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Abstract
Word embedding techniques depend heavily
on the frequencies of words in the corpus, and
are negatively impacted by failures in provid-
ing reliable representations for low-frequency
words or unseen words during training. To ad-
dress this problem, we propose an algorithm
to learn embeddings for rare words based on
an Internet search engine and the spatial loca-
tion relationships. Our algorithm proceeds in
two steps. We firstly retrieve webpages corre-
sponding to the rare word through the search
engine and parse the returned results to extract
a set of most related words. We average the
vectors of the related words as the initial vec-
tor of the rare word. Then, the location of the
rare word in the vector space is iteratively fine-
tuned according to the order of its relevances
to the related words. Compared to other ap-
proaches, our algorithm can learn more accu-
rate representations for a wider range of vocab-
ulary. We evaluate our learned rare-word em-
beddings on the word relatedness task, and the
experimental results show that our algorithm
achieves state-of-the-art performance.

1 Introduction

Since Bengio et al. (2003) introduced the idea
of learning continuous vectors for words using
network-based language models, many word em-
bedding techniques have been proposed such
as Word2vec (Mikolov et al., 2013a,b), GloVe
(Pennington et al., 2014), etc. However, nearly all
existing word embedding approaches need words
that have a high frequency in the corpus and can-
not learn good representations for rare words (in-
cluding low-frequency words and unseen words).
As words in a corpus follow a Zipfian distribution,
only a small proportion of the total tokens are fre-
quent words, while most of them are rare words.
Therefore, how to learn qualified embeddings for
rare words is an essential issue to be solved.

From the human perspective, when encounter-
ing a new word, it is an instinct to take a look at its

structure or to look up its definition in a dictionary.
The essence of both behaviours is to transform a
rare word to a set of familiar words expressing the
same meaning to it. Based on the above ideas,
some proposed techniques have attempted to ex-
ploit subword information or lexical resources to
predict the rare word representation.

In the area of subword-based approaches, Fast-
Text (Bojanowski et al., 2017) learns representa-
tions for character n-grams and represents words
as the sum of the n-gram vectors. Ngram2vec
(Zhao et al., 2017) learns n-gram representations
from n-gram co-occurrence statistics and incor-
porates this information into the word represen-
tations. Pinter et al. (2017) proposed the Mim-
ick model to predict vectors for out-of-vocabulary
words by learning a function from spellings to dis-
tributional embeddings. The attentive mimicking
model (AM) (Schick and Schütze, 2019a) and the
form context model (FCM) (Schick and Schütze,
2019b) jointly use surface form and context infor-
mation to improve representations of rare words.

In another way, lexical resources are used to in-
fer the representation for a rare word from the vec-
tors of the words having a semantic association
with it. SemLand (Pilehvar and Collier., 2017) in-
fers the representations for rare words by exploit-
ing the definitions and relationships in an exter-
nal lexicon WordNet (Miller, 1995). Faruqui et al.
(2015) proposed to use word relation knowledge
found in semantic lexicons to retrofit word vec-
tors. Bahdanau et al. (2018) proposed to train a
Long Short-Term Memory (LSTM) network to
predict the representations of rare words based on
auxiliary data (e.g., a dictionary definition) from
knowledge bases. Prokhorov et al. (2019) embed-
ded a knowledge base into a vector space by the
node2vec (Grover and Leskovec, 2016) graph em-
bedding algorithm and then mapped the embed-
ded words from this space to a corpus-based space.
However, the performance of these approaches
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heavily depends on the coverage of external data
sources. If a rare word is uncovered by the lexicon,
the rare-word embedding will not be available.

In addition to the approaches outlined above,
a great concern has been raised over the pre-
trained language models for their outstanding
performance in various natural language pro-
cessing (NLP) tasks. Among the pre-trained
models, ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2019) are two most typical ones.
Based on the pre-trained language model, we can
use a function of the internal layers as the vector
of a word. The pre-trained language models have
strong coverage ability and can predict vectors for
nearly all rare words. However, based on our ex-
perimental results (section 3.4), we found the se-
mantics of rare words are not learned well when
the context information is not provided or the rare
words come from specific domains.

