
Proceedings of the Third Workshop on Computational Typology and Multilingual NLP, pages 145–148
June 10, 2021. ©2021 Association for Computational Linguistics

145

Anlirika: an LSTM–CNN Flow Twister for Spoken Language
Identification

Andrei Shcherbakov] Liam Whittle/ Ritesh Kumar•
Siddharth Singh• Matthew Coleman/ Ekaterina Vylomova]

]University of Melbourne /Monash University •Bhim Rao Ambedkar University

ultrasparc@yandex.ru

Abstract

The paper presents Anlirika’s submission to
SIGTYP 2021 Shared Task on Robust Spo-
ken Language Identification. The task aims
at building a robust system that generalizes
well across different domains and speakers.
The training data is limited to a single do-
main only with predominantly single speaker
per language while the validation and test data
samples are derived from diverse dataset and
multiple speakers. We experiment with a neu-
ral system comprising a combination of dense,
convolutional, and recurrent layers that are de-
signed to perform better generalization and
obtain speaker-invariant representations. We
demonstrate that the task in its constrained
form (without making use of external data or
augmentation the train set with samples from
the validation set) is still challenging. Our best
system trained on the data augmented with val-
idation samples achieves 29.9% accuracy on
the test set.

1 Introduction

Among approximately 7,000 world languages, over
43% are oral only and do not exhibit any writing
system. Still, even in less exotic cases language
processing systems may have to solely rely on vo-
cal representations. Spoken language identification
(SLI) is essential sub-task in many approaches to
multilingual automated speech recognition and ma-
chine translation. In addition, it also has practical
applications as a standalone task. Automated as-
signment of a call center operator to a client is one
of possible use case scenarios.

The paper provides a description of “Anlirika”
system1 that was submitted to SIGTYP 2021
Shared Task on Robust SLI (Salesky et al., 2021).
In terms of the task, systems are trained to predict

1The code is available at https://github.
com/andreas-softwareengineer-pro/
speech-language-classifier

a language class (id) from an audio signal. Im-
portantly, the task aims at development of robust
systems that can generalize well to new domains
and speakers. Many languages are under-resourced,
and the situation when the language data exist only
for a very limited number of speakers or domains is
common. For instance, the largest multilingual SLI
dataset, namely CMU Wilderness (Black, 2019),
has been derived from the Bible in ≈ 700 languages
and lacks speaker diversity. Therefore, it is essen-
tial for a system to be speaker-invariant and robust.

2 Related Work

Most work on SLI focused on Indo-European lan-
guages such as English, German, Russian, French,
Hindi. It is also common to transform raw audio
signal into the log-Mel spectra or MFCC features.
Recent approaches such as Bartz et al. (2017), Re-
vay and Teschke (2019), and Shukla et al. (2019)
make use of various convolution-based neural archi-
tectures. For instance, Bartz et al. (2017) proposed
a hybrid model that used convolutional layers to
extract spatial features and recurrent units (bidirec-
tional LSTMs) tp capture temporal characteristics.
Revay and Teschke (2019) explored the ResNet-50
(He et al., 2016) architecture dynamically adapting
learning rate.

3 Dataset

The dataset comprises 16 typologically diverse lan-
guages from Afro-Asiatic, Austronesian, Basque,
Dravidian, Indo-European, Niger-Congo, and Tai-
Kadai families. The training data is derived from
the CMU Wilderness dataset (Black, 2019) which
represents a single domain (speech utterances from
the Bible) and has predominantly a single speaker
per language. The validation and test sets were
collected from multiple corpora such as Common
Voice (Ardila et al., 2019) and present a variety of
recording conditions with multiple speakers per lan-
guage. The length of each speech utterance ranged

https://github.com/andreas-softwareengineer-pro/speech-language-classifier
https://github.com/andreas-softwareengineer-pro/speech-language-classifier
https://github.com/andreas-softwareengineer-pro/speech-language-classifier


146

Nm Nm 3(Nm-K+1) 

NLx LSTM 

DL DL 

DL 

dense CNN LSTM dense 
concat 

MFCC 
features 

DL 

one hot 
language 

prediction 

@ last 
sequential 

step 

Figure 1: Architecture used in language classifier

between 3 and 7 seconds. The training data con-
tained 4,000 utterances per language, while valida-
tion and test sets comprised 500 samples each. Im-
portantly, the utterances were provided in the form
of Mel-Frequency Cepstral Coefficients (MFCC)
features rather then raw audio signal.

