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Abstract
Live chat in customer service platforms is crit-
ical for serving clients online. For multi-turn
question-answering live chat, typical Question
Answering systems are single-turn and focus
on factoid questions; alternatively, modeling
as goal-oriented dialogue limits us to narrower
domains. Motivated by these challenges, we
develop a new approach based on a framework
from a different discipline: Community Ques-
tion Answering. Specifically, we opt to di-
vide and conquer the task into two sub-tasks:
(1) Question-Question Similarity, where we
gain more than 9% absolute improvement in
F1 over baseline; and (2) Answer Utterances
Extraction, where we achieve a high F1 score
of 87% for this new sub-task. Further, our user
engagement metrics reveal how the enterprise
support representatives benefit from the 2-step
approach we deployed to production.

1 Introduction

With technological advances, more customers are
moving online, and so must customer service (Arm-
ington, 2019). Live chat plays a critical role in
serving customers online, and numerous service or-
ganizations provide live chat to help customers to-
day. Because human-to-human interactions are pre-
ferred over chatbots (Press, 2019; Shell and Buell,
2019), and enterprise live chat is typically human-
to-human, there are tremendous opportunities in
assisting live chat to efficiently answer customers’
questions.

We are interested in multi-turn question-
answering live chat that is common among enter-
prise customer services. We argue that to model
the problem as a Community Question Answer-
ing (CQA) problem over other choices like typical
Question Answering (QA) systems or goal-oriented
dialogue systems has several advantages. QA sys-
tems are traditionally single-turn and focus on fac-
toid questions with short answers. Alternatively,

Figure 1: Overview of our 2-step method. A customer
question is first matched to a highly similar histori-
cal chat (QQS), then the answer is extracted from the
matched chat (AUE).

goal-oriented dialogue systems, whether modeling
with a pipeline or end-to-end methods, there is lim-
ited evidence that they work well for the broader
domain of enterprise question-answering live chats.

Motivated by these challenges and consider real-
world practicality, we propose a new approach to
model multi-turn question-answering live chat as a
CQA problem, and we focus on answer utterances
for evaluation. Our approach is general and the
setup is flexible so it can be easily ported to other
domains.

The aim of this paper is to assist enterprise sup-
port representatives (reps) in answering live chats
that are across several knowledge domains. The
primary goal is to surface answers for a new ques-
tion asked by a customer, especially if the rep is not
familiar with the question; the secondary goal is
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to provide reps a tool to explore questions closely
related to the new question hence enhance their
domain expertise.

Our key contributions are:

1. We frame the multi-turn question-answering
live chat problem as a CQA problem, which
is more suitable for real-world use than QA
systems and more generalizable than goal-
oriented dialogue systems;

2. We present a new sub-task Answer Utterances
Extraction (AUE) that focuses on answer utter-
ances and we show that an approach incorpo-
rates domain adaptation and dialogue features
is effective for this sub-task;

3. Our approach outperforms the correspond-
ing baselines, and the user engagement statis-
tics present how users benefit from the 2-step
method we deployed to production with low
latency.

2 Related Work

Dialogue systems can be categorized as (1) Ques-
tion answering (QA) systems, (2) Goal-oriented or
task-oriented dialogue systems, and (3) Chatbots
or social bots (Gao et al., 2019; Deriu et al., 2020).

QA Systems. Traditional QA systems assume a
single-turn setting (Fader et al., 2013). For multi-
turn QA systems, one approach is to employ a
pipelined architecture like a task-oriented dialogue
system (Dhingra et al., 2017); and the pipeline in-
cludes either a knowledge base (KB) or a machine
reading comprehension (MRC) model (Seo et al.,
2017; Gao et al., 2019). Both KB and MRC compo-
nents are also common in single-turn QA systems.

In KB based QA systems the answer is usu-
ally factual and is identified using an entity-centric
KB or knowledge graph (KG), after semantic pars-
ing (Iyyer et al., 2017). Also, in those systems a
limited number of questions can be answered and
they are typically curated (Chen and Yih, 2020).

On the other hand, the typical setup for an open-
domain QA system, is to first have a retriever,
that uses sparse or dense representations to se-
lect relevant passages from an external knowledge
source (Karpukhin et al., 2020), then a MRC model,
known as an extractive reader, to do span extraction
from those passages and mark where the answers
are (Rajpurkar et al., 2016; Choi et al., 2018). This
is known as a retriever-reader framework (Chen

et al., 2017a; Wang et al., 2019; Yang et al., 2019).
The reader from the retriever-reader framework can
be replaced with a generator to generate answers
out of the relevant passages, this system is known
as a retriever-generator framework (Lewis et al.,
2020; Izacard and Grave, 2021; Weng, 2020). Both
frameworks can be trained end-to-end.

