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Abstract

This paper presents our contribution to the
ProfNER shared task. Our work focused on
evaluating different pre-trained word embed-
ding representations suitable for the task. We
further explored combinations of embeddings
in order to improve the overall results.

1 Introduction

The ProfNER task (Miranda-Escalada et al.,
2021b), part of the SMM4H workshop and shared
task (Magge et al., 2021) organized at NAACL
2021, focused on identification of professions and
occupations from health-relevant Twitter messages
written in Spanish. It offered two sub-tasks: a) a
binary classification task, deciding if a particular
tweet contains a mention of an occupation, given
the context, and b) extracting the actual named en-
tities, by specifying the entity type, start and end
offset as well as the actual text span.

Habibi et al. (2017) have shown that domain
specific embeddings have an impact on the perfor-
mance of a NER system. The ProfNER task is at a
confluence between multiple domains. The classi-
fication sub-task suggests that tweets will actually
contain not only health-related messages but proba-
bly also more general domain messages. However,
the second task focuses on the analysis of health-
related messages. Finally, social media can be re-
garded as a domain in itself. Therefore, our system
was constructed on the assumption that word em-
beddings from multiple domains (general, health-
related, social media) will have different impact
on the performance of a NER system. We evalu-
ated different pre-trained embeddings alone and in
combination, as detailed in the next section.

Our interest for the task stemmed from our in-
volvement with the CURLICAT1 project for the
CEF AT action, where NER in different domains
(including health-related) is needed. Additionally,

1https://curlicat-project.eu/

pre-trained word embeddings for Romanian lan-
guage, such as Pais, and Tufis, (2018), are consid-
ered for suitability in different tasks within the Eu-
ropean Language Equality (ELE)2 project.

2 System description and results

We used a recurrent neural network model based
on LSTM cells with token representation using pre-
trained word embeddings and additional character
embeddings, computed on the fly. The actual pre-
diction is performed by a final CRF layer. For the
implementation we used the NeuroNER3 (Dernon-
court et al., 2017) package.

We considered the two sub-tasks to be inter-
twined. If a correct classification is given for the
first sub-task, then this can be used in the second
task to guide the NER process to execute only on
the classified documents. However, also the reverse
can be applied. A document containing correctly
identified entities for the second sub-task should
be classified as belonging to the domain of inter-
est. We employed the second approach and first
performed NER and then used this information for
classification.

For the purposes of the NER sub-task we con-
sidered the following word embedding representa-
tions: Spanish Medical Embeddings4 (Soares et al.,
2019), Wikipedia Embeddings5 (Mikolov et al.,
2018), Twitter Embeddings6 (Miranda-Escalada
et al., 2021a). These were generated using the
FastText toolkit (Bojanowski et al., 2017) and con-
tain floating point vectors of dimension 300. The
Spanish Medical Embeddings offers three variants

2http://www.european-language-equality.
eu

3http://neuroner.com/
4https://zenodo.org/record/3744326#

.YEbu950zZPZ
5https://fasttext.cc/docs/en/

english-vectors.html
6https://zenodo.org/record/4449930#

.YEbwUp0zZPY
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Representation P R F1
Medical 83.70 69.43 75.90
Twitter 82.92 71.58 76.83
Wiki 80.63 74.19 77.28
Twitter+Wiki 79.93 72.20 75.87
Twitter+Wiki (all) 81.90 72.96 77.17
Wiki+Twitter 80.86 75.27 77.96
Wiki+Twitter+Med 83.84 75.73 79.58

Table 1: Results of different word embeddings and
combinations on the validation set for the NER subtask

Representation P R F1
Medical 92.38 86.37 89.27
Twitter 92.05 87.42 89.68
Wiki 90.08 89.52 89.80
Twitter+Wiki 90.83 89.31 90.06
Twitter+Wiki (all) 91.67 87.63 89.60
Wiki+Twitter 89.68 89.31 89.50
Wiki+Twitter+Med 91.18 88.89 90.02

Table 2: Results of different word embeddings and
combinations on the validation set for the Classification
subtask

based on the SciELO7 database of scientific arti-
cles, filtered Wikipedia (comprising the categories
Pharmacology, Pharmacy, Medicine and Biology)
and a reunion of the two datasets. For all three cor-
pora, representations are available using CBOW
and Skip-Gram algorithms, as described in Bo-
janowski et al. (2017). However we only used
the Skip-Gram variants for our experiments, due to
the availability of this type of pre-trained vectors
for all the considered representations.

We first experimented with individual representa-
tions and then began experimenting with sets of two
embeddings concatenated. For the words present
in the first considered embedding we added the cor-
responding vector from the second embedding or a
zero vector. This provided an input vector of size
600 (resulting from concatenating two vectors of
size 300 each), which required the adaptation of the
network size accordingly. Additionally we consid-
ered a full combination of Twitter and Wikipedia
embeddings, placing zero-valued vectors if words
were also missing from the first embedding. A final
experiment was conducted on a concatenation of 3
embeddings (total vector size 900). Results on the
validation set are presented in Table 1 and Table 2,
while results on the test set are in Table 3.

7https://scielo.org/

Representation NER Classification
F1 F1

Medical 73.60 86.43
Twitter 74.60 88.04
Wiki 75.40 88.72
Twitter+Wiki 76.20 88.98
Wiki+Twitter 75.70 88.38
Twitter+Wiki (all) 75.30 88.24
Wiki+Twitter+Med 78.50 88.81

Table 3: Results of different word embeddings and
combinations on the test set for both subtasks

Given the word embeddings size (300, 600 and
900, depending on the experiment), the neural net-
work was changed to have a token LSTM hidden
layer of the same size. Other hyper-parameters,
common to all experiments, are: character embed-
ding of size 25, learning rate of 0.005, dropout
rate 0.5 and early stopping if no improvement was
achieved for 10 epochs.

Experiments show that given the recurrent neu-
ral architecture used, the best single embeddings
results, considering overall F1 score, for both sub-
tasks are provided by the Wikipedia embeddings
(a general domain representation). However, the
Medical Embeddings seem to achieve higher preci-
sion. Considering the NER task, the combination
of Wikipedia and Twitter achieves the highest F1
from the two embeddings experiments, while the
three embeddings combination provides the final
best score.

For the first subtask we used the predictions
given by a NER model and considered a tweet
with at least one recognized entity to belong to
the domain required by the subtask. In order to
improve recall we further extracted a list of pro-
fessions from the training set of the NER subtask.
This list was filtered and we removed strings that
tend to appear many times in tweets labelled "0" in
the training set belonging to the classification task.
The filtered list was applied in addition to the NER
information and texts that had no extracted entities
were labelled "1" if they contained any string from
the list. This allowed us to further increase the
classifier’s performance.

3 Conclusions

We investigated the suitability of different repre-
sentations for analysing text from the health do-
main in social media, particularly Twitter messages.

https://scielo.org/
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Contrary to our initial assumption, a general do-
main representation (Wikipedia based) provided
the best NER results, considering single represen-
tations. However, a combination of word embed-
dings achieved the highest F1 score. For both vali-
dation and test datasets, the best models consider-
ing F1 are a combination of Twitter and Wikipedia
for the NER task and a combination of all three
models for the classification task. We consider this
to be explainable by the characteristic of social
media messages where people do not necessarily
restrict their language to in-domain vocabulary (in
this case health related) but rather mix in-domain
messages with out-of-domain messages or even
combine in the same message sentences from mul-
tiple domains.
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