
Proceedings of the 5th Workshop on Structured Prediction for NLP, pages 22–36
August 1–6, 2021. ©2021 Association for Computational Linguistics

22

Learning compositional structures for semantic graph parsing

Jonas Groschwitz
Saarland University

jonasg@coli.uni-saarland.de

Meaghan Fowlie
Utrecht University
m.fowlie@uu.nl

Alexander Koller
Saarland University

koller@coli.uni-saarland.de

Abstract

AM dependency parsing is a method for neu-
ral semantic graph parsing that exploits the
principle of compositionality. While AM de-
pendency parsers have been shown to be fast
and accurate across several graphbanks, they
require explicit annotations of the composi-
tional tree structures for training. In the past,
these were obtained using complex graphbank-
specific heuristics written by experts. Here we
show how they can instead be trained directly
on the graphs with a neural latent-variable
model, drastically reducing the amount and
complexity of manual heuristics. We demon-
strate that our model picks up on several lin-
guistic phenomena on its own and achieves
comparable accuracy to supervised training,
greatly facilitating the use of AM dependency
parsing for new sembanks.

1 Introduction

It is generally accepted in linguistic semantics that
meaning is compositional, i.e. that the meaning
representation for a sentence can be computed by
evaluating a tree bottom-up. A compositional pars-
ing model not only reflects this insight, but has
practical advantages such as in compositional gen-
eralisation (e.g. Herzig and Berant 2020), i.e. sys-
tematically generalizing from limited data.

However, in developing a compositional seman-
tic parser, one faces the task of figuring out what
exactly the compositional structures – i.e. the trees
that link the sentence and the meaning representa-
tion – should look like. This is challenging even
for expert linguists; for instance, (Copestake et al.,
2001) report that 90% of the development time of
the English Resource Grammar (Copestake and
Flickinger, 2000) went into the development of the
syntax-semantics interface.

Compositional semantic parsers which are
learned from data face an analogous problem: to

train a such a parser, the compositional structures
must be made explicit. However, these struc-
tures are not annotated in most sembanks. For in-
stance, the AM (Apply-Modify) dependency parser
of Groschwitz et al. (2018) uses a neural model to
predict AM dependency trees, compositional struc-
tures that evaluate to semantic graphs. Their parser
achieves high accuracy (Lindemann et al., 2019)
and parsing speed (Lindemann et al., 2020) across
a variety of English semantic graphbanks. To ob-
tain an AM dependency tree for each graph in the
corpus, they use hand-written graphbank-specific
heuristics. These heuristics cost significant time
and expert knowledge to create, limiting the ability
of the AM parser to scale to new sembanks.

In this paper, we drastically reduce the need
for hand-written heuristics for training the AM
dependency parser. We first present a graphbank-
independent method to compactly represent the rel-
evant compositional structures of a graph in a tree
automaton. We then train a neural AM dependency
parser directly on these tree automata. Our code is
available at github.com/coli-saar/am-parser.

We evaluate the consistency and usefulness of
the learned compositional structures in two ways.
We first evaluate the accuracy of the trained AM
dependency parsers, across four graphbanks, and
find that it is on par with an AM dependency parser
that was trained on the hand-designed composi-
tional structures of Lindemann et al. (2019). We
then analyze the compositional structures which
our algorithm produced, and find that they are lin-
guistically consistent and meaningful. We expect
that our methods will facilitate the design of com-
positional models of semantics in the future.

2 Related work

Compositional semantic graph parsers other than
AM dependency parsers, like Artzi et al. (2015),

github.com/coli-saar/am-parser

23

G-fairy

The fairy

G-begin

that begins to

G-glow

glow

MODS

APPO

(a) AM dep-tree with word alignments.
The dashed lines connect tokens to their
graph constants, and arrows point from
heads to arguments, labeled by the opera-
tion that puts the graphs together.

G-fairy:[]

G-begin:[S, O[S]]

G-glow:[S]

MODS

APPO

(b) AM dep-tree without
alignments. Nodes are
labeled with graph con-
stants, paired with their
types for ease of presenta-
tion.

b:begin

f:fairy

ARG0

g:glow

ARG1

ARG0

(c) AMR

begin

S

ARG0

glow

ARG1

ARG0

(d) Partial result:
begins to glow

Figure 1: AM dep-trees and graphs for the fairy that begins to glow. We usually
write our example AM dep-trees without alignments as in (b). We include node
names where helpful, as in (c), where e.g. b is labeled begin.

begin

S

ARG0

O[S]

ARG1

G-begin

fairy

G-fairy

elf

G-elf

glow

S

ARG0

G-glow

charm

S

ARG0

O

ARG1

G-charm

charm

O

ARG0

S

ARG1

G-charmP

Figure 2: Graph constants

Peng et al. (2015) and Chen et al. (2018), use CCG
and HRG based grammars to parse AMR and EDS
(Flickinger et al., 2017). They use a combination
of heuristics, hand-annotated compositional struc-
tures and sampling to obtain training data for their
parsers, in contrast to our joint neural technique.
None of these approaches use slot names that carry
meaning; to the best of our knowledge this work is
the first to learn them from data.

Fancellu et al. (2019) use DAG grammars for
compositional parsing of Discourse Representation
Structures (DRS). Their algorithm for extracting
the compositional structure of a graph is determin-
istic and graphbank-independent, but comes at a
cost: for example, rules for heads require differ-
ent versions depending on how often the head is
modified, reducing the reusability of the rule.

Maillard et al. (2019) and Havrylov et al. (2019)
learn compositional, continuous-space neural sen-
tence encodings using latent tree structures. Their
tasks are different: they learn to predict continous-
space embeddings; we learn to predict symbolic
compositional structures. Similar observations
hold for self-attention (Vaswani et al., 2017; Ki-
taev and Klein, 2018).

3 AM dependency parsing

Compositional semantic graph parsing methods do
not predict a graph directly, but rather predict a
compositional structure which in turn determines
the graph. Groschwitz et al. (2018) represent the
compositional structure of a graph with AM depen-
dency trees (AM dep-trees for short) like the one
in Fig. 1a. It describes the way the meanings of the
words – the graph fragments in Fig. 2 – combine to
form the semantic graph in Fig. 1c, here an AMR

(Banarescu et al., 2013). The AM dep-tree edges
are labeled with graph-combining operations, taken
from the Apply-Modify (AM) algebra (Groschwitz
et al., 2017; Groschwitz, 2019).

Graphs are built out of fragments called graph
constants (Fig. 2). Each graph constant has a root,
marked with a rectangular outline, and may have
special node markers called sources (Courcelle and
Engelfriet, 2012), drawn in red, which mark the
empty slots where other graphs will be inserted.

