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Abstract

Robust situated dialog requires the ability to
process instructions based on spatial informa-
tion, which may or may not be available. We
propose a model, based on LXMERT, that
can extract spatial information from text in-
structions and attend to landmarks on Open-
StreetMap (OSM) referred to in a natural lan-
guage instruction. Whilst, OSM is a valuable
resource, as with any open-sourced data, there
is noise and variation in the names referred
to on the map, as well as, variation in natural
language instructions, hence the need for data-
driven methods over rule-based systems. This
paper demonstrates that the gold GPS location
can be accurately predicted from the natural
language instruction and metadata with 72%
accuracy for previously seen maps and 64%
for unseen maps.

1 Introduction

Spoken dialog systems are moving into real world
situated dialog, such as assisting with emergency
response and remote robot instruction that require
knowledge of maps or building schemas. Effec-
tive communication of such an intelligent agent
about events happening with respect to a map re-
quires learning to associate natural language with
the world representation found within the map.
This symbol grounding problem (Harnad, 1990)
has been largely studied in the context of mapping
language to objects in a situated simple (MacMa-
hon et al., 2006; Johnson et al., 2017) or 3D pho-
torealistic environments (Kolve et al., 2017; Savva
et al., 2019), static images (Ilinykh et al., 2019;
Kazemzadeh et al., 2014), and to a lesser extent
on synthetic (Thompson et al., 1993) and real ge-
ographic maps (Paz-Argaman and Tsarfaty, 2019;
Haas and Riezler, 2016; Götze and Boye, 2016).
The tasks usually relate to navigation (Misra et al.,
2018; Thomason et al., 2019) or action execution
(Bisk et al., 2018; Shridhar et al., 2019) and as-

Figure 1: User instruction and the corresponding im-
age, displaying 4 robots and landmarks. The users were
not restricted or prompted to use specific landmarks on
the map. The circle around the target landmark was
added for clarity for this paper; users were not given
any such visual hints.

sume giving instructions to an embodied egocen-
tric agent with a shared first-person view. Since
most rely on the visual modality to ground natural
language (NL), referring to items in the immediate
surroundings, they are often less geared towards
the accuracy of the final goal destination.

The task we address here is the prediction of
the GPS of this goal destination by reference to a
map, which is of critical importance in applications
such as emergency response where specialized per-
sonnel or robots need to operate on an exact lo-
cation (see Fig. 1 for an example). Specifically,
the goal we are trying to predict is in terms of: a)
the GPS coordinates (latitude/longitude) of a refer-
enced landmark; b) a compass direction (bearing)
from this referenced landmark; and c) the distance
in meters from the referenced landmark. This is
done by taking as input into a model: i) the knowl-
edge base of the symbolic representation of the
world such as landmark names and regions of inter-
est (metadata); ii) the graphic depiction of a map
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(visual modality); and iii) a worded instruction.
Our approach to the destination prediction task

is two-fold. The first stage is a data collec-
tion for the “Robot Open Street Map Instructions”
(ROSMI) (Katsakioris et al., 2020) corpus based
on OpenStreetMap (Haklay and Weber, 2008), in
which we gather and align NL instructions to their
corresponding target destination. We collected 560
NL instruction pairs on 7 maps of different vari-
ety and landmarks, in the domain of emergency
response using Amazon Mechanical Turk. The
subjects are given a scene in the form of a map
and are tasked to write an instruction to command
a conversational assistant to direct robots and au-
tonomous systems to either inspect an area or extin-
guish a fire. The setup was intentionally emulating
a typical ‘Command and Control’ interface found
in emergency response hubs, in order to promote
instructions that accurately describe the final desti-
nation, with regards to its surrounding map entities.

Whilst OSM and other crowdsourced resources
are hugely valuable, there is an element of noise as-
sociated with the metadata collected in terms of the
names of the objects on the map, which can vary for
the same type of object (e.g. newsagent/kiosk, con-
fectionary/chocolate store etc.), whereas the sym-
bols on the map are from a standard set, which one
hypothesizes a vision-based trained model could
pick-up on. To this end, we developed a model that
leverages both vision and metadata to process the
NL instructions.