One can recommend solving our problem with
the above described open-domain QA system; how-
ever, such an approach would require a predeter-
mined knowledge source from which answers are
extracted or generated. Enterprise customer ser-
vice departments typically have “help documents”
as knowledge sources, but what makes it difficult
to use an open-domain QA system approach is
that those sources are usually not comprehensive
enough.

Finally, all the previously described approaches,
even with recent advances that use very large pre-
trained language models (Radford et al., 2019;
Brown et al., 2020), have limited evidence that
shows that they work well for long-answer non-
factoid questions that are common among enter-
prise customer services (Raffel et al., 2020; Chen
and Yih, 2020).

Goal-Oriented Dialogue Systems. Conversely,
multi-turn question-answering live chats could be
viewed as goal-oriented dialogues in which the
task is to answer customers’ questions. Goal-
oriented dialogue systems are typically imple-
mented with a pipelined architecture (Chen et al.,
2017b), which consists of different modules for
natural language understanding (Goo et al., 2018),
dialogue state tracking (Lee and Stent, 2016), dia-
logue policy (Takanobu et al., 2019), and natural
language generation (Wen et al., 2015). End-to-end
methods have also emerged to minimize the need
of domain-specific feature engineering (Zhao and
Eskenazi, 2016; Bordes et al., 2017; Wen et al.,
2017; Li et al., 2017; Ham et al., 2020). How-
ever, most of these methods are applied on specific
domains that have limited intents and detectable
slots. Enterprise question-answering live chats can
have thousands of different intents and not every
question has detectable slots.

Chatbots. Chatbots or social bots have gone be-
yond chit-chat, can be further categorized as gener-
ative methods and retrieval-based methods. These
methods are applied to goal-oriented dialogues
as well, aiming to directly select or generate a
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dialogue response given an input (Gandhe and
Traum, 2010; Swanson et al., 2019; Henderson
et al., 2019).

Evaluation of Dialogue Systems. For evalua-
tion, goal-oriented dialogue systems can be eval-
uated to measure task-success and dialogue effi-
ciency (Walker et al., 1997; Takanobu et al., 2020;
Deriu et al., 2020). Retrieval-based chatbots often
report performance on Next Utterance Classifica-
tion, to test if a next utterance can be correctly
selected given the chat context (Lowe et al., 2015;
Henderson et al., 2019; Swanson et al., 2019). Con-
versational QA systems, on the other hand, are
evaluated based on the correctness of their answers
and the naturalness of the conversations (Reddy
et al., 2019; Deriu et al., 2020).

In the following, we describe our CQA approach
and how we evaluate it.

3 Approach

The main CQA task is defined in Nakov et al.
(2016) as “given (i) a new question and (ii) a large
collection of question-comment threads created by
a user community, rank the comments that are most
useful for answering the new question”. Quora and
Stack Overflow are examples of CQA websites.

The CQA task has three sub-tasks:

• Question-Comment Similarity (Subtask A):
to rank the usefulness of comments below a
question in a CQA forum;

• Question-Question Similarity (Subtask B): to
find previously asked similar questions;

• Question-External Comment Similarity (Sub-
task C): to rank comments from other ques-
tions for answering a new question.

Subtask C is built upon Subtask A and B.
If we replace Comment from the CQA problem

with Utterance for a live chat, we can view a multi-
turn live chat as a question-comment thread. Sub-
task A then becomes Question-Within Chat Utter-
ance Similarity and Subtask B remains Question-
Question Similarity (QQS), where we describe a
more robust setup for live chat. We investigate Sub-
task A and present a new task Answer Utterances
Extraction (AUE) that is better suited for question-
answering live chat. Figure 1 illustrates our 2-step
method of QQS and AUE.

Our approach does not require a KB or a knowl-
edge source with answer passages, that most QA

systems require, instead our approach needs only
historical chat sessions, which most enterprise cus-
tomer services have available. Moreover, our ap-
proach is flexible, because it is comparing question
similarity, and does not rely on specific question
intent or slots, and that makes it more generalizable
than goal-oriented dialogue systems.