4 Architecture

As illustrated on Figure 1, we used a multi-layer
neural network solution with two dense layers, one
CNN and 1–7 LSTM layers. The design of neural
layer stack is motivated by the following general
vision of how a sample should be processed:

• We suggest that a raw spectral pattern first
needs to be multiplied by a square matrix in
order to remove sound harmonics. That is why
we are using a dense layer as the front one;

• Then we try to recognize features related to
the spectral line shape. Therefore, we use a
one-dimensional CNN (convolving by input
feature vector index [frequency]);

• Then we recognize “local” temporal con-
structs with a stack of LSTMs;

• We use yet another LSTM to reduce tempo-
ral patterns into a single-vector representation
(only the final time step output goes to the
next layer);

• Finally, we classify it into one of 16 languages
with a dense layer.

The layer stack we used is summarized in Ta-
ble 1.

4.1 Batching mechanism
We employed a batched learning process with a
fixed number of processed samples per batch (64)
and with variable number of time steps. Such a
mechanism works as follows. An initial batch is
filled with randomly chosen samples. The number
of temporal steps in the batch is determined by the
shortest sample currently present in a given batch.
Once a batch is fed forward through the neural
network layers:

1. The samples which ends happen to be aligned
with the end of the batch, are done now
(within a given epoch). We replace them with
next randomly chosen training samples when
forming the next batch. If a sequential layer
contains hidden states (which is true for the
LSTMs in our model), zero hidden states are
supplied to the respective threads of batch. Fi-
nal prediction values for such threads are used
to calculate the loss;

2. The samples which do not fit within the batch
length, are passed to the next batch for further
processing, having their already-processed
prefixes removed. Start hidden states for the
respective threads are initialized with the val-
ues of final hidden states computed in the pre-
ceding batch, as shown with blue arrows in
Figure 2.

This process repeats until all the samples are pro-



147

samples 

0 
0 

0 

batches next batch start state 
previous batch end 
state 

State transfer for 
continuing samples 

b
a

tc
h

 s
iz

e 

b
a

tc
h

 s
iz

e 

Figure 2: Batch shaping

Layer Type Output Size Output Type Hyperparamers
dense Nm per-timestep Nm = 39

1D CNN DCNN = 3(Nm −K + 1) per-timestep K=4 – kernel size
NL× LSTM DL ea. per-timestep -

concat DCNN +NLDL per-timestep -
LSTM DL per-sample -
dense Num. languages=16 per-sample -

Table 1: Layer stack summary

cessed, i.e. a training epoch is done. Some trailing
batches may be underpopulated with threads, in
which cases output values of unused threads are ig-
nored. Figure 2 summarises the description above.

A drawback of such a batching technique is con-
straining of temporal depth when the backpropaga-
tion through time takes place in LSTM layers. A
batch is typically much shorter in time steps than a
sample. Therefore, a single backpropagation oper-
ation (that cannot run across batches) may modify
less weights than it would be expected without
batching. We regarded this effect as minor, how-
ever, its influence to the overall learning capability
is yet to be investigated.

5 Experiments

We varied NL, the number of extra sequential
LSTM layers (which outputs were concatenated

to the output of the CNN layer). We tried the fol-
lowing options: {0,2,4,6}. A number of units in
each LSTM layer was chosen from {200,300}. We
used equal numbers of units across all the LSTM
layers present in the model.