In Fig. 1a, the APPO operation plugs the root
of G-glow into the O source of G-begin. Because
G-begin and G-glow both have an S-source, APPO

merges these nodes, creating a reentrancy, i.e. an
undirected cycle, and yielding Fig. 1d, which is in
turn attached at S to the root of G-fairy by MODS.
APP fills a source of a head with an argument while
MOD uses a source of a modifier to connect it to a
head; both operations keep the root of the head.

Types The [S] annotation at the O-source of
G-begin in Fig. 2 is a request as to what the type
of the O argument of G-begin should be. The type
of a graph is the set of its sources with their re-
quest annotations, so the request [S] means that the
source set of the argument must be {S}. Because
this is true of G-glow, the AM dependency tree is
well-typed; otherwise the tree could not be evalu-
ated to a graph. Thus, the graph constants lexically
specify the semantic valency of each word as well
as reentrancies due to e.g. control.

If a graph has no sources, we say it has the empty
type []; if a source in a graph printed here has no
annotation, it is assumed to have the empty request
(i.e. its argument must have no sources).

Parsing Groschwitz et al. (2018) use a neural su-
pertagger and dependency parser to predict scores

24

t:tiny

f:fairy

mod

g:glow

ARG0

(a) AMR

t:tiny

f:fairy

mod-of

g:glow

ARG0

(b) Blob-normalised
AMR

g:P-glow:[f]

f:P-fairy:[]

t:P-tiny:[f]

APPf

MODf

(c) Canonical AM
tree with types

Figure 3: The tiny fairy glows.

fairy P-fairy

glow

f

ARG0

P-glow

tiny

f

mod-of

P-tiny

sparkle

f

ARG1

P-sparkle

and

s

op1

g

op2

P-and

Figure 4: Canonical constants.

begin

f

ARG0

g[f]

ARG1

P′-begin

and

s[f]

op1

g[f]

op2

P′-and

Figure 5: Non-canonical
constants with place-
holder sources.

for graph constants and edges respectively. Com-
puting the highest scoring well-typed AM dep-tree
is NP-hard; we use their fixed-tree approximate
decoder here.

4 Decomposition algorithm

The central challenge of compositional methods
lies in the fact that the compositional structures
are not provided in the graphbanks. Existing AM
parsers (Groschwitz et al., 2018; Lindemann et al.,
2019, 2020) use hand-built heuristics to extract AM
dep-trees for supervised training from the graphs
in the graphbank. These heuristics require exten-
sive expert work, including graphbank-specific de-
cisions for source allocations and graphbank- and
phenomenon-specific patterns to extract type re-
quests for reentrancies. In this section we present
a simpler yet more complete method for obtaining
the basic structure of an AM dep-tree for a given se-
mantic graph G (for decomposing the graph), with
much reduced reliance on heuristics. We will learn
meaningful source names jointly with training the
parser in §5 and §6.

Notation. We treat graphs as a quadruple G =
〈NG, rG, EG, LG〉, where the nodes NG are arbi-
trary objects (in the examples here we use lower-
case letters), rG ∈ NG is the root, EG ⊆ NG×NG

is a set of directed edges, and LG is the labelling
function for the nodes and edges. For example in
Fig. 3a, the node g is labeled “glow”. The node
identities are not relevant for graph identity or eval-
uation measures, but allow us to refer to specific
nodes during decomposition. We formalize AM
dep-trees as similar quadruples. Note that our ex-
ample graphs are all AMRs, but our algorithms
apply unchanged to all graphbanks

4.1 Basic transformation to AM dep-trees

Let us first consider the case where the semantic
graph G has no reentrancies, like in Fig. 3a. The
first step in obtaining the AM dep-tree for G is

to obtain the basic shape of the constants. We let
each graph constant contain exactly one labeled
node. Each edge belongs to the constant of exactly
one node. The edges in the constant of a node are
called its blob (Groschwitz et al., 2017); the blobs
partition the edge set of the graph. For example, the
blobs of the AMR in Fig. 3a are g plus the ‘ARG0’
edge, t plus the ‘mod’ edge, and f . We normalise
edges so that they point away from the node to
whose blob they belong, like in Fig. 3b, where the
‘mod’ edge is reversed and grouped with the node
t to match P-tiny in Fig. 4. We add an -of suffix
to the label of reversed edges. From here on, we
assume all graph edges to be normalised this way.

Heuristics for this partition of edges into blobs
are simple yet effective. Thus, this is the only part
of this method where we still rely on graphbank-
specific heuristics. (We use the same blob heuris-
tics as Lindemann et al. (2019) in our experiments).

Once the decision of which edge goes in which
blob is made, we obtain canonical constants,
which are single node constants using placeholder
source names and the empty request at every
source; see e.g. P-glow in Fig. 4 (P for ‘place-
holder’). Placeholder source names are graph-
specific source names: for a given argument slot in
a constant, let n be the node that eventually fills it
in G; we write n for the placeholder source in that
slot. For example in the AM dep-tree in Fig. 3c the
source f in P-glow (Fig. 4) gets filled by node f in
the AMR in Fig. 3b. These placeholder sources are
unique within the graph, allowing us to track source
names through the AM dep-tree. When we restrict
ourselves to the canonical constants, in a setting
without reentrancies, the compositional structure is
fully determined by the structure of the graph:

Lemma 4.1. For a graph G without reentrancies,
given a partition of G into blobs, there is exactly
one AM dep-tree CG with canonical constants that
evaluates to G.

We call this AM dep-tree the canonical AM tree

25

a:and

s:sparkle

op1

g:glow

op2

f:fairy

ARG1 ARG0

(a) AMR G

a:and

s:sparkle

op1

g:glow

op2

f:fairy

ARG1

x:REF-f

ARG0

(b) Unrolled U

a:P-and:[s, g]

s:P-sparkle:[f]

f:P-fairy:[]

g:P-glow:[f]

x:REF-f :[]

APPs

APPf

APPg

APPf

(c) Canonical AM tree CU

a:and

s:sparkle

op1

g:glow

op2

f

ARG1 ARG0

(d) Partial result

a:P′-and:[s[f], g[f]]

s:P-sparkle:[f] g:P-glow:[f] f:P-fairy:[]

APPs APPg APPf

(e) Resolved AM dep-tree T for (a);
changes with respect to (c) in purple

Figure 6: Analysis for The fairy sparkles and glows.