In the next two sections we explain the two sub-
tasks and our approaches in details.

4 Question-Question Similarity

We define the QQS sub-task as: given a new ques-
tion consisting of m utterances from a customer,
obtain n historical chats whose questions are highly
similar to the new question. Highly similar ques-
tions are defined as having semantic equivalence
or high syntactic overlap.

This sub-task is similar to Subtask B from Se-
mEval–2016/2017 Task 3 Community Question
Answering related work (Nakov et al., 2016, 2017;
Yang et al., 2018) and learning to rank (Joachims,
2002; Surdeanu et al., 2008). The practice of hav-
ing a machine learning model on top of a search
engine is common in the information retrieval (IR)
community, it is done also for speed reasons, as it is
too slow to calculate the similarity scores between
a new question and all historical questions.

To adapt this approach to live chats, the main dif-
ference between a CQA question-comment thread
and a live chat for this sub-task is that we know
which text is the question in a question-comment
thread, and the question is typically stand-alone
and complete. For a live chat, it’s unknown which
utterances are the question, a customer question
could start with a salutation, and with subsequent
utterances together form a complete question.

4.1 Practical Considerations

Table 1: Enterprise live chat characteristics.

Statistic Value

Initial question is a complete question 58%
Live chats have more than 1 new question asked <10%
At which turn is the first answer utterance 7
First utterance is a salutation (i.e. “hi, hello”) >10%

Our approach concerns an enterprise customer
service live chat system. When a customer cre-
ates a live chat request, they enter their question
in free-form text and are then routed to a support
rep to start their chat. The initial question may be
a complete question itself, or it may take a few



460

more turns/utterances to complete. From Utter-
ance Annotation (Section 6.2), we found that in
58% of chats, the initial question is complete; the
utterance itself represents a complete question, cus-
tomers may provide additional information, but the
question can be answered without the additional
information. Therefore searching historical chats
matching on first utterances should cover the bulk
of chats, and matching beyond first utterances will
increase coverage.

In addition, less than 10% of the chats have more
than one question asked; customers may follow up
around the topic but rarely ask a completely new
question, thus focusing on the first question asked
(which could consist of multiple utterances) is rea-
sonable. Finally, on average the 7th utterance is
where reps start to give answers (approximately the
3rd customer utterance), hence we want to provide
assistance before that. These practical considera-
tions are summarized in Table 1 and drive how we
develop the QQS algorithm designed for live chat.

4.2 QQS Algorithm

Our goal is to assist enterprise support reps
promptly, therefore the QQS algorithm starts with
the first utterance. The same algorithm is utilized
again for subsequent utterances until the 3rd cus-
tomer utterance, with a query consisting of a con-
catenation of customer utterances up to that point.
We use a salutation detector (Section 4.3) to ignore
utterances that are not meaningful questions, and
then pass the query to a search engine to obtain
the top 10 results that are matched using the first
utterances of historical chats. The search results
are scored against the query with a chosen similar-
ity model (Section 4.4), and search results below a
chosen threshold value (Section 7.1) are removed.
Finally, the highest scoring search results up to
n are returned, n ∈ [0, 2]. Typically n is small
otherwise the support reps are overwhelmed.

4.3 Salutation Detector

Salutations and uninformative utterances account
for over 10% of the first utterances of our chats,
and a rule-based method can detect them accu-
rately. Our salutation detector is implemented
using a context-free grammar parser1 with hand-
crafted grammar rules to capture uninformative
utterances like “hi”, “hello”, “help desk please”,
“hi i have a question”, etc.

1https://github.com/lark-parser/lark

4.4 Similarity Models

To measure the similarity between two initial ques-
tions, both unsupervised and supervised methods
were considered. For the unsupervised method,
we use a word2vec model (Mikolov et al., 2013)
trained on live chat initial questions. Similarity
is measured using cosine of two questions rep-
resented as vectors. The model is denoted as
Word2Vec-COS, and COS stands for cosine.
For the supervised method, the BERTBASE pre-
trained model (Devlin et al., 2019) is fine-tuned
with question-question pairs to classify a pair of
texts as Similar or NotSimilar with a similarity
score. The model is denoted as BERT-QQS. Addi-
tional model details are described in Section 6.1.

5 Answer Utterances Extraction

After the QQS algorithm, n highly similar histori-
cal questions and their chats are obtained. For each
chat we proceed with the second sub-task, which is
defined as: given a chat consisting of m utterances,
identify the answer utterance(s).

