
show that our method significantly improves upon
rare words, which is beneficial for small sized /
domain-specific corpora.

5 Conclusions

We presented a novel technique for creating bet-
ter word representations by training an embedding
model several times, from which we derive an aver-
aged representation. The resulting word representa-
tions proved to be more stable and reliable than the
raw embeddings. Our method exhibits performance
gains in lexical-semantic tasks, notably over rare
words, confirming our analytical assumptions. This
suggests that our method may be particularly use-
ful for training embedding models in low-resource
settings. Appealing future research may extend our
approach to improving sentence-level representa-
tions, by fusing several contextualized embedding
models.
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Abstract

Cross-lingual word embeddings provide a way
for information to be transferred between lan-
guages. In this paper we evaluate an ex-
tension of a joint training approach to learn-
ing cross-lingual embeddings that incorporates
sub-word information during training. This
method could be particularly well-suited to
lower-resource and morphologically-rich lan-
guages because it can be trained on modest
size monolingual corpora, and is able to rep-
resent out-of-vocabulary words (OOVs). We
consider bilingual lexicon induction, including
an evaluation focused on OOVs. We find that
this method achieves improvements over pre-
vious approaches, particularly for OOVs.

1 Introduction

Word embeddings are an essential component in
systems for many natural language processing tasks
such as part-of-speech tagging (Al-Rfou’ et al.,
2013), dependency parsing (Chen and Manning,
2014) and named entity recognition (Pennington
et al., 2014). Cross-lingual word representations
provide a shared space for word embeddings of
two languages, and make it possible to transfer in-
formation between languages (Ruder et al., 2019).
A common approach to learn cross-lingual embed-
dings is to learn a matrix to map the embeddings
of one language to another using supervised (e.g.,
Mikolov et al., 2013b), semi-supervised (Artetxe
et al., 2017), or unsupervised (e.g., Lample et al.,
2018) methods. These methods rely on the as-
sumption that the geometric arrangement of em-
beddings in different languages is the same. How-
ever, it has been shown that this assumption does
not always hold, and that methods which instead
jointly train embeddings for two languages pro-
duce embeddings that are more isomorphic and
achieve stronger results for bilingual lexicon induc-
tion (BLI, Ormazabal et al., 2019), a well-known in-

trinsic evaluation for cross-lingual word representa-
tions (Ruder et al., 2019; Anastasopoulos and Neu-
big, 2020). The approach of Ormazabal et al. uses
a parallel corpus as a cross-lingual signal. Parallel
corpora are, however, unavailable for many lan-
guage pairs, particularly low-resource languages.

Duong et al. (2016) introduce a joint training ap-
proach that extends CBOW (Mikolov et al., 2013a)
to learn cross-lingual word embeddings from mod-
est size monolingual corpora, using a bilingual
dictionary as the cross-lingual signal. Bilingual
dictionaries are available for many language pairs,
e.g., Panlex (Baldwin et al., 2010) provides transla-
tions for roughly 5700 languages. These training
resource requirements suggest this method could be
well-suited to lower-resource languages. However,
this word-level approach is unable to form represen-
tations for out-of-vocabulary (OOV) words, which
could be particularly common in the case of low-
resource, and morphologically-rich, languages.

Hakimi Parizi and Cook (2020b) propose an ex-
tension of Duong et al. (2016) that incorporates sub-
word information during training and therefore can
generate representations for OOVs in the shared
cross-lingual space. This method also does not re-
quire parallel corpora for training, and could there-
fore be particularly well-suited to lower-resource,
and morphologically-rich, languages. However,
Hakimi Parizi and Cook only evaluate on synthetic
low-resource languages. We refer to the methods
of Duong et al. and Hakimi Parizi and Cook as
DUONG2016 and HAKIMI2020, respectively.

Most prior work on BLI focuses on in-
vocabulary (IV) words and well-resourced lan-
guages (e.g., Artetxe et al., 2017; Ormazabal et al.,
2019; Zhang et al., 2020), although there has been
some work on OOVs (Hakimi Parizi and Cook,
2020a) and low-resource languages (Anastasopou-
los and Neubig, 2020). In this paper, we evaluate
HAKIMI2020 on BLI for twelve lower-resource
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languages, and also consider an evaluation focused
on OOVs. Our results indicate that HAKIMI2020
gives improvements over DUONG2016 and several
strong baselines, particularly for OOVs.