As the largest source of information in the
world, the Internet consists of billions of pages of
data in all fields. To figure out the meaning of
a rare word, almost everyone’s first priority has
changed to retrieve it on the Internet and extract
the useful information from the associated web-
pages. Inspired by this, we propose a two-step al-
gorithm to learn rare-word embeddings using the
Internet search engine and the spatial location re-
lationships. We firstly find the top-n most rele-
vant words to a rare word from the webpages re-
turned by the Internet search engine and compute
the initial embedding of the rare word by averag-
ing the vectors of these extracted words. Accord-
ing to the order of the top-n most relevant words,
we further iteratively fine-tune the location of the
rare word in the vector space to make it satisfy the
constraints of spatial location relationships. The
constraints are that if a rare word is more relevant
to a word than other words, the distance between
the rare word and this word is closer than the dis-
tances between the rare word to others in the vec-
tor space. Compared to the existing approaches,
there are three advantages of our approach: (i) we
can obtain a powerful coverage for rare words; (ii)
we can provide more accurate vector representa-
tions for rare words; (iii) we can support represent-
ing multilingual rare words.

This paper is organized as follows: Section 2
describes our methodology in detail. Section 3
presents the experimental results. The paper is
concluded in Section 4.

2 Methodology

In this section, we will begin by introducing our
motivation, then describe how we define the rele-
vance metric and obtain the top-n related words
to a rare word using the Internet search engine,
and finally present the fine-tuning process toward
achieving the more precise embedding learning.

2.1 Motivation

To solve the rare word representation problem, as
mentioned above, the most direct way is to find
a series of familiar tokens expressing the same
meaning to the rare word. Further, the embed-
ding of a rare word can be induced by the em-
bedding of its semantically related tokens in the
word embedding model. Based on the above anal-
ysis, there are two main challenges in the task of
the rare word representation: (i) how to obtain the
semantically related words for more rare words?
and (ii) how to ensure the quality of the learned
rare-word embeddings? To address these issues,
we propose an algorithm to learn embeddings for
rare words, as shown in Figure 1, which consists
of two processes: a coarse-tuning one and a fine-
tuning one. The coarse-tuning process is to obtain
the semantically related words for a rare word and
to predict its approximate location in the vector
space (i.e., the coarse-grained representation). The
fine-tuning process is to adjust the coarse-grained
vector of the rare word intensively to optimize
its meaning representation accuracy; and the final
learned-vector is the fine-grained representation.
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Figure 1: Procedure of learning rare-word embeddings.

To extend the coverage for rare words in the
coarse-tuning process, we use information on the
Internet as the data source and utilize the Inter-
net search engine to achieve fast acquisition of the
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topic-related webpages to the rare word. With the
help of the large-scale data on the Internet, we
can find the semantically related information for
nearly all of the words in different fields, which
brings better coverage capacity than the existing
lexicon-based approaches. As the webpage docu-
ments vary widely in their internal structure and
contain a lot of interference information such as
advertisements, navigation texts, etc, we use only
the titles from the retrieved documents to extract
the semantically related words of the rare word.

For a rare word w, we firstly use a search engine
to search for w and capture the first m relevant
records: P = {p1, p2, p3, ..., pm}. Then, a set of
n most related words W = {w1, w2, w3, ..., wn}
to the rare word are extracted from the titles of
these m relevant webpages and these n words are
ranked by relevance from high to low. The vectors
of these n related words is averaged as the initial
vector of the rare word (see Equation (1)), which
is the coarse-grained representation of w.

w⃗ =

∑n
i=1 w⃗i

n
, (1)

where w⃗i is the vector representation of the related
word wi ∈W . To further ascertain the location of
the rare word in the vector space, we consider the
constraints of spatial location relationships among
the rare word and its n semantically related words.
As the related words have been ranked by the rele-
vance to the rare word w, the semantic relatedness
between the rare word and a high-ranking word in
W is higher than that between the rare word and a
low-ranking word in W , i.e.:

rel(w,wi) > rel(w,wj),

∀i, j ∈ [1, n], wi ∈W,wj ∈W, i < j,
(2)

where rel is a metric function of the semantic re-
latedness. In the word embedding model, the se-
mantic relatedness between two words can be rep-
resented as the cosine distance of their vectors in
the vector space. Therefore, the constraints can be
expressed as follows:

cos(w⃗, w⃗i) > cos(w⃗, w⃗j),

∀i, j ∈ [1, n], wi ∈W,wj ∈W, i < j.
(3)

