
Proceedings of the Sixth Social Media Mining for Health Workshop 2021, pages 69–73
June 10, 2021. ©2021 Association for Computational Linguistics

69

System description for ProfNER - SMMH: Optimized fine tuning of a
pretrained transformer and word vectors

David Fidalgo and Daniel Vila-Suero and Francisco Aranda and Ignacio Talavera
Recognai

https://www.recogn.ai
[david, daniel, francisco]@recogn.ai

ignaciotalaveracepeda@gmail.com

Abstract
This shared task system description depicts
two neural network architectures submitted to
the ProfNER track, among them the winning
system that scored highest in the two sub-
tasks 7a and 7b. We present in detail the ap-
proach, preprocessing steps and the architec-
tures used to achieve the submitted results, and
also provide a GitHub repository to reproduce
the scores. The winning system is based on a
transformer-based pretrained language model
and solves the two sub-tasks simultaneously.

1 Introduction

The identification of professions and occupations in
Spanish (ProfNER1, Miranda-Escalada et al. 2021)
is part of the Social Media Mining for Health Appli-
cations (SMM4H) Shared Task 2021 (Magge et al.,
2021). Its aim was to extract professions from so-
cial media to enable characterizing health-related
issues, in particular in the context of COVID-19
epidemiology as well as mental health conditions.

ProfNER was the seventh track of the task and
focused on the identification of professions and
occupations in Spanish tweets. It consisted of two
sub-tasks:

• task 7a: In this binary classification task, par-
ticipants had to determine whether a tweet
contains a mention of occupation, or not.

• task 7b: In this Named Entity Recognition
(NER) task, participants had to find the begin-
ning and end of occupation mentions and clas-
sify them into two categories: PROFESION
(professions) and SITUACION_LABORAL
(working status).

2 Our approach

We submitted two systems to each of the tasks
described above, which share the same basic struc-
ture:

1https://temu.bsc.es/smm4h-spanish/

• a backbone model that extracts and contextu-
alizes the input features

• a task head that performs task specific opera-
tions and computes the loss

In the backbone of both systems we take advantage
of pretrained components, such as a transformer-
based language model or skip-gram word vectors.
The task head of both systems is very similar in
that it solves task 7a and 7b simultaneously, and
returns the sum of both losses.

For the first system we aimed to maximize the
metrics of the competition with the constraint of
using a single GPU environment. For the second
system we tried to maximize the model’s efficiency
with respect to the model size and speed while
maintaining acceptable performance.

Both systems were designed and trained using
biome.text2, a practical NLP open source library
based on AllenNLP3 (Gardner et al., 2017) and
PyTorch4 (Paszke et al., 2019).

2.1 Preprocessing

In a first step we transformed the given brat5 an-
notations of task 7b to commonly used BIO NER
tags(Ratinov and Roth, 2009). For this we used
spaCy6 (Honnibal et al., 2020) and a customized
tokenizer of its "es_core_news_sm" language
model, to make sure that the resulting word tokens
and annotations always aligned well. In this step
we excluded the entity classes not considered dur-
ing evaluation. The same customized tokenizer was
used to transform the predicted NER tags of our
systems back to brat annotations during inference
time.

2https://www.recogn.ai/biome-text
3https://allennlp.org/
4https://pytorch.org/
5http://brat.nlplab.org
6https://spacy.io/

https://temu.bsc.es/smm4h-spanish/
https://www.recogn.ai/biome-text
https://allennlp.org/
https://pytorch.org/
http://brat.nlplab.org
https://spacy.io/


70

tweet ID word tokens NER tags classification label
1242604595463032832 [El, alcalde, ...] [O, B-PROFESION, ...] 1
1242603450321506304 [", Trump, decide, ...] [O, O, O, ...] 0

... ... ... ...

Table 1: Example of the format of our input data. NER tags are provided in the BIO encoding scheme.

To obtain the input data for our training pipeline,
we added the tweet ID and the corresponding clas-
sification labels of task 7a to our word tokens and
NER tags (see Table 1 for an example).

No data augmentation or external data was used
for the training of our systems.