2 Joint Training Incorporating
Sub-word Information

Equation 1 shows the cost function for
DUONG2016, which jointly learns embed-
dings for a word wi and its translation w̄i, where
hi is a vector encoding the context, α is a weight
parameter, and Ds and Dt are the source and target
language vocabularies, respectively.

O =
∑

i∈Ds∪Dt

(
α log σ(uTwihi)

+ (1− α) log σ(uTw̄ihi)

+

p∑

j=1

Ewj∼Pn(w) log σ(−uTwjhi)
)

(1)

Following Bojanowski et al. (2017), HAKIMI2020
modifies Equation 1 by including sub-word infor-
mation during the joint training process as follows:

O =
∑

i∈Ds∪Dt

(
α logS(wi, hi)

+ (1− α) logS(w̄i, hi)

+

p∑

j=1

Ewj∼Pn(w) log−S(wj , hi)
)

(2)

S(w, h) =
1

|Gw|
∑

g∈Gw
zTg h (3)

where Gw is the set of sub-words appearing in
w and zg is the sub-word embedding for g. h is
calculated by averaging the representations for each
word appearing in the context, where each word
is itself represented by the average of its sub-word
embeddings.

HAKIMI2020 use character n-grams as sub-
words. Specifically, each word is augmented with
special beginning and end of word markers, and
then represented as a bag of character n-grams,
using n-grams of length 3–6 characters. The en-
tire word itself (with beginning and end of word
markers) is also included among the sub-words.

Language Family # Tokens # Dict. entries
Afrikaans Germanic 25M 70k
Albanian Albanian 21M 17k
Azerbaijani Turkic 36M 25k
Bengali Indic 26M 114k
Bosnian Slavic 18M 23k
Croatian Slavic 54M 388k
Estonian Uralic 38M 201k
Greek Greek 78M 253k
Hebrew Semitic 143M 79k
Hindi Indic 34M 296k
Hungarian Uralic 133M 460k
Turkish Turkic 79M 319k

Table 1: The language family, size of corpus, and size
of Panlex dictionary, for each source language.

3 Experimental Setup

We consider BLI from twelve lower-resource
source languages to English. The languages
(shown in Table 1) were selected to cover a va-
riety of language families, while having small
to medium size Wikipedias and BLI evaluation
datasets available. We compare HAKIMI2020 with
DUONG2016, VECMAP (Artetxe et al., 2018), and
MEEMI (Doval et al., 2018). In each case, we use
cosine similarity to find the closest target language
translations for a source language word. We eval-
uate using precision@N (Ruder et al., 2019) for
N = 1, 5, 10.

3.1 Training Corpora and Dictionaries

The corpus for each language is a Wikipedia dump
from 27 July 2020, cleaned using tools from Bo-
janowski et al. (2017), and tokenized using Eu-
ropalExtract (Ustaszewski, 2019), except for Ben-
gali and Hindi, which are tokenized using NLTK
(Bird et al., 2009). Because DUONG2016 and
HAKIMI2020 can learn high quality cross-lingual
embeddings from monolingual corpora of only 5M
sentences each, we down-sample the English cor-
pus for these two methods to 5M sentences.

DUONG2016 benefits from a relatively large
training dictionary (Duong et al., 2016), there-
fore, for DUONG2016 and HAKIMI2020 we follow
Duong et al. to create large training dictionaries
by extracting translation pairs from Panlex. Details
of the training corpora and Panlex dictionaries are
shown in Table 1.

3.2 Baselines

We compare against two baselines: VECMAP

(Artetxe et al., 2018), a supervised mapping-based
method, and MEEMI (Doval et al., 2018), a post
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processing method. We consider various training
corpora and dictionaries to create strong baselines.

Supervised mapping-based approaches tend to
see a reduction in performance with seed lexicons
larger than roughly 5k pairs (Vulić and Korho-
nen, 2016). Training translation pairs from MUSE
(Lample et al., 2018) are therefore used, except
for Azerbaijani, which is not included in MUSE,
where training pairs from Anastasopoulos and Neu-
big (2020) are used. We first train VECMAP us-
ing these MUSE pairs, and embeddings learned
from the full English corpus, to give this base-
line access to as much training data as is avail-
able. We then consider this approach, but using the
down-sampled English corpus. We found that the
smaller English corpus gave higher precision@N
(for N = 1, 5, and 10) for both the IV and OOV
evaluations in Section 4. This could be due to the
smaller corpus having a smaller vocabulary. We
then also consider VECMAP trained using Panlex
training pairs and embeddings learned from the
down-sampled English corpus.