The main difference between a question-
comment thread from a CQA forum and a live
chat is that a comment from a question-comment
thread is usually stand-alone, but for a live chat
it could take multiple turns to form a complete
meaning from each speaker. We also do not re-rank
utterances like a typical CQA approach, because re-
order utterances will perturb a complete answer that
is spanned across multiple utterances. In addition,
users in a question-common thread can up-vote a
correct comment/answer but for live chats we don’t
have such a mechanism.

For this sub-task, an unsupervised method and
a supervised method were developed. The un-
supervised method selects the most similar ut-
terances from the rep with respect to the ques-
tion, an approach inspired by CQA. Our work is
also related to extractive summarization where the
most important sentences in a document are identi-
fied (Narayan et al., 2018; Liu and Lapata, 2019),
so we include an unsupervised baseline result using
Latent Semantic Analysis (LSA) for comparison.

The supervised method incorporates dialogue
specific features to classify a candidate utterance,
which is closer to the problem of written dialogue
act classification (Kim et al., 2010), with a new set
of dialogue acts for enterprise live chat.

https://github.com/lark-parser/lark
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Table 2: An example of AdaptaBERT-AUE input after pre-processing. This should output NotAnswer.

Input Type Input Content

[CLNT] good morning , [ENTER]
[CLNT] how can i get usd / jp ##y swap rate for 3 and 5 years ? [ENTER]
[REP] hello there [redacted] ! [ENTER]

Chat Context [REP] good day to you . [ENTER]
[REP] please run [redacted] [ENTER]
[REP] on the lower left you can click into the different types of swap ##s . [ENTER]
...

Candidate Utterance [REP] good day to you . [ENTER]

5.1 Question-Within Chat Utterance
Similarity

This is an unsupervised method and closely re-
lated to Subtask A from SemEval–2016/2017
Task 3 Community Question Answering related
work (Nakov et al., 2015, 2016, 2017; Lai et al.,
2018).

We have a historical chat and its matched initial
question obtained from the QQS algorithm. The ini-
tial question is then scored with all utterances from
the rep using the same Word2Vec-COS model
from Section 4.4. The highest scoring x rep ut-
terances, which are the most similar utterances to
the question, are assumed answers. We set x to
be half of total rep utterances, with an intuition to
summarize a chat by half. The indices of the x
utterances in a chat are returned, subsequently can
be highlighted in a chat.

5.2 Latent Semantic Analysis

For an additional comparison, we include an un-
supervised baseline method’s result using LSA for
extractive summarization (Gong and Liu, 2001;
Steinberger and Ježek, 2004), since the AUE sub-
task can be set up as an extractive summarization
problem. We treat a whole chat conversation as a
document and select the x most semantically im-
portant rep utterances from the document as the
answer; and like the previous section, we set x to
be half of total rep utterances.

5.3 AdaptaBERT-AUE

This supervised method takes all utterances from a
historical chat obtained from the QQS algorithm,
and outputs scores to indicate each utterance’s prob-
ability being part of the complete answer.

We first conduct unsupervised domain-adaptive
fine-tuning (Dai and Le, 2015; Howard and Ruder,
2018) on a pre-trained BERTBASE model (Devlin
et al., 2019) to adapt to our dialogue domain, fol-

lowing the work in Han and Eisenstein (2019), the
model is denoted as AdaptaBERT. We then per-
form task-specific fine-tuning on AdaptaBERT
to take in a chat context and a candidate ut-
terance as input, and classify the candidate ut-
terance as Answer or NotAnswer, denoted as
AdaptaBERT-AUE.

For both domain-adaptive and task-specific
fine-tuning we extend the BERT vocabulary and
procedure to include three dialogue specific to-
kens: (1) [CLNT] represents speaker is cus-
tomer, (2) [REP] represents speaker is rep, and
(3) [ENTER] refers to when a user hits the en-
ter/return key to submit after finishing their utter-
ance. A partial example of an input for task-specific
fine-tuning can be seen in Table 2.

6 Experimental Setup

We used human annotations to evaluate our models
and algorithms. Data was sampled from a large
proprietary enterprise live chat dataset, containing
over 3 million English chats per year. We used
English chats to evaluate our methods; however the
approach is not limited to English.