CG = 〈NG, rG, EC , LC〉 of G. Fig. 3c shows the
canonical AM tree for the graph in Fig. 3b, using
the canonical constants in Fig. 4. The canonical
AM tree uses the same nodes and root as G, and
essentially the same edges, but all edges point away
from the root, forming a tree. Each node is labeled
with its canonical constant. Each edge n −→ m ∈
EC is labeled APPm if the corresponding edge in
the graph has the same direction, and is labeled
MODn if there is instead an edge m −→ n in G.

4.2 Reentrancies and types
Finding AM dep-trees for graphs with reentran-
cies, like in Fig. 6a, is more challenging. To solve
the problem in its generality, we first unroll the
graph as in Fig. 6b, representing the reentrancy at
f not directly, but with a reference node with label
REF-f . Merging this REF-node with the node f it
refers to yields the original graph again. (See §4.3
for our unrolling algorithm.) An unrolled graph U
shares its non-REF-nodes with the original graph
G. REF-nodes are always leaves.

We then obtain a canonical AM-tree CU for
the unrolled graph U as in §4.1 (see Fig. 6c), but
REF-n nodes fill n-sources; e.g. x has an incoming
APPf edge here. CU evaluates to U , not to G; we
obtain an AM dep-tree that evaluates to G through
a process called resolving the reentrancies, which
removes all REF-nodes and instead expresses the
reentrancies with the AM type system.

Fig. 6e shows the result T of applying this res-
olution process to CU in Fig. 6c. In T , the s and
g sources of the graph P′-and (see Fig. 5) each
have a request [f] that signals that the f sources
of P-sparkle and P-glow are still open when these
graphs combine with P′-and, yielding the partial

Algorithm 1: Reentrancy resolution

1 T ← the canonical AM-tree CU of an
unrolling U of G;

2 R← {n ∈ NG | ∃ REF-n node in U};
3 while R 6= ∅:
4 Pick a y ∈ R s.t. there is no x ∈ R,

x 6= y, with y on an x-resolution path;
5 for p ∈ y-resolution paths:
6 for n

APP−−→ m ∈ p:
7 if m is y or labeled REF-y:
8 Add β(y) to the request at y

in τ (n);
9 else:

10 Add y[β(y)] to the request
at m in τ (n);

11 Move the subtree of T rooted at y up to
be an APPy daughter of RT (y), unless
RT (y) = y;

12 Delete all REF-y nodes from T ;
13 R← R− {y}
14 return T

result in Fig. 6d. Since identical sources merge
in the AM algebra, Fig. 6d has a single f-source
slot. Into this slot, P-fairy is inserted to yield the
original graph G in Fig. 6a, and we have obtained
the reentrancy without using a REF-node. f is now
a child of a in T ; we call a the resolution target
of f , RT (f). In general the resolution target of a
node n is the lowest common ancestor of n and all
nodes labeled REF-n.

Thus, to resolve the graph, we (a) add the neces-
sary type requests to account for sources remaining
open until they are merged at the resolution target
and (b) make each node a dependent of its resolu-
tion target and remove all REF-nodes. Algorithm 1
describes this procedure. It uses the idea of an n-
resolution path, which is a path between a node
n or a REF-n node and its resolution target. In
Fig. 6c, there are two f -resolution paths: one in
blue between f and its resolution target a, and one
in green between the REF-f node x and its resolu-
tion target a. Further, τ (n) is the type of the graph
constant in T for a node n and β(n) is the type of
the result of evaluating the subtree below n in T .

In the example, Algorithm 1 iterates over all
edges in both resolution paths (Line 6; the order of
these iterations does not impact the result). For the
two bottom edges s

APPf−−→ f and g
APPf−−→ x, Line 8

applies. Since the subtree rooted at f evaluates to

26

a constant with empty type, no actual changes are
made here (β(y) can be non-trivial from resolution
paths handled previously). For the two upper edges
a

APPs−−→ s and a
APPg−−→ g, Line 10 applies, adding f

to the requests at s and g in the constant at a. In
Line 11, f gets moved up to become a child of its
resolution target a and in Line 12 the REF-f node
x gets removed, yielding T in Fig. 6e. Algorithm 1
is correct in the following precise sense:
Theorem 1. Let G be a graph, let U be an un-
rolling of G, let CU be the canonical AM-tree of U ,
and let T be the result of applying Algorithm 1 to
CU . Then T is a well-typed AM dep-tree that eval-
uates to G iff for all y ∈ NG, for all y-resolution
paths p in C,

1. the bottom-most edge n −→ m of p (i.e. m is
y or labeled REF-y) does not have a MOD

label, and
2. for all y-resolution paths p in C, if n MOD−−→ m
∈ p, n,m 6= y, then there is a directed path
in G from n to y.

Condition (1) captures the fact that moving MOD

edges in the graph changes the evaluation result
(the modifier would attach at a different node) and
Condition (2) the fact that modifiers are not allowed
to add sources to the type of the head they modify.

Algorithm 1 does not yield all possible AM dep-
trees; in Appendix B, we present an algorithm that
yields all possible AM dep-trees (with placeholder
sources) for a graph. However, we find in prac-
tice that Algorithm 1 almost always finds the best
linguistic analysis; i.e. reasons to deviate from Al-
gorithm 1 are rare (we estimate that this affects
about 1% of nodes and edges in the AM dep-tree).
We leave handling these rare cases to future work.

4.3 Unrolling the graph
To obtain an unrolled graph U , we use Algo-
rithm 2. The idea is to simply expand G through
breadth-first search, creating REF-nodes when we
encounter a node a second time. We use sepa-
rate queues F and B for forward and backward
traversal of edges, allowing us to avoid travers-
ing edges backwards wherever possible, since that
would yield MOD edges in the canonical AM-tree
CU , which can be problematic for the conditions of
Theorem 1. And indeed, we can show that when-
ever there is an unrolled graph U satisfying the
conditions of Theorem 1, Algorithm 2 returns one.

Algorithm 2 does not specify the order in which
the incident edges of each node n are added to the

Algorithm 2: Unrolling
Input: Graph G

1 F,B ← empty FIFO queues;
2 U ← empty graph;
3 add rG to U , add outgoing edges of rG to F

and incoming edges of rG to B;
4 while F ∪B 6= ∅:
5 if F 6= ∅: // traverse forward
6 e← F .pop;
7 n← e.target;
8 else: // traverse backward
9 e← B.pop;

10 n← e.origin;

11 Mark e as traversed;
12 if n 6∈ NU :
13 add n, e to U ;
14 add untraversed outgoing edges of n

to F and incoming to B
15 else:
16 add new x to NU ; L(x) = REF-n;
17 add e′ to EU where e′ is just like e

except with x in place of n

18 return U

queues, leaving an element of choice. However,
we find that nearly all of these choices are unified
later in the resolution process; meaningful choices
are rare. For example in Fig. 6b, f and x may
be switched, but Algorithm 1 always yields the
AM dep-tree in Fig. 6e. In practice, we execute
Algorithm 2 with arbitrary queueing order, and
follow it with Algorithm 1. The AM dep-tree we
obtain is guaranteed to be a decomposition of the
original graph whenever one exists:

Theorem 2. Let G be a graph partitioned into
blobs. If there is a well-typed AM dep-tree T , using
that blob partition, that evaluates to G, then Algo-
rithm 2 (with any queueing order) and Algorithm 1
yield such a tree.