Specifically, our MAPERT (Map Encoder Rep-
resentations from Transformers) is a Transformer-
based model based on LXMERT. It comprises
of up to three single-modality encoders for each
input (i.e., vision, metadata and language), an
early fusion of modalities components and a cross-
modality encoder, which fuses the map representa-
tion (metadata and/or vision) with the word embed-
dings of the instruction in both directions, in order
to predict the three outputs, i.e., reference landmark
location on the map, bearing and distance.

Our contributions are thus three-fold:

• A novel task for final GPS destination predic-
tion from NL instructions with accompanying
ROSMI dataset1.

• A model that predicts GPS goal locations from
a map-based natural language instruction.

1We make our code and data available at https://
github.com/marioskatsak/mapert.

• A model that is able to understand instructions
referring to previously unseen maps.

2 Related Work

Situated dialog encompasses various aspects of in-
teraction. These include: situated Natural Lan-
guage Processing (Bastianelli et al., 2016); situ-
ated reference resolution (Misu, 2018); language
grounding (Johnson et al., 2017); visual question
answer/visual dialog (Antol et al., 2015); dialog
agents for learning visually grounded word mean-
ings and learning from demonstration (Yu et al.,
2017); and Natural Language Generation (NLG),
e.g. of situated instructions and referring expres-
sions (Byron et al., 2009; Kelleher and Kruijff,
2006). Here, work on instruction processing for
destination mapping and navigation are discussed,
as well as language grounding and referring expres-
sion resolution, with an emphasis on 2D/3D real
world and map-based application.

Language grounding refers to interpreting lan-
guage in a situated context and includes collabo-
rative language grounding toward situated human-
robot dialog (Chai et al., 2016), city exploration
(Boye et al., 2014), as well as following high-level
navigation instructions (Blukis et al., 2018). Map-
ping instructions to low level actions has been
explored in structured environments by mapping
raw visual representations of the world and text
onto actions using using Reinforcement Learning
methods (Misra et al., 2017; Xiong et al., 2018;
Huang et al., 2019). This work has recently been
extended to controlling autonomous systems and
robots through human language instruction in a
3D simulated environment (Ma et al., 2019; Misra
et al., 2018; Blukis et al., 2019) and Mixed Reality
(Huang et al., 2019) and using imitation learning
(Blukis et al., 2018). These systems perform goal
prediction and action generation to control a single
Unmanned Aerial Vehicles (UAVs), given a natural
language instruction, a world representation and/or
robot observations. However, where this prior work
uses raw pixels to generate a persistent semantic
map from the system’s line-of-sight image, our
model is able to leverage both pixel and metadata,
when it is available in a combined approach. Other
approaches include neural mapping of navigational
instructions to action sequences (Mei et al., 2015),
which does include a representation of the observ-
able world state, but this is more akin to a maze
rather than a complex map.

https://github.com/marioskatsak/mapert
https://github.com/marioskatsak/mapert
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With respect to the task, our model looks to pre-
dict GPS locations. There are few related works
that attempt this challenging task. One study, as
part of the ECML/PKDD challenge (de Brébisson
et al., 2015), uses Neural Networks for Taxi Des-
tination Prediction as a sequence of GPS points.
However, this does not include processing natu-
ral language instructions. SPACEREF (Götze and
Boye, 2016) is perhaps the closest to our task in
that the task entails both GPS tracks in OSM and
annotated mentions of spatial entities in natural lan-
guage. However, it is different in that these spatial
entities are viewed and referred to in a first person
view, rather than entities on a map (e.g. “the arch
at the bottom”).

In terms of our choice of model, attention mecha-
nisms (Bahdanau et al., 2015; Vaswani et al., 2017;
Xu et al., 2015) have proven to be very powerful
in language and vision tasks and we draw inspira-
tion from the way (Xu et al., 2015) use attention
to solve image captioning by associating words to
spatial regions within a given image.