6.1 QQS Data and Models
Two annotation sets are used to evaluate the sub-
task.

QQS Pair. We have live chat questions each la-
beled with one of over 1,000 intents. We consider
pairs of questions to be Similar if they have the
same intent, and NotSimilar otherwise. The data
is subsampled so there are 50% Similar pairs and
50% NotSimilar pairs. Out of these NotSimilar
pairs, 50% are close negatives, defined as question-
question pairs with overlapping vocabularies but
were not labeled as the same intent. A total of 1
million question-question pairs are sampled, and
the data is split with 80% for training and 20% for
validation.
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Because this data is not a random sample from
live chats, it is used to train and validate the
BERT-QQS model, but not for testing.

Search Result Annotation. To obtain test data,
we conduct an annotation task with randomly sam-
pled live chat first utterances. With these questions
we run through the QQS algorithm until search re-
sults are returned, and questions yielding no results
from the algorithm are excluded from the sample.

We design the annotation task in two parts. First,
we ask annotators to evaluate if a question is clear
or not, defined as whether a complete question is
asked. This is to identify questions like “I have a
question about excel formula” or “can you help me
with my report”, which are not salutations but still
require clarification before they can be answered.

If a question is clear, then annotators continue to
consider its search results, and select search results
that are equivalent or overlapping with the ques-
tion. If a question is labeled as not clear, then all
search results are considered not equivalent to the
question.

A total of 1,076 questions were annotated, result-
ing in 10,760 (question, search result) pairs with
labels. Each question was annotated by 2 anno-
tators. For inter-annotator agreement, the overall
Krippendorff’s Alpha is 0.46, which is considered
moderate agreement (Artstein and Poesio, 2008).
The final label of a (question, search result) pair
is considered positive if it is selected by at least
one annotator. The final label distributions are 28%
positive and 72% negative.

The following three models are evaluated.

• Solr Baseline is Apache Solr with a cus-
tom indexing pipeline consists of Lucene’s
standard tokenizer, stop words filter, lower
case filter, English possessive filter, keyword
marker filter, and Porter stemmer filter. The
query pipeline is the same as the indexing
pipeline with an additional synonym filter fac-
tory. Document scoring uses Lucene’s TFIDF-
Similarity2, where documents “approved” by
Boolean model of IR are scored by tf-idf
with cosine similarity. We use this as a
baseline to evaluate QQS, where the Solr rank
is directly used to rank results. All other
similarity models are applied on top this IR
method.

2https://lucene.apache.org/core/5_
5_5/core/org/apache/lucene/search/
similarities/TFIDFSimilarity.html

• Word2Vec-COS is our unsupervised base-
line method. Trained with 2.8 million first
utterances using Google’s word2vec exe-
cutable3 with the following parameters: skip-
gram architecture, window size is 5, and di-
mension is 300. To measure the similarity
between two input texts, the text is first pre-
processed to remove stop words, and words
that are adjectives, nouns, proper nouns, and
verbs are kept. The text is then represented
as a vector by averaging over its word vec-
tors; finally, we calculate cosine of the two
vectors.

• BERT-QQS is a fine-tuned BERTBASE

model that classifies a pair of questions to
output a similarity score. We used Google’s
BERT code4 to fine-tune with default hyper-
parameters. Trained/fine-tuned and validated
using QQS Pair.

6.2 AUE Data and Models
We use one dataset to evaluate this sub-task.

Utterance Annotation. An annotation task is
conducted to label live chat utterances. Live chats
are randomly sampled, and each utterance is la-
beled as one of the following dialogue acts: Ques-
tionStartComplete, QuestionStart, QuestionRele-
vant, QuestionComplete, Answer or Other. We
denote Question* to include all question labels.

An utterance that is a complete question itself
is labeled as QuestionStartComplete. A question
takes multiple turns to complete is labeled as Ques-
tionStart for its first utterance and QuestionCom-
plete for its last utterance, and QuestionRelevant
in-between. An utterance contributes to the solu-
tion is labeled as Answer, and the rest are labeled
as Other. An example can be seen in Table 3.

There are total 656 chats and 12,310 utterances,
and 21% of the chats were annotated by 2 to 6
annotators to calculate inter-annotator agreement.
The Krippendorff’s Alpha is 0.59, which is consid-
ered moderate agreement and close to substantial
agreement (Artstein and Poesio, 2008). We take
the majority vote as the final label for these utter-
ances. The final label distributions of all utterances
are 22% Question*, 28% Answer, and 51% Other.