5 Tree automata for source names

We have now seen how, for any graph G, we obtain
a unique AM dependency tree T . This tree repre-
sents the compositional structure of G, but it still
contains placeholder source names. We will now
show how to automatically choose source names.
These names should be consistent across the trees
for different sentences; this yields reusable graph
constants, which capture linguistic generalizations
and permit more accurate parsing. But the source

27

names must also remain consistent within each tree
to ensure that the tree still evaluates correctly to G;
for instance, if we replace the placeholder source
f in P-glow in Fig. 6e by O, but we replace f in
P′-and by S, then the AM dep-tree would not be
well-typed because the request is not satisfied.

We therefore proceed in two steps. In this sec-
tion, we represent all internally consistent source
assignments compactly with a tree automaton. In
§6, we then learn to select globally reusable source
names jointly with training the neural parser.

Tree automata. A (bottom-up) tree automaton
(Comon et al., 2007) is a device for compactly de-
scribing a language (set) of trees. It processes a
tree bottom-up, starting at the leaves, and nondeter-
ministically assigns states from a finite set to the
nodes. A rule in a tree automaton has the general
shape f (q1, . . . , qn)→ q. If the automaton can as-
sign the states q1, . . . , qn to the children of a node
π with node label f , this rule allows it to assign the
state q to π. The automaton accepts a tree if it can
assign a final state to the root node. Tree automata
can be seens as generalisation of parse charts.

General construction. Given an AM depen-
dency tree T with placeholders, we construct a
tree automaton that accepts all well-typed variants
of T with consistent source assignments. More
specifically, let S be a finite set of reusable source
names; we will use S = {S, O,M} here, evoking
subject, object, and modifier. The automaton will
keep track of source name assignments, i.e. of par-
tial functions φ from placeholder source names into
S. Its rules will ensure that the functions φ assign
source names consistently.

We start by binarizing T into a binary tree B,
whose leaves are the graph constants in T and
whose internal nodes correspond to the edges of T ;
the binarized tree for the dependency tree in Fig. 7a
is shown in Fig. 7b. We then construct a tree au-
tomaton AB that accepts binarized trees which are
isomorphic to B, but whose node labels have been
replaced by graph constants and operations with
reusable source names. The states of AB are of the
form 〈π, φ〉, where φ is a source name assignment
and π is the address of a node inB. Node addresses
π ∈ N∗ are defined recursively: the root has the
empty address ε, and the i-th child of a node at
address π has address πi. The final states are all
states with π = ε, indicating that we have reached
the root.

P-fairy:[]

P′-begin:[f, g[f]]

P-glow:[f]

MODf

APPg

(a)

MODf

P-fairy APPg

P′-begin P-glow

(b)

MODS

〈ε, {}〉

G-fairy

〈0, {}〉
APPO〈

1,
{
g 7→O
f 7→S

}〉
G-begin〈

10,
{
g 7→O
f 7→S

}〉 G-glow

〈11, {f 7→S}〉

(c)

Figure 7: (a) AM dep-tree with placeholder sources for
the graph in Fig. 1c, (b) its binarization B and (c) ex-
ample automaton run (states in green).

Rules. The automaton AB has two kinds of rules.
Leaf rules choose injective source name assign-
ments for constants; there is one rule for every
possible assignment at each constant. That is, for
every graph constant H at an address π in B, the
automaton AB contains all rules of the form

G 7→ 〈π, φ〉

where φ is an injective map from the placeholder
sources in H to S, and G is the graph constant
identical to H except that each placeholder source
s in H has been replaced by φ(s).

For example, the automaton for Fig. 7b contains
the following rule:

G-begin→ 〈00, {g 7→ O, f 7→ S}〉

Note that this rule uses the node label G-begin with
the reusable source names, not the graph constant
P′-begin in B with the placeholders.

In addition, operation rules percolate source as-
signments from children to parents. Let APPx for
some placeholder source x be the operation at ad-
dress π in B. Then AB contains all rules of the
form

APPφ1(x) (〈π0, φ1〉 , 〈π1, φ2〉)→ 〈π, φ1〉

as long as φ1 and φ2 are identical where their do-
mains overlap, i.e. they assign consistent source
names to the placeholders. The rule passes φ1 on
to its parent. The assignments in φ2 are either re-
dundant, because of overlap with φ1, or they are
no longer relevant because they were filled by op-
erations further below in the tree. The MOD case
works out similarly.

In the example, AB contains the rule

APPO (〈10, φb〉 , 〈11, φg〉)→ 〈1, φb〉

where φb = {g 7→ O, f 7→ S} and φg = {f 7→ S},
because φb and φg agree on f. A complete accept-
ing run of the automaton is shown in Fig. 7c.

28

The automaton AB thus constructed accepts the
binarizations of all well-typed AM dependency
trees with sources in S that match T .

6 Joint learning of compositional
structure and parser

As a final step, we train the neural parser of
Groschwitz et al. (2018) directly on the tree au-
tomata. For each position i in the sentence, the
parser predicts a score c (G, i) for each graph con-
stant G, and for each pair i, j of positions and op-
eration `, it predicts an edge score c

(
i

`−→ j
)

.

The tree automata are factored the same way,
in that they have one rule per graph constant and
per dependency edge. As a result, we get a one-
to-one correspondence between parser scores and
automaton rules when aligning automata rules to
words via the words’ alignments to graph nodes.

We thus take the neural parser scores as rule
weights c (r) for rules r in the automaton. In a
weighted tree automaton, the weight of a tree is de-
fined as the product of the weights of all rules that
built it. The inside score I of the tree automaton
is the sum of the weights of all the trees it accepts.
Computing this sum naively would be intractable,
but the inside score can be computed efficiently
with dynamic programming. Our training objective
is to maximize the sum of the log inside scores of
all automata in the corpus.