To satisfy the constraints of the spatial location
relationships, the vector of the rare word is itera-
tively fine-tuned as follows:

w⃗ = w⃗ + (w⃗i − w⃗j)×∆,

if : (cos(w⃗, w⃗i) < cos(w⃗, w⃗j))and(i < j),
(4)

where w⃗i − w⃗j is the movement direction of w,
and ∆ is the step length. As shown in Figure 1,
the location of the rare word w is the center of its
four semantically related words after the coarse-
tuning process, where the hyper-parameter n is set
to 4 as an example. However, the current coarse-
grained vector of w does not satisfy the constraint:
cos(w⃗, w⃗1) > cos(w⃗, w⃗2). In the fine-tuning pro-
cess, the location of w gradually heads toward w1

in the direction of w⃗1 − w⃗2, and the final location
of w is closer to its real location.

2.2 Coarse-grained Rare Word
Representation

The specific procedure of the coarse-tuning pro-
cess is described in Algorithm 1. We define a dic-
tionary of key-value pairs to store the relevance
scores among the rare word and its semantic re-
lated words (Line 3). Given a rare word w, the
search engine S is invoked to query the related
webpages P (Line 4). For each page, the lxml
module of Python is exploited to extract its title.
We decompose it into a set of distinct words and
delete the stop words from the segmentation re-
sult (Lines 8-11). Based on our tests, there is a
list of titles lacking of discrimination and inter-
fering the acquisition of related words. Take the
English word “self-discipline” for example, the
title of one of its related webpages is “what is
self-discipline - definitions”. The word “defini-
tions” is not exclusively related to “self-discipline”
in meaning, because this word also appears in
the titles of the retrieved webpages for numer-
ous other search words. To address this issue,
we define a noise word set Γ which currently in-
cludes 10 words: {“definition”, “wiktionary”,
“synonyms”, “antonyms”, “dictionary”, “blog”,
“html”, “www”, “ encyclopedia”, “ journal”}. If
a title contains a word of Γ, it will be abandoned
in our algorithm (Line 13).

At this point, the keys of map (i.e., semantic re-
lated words) are assigned with the words included
in the filtered webpage titles. To measure the rel-
evance score between two words, we take the co-
occurrence information and the number of word
meanings into account. The co-occurrence fre-
quency is defined by the number of titles that con-
tain the related word. Since the vector of a pol-
yseme is actually a compromise of all its meanings,
the polyseme is likely to locate far from the rare
word in the vector space. According to this con-
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Algorithm 1 Coarse-tuning.
Input: The word embedding model, M ; the rare

word, w /∈ M ; the max number of related
words, n; the Internet search engine, S; the
semantic lexicon L; the noise word set Γ;

Output: The semantically related word set of w,
W ; the coarse-grained embedding of w, w⃗c;

1: Initialize w⃗c ← 0⃗;
2: // key is a semantically related word to w, and

value is the relevance score
3: map← dict(key, value);
4: P ← Search(S,w);
5: for each p ∈ P do
6: // Extract the title of the webpage p
7: S ← GetT itle(p);
8: // Decompose S into some distinct tokens
9: T ← Decompose(S);

10: // Remove the stop words
11: T ← RemoveStopWords(T );
12: // Exclude the titles including noise words
13: if T ∩ Γ = ∅ then
14: for each t ∈ T do
15: if t ∈M and t ∈ L then
16: // Update the relevance score
17: s = 1/GetSenseNum(L, t);
18: map[t]← map[t] + s;
19: end if
20: end for
21: end if
22: end for
23: // Rank the semantic words by the relevance

score from high to low
24: map.Sort();
25: for each key ∈ map.keys do
26: // Get the first n words out of map as the

semantically related word set W
27: if |W | < n then
28: W.append(key);
29: w⃗c ← w⃗c +M [key];
30: end if
31: end for
32: if |W | > 0 then
33: w⃗c ← w⃗c/|W |;
34: end if
35: return w⃗c, W ;

sideration, we put more emphasis on the univocal
words than the polysemes to infer the rare-word
embeddings. The relevance score is proportional
to the co-occurrence frequency and inversely pro-

portional to the number of word meanings, i.e.:

Score(w, v) =
mv

GetSenseNum(L, v)
, (5)

where v is a word related to the rare word w; mv

is the number of webpage titles that include the
word v; GetSenseNum is an abstract function to
obtain the number of meanings of v, and the pa-
rameter L is a semantic lexicon used as a sense in-
ventory. For example, if WordNet (Miller, 1995) is
used as the lexicon, the function GetSenseNum
is to find the number of synsets that a word be-
longs to. To provide the candidate meanings and
the vector representation for each related word, it
requires the semantically related words to be cov-
ered by the lexicon and the pre-trained word em-
bedding model (Line 12). It should be noted that
there is a clear difference between our algorithm
and the lexicon-based approaches. We do not need
the rare word to be covered by the lexicon but seek
to find a list of related words in the lexicon to learn
the rare word vector representation. Therefore, our
algorithm is not susceptible to the coverage of the
semantic lexicon. Uniformly, for each rare word,
we use the top-n most related words and average
their embeddings as the coarse-grained represen-
tation (Lines 24-34). The parameter n is used
to limit the number of semantically related words
when the size of map is greater than n.

2.3 Fine-grained Rare Word Representation
The fine-tuning process builds on the coarse-
tuning process to optimize the rare word vectors.
The main idea of the fine-tuning process is that
the more related the two words are, the closer
their word embeddings locate in the vector space.
Based on this, the specific procedure of this pro-
cess is described in Algorithm 2. On account of
the semantically related words in the order of rel-
evance and the coarse-grained embedding of w,
the vector w⃗f is iteratively fine-tuned to fulfill
the constraints of the spatial location relationships.
The hyper-parameter K is used to control the to-
tal number of fine-tuning epochs (Line 5). Dur-
ing a fine-tuning epoch, if the relevance score be-
tween the rare word w and each semantically re-
lated word wi ∈W is less than the relevance score
between the rare word w and each semantically re-
lated word wj ∈W with lower order than i, as de-
clared by Equation (4), the rare word w will move
one step (∆) to get closer to wi (Lines 14-15). Fi-
nally, the vector of w will be updated to a new po-
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sition in the vector space, where the meaning of w
can be more accurately represented.

Algorithm 2 Fine-tuning.
Input: The word embedding model, M ; the rare

word, w /∈ M ; the semantically related word
set of w, W ; the coarse-grained embedding of
w, w⃗c; the number of epochs, K; the step size,
∆.

Output: The fine-grained embedding of w, w⃗f ;
1: Initialize w⃗f ← w⃗c;
2: // The number of the semantically related

words
3: n = |W |;
4: if n > 1 then
5: for k = 1 to K do
6: for i = 1 to n− 1 do
7: wi ←W [i− 1];
8: w⃗i ←M [wi];
9: reli = cos(w⃗f , w⃗i);

10: for j = i+ 1 to n do
11: wj ←W [j − 1];
12: w⃗j ←M [wj ];
13: relj = cos(w⃗f , w⃗j);
14: if reli < relj then
15: // w moves one step in the

direction of w⃗i − w⃗j

16: w⃗f ← w⃗f+(w⃗i−w⃗j)×∆;
17: end if
18: end for
19: end for
20: end for
21: end if
22: return w⃗f ;

3 Experiments

In this section, we present our experimental set-
tings and results. We take the word relatedness
task as the evaluation framework, and the Spear-
man correlation coefficient (ρ × 100) is adopted
to assess the quality of the learned embeddings.
Also, the percentage of missed pairs (PMP) is
used to evaluate the vocabulary coverage of our
model. Baidu1 search engine is used to retrieve
the relevant webpages in our coarse-tuning pro-
cess. All experiments use the same fine-tuning set-
tings: K = 50, ∆ = 0.1.

We first report the performance of our algorithm
in different hyper-parameters. Then, we compare

1http://www.baidu.com

the quality of the rare-word embeddings before
and after the fine-tuning process to verify the ef-
fectiveness of our two-step approach. Next, we
compare our algorithm with the CBOW algorithm
and six state-of-the-art English rare-word embed-
ding learning algorithms. Finally, we evaluate our
algorithm on two Chinese word datasets to investi-
gate the scalability of our approach for a language
other than English.