3 Data

As mentioned above, the task is based on Open-
StreetMap (OSM) (Haklay and Weber, 2008).
OSM is a massively collaborative project, started
in 2004, with the main goal to create a free ed-
itable map of the world. The data is available under
the Open Data Commons Open Database Licence
and has been used in some prior work (Götze and
Boye, 2016; Hentschel and Wagner, 2010; Haklay
and Weber, 2008). It is a collection of publicly
available geodata that are constantly updated by
the public and consists of many layers of various
geographic attributes of the world. Physical fea-
tures such as roads or buildings are represented
using tags (metadata) that are attached to its basic
data structures. A comprehensive list of all the pos-
sible features available as metadata can be found
online2. There are two types of objects, nodes and
ways, with unique IDs that are described by their
latitude/longitude (lat/lon) coordinates. Nodes are
single points (e.g. coffee shops) whereas ways can
be more complex structures, such as polygons or
lines (e.g. streets and rivers). For this study, we
train and test only on data that uses single points
(nodes) and polygons (using the centre point), and
leave understanding more complex structures as
future work.

2wiki.openstreetmap.org/wiki/Map Features

We train and evaluate our model on ROSMI, a
new multimodal corpus. This corpus consists of
visual and natural language instruction pairs, in
the domain of emergency response. In this data
collection, the subjects were given a scene in the
form of an OSM map and were tasked to write
an instruction to command a conversational assis-
tant to direct a number of robots and autonomous
systems to either inspect an area or extinguish a
fire. Figure 1 shows an example of such a writ-
ten instruction. These types of emergency sce-
narios usually have a central hub for operators to
observe and command humans and Robots and
Autonomous Systems (RAS) to perform specific
functions, where the robotic assets are visually ob-
servable as an overlay on top of the map. Each
instruction datapoint was manually checked and if
it did not match the ‘gold standard’ GPS coordi-
nate per the scenario map, it was discarded. The
corpus was manually annotated with the ground
truth for, (1) a link between the NL instruction and
the referenced OSM entities; and (2) the distance
and bearing from this referenced entity to the goal
destination. The ROSMI corpus thus comprises
560 tuples of instructions, maps with metadata and
target GPS location.

There are three linguistic phenomena of note that
we observe in the data collected. Firstly, Land-
mark Grounding where each scenario has 3-5
generated robots and an average of 30 landmarks
taken from OSM. Each subject could refer to any of
these objects on the map, in order to complete the
task. Grounding the right noun phrase to the right
OSM landmark or robot, is crucial for predicting
accurately the gold-standard coordinate, e.g. send
husky11 62m to the west direction or send 2 drones
near Harborside Park.

Secondly, Bearing/Distance factors need to be
extracted from the instruction such as numbers (e.g.
500 meters) and directions (e.g. northwest, NE)
and these two items typically come together. For
example, “send drone11 to the west about 88m”.

Thirdly, Spatial Relations are where preposi-
tions are used instead of distance/bearing (e.g. near,
between), and are thus more vague. For example,

“Send a drone near the Silver Strand Preserve”.

4 Approach

4.1 Task Formulation

An instruction is taken as a sequence of word
tokens w =< w1, w2, . . . wN > with wi ∈ V ,
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Figure 2: Architecture of MAPERT. Map representations, i.e., names of landmarks found in OSM (metadata) and
Faster-RCNN predicted objects (visual modality), along with an instruction (sequence of tokens) are a) encoded
into the model, b) fused together (see also Fig. 4) and c) bidirectionally attended. The output comprises of three
predictions, recast as classification tasks: a landmark, a bearing and a distance.

where V is a vocabulary of words and the
corresponding geographic map I is represented
as a set of M landmark objects oi = (bb, r,n)
where bb is a 4-dimensional vector with bounding
box coordinates, r is the corresponding Region
of Interest (RoI) feature vector produced by
an object detector and n =< n1, n2 . . . nK >,
is a multi-token name. We define a function
f : V N ×R4∗M ×R2048∗M × V M∗K → R×R
to predict the GPS destination location ŷ:

ŷ = f
(
w, {oi = (bb, r,n)}M

)
(1)

Since predicting ŷ directly from w is a harder
task, we decompose it into three simpler compo-
nents, namely predicting a reference landmark lo-
cation l ∈M , the compass direction (bearing) b3,
and a distance d from l in meters. Then we triv-
ially convert to the final GPS position coordinates.
Equation 1 now becomes:

ŷ = gps(l, d, b) = f
(
w, {oi = (bb, r,n)}M

)
(2)

4.2 Model Architecture

Inspired by LXMERT (Tan and Bansal, 2019), we
present MAPERT, a Transformer-based (Vaswani
et al., 2017) model with three separate single-
modality encoders (for NL instructions, metadata
and visual features) and a cross-modality encoder
that merges them. Fig. 2 depicts the architecture.
In the following sections, we describe each compo-
nent separately.