We next consider MEEMI applied to each of the
three sets of cross-lingual embeddings obtained
from VECMAP. In each case we train MEEMI

using the same training pairs (MUSE or Panlex)
that were used to train VECMAP. In Section 4 we
report results for the baseline that performs best.

3.3 Hyper-Parameter Settings

Hakimi Parizi and Cook (2020b) show that
DUONG2016 performs best using its default param-
eters, i.e., an embedding size of 200 and window
size of 48, but that HAKIMI2020 performs better
using an embedding size of 300 and window size
of 20. We use these parameter settings here.

fastText is used to train monolingual embeddings
for VECMAP and MEEMI. We use skipgram with
its default settings, except the dimension of the
embeddings is set to 300 (Bojanowski et al., 2017).

4 Experimental Results

In this section, we present results for BLI for IV
words, and then OOV source language words.

4.1 BLI for In-Vocabulary Words

For these experiments we use MUSE test data for
all languages except Azerbaijani, where we use
test data from Anastasopoulos and Neubig (2020).
Because our focus here is on IV words, we only
consider translation pairs that are IV with respect to

Method
% Precision

@1 @5 @10
MEEMI 38.64 55.42 60.45
DUONG2016 22.12 45.71 52.08
HAKIMI2020 30.91 56.00 62.24

Table 2: Precision@N for BLI for IV words, averaged
over the twelve languages. The best precision for each
evaluation measure is shown in boldface.

the embedding matrices learned from our corpora.
We compare HAKIMI2020 with DUONG2016 and
MEEMI trained using the down-sampled English
corpus and MUSE training pairs, which performed
best of the baselines considered for each evaluation
measure. Results are shown in Table 2.1

HAKIMI2020 improves over DUONG2016, indi-
cating that DUONG2016 can indeed be improved by
incorporating sub-word information during train-
ing. Comparing HAKIMI2020 and MEEMI, the
results are more mixed. In terms of precision@1,
MEEMI substantially outperforms HAKIMI2020,
although for precision@10 HAKIMI2020 outper-
forms MEEMI.

4.2 BLI for OOVs

Following Hakimi Parizi and Cook (2020a) we
use Panlex to construct a test dataset of transla-
tion pairs in which the source language words are
OOV and the target language words are IV. How-
ever, Hakimi Parizi and Cook observe that some
translations in Panlex are noise. To avoid noisy
translations, we use all translation pairs for which
the source language word is OOV with respect to
the embedding matrix, i.e., the embedding models
have no direct knowledge of these words, but is
attested in the source language corpus, i.e., there
is evidence that this is indeed a word in the source
language.2 The resulting test datasets consist of
between 806 translation pairs in the case of Azer-
baijani to roughly 11k pairs for Hungarian.

Here we compare against the VECMAP base-
line using the down-sampled English corpus and
Panlex training pairs, which performed best of
the baselines considered for each evaluation mea-
sure. For VECMAP, we follow Hakimi Parizi
and Cook (2020a) by forming a representation

1Results for each of the twelve languages are available in
the appendix.

2For each embedding method, we set the minimum fre-
quency for words in the embedding matrix to 5; as such, all
methods have the same source language vocabulary.
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Language Method % Precision
@1 @5 @10