3.1 Experimental Settings

Training corpus: We select the English
Wikipedia2 dump on April 1, 2015, as the
training corpus.
Benchmark datasets: We use four benchmark
datasets to perform evaluations and comparisons
for different rare word representation techniques,
including the Stanford Rare Word (RW) dataset
(Luong et al., 2013), the Cambridge Rare Word
(Card-660) dataset (Pilehvar et al., 2018), the
UMNSRS dataset (Pakhomov et al., 2010) and
the MayoSRS dataset (Pakhomov et al., 2011).
Among them, RW (2,034 pairs) and Card-660
(660 pairs) are two general domain datasets, while
UMNSRS (566 pairs) and MayoSRS (101 pairs)
are two datasets in the biomedical field.
Baseline algorithms: We compare our algo-
rithm with the CBOW algorithm (Mikolov et al.,
2013a) and six rare-word learning algorithms:
(i) FastText (Bojanowski et al., 2017), (ii)
FCM (Schick and Schütze, 2019b), (iii) SemLand
(Pilehvar and Collier., 2017), (iv) Align
(Prokhorov et al., 2019), (v) ELMo (Peters et al.,
2018) and (vi) BERT (Devlin et al., 2019). Among
these approaches, FastText and FCM are two
subword-based approaches, SemLand and
Align are two lexicon-based approaches, ELMo
and BERT are two pre-trained language models.
The lexion WordNet (Miller, 1995) is selected as
the word meaning inventory, and we use the CBOW
word embedding model as the pre-trained model
to induce the vectors of rare words.

3.2 Influences of Hyper-parameters

In this experiment, we investigate the influences of
the two hyper-parameters in the coarse-tuning pro-
cess for the quality of the learned rare-word em-
beddings including the number of relevant records
(m) and the number of semantically related words
(n), and seek the optimal range of the two hyper-

2https://dumps.wikimedia.org/enwiki/20150401
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parameters. We randomly select a third of records
from the four benchmark datasets respectively and
form four sub-datasets to evaluate the performance
of our algorithm in different hyper-parameters.
We first set m to 100 and change n from 1 to 10,
then record the Spearman coefficients on the four
sub-datasets. The dimension of all the vectors is
300, and the results are presented in Figure 2. We
can see that the Spearman coefficients of our algo-
rithm on the four sub-datasets all increase at the
early stage and then decrease with the parameter
n. When the parameter n is between 4 and 8, the
quality of the learned rare-word embeddings is op-
timal. To analyze the reason, when n < 4, the
semantic information of the related words is lim-
ited for its lower quantity, which is insufficient to
predict the accurate vectors of rare words. At one
extreme (when n = 1), the vector of a rare word
directly equals to that of the only one related word
without the fine-tuning process. Unless the rare
word and its related word are synonymous, the rare
word will obtain a wrong representation. When
n > 8, it increases the likelihood of introducing
noise words that are actually not related to the rare
word into the semantic word set, which will also
produce a negative effect on the right place of the
rare word in the vector space.
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Figure 2: Spearman performance in different number
of semantically related words

In the next experiment, the parameter n is set
to 5, and the other parameter m is changed from
20 to 200. We record the Spearman coefficients on
the four sub-datasets as well. We can see from Fig-
ure 3 that the performance reaches the peak values
on the two general domain sub-datasets when the
parameter m are set to 140 and 160 respectively.
On the other side, the Spearman coefficients on the
two biomedical field sub-datasets increase with

the parameter m, then show some small fluctua-
tions when m > 100. The results indicates that
more retrieved records are required for general-
domain rare words to obtain high-quality word rep-
resentations. One reason is that the titles of the re-
trieved records for general-domain rare words are
more likely to contain the words in the defined
noise word set, and these records will be aban-
doned in the coarse-tuning process. Moreover, it
may be unnecessary to use too many records as
well because the lower-ranking records have de-
clined in the relevance with the rare word. Based
on the above results, we set m and n to 100 and 5
respectively to learn better rare-word embeddings
in the follow-up experiments.
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Figure 3: Spearman performance in different number
of relevant records

3.3 Performance Comparison between
Coarse-tuning and Fine-tuning

The coarse-tuning operation in our algorithm pro-
vides a coarse-grained vector representation from
scratch for each rare word by averaging the vec-
tors of the semantically related words, while the
fine-tuning process constantly adjusts the coarse-
grained embedding of the rare word to a fine-
grained vector with a more suitable position in
the vector space. In this experiment, we compare
the Spearman correlations of the learned coarse-
grained embeddings with that of the fine-grained
embeddings to verify the effectiveness of the fine-
tuning operation. To have a fair comparison, we
report the performance of the learned rare-word
embeddings on the multiple datasets in four dif-
ferent dimensions: 100, 200, 300 and 400.