Instructions Encoder The word sequence w is
fed to a Transformer encoder and output hidden
states hw and position embeddings posw; its

3b ∈ {N,NE,NW,E, SE, S, SW,SE,W,None}.

weights are initialized using pretrained BERT (De-
vlin et al., 2019). hw0 is the hidden state for the
special token [CLS].

Metadata Encoder OSM comes with useful
metadata in the form of bounding boxes (around
the landmark symbols) and names of landmarks
on the map. We represent each bounding box as
a 4-dimensional vector bbmetak

and each name
(nk) using another Transformer initialized with pre-
trained BERT weights. We treat metadata as a bag
of names but since each word can have multiple
tokens, we output position embeddings posnk

for
each name separately; hnk

are the resulting hidden
states with hnk,0

being the hidden state for [CLS].

Visual Encoder Each map image is fed into
a pretrained Faster R-CNN detector (Ren et al.,
2015), which outputs bounding boxes and RoI fea-
ture vectors bbk and rk for k objects. In order
to learn better representation for landmarks, we
fine-tuned the detector on around 27k images of
maps to recognize k objects {o1, .., ok} and classify
landmarks of 213 manually-cleaned classes from
OSM; we fixed k to 73 landmarks. Finally, a com-
bined position-aware embedding vk was learned
by adding together the vectors bbk and rk as in
LXMERT:

vk =
FF (bbk) + FF (rk)

2
(3)

where FF are feed-forward layers with no bias.

4.3 Variants for Fusion of Input Modalities
We describe three different approaches to combin-
ing knowledge from maps with the NL instructions:

Metadata and Language The outputs of the
metadata and language encoders are fused by con-
ditioning each landmark name ni on the instruction
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Figure 3: Metadata and Language fusion module.
Multi-token names correspond to the BERT-based em-
beddings of landmarks names. The output is the em-
bedding used to represent the landmarks names from
OSM metadata.

sequence via a uni-directional cross attention layer
(Fig. 3). We first compute the attention weights Ak

between the name tokens nk,i of each landmark
ok and instruction words in hw

4 and re-weight the
hidden states hnk

to get the context vectors cnk
.

We then pool them using the context vector for the
[CLS] token of each name:

Ak = CrossAttn(hw,nk) (4)

cnk
= Ak � nk (5)

hmeta = BertPooler(cnk
) (6)

We can also concatenate the bounding box
bbmetak

to the final hidden states:

hmeta+bb = [hmeta;FF (bbmetak
)] (7)

Metadata+Vision and Language All three
modalities were fused to verify whether vision can
aid metadata information for the final GPS des-
tination prediction task (Fig. 4). First, we filter
the landmarks oi based on the Intersection over
Union between the bounding boxes found in meta-
data (bbmetak

) and those predicted with Faster
R-CNN (bbk), thus keeping their corresponding
names ni and visual features vi. Then, we com-
pute the instruction-conditioned metadata hidden
states hmetai

, as described above, and multiply
them with every object vi to get the final hmeta+vis

context vectors:

hmeta+visi = hmetai
⊗ vi (8)

4Whenever we refer to hidden states hw we assume
concatenation with corresponding positional embeddings
[hw;posw], which we omit here for brevity.

Figure 4: Fusion of metadata, vision and language
modalities. Metadata are first conditioned on the in-
struction tokens as shown in Fig. 3. Then, they are mul-
tiplied with the visual features of every landmark.