Afrikaans

VECMAP 5.65 11.84 14.89
COPY 10.68 - -
HAKIMI2020 9.42 21.80 27.41
HAKIMI2020+COPY 19.16 30.15 35.17

Albanian

VECMAP 6.28 12.00 15.75
COPY 5.62 - -
HAKIMI2020 7.93 15.20 18.61
HAKIMI2020+COPY 13.11 19.49 22.58

Azerbaijani

VECMAP 3.60 8.93 11.41
COPY 5.96 - -
HAKIMI2020 10.17 16.00 17.25
HAKIMI2020+COPY 10.92 19.35 21.96

Bengali

VECMAP 1.60 4.50 6.00
COPY 0.27 - -
HAKIMI2020 5.31 10.95 13.85
HAKIMI2020+COPY 5.28 10.86 13.76

Bosnian

VECMAP 3.82 8.28 10.83
COPY 21.23 - -
HAKIMI2020 8.17 15.71 18.58
HAKIMI2020+COPY 29.19 35.88 38.11

Croatian

VECMAP 6.41 13.29 17.03
COPY 4.35 - -
HAKIMI2020 11.86 24.70 30.13
HAKIMI2020+COPY 15.65 28.02 33.21

Estonian

VECMAP 5.29 10.61 13.79
COPY 7.56 - -
HAKIMI2020 8.15 18.79 23.66
HAKIMI2020+COPY 14.93 24.65 29.15

Greek

VECMAP 6.66 14.30 17.91
COPY 1.90 - -
HAKIMI2020 11.65 23.55 28.05
HAKIMI2020+COPY 13.50 25.15 29.58

Hebrew

VECMAP 3.07 8.38 10.53
COPY 11.15 - -
HAKIMI2020 8.18 17.08 20.55
HAKIMI2020+COPY 19.02 26.89 29.75

Hindi

VECMAP 2.09 5.16 6.98
COPY 0.06 - -
HAKIMI2020 4.57 11.64 15.39
HAKIMI2020+COPY 4.60 11.66 15.41

Hungarian

VECMAP 4.30 9.49 12.50
COPY 4.60 - -
HAKIMI2020 7.82 17.42 21.66
HAKIMI2020+COPY 11.62 20.56 24.53

Turkish

VECMAP 3.39 7.23 9.62
COPY 8.15 - -
HAKIMI2020 7.13 15.43 19.38
HAKIMI2020+COPY 14.27 21.31 24.77

Average

VECMAP 4.35 9.50 12.27
COPY 6.70 - -
HAKIMI2020 8.36 17.36 21.21
HAKIMI2020+COPY 14.27 22.83 26.50

Table 3: Precision@N for BLI for OOV source lan-
guage words. The best precision for each dataset and
evaluation measure is shown in boldface.

for the OOV source language word from its sub-
word embeddings, and then mapping it into the
shared space. We cannot, however, compare di-
rectly against DUONG2016 because it is a word-
level approach that cannot represent OOVs. We
therefore instead compare against a baseline in

which the OOV source language word is copied
into the target language. This approach, referred to
as COPY, could work well in the case of borrowings
and named entities.3

Table 3 shows the results. HAKIMI2020 outper-
forms VECMAP for all languages and evaluation
measures. This finding suggests that sub-word in-
formation can be more effectively transferred in
a cross-lingual setting when sub-words are incor-
porated into the training process — as is the case
for HAKIMI2020 — than when they are not — as
for VECMAP here. Comparing HAKIMI2020 to
COPY, although there are several languages for
which COPY outperforms HAKIMI2020, on aver-
age, HAKIMI2020 performs better. In the cases
that COPY outperforms HAKIMI2020, it appears to
be largely related to the presence of English abbre-
viations in the source language Wikipedia dump.

Because of the relatively strong performance
of COPY on several languages, we propose an ap-
proach that combines COPY and HAKIMI2020, re-
ferred to as HAKIMI2020+COPY. Given a source
language word, we first check whether it is in the
target language embedding matrix. If so, we as-
sume it is a word that does not require translation
(e.g., a named entity) and copy it into the target
language.4 If the source language word is not in
the target language embedding matrix, we apply
HAKIMI2020 to find the target language transla-
tion under this model. This approach improves over
both COPY and HAKIMI2020 for all languages, ex-
cept Bengali, and gives substantial improvements
on average.5 Although COPY is a very simple ap-
proach, it is complementary to HAKIMI2020, and
the two approaches can be effectively combined to
improve BLI for OOVs.

5 Conclusions

We evaluated an extension of a joint training ap-
proach to learning cross-lingual embeddings that
incorporates sub-word information during training,
which could be well-suited to lower-resource and
morphologically-rich languages because it can be

3COPY only produces one target language candidate for a
given source word, and as such we only compute precision@1
for this method.

4This assumption can be incorrect, e.g., Afrikaans kits is
IV for English, but translates to English moment.

5We also observe that there is little improvement for
HAKIMI2020+COPY over HAKIMI2020 on Hindi. For both
Hindi and Bengali COPY achieves very low precision, and so
little or no improvement can be obtained over HAKIMI2020
by combining COPY with HAKIMI2020.
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trained on modest amounts of monolingual data and
can represent OOVs. In two BLI tasks for twelve
lower-resource languages focused on IV words and
OOVs, we found that this method improved over
previous approaches, particularly for OOVs. Eval-
uation data and code for learning the cross-lingual
embeddings is available.6

In future work we plan to explore the impact
of the target language on the quality of the cross-
lingual embeddings, and in particular consider
source and target languages from the same family.
We further intend to evaluate these cross-lingual
embeddings in down-stream tasks for low-resource
languages, such as language modelling (Adams
et al., 2017) and part-of-speech tagging (Fang and
Cohn, 2017), and to compare against approaches
based on contextualized language models.
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Abstract