We can see from Figure 4 that the Spearman cor-
relations of the fine-grained embeddings outper-
form that of the coarse-grained embeddings on the
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four datasets regardless of the vector dimensions.
It demonstrates that the quality of the coarse-
grained embeddings can be further enhanced by
the fine-tuning process with consideration of the
constraints of spatial location relationships. The
order information of the relevances between the
rare word to its semantically related words is fully
utilized to correct the vector of the rare word. Ow-
ing to the fine-tuning process, the relevance score
is not required to precisely measure the relatedness
between two words, but only needs to compare the
relatednesses among the rare word and its seman-
tic words relatively, which has effectively reduced
the difficulty of the relevance metric design in the
coarse-tuning process.
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Figure 4: Performance comparison between coarse-
tuning and fine-tuning over vector dimensions.

3.4 Performance Comparison with Previous
Work

In this experiment, the dimension of all vectors is
set to 300. Table 1 shows the comparison results,
in which the best result is shown in bold. Among
the baseline approaches, ELMo and BERT have the
best coverage ability due to their character-based
representation. Even so, we still achieve almost
the same coverage performance as these two pre-
trained language models except for failing to cover
a tiny part (0.75%) of the word pairs in Card-660.
Compared to the PMP values on domain-general
datasets, the coverage performance of FastText
and FCM on domain-specific datasets decline sig-
nificantly. The reason is that the domain-specific
terms and their subwords both rarely appear in
the training corpus, which causes the vectors of
many subwords in the biomedical field to be un-
available in these two models. SemLand and

Align opt for WordNet as the general domain lex-
ical resource and use the Medical Subject Head-
ings (MeSH)3 as the medical lexical resources.
However limited by the coverage of the lexical re-
sources, the PMP performance of these two ap-
proaches is unsteady on different datasets. We
use all the information resources on the Internet to
find the semantically related words of a rare word,
which is far beyond the scopes of any lexical re-
source. Whether for domain-general rare terms or
domain-specific rare terms, nearly all the vectors
can be learned by our algorithm with their seman-
tically related words.

With respect to the quality of rare word repre-
sentations, our algorithm outperforms the other ap-
proaches on the four benchmark datasets. Let us
go further to identify the reasons for the superior-
ity of our algorithm. Although ELMo and BERT
have the powerful coverage ability for rare words,
the learned rare-word embeddings do not have
high quality, especially for the domain-specific
rare terms. Compared to FastText, the vector
of a rare word in our algorithm is represented by
its semantically related words instead of the inner
subwords, which can provide more explicit seman-
tic meanings than the subwords. FCM leverages
the context information in addition to the n-gram
information and learns higher-quality embeddings
than FastText for the domain-general words,
but fails to achieve the same performance on the
domain-specific datasets. The reason is that most
of the domain-specific terms are unseen in the
Wikipedia corpus, so the context information is in-
sufficient to learn the FCM word embeddings. In
contrast to SemLand and Align, our algorithm
is independent of specific lexical resources and has
stable coverage for rare words in different fields.
Therefore, our algorithm can induce eligible em-
beddings for more words and eventually achieve
better Spearman correlations on the datasets.

3.5 Performance on Chinese rare words

To investigate the scalability of our approach for
multilingual words, we evaluate our algorithm
on Chinese rare words in this section. We se-
lect the Chinese Wikipedia4 dump on November
20, 2016, as the corpus and use two Chinese
benchmark datasets to perform evaluations, in-
cluding the wordsim-240 (Chen et al., 2015) word

3https://www.nlm.nih.gov/mesh/
4https://dumps.wikimedia.org/zhwiki/20161120/
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Table 1: The Performance of Spearman correlation and coverage on four English datasets.