4.4 Map-Instructions Fusion
So far we have conditioned modalities in one di-
rection, i.e., from the instruction to metadata and
visual features. In order to capture the influence
between map and instructions in both ways, a cross-
modality encoder was implemented (right half of
Fig. 2). Firstly each modality passes through a
self-attention and feed-forward layer to highlight
inter-dependencies. Then these modulated inputs
are passed to the actual fusion component, which
consists of one bi-directional cross-attention layer,
two self-attention layers, and two feed-forward lay-
ers. The cross-attention layer is a combination
of two unidirectional cross-attention layers, one
from instruction tokens (hw) to map representa-
tions (either of hmetak

, vk or hmeta+visk ; we re-
fer to them below as hmapk

) and vice-versa:

h̃w = FF (SelfAtt(hw)) (9)

h̃mapk
= FF (SelfAtt(hmapk

)) (10)

Cmapk
= CrossAtt(h̃w, h̃mapk

) (11)

Cw = CrossAtt(h̃mapk
, h̃w) (12)

hcross,w = Cw � h̃w (13)

hcross,mapk
= Cmapk

� h̃mapk
(14)

outw = FF (SelfAtt(hcross,w)) (15)

outmapk
= FF (SelfAtt(hcross,mapk

))
(16)

Note that representing hmapk
with vision fea-

tures vk only is essentially a fusion between the
vision and language modalities. This is a useful
variant of our model to measure whether the visual
representation of a map alone is as powerful as
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metadata, specifically for accurately predicting the
GPS location of the target destination.

4.5 Output Representations and Training

As shown in the right-most part of Fig. 2, our
MAPERT model has three outputs: landmarks, dis-
tances, and bearings. We treat each output as a
classification sub-task, i.e., predicting one or the
k landmarks in the map; identifying in the NL in-
struction the start and end position of the sequence
of tokens that denotes a distance from the refer-
ence landmark (e.g., ‘500m’); and a bearing label.
MAPERT’s output comprises of two feature vec-
tors, one for the vision and one for the language
modality generated by the cross-modality encoder.

More specifically, for the bearing predictor, we
pass the hidden state outw,0, corresponding to
[CLS], to a FF followed by a softmax layer. Pre-
dicting distance is similar to span prediction for
Question Answering tasks; we project each of the
tokens in outw down to 2 dimensions correspond-
ing to the distance span boundaries in the instruc-
tion sentence. If there is no distance in the sentence
e.g., “Send a drone at Jamba Juice”, the model
learns to predict, both as start and end position, the
final end of sentence symbol, as an indication of
absence of distance. Finally, for landmark predic-
tion we project each of the k map hidden states
outmapk

to a single dimension corresponding to
the index of the ith landmark.

We optimize MAPERT by summing the cross-
entropy losses for each of the classification sub-
tasks. The final training objective becomes:

L = Lland +Lbear +Ldist,start +Ldist,end (17)

5 Experimental Setup

Implementation Details We evaluate our model
on the ROSMI dataset and assess the contribution
of the metadata and vision components as described
above. For the attention modules, we use a hidden
layer with size of 768 as in BERTBASE and we
set the numbers of all the encoder and fusion layers
to 1. We initialize pretrained BERT embedding
layers (we also show results with randomly ini-
tialized embeddings). We trained our model using
Adam (Kingma and Ba, 2015) as the optimizer with
a linear-decayed learning-rate schedule (Tan and
Bansal, 2019) for 90 epochs, a dropout probability
of 0.1 and learning rate of 10−3.

10-fold Cross Validation
(unseen examples)

Acc50[SD] T Err(m) [SD]
Oraclelower 80 [5.01] 23.8 [51.9]
Vision
bbox 46.18 [5.59] 44.7 [51.7]
RoI+bbox 60.36 [5.3] 36.4 [51.1]
Meta+Vision
RoI+bbox+names 69.27 [6.68] 26.9 [47.7]
Meta
bbox 46.18 [5.59] 44.7 [51.7]
names 71.81 [7.37] 26.7 [47.7]
bbox+names 70.73 [6.58] 26.3 [48.7]
Oracleupper 100 [0.0] 0 [0]
Meta
bbox 60.36 [5.26] 29.8 [44.9]
names 87.64 [4.8] 9.6 [29.9]
bbox+names 87.09 [5.66] 9.5 [27.2]

Table 1: Ablation results on ROSMI using a 10-fold
cross validation. Accuracy (Acc) with IoU of 0.5 and
Targer error (T Err) in meters. The results in the top
half of the table use names conditioned on the lower
bound of the Vision modality and so are compared
to Oraclelower. The bottom part of the table use the
true metadata names and so are to be compared to
Oracleupper.