Adversarial training (AT) as a regularization
method has proved its effectiveness on vari-
ous tasks. Though there are successful appli-
cations of AT on some NLP tasks, the distin-
guishing characteristics of NLP tasks have not
been exploited. In this paper, we aim to apply
AT on machine reading comprehension (MRC)
tasks. Furthermore, we adapt AT for MRC
tasks by proposing a novel adversarial training
method called PQAT that perturbs the embed-
ding matrix instead of word vectors. To dif-
ferentiate the roles of passages and questions,
PQAT uses additional virtual P/Q-embedding
matrices to gather the global perturbations of
words from passages and questions separately.
We test the method on a wide range of MRC
tasks, including span-based extractive RC and
multiple-choice RC. The results show that ad-
versarial training is effective universally, and
PQAT further improves the performance.

1 Introduction

Neural networks have achieved superior perfor-
mance on many tasks, but they are vulnerable to
adversarial examples (Szegedy et al., 2014) – ex-
amples that have been mixed with certain perturba-
tions. Adversarial training (AT) (Goodfellow et al.,
2015) uses both clean and adversarial examples
to improve the robustness of the model for image
classification.

In the field of NLP, Miyato et al. (2017) have
applied adversarial training on text classification
tasks and improved the model performance. From
then on, many AT methods has been proposed (Wu
et al., 2017; Yasunaga et al., 2018; Bekoulis et al.,
2018; Zhu et al., 2020; Jiang et al., 2019; Pereira
et al., 2020; Liu et al., 2020). They mostly adopt a
general AT strategy, but focus less on the adaptation
of AT to NLP tasks. To explore this adaptation, in
this work, we aim to apply adversarial training

Passage: ... The rock cycle is an important concept in
geology which illustrates the relationships between these
three types of rock, and magma. When a rock crystallizes
from melt (magma and/or lava), it is an igneous rock. ...

Question: An igneous rock is a rock that crystallizes from
what?

Table 1: An example from the SQuAD dataset. We
highlight two words rock and igneous for better demon-
stration. The words with the same color are injected
with the same perturbation by PQAT. The different oc-
currences of the same word (for example, rock in pas-
sage and question) are perturbed differently depending
on their roles.

on machine reading comprehension (MRC) tasks,
which exhibit complex NLP characteristics.

The objective of MRC is to let a machine read
the given passages and ask it to answer the related
questions. There are several types of MRC tasks.
In this work we focus on span-based extractive RC
(Rajpurkar et al., 2016, 2018; Yang et al., 2018)
and multiple-choice RC (Lai et al., 2017). To ap-
ply adversarial training on MRC tasks, we notice
that there are several salient characteristics of MRC
compared to other tasks such as image classifica-
tion: (1) The inputs are discrete. Unlike pixels,
which can take continuous values, words are dis-
crete tokens. (2) The tokens in the input sequences
are not independent. A word may occur in an input
sequence several times. After the embedding layer,
these occurrences are represented by the word vec-
tors with the same value and hold the same seman-
tic meaning (although the word may be polyse-
mous). (3) The roles of passages and questions are
different. Given a question as the query, the model
needs to look up the correct answer in the passage.

People have utilized the first characteristic to ap-
ply adversarial training by perturbing input word
vectors instead of tokens. However, the second and
third characteristics have been largely ignored. For
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example, in Table 1, which is a passage-question
pair from the SQuAD dataset, the word rock has
appeared multiple times. In the standard adversar-
ial training, the perturbations added to each occur-
rence of rock are different, ignoring the fact that
they share the same meaning. On the other hand,
the multiple occurrences of the same word in the
passage and question play different roles, such as
the rock in the passage and question. It is appropri-
ate to treat them differently.

To take the second and the third characteristics
into consideration, we propose a novel adversarial
training method called PQAT. The core of PQAT
is the virtual P/Q-embeddings, which are two inde-
pendent embedding spaces for passages and ques-
tions. Each time we calculate perturbations, P/Q-
embeddings gather the perturbations from passages
and questions for each word, then generate a global
and role-aware perturbation for each word from
passages and questions separately. For example, in
Table 1, the perturbations on all the occurrences of
rock in the passage and question will be gathered
into two matrices separately, forming global and
role-aware perturbations of rock. PQAT is as effi-
cient as the standard AT with nearly no extra time
cost. Also, The virtual P/Q-embeddings are only
used during training. They are discarded once the
training is finished. Thus PQAT does not increase
the model size and inference time for predictions.