2.2 System 1: Transformer

In our first system, the backbone model con-
sists of a transformer-based pretrained language
model. More precisely, we use BETO, a BERT
model trained on a big Spanish corpus (Cañete
et al., 2020), which is distributed via Hugging
Face’s (Wolf et al., 2019) Model Hub7 under the
name "dccuchile/bert-base-spanish-
wwm-cased". For its usage we further tokenize
the word tokens into word pieces with the corre-
sponding BERT tokenizer, which also introduces
the special BERT tokens [CLS] and [SEP] (De-
vlin et al., 2019). Since some of the word tokens
cannot be processed by the tokenizer and are simply
ignored (e.g. the newline character "\n"), we re-
place those problematic word tokens with a dummy
token "æ", which is not ignored, and that allows the
correct transformation of NER tags to brat annota-
tions at inference time. The output sequence of the
transformer is then passed on to the task head of
the system.

In the task head we first apply a non-linear tanh
activation layer to the [CLS] token, which we ini-
tialize with its pretrained weights (Devlin et al.,
2019), before obtaining the logits of a linear clas-
sification layer that solves task 7a. The classifica-
tion loss is calculated via the Cross Entropy loss
function. To solve task 7b, we need to bridge the
difference between the word piece features and pre-
dictions at a the level of word tokens. For this, we
follow the approach of Devlin et al. (2019) who use
a subword pooling in which the first word piece of
a word token is used to represent the entire token,
excluding the special BERT tokens. After the sub-
word pooling we apply a linear classification layer
and a subsequent Conditional Random Field (CRF)

7https://huggingface.co/models

parameter search space
learning rate loguniform(5e-6, 1e-4)
weight decay loguniform(1e-3, 1e-1)
warm-up steps randint(0, 200)
batch size choice([8, 16])
num epochs choice([3, 4, 5])

Table 2: List of hyperparameters tuned during training.
Search spaces define valid values for the hyperparame-
ters and how they are sampled initially. They are pro-
vided as Ray Tune search space functions.

model that predicts a sequence of NER tags.

2.2.1 Training
For the parameter updates we used the AdamW al-
gorithm (Loshchilov and Hutter, 2019) and sched-
ule the learning rate with warm-up steps and a
linear decay afterwards. We optimized the training
parameters listed in Table 2 by means of the Ray
Tune library8 (Liaw et al., 2018) which is tightly
integrated with biome.text. Our Hyperparameter
Optimization (HPO) consisted of 50 runs (see Fig-
ure 1) using a tree-structured Parzen Estimator9

as search algorithm (Bergstra et al., 2011) and the
ASHA trial scheduler to terminate low-performing
trials (Li et al., 2018). The reference metric for
both algorithms was the overall F1 score of task 7b.
The HPO lasted for about 6 hours on a g4dn.xlarge
AWS machine with one Tesla T4 GPU.

We took the best performing model of the HPO,
performed a quick sweep across several random
seeds for the initialization10 and finally employed
the best configuration to train the system on the
combined train and validation data set.

In further experiments, we tried to improve the
validation metrics by switching to BILOU tags
(Ratinov and Roth, 2009) or by including the entity
classes not considered for the final evaluation, but
could not find any significance differences.

8https://docs.ray.io/en/master/tune/
9https://github.com/hyperopt/hyperopt

10In hindsight, it would have been better to perform this
sweep before the HPO and include the best performing random
seeds in the HPO itself.

https://huggingface.co/models
https://docs.ray.io/en/master/tune/
https://github.com/hyperopt/hyperopt


71

Figure 1: Distribution of the hyperparameters during the HPO for system 1. In total we executed 50 trials using
a tree-structured Parzen Estimator as search algorithm and the ASHA trial scheduler to terminate low-performing
trials early. The trial with the highest F1 NER score had a batch size of 8, a learning rate of 3.03e-05, a weight
decay of 1.79e-3, was trained for 4 epochs and had 49 warm-up steps.

2.3 System 2: RNN

In our second system, the backbone model extracts
word and character features, and combines them
at a word token level. For the word feature we
start from a cased version of skip-gram word vec-
tors that were pretrained on 140 million Spanish
tweets11. We concatenate these word vectors with
the output of the last hidden state of a bidirectional
Gated Recurrent Unit (GRU, Cho et al., 2014) that
takes as input the lower cased characters of a word
token. These embeddings are then fed into another
larger bidirectional GRU, where we add contextual
information to the encoding, and whose hidden
states are passed on to the task head of the system.