The arithmetic structure of computing the inside
scores is complex and varies from automaton to
automaton, which would make batching difficult.
We solve this with the chain rule as follows:

∇θ log I =
1

I
∇I =

1

I

∑
r∈A

∂

∂c (r)
I ∇θc (r)

=
1

I

∑
r∈A

α (r)∇θc (r) ,

where θ are the parameters of the neural parser,
which determine c(r), and α (r) is the outer weight
of the rule r (Eisner, 2016), i.e. the total weight of
trees that use r divided by c(r). The outer weight
can be effectively computed with the inside-outside
algorithm (Baker, 1979). This occurs outside of
the gradient, so we do not need to backpropagate
into it. Since the scores c (r) are direct outputs of
the neural parser, their gradients can be batched
straightforwardly.

Method DM PAS PSD AMR
random trees 81.1 79.0 67.8 70.8
random weights 93.0 94.4 80.0 75.0
EM weights 93.8 94.3 81.7 75.2
joint neural model (§6) 94.5 94.8 82.7 76.5

Table 1: Baseline comparisons on the development sets
(3 source names in all experiments).

7 Evaluation

7.1 Setup

We evaluate parsing accuracy on the graphbanks
DM, PAS, and PSD from the SemEval 2015 shared
task on Semantic Dependency Parsing (SDP, Oepen
et al. (2015)) and on the AMRBank LDC2017T10
(Banarescu et al., 2013). We follow Lindemann
et al. (2019) in the choice of neural architecture,
in particular using BERT (Devlin et al., 2019) em-
beddings, and in the choice of decoder, hyperpa-
rameters and pre- and postprocessing (we train the
model of §6 for 100 instead of 40 epochs, since
it is slower to converge than supervised training).
When a graph G is non-decomposable using our
blob partition, i.e. if there is no well-typed AM
dep-tree T that evaluates to G, and so the condi-
tion of Theorem 2 does not hold, then we remove
that graph from the training set. (This does not
affect coverage at evaluation time.) This occurs
rarely, affecting e.g. about 1.6% of graphs in the
PSD training set.

Like (Lindemann et al., 2019), we use the heuris-
tic AMR alignments of (Groschwitz et al., 2018).
These alignments can yield multi-node constants.
In those cases, we first run the algorithm of Sec-
tion 4 to obtain an AM tree with placeholder source
names, and then consolidate those constants that
are aligned to the same word into one constant, ef-
fectively collapsing segments of the AM tree into
a single constant. We then construct the tree au-
tomata of Section 5 as normal.

7.2 Results

We consider three baselines. Each of these chooses
a single tree for each training instance from the tree
automata and performs supervised training. The
random trees baseline samples a tree for each sen-
tence from its automaton, uniformly at random. In
the random weights baseline, we fix a random
weight for each graph constant and edge label,
globally across the corpus, and select the highest-
scoring tree for each sentence. The EM weights
baseline instead optimizes these global weights
with the inside-outside algorithm.

29

DM PAS PSD AMR 17
id F ood F id F ood F id F ood F Smatch F

He and Choi (2020) 94.6 90.8 96.1 94.4 86.8 79.5 -
FG’20 94.4 91.0 95.1 93.4 82.6 82.0 -
Bevilacqua et al. (2021) - - - - - - 84.5

L’19, w/o MTL 93.9±0.1 90.3±0.1 94.5±0.1 92.5±0.1 82.0±0.1 81.5±0.3 76.3±0.2

This work 94.2±0.0 90.2±0.1 94.6±0.0 92.7±0.1 81.4±0.1 (75.8±0.1) 80.7±0.4 (74.1±0.1) 75.1±0.2 (74.2±0.3)

Table 2: Semantic parsing accuracies (id = in domain test set; ood = out of domain test set). Results for our work
are averages of three runs with standard deviations. L’19 are results of Lindemann et al. (2019) with fixed tree
decoder (incl. post-processing bugfix for AMR as per Lindemann et al. (2020)). FG’20 is Fernández-González and
Gómez-Rodrı́guez (2020).

Table 1 compares the baselines and the joint
neural method. Random trees perform worst – con-
sistency across the corpus matters. The difference
between random weights and EM is suprisingly
small, despite the EM algorithm converging well.
The joint neural learning outperforms the baselines
on all graphbanks; we analyze this in § 8. We also
experimented with different numbers of sources,
finding 3 to work best for DM, PAS and AMR, and
4 for PSD (all results in Appendix C).

Table 2 compares the accuracy of our joint model
to Lindemann et al. (2019) and to the state of the
art on the respective graphbanks. Our model is
competitive with the state of the art on most graph-
banks. In particular, our parsing accuracy is on par
with Lindemann et al. (2019), who perform super-
vised training with hand-crafted heuristics. This
indicates that our model learns appropriate source
names.

Grahbank-specific pre- and processing. The
pre- and postprocessing steps of (Lindemann et al.,
2019) we use still rely on two graphbank-specific
heuristics, that directly relate to AM depenency
trees: in PSD, it includes a simple but effective step
to make coordination structures more compatible
with the specific flavor of application and modifica-
tion of AM dependency trees. In AMR it includes
a step to remove some edges related to coreference
(a non-compositional source of reentrancy).

We include in brackets the results without those
two preprocessing steps. The drop in perfor-
mance for PSD indicates that while for the most
part our method is graphbank-independent, not
all shapes of graphs are equally suited for AM
dependency-parsing and some preprocessing to
bring the graph ‘into shape’ can still be important.
For AMR, keeping the co-reference based edges
leads to AM trees that resolve those reentrancies
with the AM type system. That is, the algorithm
‘invents’ ad-hoc compositional explanations for a

non-compositional phenomenon, yielding graph
constants with type annotations that do not gener-
alize well. The corresponding drop in performance
indicates that extending AM dependency parsing to
handle coreference will be an important future step
when parsing AMR; some work in that direction
has already been undertaken (Anikina et al., 2020).

8 Linguistic Analysis

As AM parsing is inherently interpretable, we can
explore linguistic properties of the learned graph
constants and trees. We find that the neural method
makes use of both syntax and semantics.

We compute for each sentence in the training
set the best tree from its tree automaton, accord-
ing to the neural weights of the best performing
epoch. We then sample trees from this set for hand-
analysis (see Appendix A), to examine whether the
model learned consistent sources for subjects and
objects. We find that while the EM method uses
highly consistent graph constants and AM opera-
tions, the neural method, which has access to the
strings, sacrifices some graph constant and opera-
tion consistency in favour of syntactic consistency.