We have applied adversarial training on several
MRC tasks, including span-based extractive RC
and multiple-choice RC. Results show that adver-
sarial training improves the MRC model perfor-
mance universally and consistently, even over the
strong pre-trained model baseline. Furthermore,
the PQAT method outperforms the standard AT
on both normal datasets and adversarial datasets.
Lastly, our results verify the usefulness of incorpo-
rating information of task form into the design of
the adversarial training method.

2 Standard Adversarial Training

Adversarial training first constructs adversarial ex-
amples by generating worst-case perturbations that
maximize the current loss, then minimize the loss
on those adversarial examples. In NLP tasks, a
popular approach to generate perturbations is to
perturb word vectors from the embedding layer
(Miyato et al., 2017). We denote the input token
sequence as X and the operation of looking up in
an embedding layer E as emb(E, ·). The objective

rock igneous rock igneous

P: When a rock crystallizes from 
    melt, it is an igneous rock. Q: An igneous rock is a rock that 

     crystallizes from what?

P-embeddings Q-embeddings

Figure 1: P/Q-emebddings collect the perturbations on
each word from passages and questions separately.

of AT is

min
θ,E

E(X,y)∼D

[
max
‖δ‖<ε

L(fθ(Xvec + δ), y)

]
(1)

where fθ(·) is the model parametrized by θ exclud-
ing word embedding layer; Xvec = emb(E, X) is
the word vectors of input sequence. L is the loss
function. We perturb the word vectors with the
adversarial perturbations δ.
δ can be estimated by linearizing L(fθ(Xvec +

δ), y) around X and perform the multiple-step pro-
jected gradient descent (PGD) (Madry et al., 2018):

δt+1 = Π‖δ‖≤ε(δt + αgt/ ‖gt‖) (2)

gt = ∇δL(fθ(Xvec + δ), y)|δ=δt (3)

where t is the gradient descent step, Π‖δ‖≤ε denotes
projection δ back onto the ε-ball. gt is the gradient
of the loss with respect to perturbation δ. The more
gradient descent steps, the better approximation of
δ, but also more expensive in computation.

3 Adversarial Training for MRC

In the above algorithm, when generating the per-
turbations on Xvec through backward propagation,
each word vector Xi

vec is perturbed independently,
like the pixels in an image. It ignores the semantic
relationship among the word vectors of a word’s
different occurrences. To make the perturbation on
each occurrence aware of other occurrences of the
same word, we adapt AT by gathering not only the
perturbations on each word vector, but also the per-
turbations on the embedding matrix. The latter can
be seen as the global perturbations, which provide
context-insensitive semantic information.

The global perturbations are rather coarse-
grained, since all the occurrences of the same word
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receive the same global perturbation. Note that in
MRC tasks, words in passages and questions play
different roles. Thus, to keep this information, we
distinguish the words in passages and questions by
creating two virtual embedding matrices P and Q:
P-embedding matrix P collects the perturbations
of all the words from the passages; Q-embedding
matrix Q for the questions. We give an illustration
in Figure 1. P/Q-embedding matrices are virtual
since they only provide perturbations, no the real
word vectors. During training, perturbations from
virtual embeddings and word vectors are summed
up to form the adversarial input Zvec. The final
objective is

min
θ,E

E(X,y)∼D

[
max
‖δ‖<ε

L(fθ(Zvec), y)

]
(4)

Zvec = [XP
vec + Pvec;X

Q
vec +Qvec] + δ (5)

Pvec = emb(P , XP ), Qvec = emb(Q, XQ) are
the perturbations from the virtual embeddings. XP

andXQ stand for the passage and question sections
in X . [·; ·] denotes concatenation. In this way, we
have generated fine-grained local perturbations δ by
standard AT, and global role-aware perturbations
Pvec and Qvec by the virtual P/Q-embeddings. We
call the later process as PQAT, which is the main
adaptation of adversarial training for MRC.

We list the overall algorithm of adversarial train-
ing for MRC in Algorithm 1. We initialize P
and Q with the gaussian distribution. For each
batch, we perform K-step gradient descent (line
9–22): we look up the original word vectors and
P/Q-embedding vectors from the embedding layer
E and the P/Q-embedding matrices. The adversar-
ial inputs are constructed by summing them with
local perturbations δ. Then we compute the gradi-
ents of model parameters gt, local perturbations gδ
and P/Q-embedding matrices gP and gQ. These
gradients can be calculated in a single backward
pass. Lastly, we update the virtual embeddings and
local perturbations (line 18–21).