The following four models are evaluated.
3https://code.google.com/archive/p/

word2vec/
4https://github.com/google-research/

bert

https://lucene.apache.org/core/5_5_5/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/5_5_5/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/5_5_5/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://github.com/google-research/bert
https://github.com/google-research/bert
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Table 3: An example Utterance Annotation. The example has been lightly edited.

Speaker Utterance Label

Customer How do I setup a email thread to top coronavirus news? QuestionStartComplete
Rep Hello you have reached [redacted]. Please allow me a moment to check on

this for you.
Other

Customer Are you still there Other
Rep Please go to [redacted] and click into [redacted] under Sources and search

for Coronavirus
Answer

Rep A better alternative may actually be to check [redacted] and search “coron-
avirus”, and subscribe to one of those

Answer

Rep You can preview the kinds of stories they provide, and set up delivery
preferences

Answer

Customer Thanks Other
Customer Do I want deliver to alert catcher QuestionRelevant
Customer I think I’m set actually thanks Other
Customer Appreciate it Other
Rep No problem! If you have any further questions, please feel free to return to

the chat.
Other

• Word2Vec-COS is the same model used in
QQS, see Section 6.1. Testing is done with Ut-
terance Annotation to select the most similar
rep utterances to the question, as described in
Section 5.1.

• LSA-Sumy is an unsupervised baseline
method of extractive summarization using
LSA. We use the sumy (Belica, 2013) Python
package5 implementation, while utilizing our
own tokenization and segmentation methods.
Testing is done with Utterance Annotation
to select the most semantically important rep
utterances, as described in Section 5.2.

• AdaptaBERT-AUE is a result of both
domain-adaptive and task-specific fine-tuning,
and we extended BERTBASE to account for
dialogue specific tokens. The model classifies
a candidate utterance along with its chat con-
text to output a score to indicate how likely
the candidate utterance is Answer. We use 1.3
million whole chats for domain-adaptive fine-
tuning. 5-fold cross-validated for task-specific
fine-tuning with Utterance Annotation. De-
fault hyper-parameters were used with max-
imum sequence length being 512 to account
for chat context.

• BERT-AUE is AdaptaBERT-AUE without
the unsupervised domain-adaptive fine-tuning
step.

5https://miso-belica.github.io/sumy/

7 Results

We achieve a high F1 score of 86.83% on the AUE
task, and significantly outperform the unsupervised
methods on the QQS task.

7.1 QQS Evaluation

Table 4: Test on all (question, search result) pairs with
different models.

Model Threshold Precision Recall F1

Solr Baseline N/A 27.87 100 43.59
Word2Vec-COS 0.5 28.19 100 43.98
Word2Vec-COS 0.7 29.78 95.10 45.36
Word2Vec-COS 0.9 40.51 13.80 20.59
BERT-QQS 0.5 44.27 67.02 53.32
BERT-QQS 0.7 47.98 54.28 50.94
BERT-QQS 0.9 54.77 28.54 37.53

For BERT-QQS the accuracy is 89% from vali-
dation of QQS Pair. We observed that the accuracy
started at 80% with 20,000 question-question pairs
and increased as the number of pair increases.

To test the QQS algorithm with different sim-
ilarity models, we evaluate all 10,760 (question,
search result) pairs from Search Result Annota-
tion. Each pair has a prediction/score from differ-
ent similarity models, and a final label to indicate
positive or negative. As can be seen in Table 4,
because all the pairs are search results, for Solr
Baseline (row 1), all pairs are considered as
predicted positive, therefore recall is 100% and
threshold is not applicable (N/A). Similarity mod-
els like Word2Vec-COS and BERT-QQS quan-
tify similarity with a score, and we use different pre-
defined probability threshold values to calculate
precision, recall, and F1. BERT-QQS (row 5) sig-

https://miso-belica.github.io/sumy/
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Table 5: Ablation Study of AdaptaBERT-AUE (5-fold cross validation)

Input Features F1

Candidate utterance text only 79.59
Candidate utterance text and speaker 84.23
Whole chat text as context + candidate utterance text 82.98
Whole chat text as context (shuffle utterance order) + candidate utterance text 81.25
Whole chat text and speaker as context + candidate utterance text and speaker (AdaptaBERT-AUE) 86.83

nificantly improves Solr Baseline on the F1

score for more than 9 points, indicating that it can
select highly similar questions. Word2Vec-COS
(row 3) performs only slightly better than Solr
Baseline.
BERT-QQS with a higher threshold value can

improve precision, which is a primary factor to eval-
uate readiness for production systems. Enterprise
live chat systems often has precision requirement
and sometimes are willing to sacrifice recall for
precision.