Syntactic Subjects and Objects. In the active
sentence The fairy charms the elf, the phrase the
fairy is the syntactic subject and the elf the syntac-
tic object. In the passive The elf is charmed (by
the fairy), the phrase the elf is now the syntactic
subject, even though in both sentences, the fairy
is the charmer and the elf the charmee. Similarly,
the fairy is the syntactic subject in the intransitive
sentence The fairy glows.

Intra-Phenomenon Consistency. For both the
EM and neural method, we found completely con-
sistent source allocations for active transitive verbs
in all four sembanks. These source allocations
were also the overwhelming favourite graph con-
stants for two-argument predicates (72-92%), and

30

the most common sources used by Apply opera-
tions (94-98%). For example, in AMR, the graph
constant template in Fig. 8a appears 26,653 times in
the neural parser output. 74% of these used sources
x = S1 and y = S2 (from S = {S1, S2, S3}). All
active transitive sentences in our sample used this
source allocation, so we call this the active graph
constant (e.g. G-charm in Fig. 2) and refer to the
sources S1 and S2 as S and O respectively, for sub-
ject and object. All four sembanks showed this kind
of consistency; when we refer to S and O sources
below, we mean whichever two sources displayed
the same behaviour as S1 and S2 in AMR.

All four graphbanks are also highly consistent
in their modifiers: classical modifiers such as ad-
jectives are nearly universally adjoined with one
consistent source – we refer to it as M – and MODM

is the overwhelming favourite (90-99%) for MOD

operations.

Cross-Phenomenon Consistency. We call a
parser syntactically consistent if its syntactic sub-
jects fill the S slot, regardless of their semantic role.
A syntactically consistent parser would acquire the
AMR in Fig. 8c from the active sentence by the
analysis in Fig. 8b, and from the passive sentence
by the analysis in Fig. 8d, with the passive constant
G-charmP from Fig. 2.

The neural parser is syntactically consistent: in
all sembanks, it uses the same source S for syn-
tactic subjects in passives as for actives. EM, con-
versely, prefers to use the same graph constants for
active and passives, flipping the APP edges to pro-
duce syntactically inconsistent trees as in Fig. 8e.
Single-argument predicates are also syntactically
consistent in the neural model, using S for subjects
and O for objects, while EM picks one source. The
heuristics in Lindemann et al. (2019) have passive
constants, but use them only when forced to, e.g.
when coordinating active and passive.

Finally, we compute the entropy of the graph
constants for the best trees of the training set as∑

G f(g) ln f(G), where f(G) is the frequency of
constant G in the trees.The entropies are between 2
and 3 nats, but are consistently lower for EM than
the neural method, by 0.031 to 0.079 nats. Consid-
ering that the neural method achieves higher pars-
ing accuracies, using the most common graph con-
stants and edges possible evidently is not always
optimal for performance. The syntactic regularities
exploited by the neural method may contribute to
its improved performance.

z

x

ARG0

y

ARG1

(a) Transitive con-
stants, with label z
and sources x, y

G-charm

The

G-fairy

fairy charms the

G-elf

elf

APPS APPO

(b) Active sentence defines S and O

charm

fairy

ARG0

elf

ARG1

(c) AMR
for both
sentences

G-charmP

The

G-elf

elf is charmed by the

G-fairy

fairy

APPS APPO

(d) Neural analysis of passive sentences mir-
rors surface syntax

G-charm

The

G-elf

elf is charmed by the

G-fairy

fairy

APPO APPS

(e) EM analysis of passives uses APPO for syntactic subject

Figure 8: AMR examples of active and passive. See
Fig. 2 for graph constants.

9 Conclusion

In this work, we presented a method to obtain the
compositional structures for AM dependency pars-
ing that relies much less on graphbank-specific
heuristics written by experts. Our neural model
learns linguistically meaningful argument slot
names, as shown by our manual evaluation; in this
regard, our model learns to do the job of the lin-
guist. High parsing performance across graphbanks
shows that the learned compositional structures are
also well-suited for practical applications, promis-
ing easier adaptation of AM dependency parsing to
new graphbanks.

Acknowledgments

We would like to thank the anonymous review-
ers as well as Lucia Donatelli, Pia Weißenhorn
and Matthias Lindemann for their thoughtful com-
ments. This research was in part funded by the
Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation), project KO 2916/2-2, and
by the Dutch Research Council (NWO) as part
of the project Learning Meaning from Structure
(VI.Veni.194.057).

31

References
Tatiana Anikina, Alexander Koller, and Michael Roth.

2020. Predicting coreference in Abstract Mean-
ing Representations. In Proceedings of the Third
Workshop on Computational Models of Reference,
Anaphora and Coreference, pages 33–38, Barcelona,
Spain (online). Association for Computational Lin-
guistics.

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.
Broad-coverage CCG Semantic Parsing with AMR.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing.

J. K. Baker. 1979. Trainable grammars for speech
recognition. The Journal of the Acoustical Society
of America, 65(S1):S132–S132.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for Sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One SPRING to rule them both:
Symmetric AMR semantic parsing and generation
without a complex pipeline. In Proceedings of
AAAI.

Yufei Chen, Weiwei Sun, and Xiaojun Wan. 2018. Ac-
curate SHRG-based semantic parsing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 408–418, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Hubert Comon, Max Dauchet, Rémi Gilleron, Flo-
rent Jacquemard, Denis Lugiez, Sophie Tison, Marc
Tommasi, and Christof Löding. 2007. Tree Au-
tomata techniques and applications. published on-
line - http://tata.gforge.inria.fr/.

Ann Copestake and Dan Flickinger. 2000. An open-
source grammar development environment and
broad-coverage english grammar using HPSG. In
Proceedings of the Second conference on Language
Resources and Evaluation (LREC).

Ann Copestake, Alex Lascarides, and Dan Flickinger.
2001. An algebra for semantic construction in
constraint-based grammars. In Proceedings of the
39th ACL.

Bruno Courcelle and Joost Engelfriet. 2012. Graph
Structure and Monadic Second-Order Logic, a Lan-
guage Theoretic Approach. Cambridge University
Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference

of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured
Prediction for NLP, pages 1–17.

Federico Fancellu, Sorcha Gilroy, Adam Lopez, and
Mirella Lapata. 2019. Semantic graph parsing
with recurrent neural network DAG grammars. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2769–
2778, Hong Kong, China. Association for Computa-
tional Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2020. Transition-based semantic
dependency parsing with pointer networks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
7035–7046, Online. Association for Computational
Linguistics.

Dan Flickinger, Jan Hajič, Angelina Ivanova, Marco
Kuhlmann, Yusuke Miyao, Stephan Oepen, and
Daniel Zeman. 2017. Open SDP 1.2. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University.