Approach
RW Card-660 UMNSRS MayoSRS

PMP ρ× 100 PMP ρ× 100 PMP ρ× 100 PMP ρ× 100

CBOW 14% 35.5 54% 2.2 19% 15.9 64% 11.9

FastText 3% 38.8 5% 20.4 14% 17.6 34% 14.4
FCM 3% 39.5 5% 24.2 14% 18.8 34% 13.7

SemLand 0% 40.0 39% 33.2 15% 20.1 29% 10.9
Align 0% 42.0 39% 32.5 15% 22.4 29% 14.5

ELMo 0% 44.8 0% 20.2 0% 17.2 0% 7.8
BERT 0% 20.7 0% 16.2 0% 8.8 0% 7.7

Ours 0% 44.8 0.75% 41.5 0% 37.3 0% 22.9

pairs and the wordsim-296 (Jin and Wu, 2012).
We compare our algorithm with the CBOW algo-
rithm and four rare-word learning algorithms: (i)
CWE (Chen et al., 2015), (ii) cw2vec (Cao et al.,
2018), (iii) ELMo and (iv) BERT. The lexicon
Tongyici Cilin (Tian and Zhao, 2010) is selected
as the Chinese sense inventory.

We can see from Table 2 that our algorithm
and the four baseline approaches all have out-
standing coverage ability for the Chinese rare
words. The character-based approach CWE and
the stroke-based approach cw2vec fail to deduce
the embedding of an outlier word “OPEC” in the
wordsim-296, which brings a little loss for their
performance. However, it is not a problem for
our algorithm because we can extract the related
words from the Internet to infer its vector includ-
ing “ó¹ (fossil fuel)”, “ÄÇ (organization)”,
etc. Compared to the coverage results, our al-
gorithm has more significant advantages over the
other baseline approaches in terms of the quality
and achieves the highest Spearman correlations on
the two datasets. To analyze the reason, we note
the extracted related words in our algorithm are
more helpful to induce the embedding of a rare
word than the characters in CWE and the strokes
in cw2vec. Take the rare word “lÉ�³
(Maradona)” for example, it is actually not related
with the character “l (horse in Chinese)”. Con-
versely, we can extract the semantically related
words like “³� (soccer)”, “?9÷ (Argentina)”,
etc, to represent this word, which can more accu-
rately reflect its meaning, i.e., name of an athlete.
Moreover, the fine-tuning operation can promote
the quality of the rare-word embeddings as well.

Table 2: Evaluation results on the wordsim-240 dataset
and the wordsim-296 dataset.

Approach
wordsim-240 wordsim-296

PMP ρ× 100 PMP ρ× 100

CBOW 4% 34.5 11% 26.1

CWE 0% 35.5 0.3% 38.2
cw2vec 0% 42.5 0.3% 43.4
ELMo 0% 6.0 0% 14.6
BERT 0% 15.9 0% 29.7

Ours 0% 44.0 0% 47.2

4 Conclusions

In this paper, we have proposed a novel algorithm
to learn embeddings for rare words, which consists
of a coarse-tuning process and a fine-tuning pro-
cess. In the coarse-tuning process, we use an In-
ternet search engine to retrieve webpages relevant
to the rare word on Internet and extract n most re-
lated words from their titles to infer the rare word’s
initial vector. In the fine-tuning process, we iter-
atively adjust the position of the rare word in the
vector space to satisfy the constraints of the spatial
location relationships and get close to its semantic
meaning. We evaluated our approach on multiple
datasets and compared the performance with other
state-of-the-art approaches. The experimental re-
sults demonstrate that our algorithm is superior to
existing approaches in both the accuracy of seman-
tic expression and the coverage for rare words.

In future, we plan to extend our algorithm
to learn contextualized representations for rare
words. At present, existing work on contextu-
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alized rare word representation concentrates on
the improved versions of attentive mimicking
(AM) architecture such as the adapted AM model
(Schick and Schütze, 2020b) and the BERTRAM
model (Schick and Schütze, 2020a). We consider
combining our algorithm with the AM architec-
ture, and utilize the semantically relevant infor-
mation together with the surface-form information
and context information to learn higher-quality
context-dependent representations for rare words.

Other future work involves evaluating our al-
gorithm leveraging other search engines (e.g.,
Google, Bing, etc) on multiple languages. On this
basis, we seek to bring further improvements on
our algorithm by selecting the most suitable search
engine for a specific language to induce the embed-
dings of the rare words of this language.
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