7.2 AUE Evaluation
To evaluate performance of AUE, we use Utter-
ance Annotation. We directly test the algorithm
from Section 5.1 with Word2Vec-COS on this
dataset. Basing on the output indices from the algo-
rithm, we marked these utterances as predicted An-
swer and the rest marked as predicted NotAnswer.
The first utterance marked as QuestionStartCom-
plete or the first occurrence between QuestionStart
and QuestionComplete is used as the question text.

As can be seen in Table 6 (row 1), the
Word2Vec-COS attains a decent F1 score, es-
pecially since it is an unsupervised method. For
LSA-Sumy, a LSA based extractive summariza-
tion baseline method described in Section 5.2, is
performing worse than the similarity based method
Word2Vec-COS as can be seen in row 2 versus
row 1 of Table 6.

Table 6: Unsupervised and supervised methods.

Model F1

Word2Vec-COS (algorithm from Section 5.1) 63.92
LSA-Sumy (algorithm from Section 5.2) 58.95
BERT-AUE (5-fold cross validation) 82.40
AdaptaBERT-AUE (5-fold cross validation) 86.83

For BERT-AUE and AdaptaBERT-AUE, we
treat labels Question* and Other as NotAnswer.
After 5-fold cross-validation, the F1 score is aver-
aged from all folds and listed in Table 6. Unsu-
pervised domain-adaptive fine-tuning accounts for
more than 4 points in F1 (row 3 versus row 4).

7.3 Ablation Study of AdaptaBERT-AUE

To understand more about how different features
contribute to the AdaptaBERT-AUE model per-
formance, we conduct an ablation study to include
different features for task-specific fine-tuning.

As can be seen in Table 5, merely the text
of the candidate utterance (row 1), without any
context or speaker information, brings us to a F1

score of 79.59%. With just candidate utterance
text, it cannot be argued that the model is learn-
ing text similarities like Word2Vec-COS with
the algorithm from Section 5.1. The bulk of
the AdaptaBERT-AUE performance comes from
candidate utterance text solely. Adding speaker
features (row 1 versus row 2) contributes about 5
points of F1, which is significant. The presence
of chat context features (row 1 versus row 4) and
the context in order or not (row 3 versus row 4) re-
sult in F1 differences moderately. Speaker features
contribute to the F1 score more than whole chat
features (row 2 and row 3 versus row 1).

8 Production System

To conclude, we describe our production system.
We deployed the BERT-QQS model from Sec-
tion 6.1 and used all Utterance Annotation to
train a AdaptaBERT-AUE model for production.

A pilot application is currently employed in as-
sisting several hundred enterprise support reps on a
daily basis. This real-time application displays up
to two highly similar historical questions to reps
(QQS), and upon clicking into, answer utterances
are highlighted with the whole chat shown (AUE).

Inference time is crucial because our production
system is serving reps in real time. To harness
the power of graphics processing units (GPU) for
model serving, we use KFServing6 so that differ-
ent parts of the inference system can be scaled
independently. When serving the models on pro-
duction, each pair of texts takes about 20 millisec-
onds for BERT-QQS and about 40 milliseconds for

6https://github.com/kubeflow/kfserving

https://github.com/kubeflow/kfserving
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AdaptaBERT-AUE on one GPU to do inference.

8.1 User Engagement

We tracked the following user interactions after
deploying the pilot application to production.

• Weekly question volume refers to the weekly
total number of questions from customers that
the reps are enabled for the application.

• Coverage (trigger rate) refers to the percent-
age of questions triggered at least one matched
historical chat from the QQS algorithm. This
measures the overall impact of the system.

• Click rate refers to the percentage of ques-
tions that the reps clicked on any suggestions
(we display up to two historical chats). This
is to measure the impact and performance of
the QQS algorithm.

• Paste rate refers to the percentage of ques-
tions that the reps clicked into any suggested
chat (we display up to two historical chats)
and then copied/pasted from it (answer utter-
ances were highlighted). This is to measure
the impact and performance end-to-end for
the 2-step method of QQS and AUE.

Table 7: User interaction statistics.