In the task head we pool the sequence by means
of a bidirectional Long short-term memory (LSTM,
Hochreiter and Schmidhuber, 1997) unit and pass
the last hidden state to a classification layer to
solver task 7a. The classification loss is calculated
via the Cross Entropy loss function. To solve task
7b, we pass each embedding from the backbone
sequence through a feedforward network with a
linear classification layer on top. The outputs of
the classification layer are fed into a CRF model
that predicts a sequence of NER tags.

The architectural choice of using GRU or LSTM
units was solved via an HPO as described in the
following training subsection.

2.3.1 Training
For the parameter updates we apply the same opti-
mization algorithm and learning rate scheduler as
for system 1. The comparatively small size of sys-

11https://zenodo.org/record/4449930

Backbone
Word feature 300 dim, pretrained word vectors
Char feature 64 dim char vectors pooled by a GRU

(bidirectional, 1 layer, 64 hidden size)

Backbone GRU
encoder (bidirectional, 1 layer, 512 hidden size)

Task Head
Classification LSTM
pooler (bidirectional, 1 layer, 64 hidden size)

Feedforward 1 layer, 128 hidden size

Table 3: Details of our best RNN architecture.

tem 2 allowed us to perform extensive HPOs, not
only for the training parameters but also for the ar-
chitecture, and to some extent Neural Architecture
Searches (NAS).

In a first optimization run of 200 trials, we al-
lowed wide ranges for almost all hyperparameters
and tried out different RNN architectures, that is ei-
ther LSTMs or GRUs. An example of a clearly pre-
ferred choice are the word embeddings pretrained
with a skip-gram model over the ones pretrained
with a a CBOW model (Mikolov et al., 2013). In a
second run, we fixed obviously preferred choices
and narrowed down the search spaces to the most
promising ones.

For both HPO runs we applied the same search
algorithm and trial scheduler as for system 1, and
proceeded the same way to obtain the submitted
version of system 2.

The resulting best RNN architecture is detailed
in Table 3.



72

System F1 Test F1 Test F1 Valid. F1 Valid. Model size Inference time∗
(task 7a) (task 7b) (task 7a) (task 7b) (nr of params) (for 1 prediction)

1: Transformer 0.93 0.839 0.92 0.834 ∼ 1.1× 108 24.5 ms ± 854 µs
2: RNN 0.88 0.764 0.85 0.731 ∼ 1.5× 107 3.7 ms ± 103 µs

Table 4: Results for the two systems. Test results are provided with the systems trained on the combined training
and validation data set, while the validation metric is taken from the best performing HPO trial. System 1 was the
winning system in both ProfNER sub-tracks, while system 2 still scored above the arithmetic median of 0.85 and
0.7605 in both tasks.
∗Mean value, computed on an i7-9750 H CPU with 6 cores.

3 Results

Table 4 presents the evaluation metrics of
both systems on the validation and the test
data sets, as well as the model size and its
inference speed. With system 1 we man-
aged to score highest on both ProfNER 7a
and 7b sub-tracks (F1:0.93/P:0.9251/R:0.933 and
F1:0.839/P:0.838/R:0.84, respectively), with an
average of 8 points above the arithmetic me-
dian of all submissions. The much smaller
and faster (by a factor of ∼ 7) system
2 still manages to score above the compe-
titions median (F1:0.88/P:0.9083/R:0.8553 and
F1:0.764/P:0.815/R:0.718, respectively), but per-
forms significantly worse when compared to sys-
tem 1.

We find a clear correlation between the classifi-
cation F1 score and the F1 score of the NER task
in our HPO runs, which signals that the feedback
loop between the two tasks is in general beneficial
and advocates solving both tasks simultaneously.