Note that P/Q-embedding matrices serve as the
containers for perturbations. When the training is
finished, P/Q-embedding matrices are no longer
needed and can be discarded.

εδ, εP and εQ control the strengths of standard
AT and PQAT. If εδ = 0, we have a pure P/Q-
embeddings based adversarial training, i.e., PQAT;
while if εP = εQ = 0, we recover the standard AT.

Algorithm 1: Adversarial Training for
Machine Reading Comprehension

Notation: V is the vocabulary size; D is the
embedding dimension.

Input: Training samples D = {(X, y)},
P/Q-embedding matrices P ,Q ∈ RV×D ,
initialization variance σ, perturbation strength
{εδ, εP , εQ}, adversarial steps K.

1 Initialize P/Q-embedding matrices
2 P ← N (0, σ2I) , Q← N (0, σ2I)
3 for batch B ⊂ D do
4 Normalize P/Q-embedding matrices
5 P ← (P −mean(P )/std(P ) · σ
6 Q← (Q−mean(Q))/std(Q) · σ
7 Initialize perturbation and gradient
8 δ ← 1√

D
U(−σ, σ), g0 ← 0

9 for t = 1, . . . ,K do
10 Xvec = emb(E, X)

11 Pvec = emb(P , XP )

12 Qvec = emb(Q, XQ)
13 Zvec = Xvec + Pvec +Qvec + δ
14 gt = gt−1 + E[∇θ,EL(fθ(Zvec), y)]
15 gδ = E[∇δL(fθ(Zvec), y)]
16 gP = E[∇PL(fθ(Zvec), y)]
17 gQ = E[∇QL(fθ(Zvec), y)]
18 δ ← δ + gδ/ ‖gδ‖2 · ‖Xvec‖2 εδ
19 Update with token-wise normalization
20 P i ← P i + giP /

∥∥giP
∥∥
2
·
∥∥Xi

vec

∥∥
2
εP

21 Qi ← Qi + giQ/
∥∥giQ

∥∥
2
·
∥∥Xi

vec

∥∥
2
εQ

22 end
23 {θ,E} ← AdamUpdate({θ,E}, gK)
24 end

4 Experiments Setup

Datasets. We perform experiments on several En-
glish MRC tasks, including span-based extractive
MRC tasks – SQuAD 1.1 (Rajpurkar et al., 2016),
SQuAD 2.0 (Rajpurkar et al., 2018), HotpotQA
(Yang et al., 2018), and multiple-choice MRC task
RACE (Lai et al., 2017). We also test model robust-
ness on the adversarial datasets AddSent andAd-
dOneSent (Jia and Liang, 2017).
Model Settings. We build the MRC model with
RoBERTa (Liu et al., 2019), following the standard
model structure for SQuAD and RACE (Devlin
et al., 2018). For HotpotQA, we follow the model
in Shao et al. (2020). It uses RoBERTa as the
encoder followed by a multi-task prediction layer.
We denote the passage as P and the question as Q.
To construct the inputs, for span-based extractive
RC, we concatenate each P and Q with model-
dependent special tokens; for multiple-choice RC
with m options for each example, we append each
option to the concatenation of P and Q, and con-
struct m input sequences from each example.

When applying AT or PQAT, we only perturb
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Model SQuAD 1.1 SQuAD 2.0 HotpotQA RACE
EM F1 EM F1 joint EM joint F1 Acc

BASE setting
RoBERTa 84.72 91.54 79.77 83.18 41.70 69.30 74.75
PQAT 85.87 92.33 81.66 84.79 43.03 70.40 76.32

LARGE setting
RoBERTa 87.76 93.90 85.67 88.86 45.91† 73.93† 84.66
PQAT 88.32 94.34 86.35 89.49 46.79 74.63 86.02

Table 2: Results on the development sets of SQuAD 1.1, SQuAD 2.0 and HotpotQA, and results on the test set of
RACE. †: the results are taken from Shao et al. (2020).