Jonas Groschwitz. 2019. Methods for taking seman-
tic graphs apart and putting them back together
again. Ph.D. thesis, Macquarie University and Saar-
land University.

Jonas Groschwitz, Meaghan Fowlie, Mark Johnson,
and Alexander Koller. 2017. A constrained graph
algebra for semantic parsing with AMRs. In IWCS
2017 - 12th International Conference on Computa-
tional Semantics - Long papers.

Jonas Groschwitz, Matthias Lindemann, Meaghan
Fowlie, Mark Johnson, and Alexander Koller. 2018.
AMR Dependency Parsing with a Typed Semantic
Algebra. In Proceedings of ACL.

Serhii Havrylov, Germán Kruszewski, and Armand
Joulin. 2019. Cooperative learning of disjoint syn-
tax and semantics. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1118–1128, Minneapolis, Minnesota.
Association for Computational Linguistics.

Han He and Jinho Choi. 2020. Establishing strong
baselines for the new decade: Sequence tagging,
syntactic and semantic parsing with BERT. In The
Thirty-Third International Flairs Conference.

https://www.aclweb.org/anthology/2020.crac-1.4
https://www.aclweb.org/anthology/2020.crac-1.4
https://www.aclweb.org/anthology/D15-1198/
https://doi.org/10.1121/1.2017061
https://doi.org/10.1121/1.2017061
http://aclweb.org/anthology/W13-2322
http://aclweb.org/anthology/W13-2322
https://github.com/SapienzaNLP/spring/blob/main/docs/preprint.pdf
https://github.com/SapienzaNLP/spring/blob/main/docs/preprint.pdf
https://github.com/SapienzaNLP/spring/blob/main/docs/preprint.pdf
https://www.aclweb.org/anthology/P18-1038
https://www.aclweb.org/anthology/P18-1038
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
https://www.aclweb.org/anthology/L00-1276/
https://www.aclweb.org/anthology/L00-1276/
https://www.aclweb.org/anthology/L00-1276/
https://www.aclweb.org/anthology/P01-1019/
https://www.aclweb.org/anthology/P01-1019/
https://www.labri.fr/perso/courcell/Book/TheBook.pdf
https://www.labri.fr/perso/courcell/Book/TheBook.pdf
https://www.labri.fr/perso/courcell/Book/TheBook.pdf
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/W16-5901/
https://www.aclweb.org/anthology/W16-5901/
https://www.aclweb.org/anthology/W16-5901/
https://doi.org/10.18653/v1/D19-1278
https://doi.org/10.18653/v1/D19-1278
https://doi.org/10.18653/v1/2020.acl-main.629
https://doi.org/10.18653/v1/2020.acl-main.629
http://hdl.handle.net/11234/1-1956
http://www.coli.uni-saarland.de/~jonasg/thesis.pdf
http://www.coli.uni-saarland.de/~jonasg/thesis.pdf
http://www.coli.uni-saarland.de/~jonasg/thesis.pdf
https://www.aclweb.org/anthology/W17-6810
https://www.aclweb.org/anthology/W17-6810
http://aclweb.org/anthology/P18-1170
http://aclweb.org/anthology/P18-1170
https://doi.org/10.18653/v1/N19-1115
https://doi.org/10.18653/v1/N19-1115
https://arxiv.org/abs/1908.04943
https://arxiv.org/abs/1908.04943
https://arxiv.org/abs/1908.04943

32

Jonathan Herzig and Jonathan Berant. 2020. Span-
based semantic parsing for compositional general-
ization.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2019. Compositional semantic parsing
across graphbanks. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 4576–4585, Florence, Italy. Asso-
ciation for Computational Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2020. Fast semantic parsing with well-
typedness guarantees. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3929–3951, On-
line. Association for Computational Linguistics.

Jean Maillard, Stephen Clark, and Dani Yogatama.
2019. Jointly learning sentence embeddings and
syntax with unsupervised tree-LSTMs. Natural Lan-
guage Engineering, 25(4).

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajič, and Zdeňka Urešová. 2015. Semeval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015).

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A synchronous hyperedge replacement gram-
mar based approach for AMR parsing. In Proceed-
ings of the 19th Conference on Computational Lan-
guage Learning.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, undefine-
dukasz Kaiser, and Illia Polosukhin. 2017. Attention
is all you need. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing
Systems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

http://arxiv.org/abs/2009.06040
http://arxiv.org/abs/2009.06040
http://arxiv.org/abs/2009.06040
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P19-1450
https://doi.org/10.18653/v1/P19-1450
https://doi.org/10.18653/v1/2020.emnlp-main.323
https://doi.org/10.18653/v1/2020.emnlp-main.323
https://arxiv.org/abs/1705.09189
https://arxiv.org/abs/1705.09189
http://aclweb.org/anthology/S15-2153
http://aclweb.org/anthology/S15-2153
http://aclweb.org/anthology/S15-2153
https://www.aclweb.org/anthology/K15-1004/
https://www.aclweb.org/anthology/K15-1004/
https://research.google/pubs/pub46201/
https://research.google/pubs/pub46201/

33

Learning compositional structures for semantic graph parsing
Supplementary Materials

Jonas Groschwitz
Saarland University

jonasg@coli.uni-saarland.de

Meaghan Fowlie
Utrecht University
m.fowlie@uu.nl

Alexander Koller
Saarland University

koller@coli.uni-saarland.de

A Sampling Method for hand analysis

To sample trees, we compute for each sentence in
the training set the best tree from its tree automaton,
according to the neural weights of the best perform-
ing epoch. This ensures the AM trees evaluate to
the correct graph. We then sample trees from this
set for hand-analysis.

To get relevant sentences, we sampled 5-to-15-
word sentences with graph constants from the fol-
lowing six categories:

Transitive verbs: graph constants with a labeled
root and two arguments with edges labelled as in
Table 1:

Sembank subject object
AMR ARG0 ARG1
DM ARG1 ARG2
PAS verb ARG1 verb ARG2
PSD ACT arg PAT arg

Table 1: Transitive verbs

As explained in the main text, we define the
active constants as those with the most common
source allocation, and the passive constants as
those with the active source allocation flipped. We
sampled both active and passive source allocations.

Verbs with one argument: Graph constants just
like the transitive ones but lacking one of the argu-
ments. There are four of these, given both source
allocations.

Generally these graph constants are used for
more than just verbs; for each of the six categories
we sampled until we had ten relevant sentences.
We visualised the AM trees and categorised the
phenomena, for example active or passive verbs,
nominalised verbs, imperatives, relative clauses,
gerund modifiers, and so forth.