Evaluation Metrics We use a 10-fold cross-
validation for our evaluation methodology. This
results in a less biased estimate of the accuracy
over splitting the data into train/test due to the mod-
est size of the dataset. In addition, we performed
a leave-one-map-out cross-validation, as in Chen
and Mooney (2011). In other words, we use 7-fold
cross-validation, and in each fold we use six maps
for training and one map for validation. We refer to
these scenarios as zero-shot5 since, in each fold, we
validate our data on an unseen map scenario. With
the three outputs of our model, landmark, distance
and bearing, we indirectly predict the destination
location. Success is measured by the Intersection
over Union (IoU) between the ground truth destina-
tion location and the calculated destination location.
IoU measures the overlap between two bounding
boxes and as in Everingham et al. (2010), must
exceed 0.5 (50%) to count it as successful by the
formula:

IoU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
(18)

Since we are dealing with GPS coordinates but
also image pixels, we report two error evaluation

5We loosely use the term zero-shot as we appreciate that
there might be some overlap in terms of street names and some
objects
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metrics. The first is sized weighted Target error (T
err) in meters, which is the distance in meters be-
tween the predicted GPS coordinate and the ground
truth coordinate. The second is a Pixel Error (P er-
ror) which is the difference in pixels between the
predicted point in the image and the ground truth
converted from the GPS coordinate.

Comparison of Systems We evaluate our sys-
tem on three variants using different fusion tech-
niques, namely Meta and Language; Meta+Vision
and Language; and Vision and Language. Abla-
tions for these systems are shown in Table 1 and
are further analyzed in Section 6. We also com-
pare MAPERT to a strong baseline, BERT. The
baseline is essentially MAPERT but without the
bidirectional cross attention layers in the pipeline
(see Fig. 2).

Note, the Oracle of the Meta and Language has
a 100% (upper bound) on both cross-validation
splits of ROSMI, whereas the oracle of any model
that utilizes visual features, is 80% in the 10-fold
and 81.98% in the 7-fold cross-validation (lower
bound). In other words, the GPS predictor can
only work with the output of the automatically pre-
dicted entities outputed from Faster R-CNN, of
which 20% are inaccurate. Table 1 shows results
on both oracles, with the subscript lower indicating
the lower bound oracle and upper indicating the
“Upper Bound” oracle. In Table 2, all systems are
being projected on the lower bound oracle, so as to
compare them on the same footing.

6 Results

Table 2 shows the results of our model for Vision,
Meta and Meta+Vision on both the 10-fold cross
validation and the 7-fold zero-shot cross validation.
We see that the Meta variant of MAPERT outper-
forms all other variants and our baseline. However,
looking at the 10-fold results, Meta+Vision’s accu-
racy of 69.27% comes almost on par with Meta’s
71.81%. If we have the harder task of no meta-
data, with only the visuals of the map to work with,
we can see that the Vision component works rea-
sonably well, with an accuracy to 60.36%. This
Vision component, despite being on a disadvantage,
manages to learn the relationship of visual features
with an instruction and vice-versa, compared to our
baseline, which has no crossing between the modal-
ities whatsoever, reaching only 33.82%. When we
compare these results to the zero-shot paradigm,
we see only a 10.5% reduction using Meta, whereas

Figure 5: Examples of instructions with the correspond-
ing maps and the accompanied predictions of the best
performing either Vision or Meta models conditioned
on Oraclelower. Underlined words are words corre-
sponding to the target output of the model.
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10-fold Cross Validation 7-fold Cross Validation
(unseen examples) (unseen scenarios)