When comparing system 1 and 2, it seems that
the amount of training data provided to the RNN
architecture was not sufficient to match the trans-
fer capabilities of the pretrained transformer, even
with dedicated architecture searches and extensive
hyperparameter tuning. This is corroborated by the
fact that adding the validation data to the training
data led to a clear performance boost for system
2, while the performance of system 1 stayed al-
most the same (compare the F1 Test and Validation
metrics for task 7b in Table 4).

A possible path to improve system 1, which
was not pursued due to time constraints, could be
the inclusion of the gazetteers provided during the
ProfNER track. We consider this path especially
promising given the fact that the precision was al-
ways lower than the recall for both tasks.

We conclude that the exploitation of the trans-
fer capabilities of a pretrained language model and

its optimized fine tuning to the target domain, pro-
vides an conceptually easy system architecture and
seems to be the most straight forward method to
achieve competitive performance, especially for
tasks where training data is scarce.

To help to reproduce our results, we provide a
GitHub repository at https://github.com/
recognai/profner.

Acknowledgments

This work was supported by the Spanish Ministerio
de Ciencia, Inonvacion y Universidades through
its Ayuda para contratos Torres Quevedo 2018 pro-
gram with the reference number PTQ2018-009909.

References
James Bergstra, R. Bardenet, Yoshua Bengio, and

Balázs Kégl. 2011. Algorithms for Hyper-Parameter
Optimization. In 25th Annual Conference on Neural
Information Processing Systems (NIPS 2011), vol-
ume 24 of Advances in Neural Information Process-
ing Systems, Granada, Spain. Neural Information
Processing Systems Foundation.

José Cañete, Gabriel Chaperon, Rodrigo Fuentes, Jou-
Hui Ho, Hojin Kang, and Jorge Pérez. 2020. Span-
ish pre-trained bert model and evaluation data. In
PML4DC at ICLR 2020.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

https://github.com/recognai/profner
https://github.com/recognai/profner
https://hal.inria.fr/hal-00642998
https://hal.inria.fr/hal-00642998
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640


73

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. Neural Computation, 9:1735–1780.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Eka-
terina Gonina, Moritz Hardt, Benjamin Recht, and
Ameet Talwalkar. 2018. A System for Massively
Parallel Hyperparameter Tuning. arXiv e-prints,
page arXiv:1810.05934.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp
Moritz, Joseph E. Gonzalez, and Ion Stoica. 2018.
Tune: A Research Platform for Distributed Model
Selection and Training. arXiv e-prints, page
arXiv:1807.05118.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization.

Arjun Magge, Ari Klein, Ivan Flores, Ilseyar Al-
imova, Mohammed Ali Al-garadi, Antonio Miranda-
Escalada, Zulfat Miftahutdinov, Eulàlia Farré-
Maduell, Salvador Lima López, Juan M Banda,
Karen O’Connor, Abeed Sarker, Elena Tutubalina,
Martin Krallinger, Davy Weissenbacher, and Gra-
ciela Gonzalez-Hernandez. 2021. Overview of the
sixth social media mining for health applications (#
smm4h) shared tasks at naacl 2021. In Proceedings
of the Sixth Social Media Mining for Health Appli-
cations Workshop & Shared Task.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space.

Antonio Miranda-Escalada, Eulàlia Farré-Maduell, Sal-
vador Lima López, Luis Gascó-Sánchez, Vicent
Briva-Iglesias, Marvin Agüero-Torales, and Martin
Krallinger. 2021. The profner shared task on auto-
matic recognition of occupation mentions in social
media: systems, evaluation, guidelines, embeddings
and corpora. In Proceedings of the Sixth Social
Media Mining for Health Applications Workshop &
Shared Task.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Lev Ratinov and Dan Roth. 2009. Design Challenges
and Misconceptions in Named Entity Recognition.

In Proc. of the Conference on Computational Natu-
ral Language Learning (CoNLL).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush.
2019. HuggingFace’s Transformers: State-of-the-
art Natural Language Processing. arXiv e-prints,
page arXiv:1910.03771.

https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
http://arxiv.org/abs/1810.05934
http://arxiv.org/abs/1810.05934
http://arxiv.org/abs/1807.05118
http://arxiv.org/abs/1807.05118
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://cogcomp.org/papers/RatinovRo09.pdf
http://cogcomp.org/papers/RatinovRo09.pdf
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