Statistic Value

Weekly question volume Approximately 40,000
Coverage (trigger rate) 49%
Click rate (of triggers) 37%
Paste rate (of clicks) 27%

From Table 7, we can see that our approach cov-
ers about half of the live chats (49%, row 2), and
more than one in three questions (37%, row 3), our
suggestions are used. In addition, for these ques-
tions their suggested chats were clicked, 27% of
them the suggestions are directly copied/pasted by
the reps in answering customers questions (row 4).

Click rate is related to the QQS performance, but
reps may not click on a suggestion if they already
knew the answer to the question. For paste rate, we
observed that reps sometimes read the suggested
chat/answer and type their answers to customize
their response to customers, and this behavior is
harder to track. Therefore the paste rate is a lower
bound to reflect the actual usage.

9 Conclusion

We have demonstrated how to adapt the Commu-
nity Question Answering (CQA) framework to as-
sist question-answering live chat, effectively and
efficiently. For the QQS sub-task, where we use a
robust setup for live chat, attain more than 9% abso-
lute improvement in F1 over baseline; we achieve
a high F1 score of 87% for the newly presented
AUE sub-task, using unsupervised domain adap-
tive fine-tuning designed for live chat. Production
user engagement data gathered from our real-time
application showcase how the 2-step approach can
influence the enterprise customer service industry
in training and staffing for the support reps.

Our approach is broadly applicable, but it may
not be the most preferred solution for every type
of question. Business considerations must be taken
when one is selecting their QA approach. For exam-
ple, a question about a specific software problem
may be answered with a pre-defined multi-turn tem-
plate from a goal-oriented dialogue system to help
guide a customer through a re-installation process.
In contrast, with our approach, the answer utter-
ances that contain the troubleshooting steps in a
historical chat will be highlighted for the rep to
use and guide the customer through the installation
process. A template-based goal-oriented dialogue
system could cover only task-oriented questions
(e.g. software re-installation question intent), and
if done well does not need rep involvement. Our
CQA inspired approach and goal-oriented dialogue
systems complement each other.

Future work will be automating annotation pro-
cess through user interactions, qualitative analysis
of user engagement data, and question-answering
for longer chats midstream.

10 Ethical Considerations

All the work in this paper was done using
anonymized user data, to respect the privacy of
both participants in each conversation.
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Preslav Nakov, Lluı́s Màrquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak, Abed Alhakim Frei-
hat, Jim Glass, and Bilal Randeree. 2016. SemEval-
2016 task 3: Community question answering. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 525–
545.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1747–1759.

Gil Press. 2019. AI stats news: 86% of consumers pre-
fer humans to chatbots.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

https://doi.org/10.18653/v1/P19-1536
https://doi.org/10.18653/v1/P19-1536
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.18653/v1/P17-1167
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://doi.org/10.1145/775047.775067
https://doi.org/10.1145/775047.775067
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://www.aclweb.org/anthology/D10-1084
https://www.aclweb.org/anthology/D10-1084
https://www.aclweb.org/anthology/C18-1181
https://www.aclweb.org/anthology/C18-1181
https://www.aclweb.org/anthology/C18-1181
https://doi.org/10.18653/v1/W16-3602
https://doi.org/10.18653/v1/W16-3602
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://www.aclweb.org/anthology/I17-1074
https://www.aclweb.org/anthology/I17-1074
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/W15-4640
https://doi.org/10.18653/v1/W15-4640
https://doi.org/10.18653/v1/W15-4640
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.18653/v1/S17-2003
https://doi.org/10.18653/v1/S17-2003
https://doi.org/10.18653/v1/S15-2047
https://doi.org/10.18653/v1/S15-2047
https://doi.org/10.18653/v1/S16-1083
https://doi.org/10.18653/v1/S16-1083
https://doi.org/10.18653/v1/N18-1158
https://doi.org/10.18653/v1/N18-1158
https://www.forbes.com/sites/gilpress/2019/10/02/ai-stats-news-86-of-consumers-prefer-to-interact-with-a-human-agent-rather-than-a-chatbot/
https://www.forbes.com/sites/gilpress/2019/10/02/ai-stats-news-86-of-consumers-prefer-to-interact-with-a-human-agent-rather-than-a-chatbot/


468

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. CoQA: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017.

Michelle A. Shell and Ryan W. Buell. 2019. Why anx-
ious customers prefer human customer service. Har-
vard Business Review. Section: Customer service.

Josef Steinberger and Karel Ježek. 2004. Using latent
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