Accuracy50 [SD] T err [SD] P err [SD] Accuracy50 [SD] T err (m)[SD] P err (m) [SD]
Oraclelower 80 [5.01] 23.8 [51.9] 39.1 [96.3] 81.98 [17.09] 20.14 [39] 33.29 [66.43]
Baseline 33.82 [5.16] 64 [57.1] 119.8 [112.3] 34.90 [11.13] 60.71 [57.14] 110.43 [109.71]
Meta 71.81 [7.37] 26.70 [47.7] 48.2 [91.2] 64.30 [14.16] 32.71 [50.14] 65.71 [88.4]
Vision 60.36 [5.30] 36.40 [51.1] 64.40 [99.6] 49.75 [8.06] 46.00 [54.57] 87.86 [106.0]
Meta+Vision 69.27 [6.68] 26.90 [47.7] 48.30 [91.4] 58.33 [12.24] 36.14 [46.14] 70.71 [93.29]

Table 2: Results on both cross-validations of the best performing ablations of each variant and the baseline. The
predictions have been made under the Oraclelower. Accuracy (Acc) with IoU of 0.5, Target error (T Err) and Pixel
Error (P Err) in meters.

the Vision only component struggles more, with
a 17.6% reduction and Vision+Meta a 15.8% re-
duction. This is understandable since on the 7-fold
validation, we tackle unseen maps, which is very
challenging for the Vision-only model.

Ablation Study We show ablations for all three
model variants in Table 1 and corresponding abla-
tions. We show here just the 10-fold as the 7-fold
has similar performance ordering. Depending on
the representation of the map for each variant, we
derive three ablations for the Meta and two for the
Vision. Meta+Vision does not have ablations, since
it stands for all possible representations (bb, r, n).
Compared to the Oraclelower, Meta outperforms
the rest, as seen in Table 2. In addition, it re-
quires only the names of the landmarks to score the
71.73%. When we fuse the names and the bboxes,
the accuracy decreases slightly, whereas the T err
decreases slightly from 26.7 meters to 26.3 meters.
The full potential of the Meta model is shown on
the Oracleupper, which reaches 87.64 % accuracy
and T Err of only 9.6 meters, proof that for our
task and dataset metadata has the upper hand. It
is worthwhile noting that the Vision variant would
not have reached 60.36% accuracy, without the r
features, since with no fusion of RoI, the accuracy
drops to 46.18%.

Error Analysis In order to understand where the
Vision and Meta models’ comparative strengths lie,
we show some example outputs in Fig. 5. In ex-
amples 1&2 in this figure, we see the Meta model
is failing to identify the correct landmark because
the instruction is formulated in a way that allows
the identification of two landmarks. It’s a mat-
ter of which landmark to choose, and the bearing,
distance that comes with it, to successfully pre-
dict the destination location. However, the Meta
model is mixing up the landmarks and the bear-

ings. We believe it is that perhaps the Meta model
struggles with spatial relations such as “near”. The
Vision model, on the other hand, successfully picks
up the three correct components for the predic-
tion. This might be helped by the familiarity of the
symbolic representation the robots (husky, drones,
auvs), which it is able to pick up and use as land-
marks in situations of uncertainty such as this one.
Both models can fail in situations of both visual and
metadata ambiguity. In the third example, the land-
mark (Harborside Park) is not properly specified
and both models fail to pinpoint the correct land-
mark, since further clarification would be needed.
The final example in Fig. 5 shows a situation in
which the Meta model works well without the need
of a specific distance and bearing. The Vision
model manages to capture that, but it fails to iden-
tify the correct landmark.

7 Conclusion and Future Work

We have developed a model that is able to process
instructions on a map using metadata from rich map
resources such as OSM and can do so for maps that
it has not seen before with only a 10% reduction
in accuracy. If no metadata is available then the
model can use Vision, although this is clearly a
harder task. Vision does seem to help in exam-
ples where there is a level of uncertainty such as
with spatial relations or ambiguity between entities.
Future work will involve exploring this further by
training the model on these type of instructions and
on metadata that are scarce and inaccurate. Finally,
these instructions will be used in an end-to-end di-
alog system for remote robot planning, whereby
multi-turn interaction can handle ambiguity and en-
sure reliable and safe destination prediction before
instructing remote operations.
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