To answer the question of whether the parser
used consistent constants for active and passive
transitive sentences, we sampled until we had ten
sentences with active or passive main verbs. For
the single-argument verbs, we also looked at nomi-
nalised verbs, modifiers, and so forth. (Sampling
and visualisation scripts will be available together
with the rest of our code on GitHub.)

B An algorithm to obtain all AM
dep-trees for a graph

Let G be a graph partitioned into blobs. Let UG be
the set of unrolled graphs forG that can be obtained
by Algorithm 2 by varying the queue order.

Let further MG be the set of results of Algo-
rithm 3 below for every input AM dep-tree T = CU

for U ∈ UG and every choice of set M as specified
in the algorithm. Algorithm 3 switches the order
of two nodes m and k, making k the head of the
subtree previously headed by m. This change of
head is only possible when the incoming edge of
m is labeled MOD (for APP, the change of head
changes the evaluation result). It also requires a
MOD edge between m and k; an APP edge with
this type of swap would lead to a non-well-typed
graph.

Finally, let RG be the set of results of Algo-
rithm 4 for every input AM dep-tree T ∈MG and
any valid choice of R and RT (valid as described
in the algorithm). Algorithm 4 is like Algorithm 1
for reentrancy resolution, but can have resolution
targets RT (n) that are higher in the tree than the
lowest common ancestor of n and the REF-n nodes.
Further, Algorithm 4 uses the same methodology
to also move nodes that do not need resolution to
become descendents of a ‘resolution target’ higher
in the tree (i.e. R here can now also contain nodes
for which no REF node exists).

Then the following Theorem 1 holds:

34

Algorithm 3: Modify-edge swapping

1 Input: an AM dep-tree T and a set M of
pairs of consecutive edges in T of the form
〈n MODn−−→ m,m

MODm−−−→ k〉 such that no edge
appears in multiple pairs.

2 for 〈n MODn−−→ m,m
MODm−−−→ k〉 ∈M :

3 Replace n MODn−−→ m in T with n MODn−−→ k;
4 Replace m MODm−−−→ k in T with

k
APPm−−→ m;

5 Add β(m) (which always includes n) to
the request at m in τ (k);

6 return T

Algorithm 4: Extended reentrancy resolu-
tion

1 Input: an AM dep-tree T ; a set
R ⊇ {n ∈ NG | ∃ REF-n node in T}; and
a map RT that assigns to each node n ∈ R
a resolution target RT (n), that is at least as
high as the lowest common ancestor of n
and all REF-n nodes (if they exist), and
that satisfies the conditions of Theorem 1.

2 while R 6= ∅:
3 Pick a y ∈ R s.t. there is no x ∈ R,

x 6= y, with y on an x-resolution path;
4 for p ∈ y-resolution paths:
5 for n

APP−−→ m ∈ p:
6 if m is y or labeled REF-y:
7 Add β(y) to the request at y

in τ (n);
8 else:
9 Add y[β(y)] to the request

at m in τ (n);

10 Move the subtree of T rooted at y up to
be an APPy daughter of RT (y), unless
RT (y) = y;

11 Delete all REF-y nodes from T ;
12 R← R− {y}
13 return T

Theorem 1. Let G be a graph partitioned into
blobs, and let TG be the set of all well-typed AM
dep-trees with placeholder sources, using that blob
partition, that evaluate to G. Then if TG = ∅, all
AM dep-trees in RG are either not well-typed or
do not evaluate to G. If however TG 6= ∅, then
RG = TG.

sources DM PAS PSD AMR
2 92.2 91.9 75.6 74.3
3 94.5 94.8 82.7 76.5
4 94.4 94.7 83.4 75.9
6 92.3 93.6 80.1 73.4

Table 2: Development set accuracies of the neural
method for different numbers of source names.

C Additional Details

• AMR F-scores are Smatch scores (Cai and
Knight, 2013)

• DM, PAS and PSD: We compute la-
beled F-score with the evaluation
toolkit that was developed for the SDP
shared task: https://github.com/

semantic-dependency-parsing/toolkit

• We use the standard train/dev/test split for all
corpora

• AMR corpus available through https://amr.

isi.edu/download.html (requires LDC li-
cense)

• SDP corpora available through https:

//catalog.ldc.upenn.edu/LDC2016T10

(requires LDC license)

Number of source names. We experimented
with different numbers of source names in the joint
neural method (Table 2). Mostly, three source
names were most effective, except for PSD, where
four were most effective. Two source names are
not enough to model many common phenomena
(e.g. ditransitive verbs, coordination of verbs);
graphs containing these phenomena cannot be de-
composed with two sources and are removed from
the training set, reducing parsing accuracy. The
higher performance of PSD with four sources may
stem from PSD using flat coordination structures
which require more source names; although this is
also true for AMR where four source names are
not beneficial. The drop with six source names
may come from the fact that the latent space grows
rapidly with more sources, making it harder to learn
consistent source assignments.

Hyperparameters. See Table 3.

https://github.com/semantic-dependency-parsing/toolkit
https://github.com/semantic-dependency-parsing/toolkit
https://amr.isi.edu/download.html
https://amr.isi.edu/download.html
https://catalog.ldc.upenn.edu/LDC2016T10
https://catalog.ldc.upenn.edu/LDC2016T10

35

Activation function tanh
Optimizer Adam
Learning rate 0.001
Epochs 100

Dim of lemma embeddings 64
Dim of POS embeddings 32
Dim of NE embeddings 16
Minimum lemma frequency 7

Hidden layers in all MLPs 1

Hidden units in LSTM (per direction) 256
Hidden units in edge existence MLP 256
Hidden units in edge label MLP 256
Hidden units in supertagger MLP 1024
Hidden units in lexical label tagger MLP 1024

Layer dropout in LSTMs 0.3
Recurrent dropout in LSTMs 0.4
Input dropout 0.3
Dropout in edge existence MLP 0.0
Dropout in edge label MLP 0.0
Dropout in supertagger MLP 0.4
Dropout in lexical label tagger MLP 0.4

Table 3: Common hyperparameters used in all exper-
iments (the random trees, random weights and EM
weights baselines use 40 epochs since they converge
faster). For a complete description of the neural archi-
tecture, see Lindemann et al. (2019) and its supplemen-
tary materials.

36

References
Shu Cai and Kevin Knight. 2013. Smatch: an evalua-

tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748–752, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2019. Compositional semantic parsing
across graphbanks. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 4576–4585, Florence, Italy. Asso-
ciation for Computational Linguistics.

https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/P13-2131
https://doi.org/10.18653/v1/P19-1450
https://doi.org/10.18653/v1/P19-1450