Model SQuAD 1.1 SQuAD 2.0 RACE
EM EM Acc

BASE setting

PQAT 85.87 81.66 76.32
(0.08) (0.21) (0.32)

PQAT + AT 85.96 81.11 ↓ 76.50
(0.10) (0.14) (0.35)

AT 85.64 ↓ 81.23 ↓ 75.94 ↓
(0.15) (0.30) (0.37)

Table 3: Comparison of PQAT, standard AT and the
combination. AT is short for Standard AT. Arrows in-
dicate the drops relative to the PQAT. Numbers in the
parentheses are the standard deviations.

the word embeddings and leave the position em-
beddings unchanged. For PQAT on RACE, we let
the Q-embedding matrix collect perturbations from
both questions and options.
Training Settings and Hyperparameters. All
the models are implemented with Transformers
(Wolf et al., 2019) and trained on a single Nvidia
V100 GPU. To improve the stability and reduce
the uncertainty of the results, we run each exper-
iment four times with different seeds and report
the mean value of performance. We use AdamW
as our optimizer with batch size 24 and learning
rate 3e-5 for RoBERTaBASE and 2e-5 or 1e-5 for
RoBERTaLARGE. The maximum number of epochs
is set to 3 for SQuAD and 5 for RACE and Hot-
potQA. A linear learning rate decay schedule with
warmup ratio 0.1 was used. For PQAT, εδ is set
to 0, εP and εQ is set to 4e-2 for RACE and 2e-2
for other tasks. The variance σ is 1e-2. We set the
number of gradient descent steps K = 2 to balance
speed and performance.

5 Results

5.1 Overall Results

The overall results are summarized in Table 2,
where we compare PQAT with the baseline. PQAT

Model AddSent AddOneSent Dev

R.M-Reader† 58.5 67.0 86.6
KAR‡ 60.1 72.3 83.5
ALUMBERT-BASE

§ 60.4 69.8 90.8
RoBERTaBASE 59.7 68.8 91.5

PQAT 64.7 73.6 92.3
AT 63.2 72.6 92.1

Table 4: Model performance (F1) on AddSent, Ad-
dOneSent and SQuAD 1.1 dev set. AT is short for Stan-
dard AT. †:Wang and Jiang (2018). ‡: Hu et al. (2018),
§: Liu et al. (2020).

is able to boost model performance across all
MRC tasks and outperforms the RoBERTa baseline
significantly. On HotpotQA, which is a compli-
cated MRC task that features multi-hop questions
and asks for multiple kinds of predictions, PQAT
still outperforms the baseline by 1.3/1.1 on Joint
EM/Joint F1. On RACE, PQAT improves the per-
formance significantly by 1.5% in accuracy. The
universal improvements on various kinds of MRC
tasks prove the wide applicability of PQAT.

5.2 Comparison
We compare different adversarial training methods
and their combinations by tuning the strengths of
perturbations {εδ, εP , εQ}. The results are in Table
3. The underlined scores are the ones reported in
Table 2. Firstly, to test the effectiveness of standard
AT, we disable PQAT with εP = εQ = 0 and
enable standard AT with εδ =2e-3 for RACE and
1e-2 for other tasks 1. Other settings are unchanged,
and we still follow Algorithm 1. PQAT consistently
outperforms standard AT on the three tasks. Then
we enable both PQAT and standard AT by setting
all the strengths {εδ, εP , εQ} to non-zero values.
The performance gets slightly better on SQuAD
1.1 and RACE, but gets worse on SQuAD 2.0.

1We have searched from 1e-3 to 1e-1 and taken the best
value.
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Compared with the standard AT, PQAT achieves
higher performance by itself. Therefore PQAT
could be a better alternative to applying adversarial
training on MRC tasks.

5.3 Robustness on Adversarial Datasets
We assess the robustness of MRC models with
AddSent and AddOneSent. AddSent and AddOne-
Sent are two adversarial datasets built on SQuAD
1.1. In both datasets, passages are appended with
distracting sentences. MRC models that heavily
rely on text matching may be easily fooled to pre-
dict wrong answers from the distracting sentences.

The results are shown in Table 4. With
the standard adversarial training (AT), the MRC
model improves its robustness by about 5% over
RoBERTaBASE in F1. PQAT further improves the
performance over AT by about 1% on both AddSent
and AddOneSent.

6 Conclusion

We have applied adversarial training on a wide
range of MRC tasks, including span-based extrac-
tive RC and multiple-choice RC. Especially, we
have proposed a novel adversarial training method
PQAT, which uses virtual P/Q-embedding matri-
ces to generate global and role-aware perturbations
that consider the characteristics of MRC tasks. Our
experiments demonstrate that adversarial training
improves the MRC model performance universally
and consistently, even over the strong pre-trained
model baseline. The PQAT method further im-
proves the model performance over the standard AT
on both normal datasets and adversarial datasets.
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