Using the original train set. A learning dy-
namic we observed in our experiment was gener-
ally slow. In most trials the model failed to learn
with the learning rate value greater than 4 · 10−4.
With lower learning rates, it trained at an extremely
slow pace gaining about 0.1% train set accuracy
per epoch. At the time of this report writing, we
achieved an overall accuracy value of about 12%
at validation set. It is curious to note that accuracy
figures for train and validation sets did not correlate
as expected, the fact that may indicate significant
difference in domains. Typically, a predicted dis-
tribution of languages was limited to 2-3 classes,



148

the list of which was volatile. We also noticed that
the model converged much faster at small subsets
of training sets (50-500 samples).

cnh

eng

eus

hin

iba

ind

jav

kab

kan

mar

por

rus

sun

tam

tel

tha

cn
h

en
g

eu
s

hin iba ind jav ka
b

ka
n

m
ar po

r
ru

s
su

n
ta

m te
l

th
a

True language

P
re

di
te

d 
la

ng
ua

ge

100

200

300

400

count

Figure 3: Confusion matrix for mixed set holdout vali-
dation (NL = 2, DL = 200)

Augmenting training data with validation set
samples. A quite different picture was observed
when we combined training and validations sets
and randomly split them again into training and
validation portions. A much superior accuracy of
74% on validation set was achieved. The confusion
matrix is shown on Figure 3. Such a relatively high
prediction accuracy is not surprising, as a valida-
tion holdout is likely to share speaker identities
with the respective training subset, the fact that
leads to a significant loosening of required gener-
alization ability. However, a drastic improvement
in convergence dynamics remains a noticeable and
unexpected effect.

Tuning of hyperparameters. A choice
ofNL = 2 was found to be producing the highest
accuracy. Increasing DL from 200 to 300 didn’t
lead to any significant difference in performance.

Shared task submission. The final submitted
version was trained on an augmented set. The per-
formance figures are shown in Table 2.

Set Acc. F1, Micro Avg F1, Macro Avg
Test 29.9% 29.8% 28.2%
Valid. 43.6% 43.6% 42.1%

Table 2: Aggregated performance metrics for the final
model version

6 Conclusion & future work

To address the task of language classification in
speech samples, we implemented and explored
a neural network model. The model’s architec-
ture was inspired by an idea of phoneme sequence
recognition. Our experiments are yet in progress,
still it is clear that the generalization across do-
mains appears to be the main challenge.

Following a maxim of keeping model as light
as possible, we are going to explore architecture
modifications that directly enforce some kind of
phonetic generalization, for instance, by insertion
of “bottlenecks” (layers with low output size).

References
Rosana Ardila, Megan Branson, Kelly Davis, Michael

Henretty, Michael Kohler, Josh Meyer, Reuben
Morais, Lindsay Saunders, Francis M Tyers, and
Gregor Weber. 2019. Common voice: A massively-
multilingual speech corpus. arXiv preprint
arXiv:1912.06670.

Christian Bartz, Tom Herold, Haojin Yang, and
Christoph Meinel. 2017. Language identification us-
ing deep convolutional recurrent neural networks. In
International conference on neural information pro-
cessing, pages 880–889. Springer.

Alan W Black. 2019. Cmu wilderness multilingual
speech dataset. In ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5971–5975. IEEE.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Shauna Revay and Matthew Teschke. 2019. Multi-
class language identification using deep learning on
spectral images of audio signals. arXiv preprint
arXiv:1905.04348.

Elizabeth Salesky, Badr M Abdullah, Sabrina J Mielke,
Elena Klyachko, Oleg Serikov, Edoardo Maria Ponti,
Ritesh Kumar, Ryan Cotterell, and Ekaterina Vylo-
mova. 2021. SIGTYP 2021 shared task: Robust spo-
ken language identification. In Proceedings of the
Third Workshop on Computational Research in Lin-
guistic Typology, pages 136–142.

Shikhar Shukla, Govind Mittal, et al. 2019. Spoken
language identification using convnets. In European
Conference on Ambient Intelligence, pages 252–265.
Springer.


